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Abstract. In this article we put forward an encryption mechanism that
dwells on the problem of identifying the correct subset of primes from a
known set. By utilizing our specially constructed public key when com-
puting the ciphertext equation, the decryption mechanism can correctly
output the shared secret parameter. The scheme has short key length,
no decryption failure issues, plaintext-to-ciphertext expansion of one-to-
two as well as uses “simple” mathematics in order to achieve maximum
simplicity in design, such that even practitioners with limited mathe-
matical background will be able to understand the arithmetic. Due to
in-existence of efficient algorithms running upon a quantum computer
to obtain the roots of our ciphertext equation and also to retrieve the
private key from the public key, our encryption mechanism can be a
probable candidate for seamless post quantum drop-in replacement for
current traditional asymmetric schemes.

Keywords: post quantum cryptosystem, subset identifying problem, combina-
tion problem

1 Introduction

We begin our introduction with background of our motivation.

1.1 Motivation

Hard mathematical problems that can be proven or to a lesser degree believed
unable to be solved in polynomial time by classical computers, have long been
a source for asymmetric cryptosystems. Popular hard mathematical problems
include the integer factorization, discrete logarithm and the elliptic curve dis-
crete logarithm problems. As examples, the integer factorization problem was
successfully deployed through the RSA cryptosystem, discrete logarithm prob-
lem through the El-Gamal cryptosyetem and the elliptic curve discrete logarithm
problem by the elliptic curve cryptosystem. On special occasions, the ciphertext
has its own source of “security”. As an example the RSA ciphertext is based on
the e-th root problem. It can be proven that the e-th root problem is reduced



to the integer factorization problem. However, the converse is unknown. On the
other hand, the notion of having hard mathematical problems seems vague in the
symmetric case. As an example is the symmetric key cryptosystem AES [12]. Its
security is not based on any known hard mathematical problem. Nevertheless,
AES is believed secure, even with the presence of quantum computers.

Upon the discovery of Shor’s algorithm in 1994 ([14]) which could solve the in-
teger factorization problem as well as discrete logarithm based problems upon
a quantum computer in polynomial time, cryptographers scrambled to find new
hard mathematical problems which could resist Shor’s algorithm and at the
same time is able to provide asymmetric security (i.e. to be able to be used to
design asymmetric cryptosystems that are quantum resistant). A compendium
of potential hard problems was developed. Pioneering work can be traced to the
code based cryptosystem by McEliece in 1978 ([10]). Lattice based cryptosys-
tems which employs the short vector problem or the closest vector problem were
also popular to be utilized. Among them the NTRU cryptosystem in 1995 ([8])
and LWE cryptosystem in 2005 ([13]). Since then we have had (not limited to)
schemes based on multivariate quadratic equations such as the Rainbow cryp-
tosystem in 2005 ([4]) and the UOV cryptosystem in 2010 ([3]).

An efficient candidate for post quantum cryptography should have short key
length (approximately the length of RSA and discrete logarithm based algo-
rithms for at least 128-bit security), decrypts correctly 100% of the time, plain-
text ciphertext expansion ratio is kept to a minimum, is simple and fast (i.e.
has complexity running time at most O(n3), where n is the length of the input).
These targets motivate this research, as we have seen that most candidates for
post quantum asymmetric cryptography have undesirable parameters or charac-
teristics on the points mentioned above.

1.2 Our Cryptosystem

The basic design principle of the scheme rests upon the difficulty of identify-
ing the selected factors of N1 (i.e. N2) even when the all the factors of N1 are
known. The integer N1 can be identified as a public key while N2 is the private
key. To construct the public key N1 we use a list of public primes larger than
2, P={pi}ki=1. That is, N1 =

∏k
i=1 pi. We then generate the secret parameter

given by N2 =
∏k
i=1 p

ai
i where {ai} is randomly selected from {0, 1}. Let φ(·)

be the Euler totient function. Next, choose d co-prime to φ(N1). Then, compute
the parameters e1 ≡ d−1 (mod φ(N1)) and ε ≡ d−1 (mod φ(N2)). Then choose
g and h co-prime to N1 and both are also co-prime to each other. Compute
e2 ≡ gεhφ(N2) (mod N1). Let (e1, e2, g,N1) and (d, ε,N2) be public and private
parameters respectively. To obtain a “workable” private key one has to identify
a set P1 ⊂ P that constructs a value N ′2 such that from d′ ≡ e−11 (mod φ(N ′2)),

one can have ed
′

2 ≡ g (mod N ′2). Furthermore, one can also view it as the process
of upon obtaining ε from e2, one can have e1 − ε ≡ 0 (mod φ(N ′2)). The raw
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complexity for both cases would be O(2k).

The ciphertext utilized is of the relation c ≡ ex2y
e1 (mod N1) where m,x ≈ N2

and y ≡ mg−x (mod N1) are secret and the tuple (e1, e2, g,N1) is public. The
complexity to identify the parameter λ ≡ m (mod N1) lies within Hermann
and May’s results in 2008 ([7]) on the modular multivariate linear equation
that states when the product of the upper bounds of the unknown roots of
the equation is larger than the modulus, one cannot reduce the exponential time
strategy to solve the problem. That is, under this scenario, to obtain the unknown
roots one is only left with exponential running time strategies. Furthermore, the
complexity of such ciphertext equation is also based on the fact that the LLL
algorithm is unable to retrieve the vector V0 within a lattice when ||V0|| is
much larger than the Gaussian heuristic and the upper bound of vectors able to
be output by the LLL algorithm. Based on this fact, it is hard to extract the
parameter λ ≡ m (mod N1). The secret roots can be interpreted as vectors on
a lattice where the LLL algorithm is unable to identify it (see [7] for discussion
on both items). At the same time the decryption procedure still extracts the
desirable parameters.

1.3 Organisation of the Paper

The remainder of this paper is organized as follows. In Section 2, we discuss
multivariate equations and the Minkowski theorem. In Section 3, we state the
modular exponentiated variable root problem (MEVRP). Then in Section 4, we
put forward the KAZ encryption mechanism. In Section 5, we discuss the KAZ
key problem. One-wayness of KAZ is presented in Section 6. We conclude in
Section 7.

2 Preliminaries

Throughout this article, an n-bit integer a will be denoted as a ≈ 2n unless
mentioned otherwise. We also denote when two integers a and b are of the same
bit length as a ≈ b unless mentioned otherwise.

2.1 Multivariate Equation

The polynomial defined as f(x1, x2, ..., xk) = a1x1 + a2x2 + ...+ akxk is known
as a multivariate linear polynomial. To find the root of such polynomial is the
task to find the set of solutions (y1, y2, ..., yk) ∈ Zk where we have the equation
f(x1, x2, ..., xk) = 0. The equivalent task in its modular form is to find the set
of solutions (y1, y2, ..., yk) ∈ ZkN such that f(x1, x2, ..., xk) ≡ 0 (mod N).

2.2 Minkowski’s Theorem

The Minkowski Theorem which relates the length of the shortest vector in a
lattice to the determinant (see [9]) provides initial information to formulate our
scheme. It is as follows.
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Theorem 1. In an ω-dimensional lattice L, there exists a non-zero vector V
with

‖ V ‖≤
√
ω det(L)

1
ω

We note here that in lattices with fixed small dimension we can efficiently find
the shortest vector, but for arbitrary dimensions, the problem of computing the
shortest vector is known to be NP-hard under randomized reductions (see [1]).
In order to find an approximation of the shortest vector, the LLL algorithm is
able to compute in polynomial time such approximations up to a multiplicative
factor of 2ω, and this is sufficient for many applications. We use information from
Theorem 1, to ensure that our vector V cannot be found by the LLL algorithm.

We will now observe the following remark.

Remark 1. The Gaussian heuristic says that a Vshort will satisfy ||Vshort|| ≈
σ(L) where σ(L) =

√
ω

2πedet(ML)
1
ω . This is preeminently if ||Vshort|| < σ(L) of

a particular lattice L, then the lattice reduction algorithm LLL is likely easy to
find the shortest vector when the dimension of the lattice is small.

3 Modular Exponentiated Variable Root Problem
(MEVRP)

Before focusing on MEVRP, we look into the multivariate case first and the
Hermann and May remarks pertaining to it.

3.1 Uniqueness of Modular Multivariate Linear Equation Solutions

We now put forward the two Hermann and May remarks found in [7] which
motivated our work.

Remark 2. Let f(x1, x2, ..., xk) = a1x1+a2x2+...+akxk be a multivariate linear
polynomial. One can hope to solve the modular linear equation f(x1, x2, ..., xk) ≡
0 (mod N), that is to be able to find the set of solutions (y1, y2, ..., yk) ∈ ZkN ,
when the product of the unknowns are smaller than the modulus. More precisely,
let Xi be upper bounds such that |yi| ≤ Xi for i = 1, ..., k. Then one can roughly
expect a unique solution whenever the condition

∏
iXi ≤ N holds (see [7]). It

is common knowledge that under the same condition
∏
iXi ≤ N the unique

solution (y1, y2, ..., yk) can heuristically be recovered by computing the shortest
vector in an k-dimensional lattice by the LLL algorithm. In fact, this approach
lies at the heart of many cryptanalytic results (see [2],[5] and [11]).

Remark 3. If in turn we have
∏
iXi ≥ N1+ε then the modular linear equation

given by f(x1, x2, ..., xk) =
∑k
i=1 aixi ≡ 0 (mod N) usually has N ε many solu-

tions, which is exponential in the bit-size of N . As a result, there is no hope to
find efficient algorithms that in general improve on this bound, since one is not
able to output all roots in polynomial time.
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3.2 MEVRP

We now proceed to define the modular exponentiated variable root problem
(MEVRP). Let n be an integer where we agree that 2n is exponentially large
and p ≈ 2n. Suppose we have the equation given by c ≡ buva (mod p) where
v ≈ p, u,w ≈ p0.5 and w ≡ guv (mod p). Let the tuple (a, b, g, p) be public and
(u, v, w) secret. Now let c′ ≡ bu0va0 (mod p) where v0 ≈ p, u0, w0 ≈ p0.5 and
w0 ≡ gu0v0 (mod p). The MEVRP is to identify the private parameter given by
λ ≡ w0 (mod p) when (g, p, c′, a, b) is given.

3.3 The MEVRP Assumption

The advantage of any probabilistic polynomial time adversary running in time
poly(n) in attempting to solve MEVRP is at least O(p−0.5) = O(2−

n
2 ).

The advantage O(p−0.5) is by way of brute forcing λ ≡ w0 (mod p).

3.4 Hermann and May Remarks and MEVRP

In order to appreciate the existence of the Hermann and May characteristics
within MEVRP, we view the c ≡ bu0va0 (mod p) as follows:

bu0va0 + z0p ≡ 0 (mod c) (1)

Now let the bounds be bu0 < B ≈ p
√
p, va0 < V ≈ pa and z0 < Z ≈ pa+

√
p−1.

Thus, the product of the upper bounds for the solutions is ≈ p2(a+
√
p). It is

clear that p2(a+
√
p) � c ≈ p. To this end, Remark 3 can be observed within c of

MEVRP.

3.5 Lattice based analysis upon MEVRP

To further analyse the intractability of MEVRP, the conventional way to solve
multivariate equations is to employ lattices as well as the LLL algorithm. This
is due to the ability to interpret the solutions of a modular equation as vectors
on a lattice. Consider the lattice L with the matrix

ML =

1 0 −1
0 1 −p
0 0 c


Let V0 be a vector of L. Then there exists (u1, u2, u3) ∈ Z3 such that

V0 = (u1, u2, u3)ML = (u1, u2,−u1 − pu2 + cu3)

is on the lattice L. More precisely the vector solution V0 = (bu0va0 , z0, 0). Observe
that the length of V0 is given by

||V0|| =
√

(bu0va0 )2 + (z0)2 ≈ pa+
√
p
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On the other hand, the determinant of the matrix ML is det(ML) = c ≈ p and
the Gaussian heuristics for the lattice L asserts that the length of its shortest
non-zero vector is usually approximately σ(L) (see [9]) where

σ(L) =

√
ω

2πe
det(ML)

1
ω =

√
3

2πe
det(ML)

1
3 =

√
3

2πe
c

1
3 ≈

√
3

2πe
p

1
3

and ω = dim(L) (see [9]). In this case ω = 3. Thus, ||V0|| > σ(L). Then referring
to Remark 1, the use of the LLL algorithm is insignificant.

Furthermore, the LLL algorithm outputs a reduced basis where the norm of the
shortest vector is less than

2
ω−1

4 det(L)
1
ω = 2

1
2 det(L)

1
3 = 2

1
2 c

1
3 ≈ 2

1
2 p

1
3

Obviously, ||V0|| > 2
1
2 p

1
3 . Thus, LLL will output a vector shorter than our

desired vector V0.

Remark 4. Under the assumption that integer factorization can be done in poly-
nomial time, if bu0va0 is retrieved from V0, then one can obtain the pair (bu0 , va0 ).
By computing the logarithm base b on the first parameter, the value u0 can be
obtained. By taking the a-th root on the second parameter, the value v0 can be
obtained. Finally w0 ≡ gu0v0 (mod p) can be retrieved.

4 The KAZ Cryptosystem

We now put forward our scheme, the KAZ cryptosystem mechanism.

4.1 The KAZ System Parameters

This section provides information regarding the key generation procedure. Let
`(·) be a function that outputs length of binary string of input. From the given
security parameter, κ determine k (see section 5.2 and table 2). Next generate a

list of k primes greater than 2, P = {pi}ki=1. Then compute N1 =
∏k
i=1 pi. The

KAZ system parameters are (P, N1, k).
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4.2 The KAZ Key Generation Algorithm

Algorithm 1 : KAZ.Key Gen algorithm

Input: System parameters, (P, N1, k)
Output: Public keys (e1, e2, g); private key N2; private parameters (ε, h) and public

parameter (d, n2).
1: Compute integer N2 =

∏k
i=1 p

ai
i where ai is chosen randomly from {0, 1}.

2: Calculate n2 = `(N2).
3: Generate random d ≈ 2n2−1 co-prime to φ(N1).
4: Compute e1 ≡ d−1 (mod φ(N1)).
5: Compute ε ≡ d−1 (mod φ(N2)).
6: Generate g and h co-prime to N1 and both g and h are co-prime to each other.
7: Compute e2 ≡ gεhφ(N2) (mod N1).
8: Output public keys (e1, e2, g), private key N2, private parameters (ε, h) and public

parameter (d, n2).

4.3 KAZ Encryption and Decryption Algorithms

The following algorithm upon execution does the task of encrypting the secret
message m ≈ 2n2−1.

Algorithm 2 : KAZ.Enc algorithm

Input: System parameters N1, public keys (e1, e2) and public parameter n2.
Output: The ciphertext, c.
1: Choose message m ≈ 2n2−1.
2: Generate random x ≈ 2n2−1.
3: Compute y ≡ mg−x (mod N1).
4: Compute c ≡ ex2ye1 (mod N1).
5: Output ciphertext c.

The following algorithm upon execution does the task of decrypting the message
m ≈ 2n2−1 from the ciphertext c.

Algorithm 3 : KAZ.Dec algorithm

Input: Ciphertext c, public parameter d and private key N2.
Output: m ≈ 2n2−1.
1: Compute Y = cd (mod N2).
2: Output m = Y .

7



Proposition 1. The KAZ.Dec algorithm decrypts correctly and without failure.

Proof. Via Fermat’s Little Theorem, Y = cd ≡ exd2 ye1d ≡ gxεdhφ(N2)dye1d ≡
gxy ≡ m (mod N2). Together with the condition m < N2 we obtain m = Y
without modular reduction (i.e. m ∈ Z). That is, we obtain the value m without
failure. �

4.4 Toy Example

We will use the first k = 10 primes. That is P = {3, 5, ..., 31}.

1. N1 = 100280245065
2. N2 = 527527 = (7)(11)(13)(17)(31)
3. d = 559561
4. e1 = 11684536441
5. ε = 146041
6. g = 126365502521
7. h = 568433
8. e2 = 34295129126
9. m = 506449

10. x = 628319
11. y = 1681269899
12. c = 86045435419

During decryption, cd (mod N2) = 506449 ∈ Z.

5 KAZ Key Problem

This section discusses the problem of finding the private key from the public key.
That is, the task to find the private key via identifying the set P1 from P that
constructs N2 ≈ 2n2 .

5.1 Combinatorial Approach -1

The following definition gives a fundamental outline on the situation.

Definition 1. Let k be an integer where we agree that 2k is exponentially large.
Given a set P where it contains k elements and exactly half of the elements
(without repetition) are probable candidates for the set P1. Assume with over-
whelming probability that there is only one correct candidate for the set P1. The
combinatorial approach to solve KAZ key problem is to identify the set P1 from
P.

Under the assumption that N2 is constructed via the sequence ai ∈ {0, 1} which
was chosen at random 50-50, and since the set P has k elements, the fundamen-
tal number of guesses for P1 is 2k.

Thus, to achieve 256-bit security level, we will need a prime list P which contains
k = 256 primes. Refer to Table 1 for an illustrative entropy table. We denote
the entropy as κ0 where κ0 = log2 2k = k.
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k κ0

80 80
128 128
256 256

Table 1. KAZ.Key Gen κ0-bit entropy (i.e. 2κ0)

We note here that if the first 256 primes greater than 2 are used together with
the KAZ.Key Gen methodology, the public key N1 will be of length 2300 bits
and the private key N2 length would be approximately 1150 bits.

We stress here that the complexity of KAZ is due to the value k (i.e. number of
primes in the public list P). The calculated entropy value κ0 is to give an intu-
ition of the difficulty to obtain the correct combination of primes to construct
the private parameter N2.

The length of the private parameters is an inherited value from the length of
each prime in the list P. As such, the length of the private parameter does not
represent the “strength”. The fact is, the length of KAZ private parameters is
due to the combination of each prime decomposition in the public list P. The
complexity to obtain KAZ private key from its public key is via the number of
elements in P and not the length of the private parameters. It is because of this
fact that we have chosen the value of k such that 2k is exponentially large.

5.2 Combinatorial Approach -2

The following methodology is due to a strategy which describes a more intu-
itionist combinatorial approach. That is, to view the problem as identifying the
number of combinations that arises from the problem at hand. Observe the value

C1 =

(
θ1
θ2

)
where θ1 = k the number of primes in the list P and θ2 = k

2 be the number

of primes constructing N2. The value θ2 = k
2 is due to the assumption that the

choice of the sequence ai ∈ {0, 1} is random 50-50, which implies N2 is con-
structed of k

2 primes from the list P.

Thus, to achieve 256-bit security level, we will need a prime list P which contains
k = 260 primes. We denote the entropy as κ = [log2 C1].
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k κ

84 80
132 128
260 256

Table 2. KAZ.Key Gen κ-bit entropy (i.e. 2κ)

From Table 2, one can deduce that, we need to utilize a set P with k = 132
primes to obtain 128-bits security. If the first 132 primes greater than 2 are used
together with the KAZ.Key Gen methodology, the public keyN1 will be of length
1037 bits while the private key N2 length would be approximately 540 bits. If
the first 260 primes greater than 2 are used together with the KAZ.Key Gen
methodology, the public key N1 will be of length 2343 bits while the private key
N2 length would be approximately 1160 bits.

5.3 Ad-hoc Cryptanalysis

In this section we discuss ad-hoc attempts to solve the KAZ key problem whose
parameters are generated by the KAZ.Key Gen methodology.

Attempt - 1

In an attempt to generate another private key for the given public key, one could
generate N ′2 6= N2 and use it to compute e2 ≡ hφ(N2)gε ≡ gδε ≡ gγ (mod N ′2).
Upon solving the discrete logarithm problem on e2 one obtains the exponent
value γ. Then compute d′ ≡ γ−1 (mod φ(N ′2)). Observe that:

d′e1 ≡ γ−1
(
d−1 (mod φ(N1))

)
≡ 1 (mod φ(N ′2))

will not occur with overwhelming probability.

Attempt -2

In an attempt to generate another private key for the given public key, one could
generate N ′2 6= N2 and use it to compute d′ ≡ e−11 (mod φ(N ′2)). Observe that

ed
′

2 ≡ gεd
′
hφ(N2)d

′
≡ g (mod N ′2)

will not occur with overwhelming probability.

Attempt -3

One can attempt to use d ≡ e−11 (mod φ(N1)) together with N ′2 6= N2. Observe
that

ed2 ≡ gεdhφ(N2)d ≡ g (mod N ′2)

will not occur with overwhelming probability.
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5.4 The KAZ Key Equation and Grover’s Algorithm

Grover’s algorithm is a quantum algorithm that finds with high probability the
unique input to a black box function that produces a particular output value,
using just O(

√
N) evaluations of the function, where N is the size of the func-

tion’s domain [6]. Thus, in order to achieve 128-bit post quantum security against
Grover’s algorithm, a total of 260 primes must be used from the list P.

If P is the list of the first 260 primes larger than 2, then N1 will be approx-
imately 2343 bits and N2 will be approximately 1160 bits. Since both KAZ
encryption and decryption procedures has low computational complexity (i.e.
power modulo), KAZ operates on a desirable speed.

6 One-wayness of KAZ

In this section, we provide the reader analytical reasoning as to why the KAZ
Problem is sound and provides the one-wayness element within the KAZ cipher-
text. We put forward reasoning analogous to the one-wayness property of the
RSA problem embedded within the RSA ciphertext.

6.1 The KAZ Problem

We now formally define the KAZ Problem. Given:

1. KAZ public keys (e1, e2, g,N1)

2. KAZ ciphertext c

one needs to output m, where the unknown variable size is as specified in Algo-
rithm 2.

6.2 KAZ Problem reduces to MEVRP

From the KAZ ciphertext given by:

c ≡ ex2ye1 (mod N1)

we have the following proposition.

Proposition 2. The KAZ Problem reduces to the MEVRP.

Proof. Upon solving the MEVRP from c, the parameter λ ≡ m (mod N1) is
obtained. Thus, KAZ Problem is reduced to the MEVRP.�

Remark 5. We remark here that the converse is still unknown.
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6.3 KAZ Problem reduces to KAZ Key Problem

Proposition 3. The KAZ Problem reduces to the KAZ Key Problem.

Proof. Upon solving the KAZ Key Problem from (e1, e2, g,N1), the private pa-
rameters (d,N2) are obtained. Then one can obtain cd ≡ gxy ≡ m (mod N2).
Thus, KAZ Problem is reduced to the KAZ Key Problem.�

Remark 6. We remark here that the converse is still unknown.

6.4 KAZ Ciphertext Equation and Grover’s Algorithm

Based on the existing arguments within this document one needs to conduct
exhaustive search for the ciphertext secret parameter m. That is one needs to
conduct at most 2n2 searches. For 128-bit security, with Grover’s algorithm the
complexity is reduced to ≈ 20.5n2 . Through the KAZ.Key Gen procedure, for
128-bit security, we have n2 ≈ 540. Thus, the complexity is reduced to ≈ 2270.

7 Conclusion

In this work we have utilized the modular exponentiated variable root problem
(MEVRP) to design an encryption mechanism. It is proven analytically that
all current strategies to either extract the private key from the public key or
the secret information from the ciphertext will incur exponential running time
complexity. We also show that KAZ can achieve 128-bit security with key length
of approximately 1037 bits. We also can observe there is a 1-to-2 message ex-
pansion rate. Furthermore, we have proven there is no decryption failure. With
complexity running time O(n3) (where n is the length of the input) for both
encryption and decryption, KAZ has desirable speed for any practical applica-
tion. We also point out again here that, KAZ utilizes “simple” mathematics in
order to achieve maximum simplicity in design, such that even practitioners with
limited mathematical background will be able to understand the arithmetic. In-
deed, KAZ can be a seamless post quantum drop-in replacement for traditional
asymmetric cryptosystems.
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