
Cryptanalysis and Improvement of the

Smart–ID’s Clone Detection Mechanism

Augustin P. SARR

LACCA, UFR SAT, Université Gaston Berger de Saint–Louis,
Saint–Louis, Senegal

Abstract. At ESORICS 2017, Buldas et al. proposed an efficient (soft-
ware only) server supported signature scheme, geared to mobile devices,
termed Smart–ID. A major component of their design is a clone detec-
tion mechanism, which allows a server to detect the existence of clones
of a client’s private key share. We point out a flaw in this mechanism.
We show that, under a realistic race condition, an attacker which holds
a password camouflaged private share can lunch an online dictionary at-
tack such that (i) if all its password guesses are wrong, it is very likely
that the attack will not be detected, and (ii) if one of its guesses is cor-
rect, it can generate signatures on messages of its choice, and the attack
will not be detected. We propose an improvement of Smart–ID to thwart
the attack we present.

Keywords: Smart–ID, four–prime RSA, , clone detection, mobile de-
vices, undetectable online dictionary attack.

1 Introduction

Digital signatures are used in every day communications and commerce. Given
the widespread use of mobile devices, and the issue of a secure storage of the
private keys, server supported software only solutions seem to be an interesting
approach. Companies are now deploying software only threshold cryptography
for key protection on mobile devices. Cyberetica [4] proposes an authentication
and digital signature platform based on Smart–ID [1]. Smart–ID is a signature
scheme, a modification of Damgård et al.’s four prime RSA [2], geared to software
only implementations on mobile devices.

A Smart–ID private key is shared between the device and a server, in a way
to avoid the existence of a reference point for offline dictionary attacks, at both
the device and the server. In addition, the signature generation integrates a clone
detection mechanism which is claimed to allow the server to detect the existence
of clones of a client’s private share. The number of Smart–ID users grew from
200,000 in 2017 [1] to 1,800,000 in 2019 [3].

Unfortunately, as we show in Section 2, there is a subtle flaw in the clone
detection mechanism; this invalidates some of the claimed security attributes.
Namely, we show that, under a plausible race condition, an attacker which holds
a clone of the client’s password camouflaged private key share (recall that the



2

implementation is software–only) can issue up to (T0−1) undetectable password
guesses, where T0 is the maximum wrong password guesses the service allows.
Moreover, if one of the guesses is correct the attacker may generate signatures
on messages of its choice, and this will not be detected. We improve the clone
detection mechanism to thwart the attack we present.

This paper is organized as follows. In Section 2 we recall the Smart–ID
scheme, then we present an attack which invalidates the security of the clone
detection mechanism. In Section 3, we propose an improved variant of Smart–
ID, which thwarts the attack we present. We provide some concluding remarks
in Section 4.

We use the following notations. If S is a set, a←R S means that a is cho-
sen uniformly at random from S. A prime number p is said to be (l, s)–safe
if p = 2ap′

1
· · · p′

k where p′
i,i∈{1,···k} are primes greater than s and 1 6 a 6 l.

For an integer n, [n] denotes the set {0, · · · , n}. If n1 and n2 are such that
gcd(n1, n2) = 1, crt((σ1, n1), (σ2, n2)) refers to the unique σ ∈ [n1n1 − 1] such
that σ = σ1 mod n1 and σ = σ2 mod n2.

2 Attacking the Smart–ID Signature Scheme

2.1 Description of the Scheme

Given a security parameter η, the Setup algorithm defines an RSA modulus
length k, suitable values for l and s, a public exponent e, and a pseudorandom
function GenShare which takes as inputs u ∈ {0, 1}η, a password pwd ∈ {0, 1}l

and an RSA modulus n1, and outputs d1 < n1. It defines also a hash function
H : {0, 1}∗ → {0, 1}ηH, with ηH 6 (k − 1), a padding scheme P, and an upper
bound T0 on the number of password attempts a user may perform.

Shared key generation. Assuming a secure channel between the client clt and the
server srv, clt generates two (l, s)–safe primes p1 and q1 (such that gcd(e, (p1 −
1)(q1−1)) = 1) and computes n1 = p1q1, and d1 = e−1 mod φ(n1). It generates
u, r←R {0, 1}η and d′

1 = GenShare(u, pwd, n1), where pwd is the user’s password,
and d′′

1 = d1 − d′
1 mod φ(n1). Then, clt sends 〈d′′

1 , n1, r〉 to srv.
At receipt of clt’s message, srv generates two (l, s)–safe primes p2 and q2 (such

that gcd(e, (p2−1)(q2−1)) = 1) and computes n2 = p2q2, d2 = e−1 mod φ(n2),
and n = n1n2. Then, it sends back n to clt and stores 〈n1, n2, d′′

1 , d2, r, T = T0〉.
At receipt of srv’s message, clt stores 〈n, n1, u, r〉 and safely deletes all the other
values. The public key is pk = (e, n).

Signature Generation. For a signature on m′ ∈ {0, 1}∗, clt computes m =
P(H(m′)); then, from the user’s password pwd, it derives d′

1 = GenShare(u, pwd, n1)

and y = md′

1 mod n1. It chooses r′←R {0, 1}η and sends 〈y, m, r, r′〉 to srv.
At receipt of 〈y, m, r, r′〉, srv verifies that clt is active; if so, it lookups

the record 〈n1, n2, d′′
1 , d2, r̂, T 〉. If r̂ 6= r, srv deactivates clt; else, it computes

σ1 = ymd′′

1 mod n1 and m̂ = σe
1

mod n1. If m̂ 6= m, it drops the request,



3

decrements T , and deactivates clt in the case T = 0. If m̂ = m, it com-
putes σ2 = md2 mod n2, σ = crt((σ1, n1), (σ2, n2)), sends back 〈σ, m〉 to clt,
sets T = T0, and stores 〈n1, n2, d′′

1 , d2, r′, T 〉. At receipt of 〈σ, m〉, clt stores
〈n, n1, u, r′〉. The signature on m′ is σ.

Signature Verification. To verify a signature σ on m′, with regard to a public
key pk = (n, e), one computes m = P(H(m′)) and verifies that σe = m mod n.

The Clone Detection Mechanism. A major component in Smart–ID’s design
is its clone detection mechanism. During the key pair generation the client clt

sends to the server not only a share d′′
1 of d1, the part of the private key it

generates, but also a nonce r the server should expect to receive in clt’s next
service query. And, each time clt uses the services, it sends a new nonce r′

together with r; from there srv expects to receive r′ in clt’s next query. An
adversary A which holds a clone of clt’s private share d1 has to send a new
nonce r′ at each service query. Then, it is expected that the value A sends be
different from the value r at the legitimate client clt. And then, the existence of
the clone be detected when clt attempts to query the service.

Unfortunately, this analysis mistakenly assumes that an attacker which holds
a clone of clt’s private share (which may password camouflaged or not) will follow
the protocol’s description. In particular, the analysis assumes that A will choose
r′ uniformly at random from {0, 1}η. As we show, this seemingly insignificant
shortcoming induces major weaknesses in the clone detection mechanism.

2.2 Undetectable Online Password Guesses

Assuming a realistic race condition, we show how an attacker A which holds a
clone of clt’s password camouflaged private share, and aims to have valid sig-
natures on m′

1
, m′

2
, · · · , m′

k ∈ {0, 1}∗, can issue up to (T0 − 1) online password
guesses such that (i) if all the guesses are wrong, it is very likely that the attack
remains undetected, and (ii) if one of the guesses is correct, A generates signa-
tures on the messages and the attack will not be detected. Clearly, this indicates
a failure of Smart–ID’s clone detection mechanism.

We assume that A obtains a clone of a client’s password camouflaged share
after a successful use of the service, so that T = T0 at srv; A performs as in
Algorithm 1.

Under the realistic assumption that the legitimate client clt does not use the
service before the attack is completely executed, it is very likely that the attack
remains undetected. In effect, A performs at most (T0 − 1) password guesses.
And, if none of the guesses is correct, the device is not deactivated (T = 1, there
remains one possible attempt). Now, as the attacker always used r′ = r as a next
incoming nonce, the server still expects to receive a nonce with value r in the
next request. This corresponds the nonce value at clt. So, it is very likely that
when the legitimate device owner connects to the service, it derives the right
private share d′

1
and sends the nonce r, so that the value of T is set again to T0,



4

Algorithm 1 Undetectable online password guesses

1) Computes m1 = P(H(m′
1)), and recover the tuple 〈n, n1, u, r〉 (which is stored

unencrypted in the clone);
2) For each password pwdi, i ∈ {1, · · · , T0 − 1}, to test, do the following:

a) Compute d̂′
1,i = GenShare(u, pwdi, n1) and y1,i = m

d̂′

1,i

1
mod n1;

b) Send 〈y1,i, m1, r, r〉 to srv;
c) If srv responds with a pair 〈σ1, m1〉 such that σe

1
= m1 mod n then

i) Store pwd = pwdi and d′
1 = GenShare(u, pwdi, n1) as the right pass-

word and private key share, respectively;
ii) For each mj = P (H(m′

j)), j ∈ {2, · · · , k}:

ii1) Compute yj = m
d′

1

j mod n1 and send 〈yj , mj , r, r〉 to srv;

ii2) At receipt of 〈σj , mj〉, store σj as a signature on m′
j .

and the attacker’s wrong password guesses remain undetected. In contrast, if the
device owner mistakenly types a wrong password, the device is deactivated and
the attack is detected. This event can be made rarer by reducing the number of
password guesses the attacker performs (to (T0 − 2), for instance).

If one of the password guesses is correct,A which is now aware of d′
1 generates

the signatures σj on m′
j for j ∈ {1, · · · , k}. After the signature generations, the

value of T at srv is T0, and the value of r srv expects to receive is the one at
clt. Hence, under the race condition that clt does not use the service before the
attack is completely executed, the attack will not be detected.

Remark 1. In the weaker attack model wherein A holds a clone of clt’s password
camouflaged share together with it’s password pwd, the attack can be launched,
under the same race condition. The only change is that the set of passwords to
test a Step 2 reduces to the singleton {pwd}.

3 Improving the Smart–ID Scheme

We propose a variant of Smart–ID, which resists to our attack.
At first glance, it may be tempting to modify the server to require that

two consecutive nonces be different, i. e., in a signature generation, the current
nonces r and the next nonce r′ a client provides be different. This modification
is not enough, if (T0 − 1) > 3 or if one of the password guesses is correct, as
the attacker can use consecutive nonces r = r1, r2, · · · , rL, with L > (T0 − 1)
(L = T0 − 1 if all the guesses are wrong) such that r1 6= r2, r2 6= r3, · · · , but
rL = r.

More generally, the server can require that consecutive T0 nonces be pairwise
different; this requirement induces no modification at the client (the probability
of collision 6 T 2

0
/2η, which is negligible). Unfortunately, this change remains

unsatisfactory, as if A succeeds in one of its guesses, it can query the service
L > T0 times, with nonces r = r1, r2, · · · , rk such that r1 6= r2, r2 6= r3, · · · , but
rL = r. The attack will not be detected.



5

A better approach is to modify the server so that it contributes to the nonce
generation. In this way, it becomes infeasible for a malicious client to masquerade
so that the nonce srv expects to receive holds a specific value. We describe here-
under the modified Smart–ID variant we obtain with such a modification. The
setup and signature verification algorithms are the same as in original scheme.

Shared key generation. We assume a secure channel between the client clt and
the server srv. The client generates two (l, s)–safe primes p1 and q1 and computes
n1 = p1q1 and d1 = e−1 mod φ(n1). It generates u, rc←R {0, 1}η and computes
d′

1
= GenShare(u, pwd, n1), where pwd is the user’s password, and d′′

1
= d1 − d′

1

mod φ(n1). Then it sends 〈d′′
1 , n1, rc〉 to srv.

At receipt of clt’s message, srv generates two (l, s)–safe primes p2 and q2; it
computes n2 = p2q2, d2 = e−1 mod φ(n2), rs←R {0, 1}η, and n = n1n2. Then,
it sends back 〈n, rs〉 to clt and stores 〈n1, n2, d′′

1
, d2, rc, rs, T = T0〉. At receipt of

srv’s message, clt stores 〈n, n1, u, rc, rs〉 and safely deletes all the other values.
The public key is pk = (e, n).

Signature Generation. For a signature on m′, clt generates m = P(H(m′)).
Then, it gets the user’s password pwd, and derives d′

1
= GenShare(u, pwd, n1)

and y = md′

1 mod n1. It chooses r′
c←R {0, 1}η and sends 〈y, m, rc, rs, r′

c〉 to srv.
At receipt of 〈y, m, rc, rs, r′

c〉, srv verifies that clt is active. If so, it lookups

the record 〈n1, n2, d′′
1
, d2, r̂c, r̂s, T 〉. It computes σ1 = ymd′′

1 mod n1 and m̂ = σe
1

mod n1, and performs as follows.
– If (r̂c, r̂s) 6= (rc, rs) and m̂ 6= m then srv alerts1 on the existence of a clone

of the password camouflaged share of clt, and drops the request.
– If (r̂c, r̂s) 6= (rc, rs) and m̂ = m then srv deactivates the client (there is

probably a clone of clt’s private share).
– If (r̂c, r̂s) = (rc, rs) and m̂ 6= m then
• srv chooses r′

s←R {0, 1}η, and sends (“0”, r′
s) to clt;

• it decrements T, stores 〈n1, n2, d′′
1 , d2, r′

c, r′
s, T 〉, and deactivates clt in the

case T = 0.
– If (r̂c, r̂s) = (rc, rs) and m̂ = m then srv computes σ2 = md2 mod n2,

σ = crt((σ1, n1), (σ2, n2)), chooses r′
s←R {0, 1}η, and sends back 〈σ, m, r′

s〉
to clt. It sets T = T0 and stores 〈n1, n2, d′′

1
, d2, r′

c, r′
s, T 〉.

At receipt of srv’s message, clt performs as follows.
– If the message parses as (“0”, r′

s) then clt stores 〈n, n1, u, r′
c, r′

s〉 (the user
probably typed a wrong password and the signature generation failed).

– Else (the message parses as 〈σ, m, r′
s〉),

• clt stores 〈n, n1, u, r′
c, r′

s〉;
• the signature on m′ is σ.

Clone Detection. By defining the nonce a client provides, when using the service,
as a pair (rc, rs) such that rc is generated by the client and rs by the server,
neither the server nor the client can masquerade so that a nonce takes a specific

1 There may exist a secondary channel between srv and clt.



6

value. In this way, once an attacker (which holds either a clone of the password
camouflaged share or a clone of clt’s private share) uses the service, through an
online password guess or a signature generation, the nonce the server expects
for the next query changes. And, except with negligible probability, it becomes
different from the one at clt. Thereby, the existence of the clone will be detected
the next time clt uses the service.

Remark 2. a) The clone detection mechanism may be of interest in other client–
server settings.

b) To reduce the communication cost of a signature generation, the nonce clt

sends can be defined to be H′(rc, rs), for some cryptographic hash function
H

′ : {0, 1}∗ → {0, 1}η, instead of (rc, rs).

4 Concluding Remarks

The Smart–ID scheme, built from Damgård et al.’s four prime RSA, is geared to
server supported software only implementations on mobile devices. While this
approach provides an interesting solution for the issue of a secure storage of the
private keys on mobile devices, it yields easily clonable (software only) applica-
tions. To mitigate this issue, the Smart–ID design integrates a clone detection
mechanism.

We pointed out a subtle shortcoming in the clone detection mechanism and
showed, under a realistic race condition, how an attacker which holds a clone of
the password camouflaged private share of a client can lunch online password
guesses such that (i) if all the guesses are wrong, it is likely that the attack will
no be detected, and (ii) if one of the guesses is correct, the attacker may generate
signatures on messages of its choice, while the attack will not be detected. We
proposed a variant of Smart–ID which integrates a new clone detection mecha-
nism and resists the attack we present.

It would be a nice feature of the Smart–ID scheme if device owners had the
possibility to update their passwords. In a forthcoming stage, we will explore
the question of password updates in password–based server supported signature
schemes.

Responsible Disclosure. On November 29, 2019, we shared the findings in
this paper with Ahto Buldas, the corresponding author of the ESORICS 2017
paper, which describes Smart–ID. We received no answer. On December 11,
2019, we shared the findings with the Smart–ID vendor SK ID Solutions AS.
They answered that the ESORICS 2017 paper “describes an early stage of the
design and represents the first iteration, which was never implemented in the live
product. Additional security features were designed before live implementation.
All production versions feature these, including the recommendations listed in
your publication. The foundational cryptographic mechanism in the Smart–ID
system has been published and the security features of Smart–ID have been
evaluated according to the Common Criteria standard”. It is not clear, for us,



7

how the assertion “Our scheme has been deployed and has over 200,000 users”
from [1] should be interpreted.

Acknowledgement. The authors would like to thank Arnis Paršovs for pro-
viding valuable comments and suggestions.

References

1. Buldas A., Kalu A., Laud P., Oruaas M.: Server-Supported RSA Signatures for
Mobile Devices. In: Foley S., Gollmann D., Snekkenes E. (eds) Computer Security
— ESORICS 2017. ESORICS 2017. LNCS, vol 10492. Springer, Cham (2017)

2. Damgård, I., Mikkelsen, G. L., Skeltved, T.: On the security of distributed multi-
prime RSA. In: Lee J., Kim J. (eds) Information Security and Cryptology —
ICISC 2014. ICISC 2014. LNCS, vol 8949. Springer, Cham (2015)

3. van de Poll M., Kalu A.: SplitKey — A Threshold Cryptography Case Study. NIST
Threshold Cryptography Workshop 2019. Gaithersburg, MD, March 2019.

4. Cybernetica https://cyber.ee.


	Cryptanalysis and Improvement of the Smart–ID's Clone Detection Mechanism

