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Abstract. Isogenies between elliptic curves over a common finite field
are of great interest in post-quantum cryptography. Many protocols have
been proposed such as Supersingular Isogeny Diffie-Hellman key ex-
change (SIDH) and Commutative Supersingular Isogeny Diffie-Hellman
key exchange (CSIDH). The CSIDH uses supersingular elliptic curves
of Montgomery form over finite fields Fp with p ≡ 3 (mod 8) whose
endomorphism rings are Z[

√
−p]. While we consider the supersingular

elliptic curves over Fp with p ≡ 7 (mod 8) and show that they can be
expressed uniquely in the form of y2 = x3 + Ax2 − x if and only if their
endomorphism rings are isomorphic to Z[

√
−p+1
2

], which is our first con-
tribution. The original motivation is to avoid the collisions in CSIDH
where the vectors (e1, e2, . . . , en) and (e1 + 3, e2 + 3, . . . , en + 3) rep-
resent the same ideal class. Wouter Castryck and Thomas Decru also
show a similar idea and propose CSURF. While we use a different way
from theirs to prove that the coefficients A can be the unique representa-
tion of the Fp-isomorphism classes. We also give formulae of 2-isogenies
corresponding to the ideal class [(2, π±1

2
)] in different ways and com-

pare the cost of them. As our second contribution, we find collisions in
the ideal representation in CSURF where the vectors (e0, e1, . . . , en) and
(e0 + 1, e1 + 2, e3 + 1, . . . , en+ 1) represent the same ideal class, and then
give a new ideal class representative that will avoid the duplications. The
new ideal class representative can also help to avoid the computation of
the largest isogeny in the protocol and thus offer a speed-up of about
6.02%. Moreover, we try to change the direction of the loop computing
the action of ideal classes and get a speed-up of about 28.69%.

Keywords: CSIDH, Montogomery Curves, Endomorphism Ring, Colli-
sion, Ideal Class Representative.

1 Introduction

Elliptic curve cryptography was proposed by Koblitz [12] and Miller [13] in 1985.
It relies on the assumption that the elliptic curve discrete logarithm problem
(ECDLP) is hard. However, Shor’s algorithm makes ECDLP easy on a quantum
computer [1]. It was Couveignes [14] who first realized in 1997 that comput-
ing isogenies between elliptic curves over finite fields can be considered to be
an intractable problem on a quantum computer. Basing on this problem, he
proposed a key agreement scheme which was rediscovered by Rostovtsev and



Stolbunov [15] independently in 2006. Their key agreement scheme, which we
will call CRS, uses the action of the ideal class groups of the endomorphism rings
of ordinary elliptic curves. As pointed out by Childs, Jao and Soukharev [23],
the underlying hard problem can be phrased as a hidden shift problem which
is amenable to Kuperberg’s algorithm [17]. In contrast with the ordinary case,
supersingular elliptic curves do not admit such an action of an abelian group.
This difficulty is resolved by Jao and De Feo [16] by means of publishing the
images of certain points under secrete isogenies. The resulting scheme named
supersingular isogeny Diffie-Hellman key exchange (SIDH), on which one of the
most competitive algorithms in NIST’s post-quantum standardization project
called supersingular isogeny key encapsulation (SIKE) [19] is based.

In order to achieve reasonable efficiency in CRS, one should use elliptic curves
whose order is a product of small primes. So far there is no known efficient
algorithms to generate such kind of ordinary elliptic curves. Though some im-
provements have been made by Luca De Feo et al. [18], the result is still not
satisfactory. Recently, a CRS style key exchange based on supersingular elliptic
curves has been proposed by Castryck, Lange, Martindale, Panny and Renes
[9]. They notice that the set of Fp-isomorphism classes of supersingular ellip-
tic curves over a prime field Fp is also a ”homogeneous space” under the ideal
class group of certain order in imaginary quadratic number field, and that it
is much easier to choose supersingular elliptic curves which are suitable for im-
plementation. Their scheme, which is named commutative supersingular isogeny
Diffie-Hellman (CSIDH), is fairly efficient and thus receives lots of attention. For
example, it is possible to construct reasonably efficient signature scheme [24].

The supersingular elliptic curves that CSIDH uses are over finite prime fields
Fp with p ≡ 3 (mod 8). Their endomorphism rings (over Fp) are isomorphic to
Z[
√
−p], which is shown to be equivalent to that the curves can be expressed

uniquely in Montgomery form. In this article, we consider the supersingular
elliptic curves over Fp with p ≡ 7 (mod 8) and show that they can be expressed
uniquely in the form of y2 = x3 + Ax2 − x if and only if their endomorphism

rings are isomorphic to Z[
√
−p+1
2 ]. This implies that the coefficient A can be

used to represent the Fp-isomorphism class or public key. We also use different
ways to compute the 2-isogenies between the supersingular elliptic curves of the
form y2 = x3 +Ax2−x. Moreover, we find explicit collisions when elliptic curves
EA : y2 = x3 +Ax2−x over Fp with p ≡ 7 (mod 8) are used, namely, the vector
(e0, e1, . . . , en) and the (e0 + 1, e1 + 2, e2 + 1, . . . , en + 1) represent the same
ideal class. To avoid the trivial duplications, we offer re-expressions of the ideal
classes which also gives a speed-up for about 6.02% comparing to the original
implementation. To get a higher performance, we change the direction of the
loop in the implementation of CSURF and gain a speed-up of about 28.69%
comparing to the original implementation.

The type of curves we consider is also studied by Castryck et al. in [20],
where they name the corresponding curves Montgomery− curves. We emphasize
that the proof of the link between Montgomery− form and endomorphism rings



is different from theirs, and that the formulae for 2-isogenies, the analysis of the
collision problem and the change of loop direction are new results.

Organization. In Section 2, we recall, besides CSIDH and CSURF, some basic
results on ideal class groups and isogenies over Fp that will be used in later
sections. In Section 3, we give some essential conclusions about the case of
EndFp

E = OK as the analogue of EndFp
E = Z[π] in [9], including the for-

mulae of `-isogenies and 2-isogenies, and the bijection between the coefficients
and the Fp-isomorphism classes. In Section 4, we discuss the collisions in CSURF
and offer a new ideal class representative, and then change the direction of the
loop, which brings a speed-up. In Section 5, we give a conclusion.

2 Preliminaries

2.1 The Ideal Class Group and Its Action

Let K = Q(
√
−d) be an imaginary quadratic field. An order of K is a subring O

which is also a lattice. It is well know that K has a unique maximal order OK ,
which is the ring of integers. An order O can be expressed as Z + fOK for an
integer f > 0. The integer f is called the conduct of O.

Let O be an order of K. A fractional ideal a of O is an O-module of the form
αa′, where α ∈ K∗ and a′ is an integral ideal of O. It is said to be invertible if
there exists a fractional ideal b such that ab = O. All invertible fractional ideals
of O form an abelian group I(O). A fractional ideal of form αO with α ∈ K∗
is called a principal fractional ideal. All principal fractional ideals are invertible
and form a subgroup P (O) of I(O). The quotient of I(O) by P (O), denoted by
cl(O), is called the ideal class group of O. We will denote by [a] the class of an
invertible fractional ideal a.

Now let E be a supersingular elliptic curve over Fp with p > 3. Let π be its
Frobenius endomorphism. Then its endomorphism algebra is Q[π] ' Q(

√
−p),

which implies that its Fp-rational endomorphism ring EndFp(E) is an order of
the imaginary quadratic field Q(π). According to [21, Theorem 4.2], the conduct
of EndFp

(E) is prime to p. So EndFp
(E) is isomorphic to either Z[

√
−p] or the

maximal order of Q(
√
−p).

If a is any integral ideal of O = EndFp
(E), then we can define a finite group

scheme
E[a] = ∩φ∈aKer(φ)

and an isogeny
ψa : E → E/E[a]

with kernel E[a]. If a is invertible as a fractional ideal of O, then the Fp-rational
endomorphism ring of E/E[a] is isomorphic to O, and its Fp-isomorphism class
depends only on the class of a in cl(O). In this way, we actually have a well-
defined action of cl(O) on the set ELL(O) of Fp-isomorphism classes of su-
persingular elliptic curves over Fp whose Fp-rational endomorphism rings are
isomorphic to O. And it turns out that the action is simply transitive.



We are interested in `-isogenies for primes ` 6= p, which correspond to prime
ideals of O of norm `. Of course, they might not exist if −p is a non-square in
Z/`Z. Let G(Fp, `) be the supersingular `-isogeny graph. The vertices correspond
to the Fp-isomorphism classes of supersingular elliptic curves, which are often
denoted by the corresponding j-invariants. The edges correspond to the equiv-
alence classes of Fp-rational `-isogenies between different elliptic curves. The
following theorem gives a general picture of Fp, where by the surface (resp. the
floor) we mean that the corresponding curves have Fp-rational endomorphism

rings isomorphic to Z[ 1+
√
−p

2 ] (resp. Z[
√
−p]).

Theorem 1. When p ≡ 3 (mod 4), there are two levels in G(Fp, `) and for
` > 2 with (−p` ) = 1, there are two horizontal `-isogenies from each vertex.

– If p ≡ 7 (mod 8), there are 2-isogenies connecting the surface and floor with
1:1 and in the surface there are also two horizontal 2-isogenies from each
vertex.

– If p ≡ 3 (mod 8), there are 2-isogenies connecting the surface and floor with
1:3 and no horizontal 2-isogenies.

We give the example of G(F167, 3) by using modular polynomials [4,5] (See
Figure 1). There are 11 supersingular j-invariants in F167 in total [3]. Each j-
invariant in G(F167, 3) corresponds to two Fp-isomorphism classes. Note that
both E and Et have p+ 1 points, so they are isogeneous over F167. This is very
different from the ordinary case where #E(Fp) 6= #Et(Fp). Running clockwise
corresponds to the repeated action of [(3, π − 1)], while running anticlockwise
corresponds to that of [(3, π + 1)]. The dotted lines we add in the graph mean
that there are 2-isogenies between the corresponding curves on the surface and
those on the floor.
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Figure 1. G(F167, 3). The curves on surface have endomorphism ring OK =

Z[ 1+
√
−167
2 ] and those on floor have Z[

√
−167] as endomorphism ring.

As is shown in [6], if the two eigenvalues λ and µ of the Frobenius map π
satisfy that λr ≡ 1 (mod `) and µr 6= 1 (mod `), then the isogeny corresponds to
[`, π−λ] can be computed over Fpr . So we can compute the action of [(3, π− 1)]
over the base field Fp. As for [(3, π+1)], we can compute it through its quadratic
twist Et by [(3, π + 1)]E = ([(3, π − 1)]Et)t to compute efficiently by using Fp-
rational points.

2.2 CSIDH and CSURF

CSIDH uses the commutative group action cl(O) × ELL(O) → ELL(O) with
O = Z[

√
−p] and p ≡ 3 (mod 8). Every Fp-isomorphism class in ELL(O) can

be represented by a Montgomery elliptic curve EA : y2 = x3 +Ax2 + x over Fp.
Since the coefficient A is unique, it is used to denote the Fp-isomorphism class.
The prime p is chosen to be of the form p = 4 · l1 · · · ln − 1 with l1, . . . , ln small
primes. So there are prime ideals li = (li, π − 1) of O of norm li. In CSIDH,
vectors (e1, · · · , en) ∈ [−m,m]n, which represent the ideal classes [le11 · · · lenn ],
are used as private keys. The protocol with starting curve E0/Fp : y2 = x3 + x
works as follows (see Figure 2).

Generation/Exchange: As her private key, Alice chooses a uniformly ran-
dom vector (e1, · · · , en). She then computes the Montgomery elliptic curve EA =
[le11 · · · lenn ]E0 and sends Bob the coefficient A. Likewise, as his private key, Bob
chooses a uniformly random vector (e′1, · · · , e′n). He then computes the Mont-

gomery elliptic curve EB = [l
e′1
1 · · · l

e′n
n ]E0 and sends Alice the coefficient B.

Key Agreement: After receiving the coefficient from each other, they check
the supersingularity of the receiving curves. And then Alice calculates [le11 · · · lenn ]EB
by using her own secret key and Bob’s public key B. In the same way, Bob calcu-

lates [l
e′1
1 · · · l

e′n
n ]EA. Because of the commutativity of the class group, Alice and

Bob can get the same elliptic curve ES = [l
e1+e

′
1

1 · · · len+e
′
n

n ]E0 and its coefficient
S ∈ Fp as their shared secret.

Alice Bob

(e1, · · · , en) (e′1, · · · , e′n)

EA = [le11 · · · lenn ]E0
A // (TEST )

(TEST ) EB = [l
e′1
1 · · · l

e′n
n ]E0

Boo

ES = [le11 · · · lenn ]EB ES = [l
e′1
1 · · · l

e′n
n ]EA.

Figure 2. CSIDH. The “(TEST)” represents that each party will test the
supersingularity of the received curve by testing its order over Fp.

CSURF changes the form of the curves into Montgomery− elliptic curves over
Fp with p = 4·2·l1 · · · ln−1, which implies the endomorphism ring becomesOK =



Z[ 1+π2 ]. And the whole protocol is similar with CSIDH apart from the different
beginning elliptic curve, E0/Fp : y2 = x3−x, and range of the exponent vectors.
As in Figure 1, there is a one-to-one correspondence between the surface and
floor, hence the alteration of endomorphism ring does not influence the security
level of the protocol.CSURF implemented almost all of 2-isogenies corresponding
to the ideal classes [(2, π±12 )] on isomorphic Montgomery curves, while we give
other formulae of 2-isogenies corresponding to the ideal classes [(2, π±12 )] between
Montgomery− curves in Section 3.2. And we find collisions in its private keys
and propose a new representation to avoid them in Section 4.1.

3 CSIDH on elliptic curves EA : y2 = x3 + Ax2 − x

In this section, we show that it is possible to construct CSIDH over finite fields
Fp with p ≡ 7 (mod 8). First we give a formula to compute odd degree isoge-
nies between elliptic curves of the form y2 = x3 + Ax2 − x. Then we use this

formula to show that the elements in ELL(Z[ 1+
√
−p

2 ]) can also be represented
uniquely by coefficients of certain representatives. Finally, we study different
ways of computing 2-isogenies.

3.1 Unique Representation for Fp-isomorphism class

As for the formula of isogenies, if the elliptic curve has a form less general than
Weierstrass form, the formula from Vélu, which is used commonly to compute
isogeny, is not guaranteed to preserve the form. [2] obtained the formulae for
isogenies on Montgomery curves, which streamlines code and enhances the effi-
ciency of SIDH. As for CSIDH, it uses Montgomery elliptic curves for its x-only
arithmetic and the unique representative formed by Montgomery coefficients.
Hence we get the formulae for `-isogenies on elliptic curves of this form without
any loss of efficiency.

Proposition 1. Let K be a field with char(K)6= 2 and
√
−1 /∈ K. Let G ⊆ E(K)

be a finite subgroup of order 2d+ 1 in an elliptic curve E/K : y2 = x3 + ax2−x
with a ∈ K. Let φ be a separable isogeny with kerφ = G. Then there is a
curve E′/K : Y 2 = X3 + AX2 − X such that, up to post-composition by an
isomorphism,

φ : E → E′ : (x, y) 7→ (f(x), c0yf
′(x)),

where

f(x) = x
∏

T∈G\{OE}

xxT + 1

x− xT
, c20 =

∏
T∈G\{OE}

xT .

Moreover, we write σ =
∑
T∈G\{OE}(xT + 1

xT
) and A = c20(a− 3σ).

The proofs of Proposition 1 are discussed in Appendix B, which are similar to
those of Montgomery curves. We can conclude that, for elliptic curves in form of
E/Fp : y2 = x3+ax2−x with a ∈ Fp, given a finite Fp-subgroup G of odd degree,



there exists an A ∈ Fp and a separable isogeny φ : E → E′ : Y 2 = X3+AX2−X
defined over Fp with kernel G. In comparison to [2] on Montgomery curves, the
differences are only on the signs of items. While when i =

√
−1 ∈ K, there is a

morphism:

ψ : EA : y2 = x3 +Ax2 − x −→ Emon : −iY 2 = X3 + iAX2 +X,

(x, y) 7−→ (X,Y ) = (ix, y).

So EA : y2 = x3 + Ax2 − x and Montgomery curve Emon : BY 2 = X3 +
A′X2 + X are isomorphic, which immediately implies the same conclusion as
the Proposition 1 by [2, Theorem 1]. The conclusion will also be used in the
latter proposition.

In general, the nodes in isogeny graph represent Fp-isomorphism classes of
elliptic curves [8], while a new unique representative for Fp-isomorphism class
which may serve as a shared key instead of j-invariants was proposed by [9].
However, Castryck W. et al [9] only consider the finite field Fp with p ≡ 3
(mod 8), where the unique representation for elliptic curves of the form y2 =
x3 + Ax2 − x doesn’t exist. So we change the characteristic into p ≡ 7 (mod
8) and prove the one-to-one correspondence between the Fp-isomorphism classes
and the coefficients A.

Proposition 2. Let p ≡ 7 (mod 8) be a prime and let E/Fp be a supersingular

elliptic curve. Then EndFp
(E) = Z[ 1+

√
−p

2 ] if and only if E is Fp-isomorphic to
EA : y2 = x3 +Ax2 − x with a unique A ∈ Fp.

Proof. Let EA : y2 = x3 +Ax2− x be a supersingular elliptic curve over Fp. We

have to show that EndFp
(EA) is isomorphic to Z[ 1+

√
−p

2 ]. For this, we only need
to show that EA(Fp)[2] = {P ∈ EA(Fp)|2P = 0} has 4 points. If P = (x0, y0) ∈
EA(Fp) is not a two-torsion point, then by the group law we have an Fp-rational
point

(− 1

x0
,
y0
x20

) = (x0, y0) + (0, 0).

Since p ≡ 7 (mod 8), x0 6= − 1
x0

, so P , −P , P+(0, 0) and −P+(0, 0) are pairwise
distinct points. This implies that

#EA(Fp) ≡ #EA(Fp)[2] (mod 4).

Since #EA(Fp) = p+ 1 ≡ 0 (mod 8), #EA(Fp)[2] = 4 as required.

Now assume that EndFp
(E) is isomorphic to Z[ 1+

√
−p

2 ]. Since the elliptic
curve E0 : y2 = x3−x over Fp is supersingular,O = EndFp

(E0) is also isomorphic

to Z[ 1+
√
−p

2 ], so there exists an ideal class [a] ∈ cl(O) such that [a]E0 = E.
As we can always choose an O-ideal b ∈ [a] whose norm is relatively prime
to 2p, E is Fp-isomorphic to E0/E0[b], which by Proposition 1 is of the form
EA : y2 = x3 +Ax2 − x.

It remains to show the uniqueness of A. Let φ : EB : Y 2 = X3 +BX2−X →
EA be an Fp-isomorphism. Then by [10, Proposition III.3.1(b)] we can write

φ((X,Y )) = (u2X + r, u3Y + su2X + t),



where u ∈ F∗p and r, s, t ∈ Fp. Since (u3Y + su2X + t)2− (u2X + r)3−A(u2X +
r)2 + (u2X + r) is divisible by Y 2 −X3 −BX2 +X = 0, we have

s = t = 0,
3r2 + 2Ar − 1 + u4 = 0,
−3r −A+Bu2 = 0,
r(Ar + r2 − 1) = 0.

Next we prove that r = 0. As we have seen, #EB(Fp)[2] = 4, so we can write
X3 +BX2−X = X(X− b1)(X− b2) with b1, b2 ∈ Fp. We may assume that b1 is
a square. Then b2 = −1/b1 is a non-square. Since E(Fp) ∼= Z/n1Z ⊕ Z/n2Z for
integers n1|n2 and #E(Fp) = p+ 1 ≡ 0 (mod 8), E, EA and EB have points of

order 4. If P = (x0, y0) ∈ EB(Fp) is a point of order 4, then x(2P ) = (
x2
0+1
2y0

)2 6= 0

is a square in Fp, so 2P = (b1, 0) and u2b1 + r = x(2φ(P )) 6= 0 is a square. If
φ((b2, 0)) was (0, 0), then we would have u2b2 + r = 0 and r = x(φ((0, 0))) =
−1/(u2b1+r), so b2 = 1/((u2b1+r)u2) is a square, which is impossible. It follows
from r = 0 that u4 = 1, so u2 = 1 and A = B.

This proposition guarantees the valid public keys consisting of coefficients
A ∈ Fp and efficient public-key validation. So the coefficients can serve as
shared secrets instead of taking j-invariants, which frees the computation from j-
invariants to equations of elliptic curves. Wouter Castryck and Thomas Decru[20]
also propose the same conclusion at the same time. But we emphasize that the
different proof. Our proof is a OK-version of the Proposition 8 in [9], while
their proof uses the bijection between the Montgomery curves on floor and
Montgomery− curves on surface.

3.2 Formulae for 2-isogenies

Proposition 1 gives the formulae of isogenies of odd degree for elliptic curves in
the form of y2 = x3 + Ax2 − x. For the 2-isogenies corresponding to the ideal
classes [(2, π±12 )], we have following Lemma which is proved in [20, Lemma 5].

We highlight that for a A square in Fp we denote by
√
A the unique square

root which is again a square, which can be computed through A
p+1
4 , and the

non-square can be gotten by changing the sign.

Lemma 1. Let p ≡ 7 (mod 8) and consider EA : y2 = x3+Ax2−x ∈ ELL(OK).
Then

EA[(2,
π − 1

2
)] = 〈(−A+

√
A2 + 4

2
, 0)〉, EA[(2,

π + 1

2
)] = 〈(−A−

√
A2 + 4

2
, 0)〉.

Castryck and Decru [20] used the rescalings to Montgomery curves and com-
puted 2-isogenies between them. In this section, we study different ways of com-
puting 2-isogenies: direct formulae, resacling to Edwards curves and using the
map between the special points. Finally we compare the computational cost of
them.



Direct Derivation Now we give direct formulae for the 2-isogenies, corre-
sponding to the above ideal classes of norm 2, between the curves of the form
y2 = x3 +Ax2 − x.

Proposition 3. Let EA : y2 = x3 +Ax2−x be an elliptic curves over a field of
characteristic p ≡ 7 (mod 8). Let G− = EA[(2, π−12 )] and G+ = EA[(2, π+1

2 )], φ+

and φ− be the separable isogenies such that ker(φ+) = G+ and ker(φ−) = G−.
Then, up to composition with a isomorphism, there are curves EA′ : y2 = x3 +
A′x2 − x and EA′′ : y2 = x3 +A′′x2 − x such that

φ− : EA → EA′ : (x, y) 7→ (
x2 + x

M

2
√
ΘN(x−M)

−
√
ΘN

2
,

x2 − 2Mx− 1

(4ΘN)
3
4 (x−M)2

y),

where M = −A+
√
A2+4

2 , N =
√
M2 + 1, Θ = −2N + 2M + 1

M and A′ = Θ−4N
2
√
ΘN

.

And

φ+ : EA → EA′′ : (x, y) 7→ (
x2 + x

M̃

2
√
Θ̃Ñ(x− M̃)

−

√
Θ̃Ñ

2
,

x2 − 2M̃x− 1

(4Θ̃Ñ)
3
4 (x− M̃)2

y),

where M̃ = −A−
√
A2+4

2 , Ñ =
√
M̃2 + 1, Θ̃ = −(2Ñ+2M̃+ 1

M̃
) and A′′ = 4Ñ−Θ̃

2
√
Θ̃Ñ

.

Proof. Note that [(2, π−12 )]−1 = [(2, π+1
2 )] and quadratic twisting swaps the roles

of (−A+
√
A2+4

2 , 0) and (−A−
√
A2+4

2 , 0), so we can simply flip the sign of A and
focus on the isogeny with kernel EA[(2, π−12 )].

Let M = −A+
√
A2+4

2 , it can be easily verified that the isogeny ϕ− with kernel
〈(M, 0)〉 of degree 2 can be written as

ϕ− : EA → E′ : (x, y) 7→ (
x2 + x

M

x−M
,y
x2 − 2Mx− 1

(x−M)2
),

where E′ is of the form y2 = x3 +(−4M − 2
M )x2 + 1

M2x. To put everything back
to the curve of the form y2 = x3 +A′x2 − x, we now give the isomorphism from
elliptic curves E′ to elliptic curves EA′ : y2 = x3 +A′x2 − x:

ω− : E′ → EA′ : (x, y) 7→ (
1

2
√
Θ
√
M2 + 1

x−

√
Θ

4
√
M2 + 1

, (
1

4Θ
√
M2 + 1

)
3
4 y),

where Θ = −2
√
M2 + 1 + 2M + 1

M and A′ = Θ−4
√
M2+1

2
√
Θ
√
M2+1

. So φ− = ω− ◦ϕ− can

be written as

φ− : EA → EA′ : (x, y) 7→ (
x2 + x

M

2
√
ΘN(x−M)

−
√

Θ

4N
,

x2 − 2Mx− 1

(4ΘN)
3
4 (x−M)2

y),

where N =
√
M2 + 1, Θ = −2N + 2M + 1

M and A′ = Θ−4N
2
√
ΘN

. Then φ+ can be

easily derived using the quadratic twist and hence the two assertions are proved.



The implementation only uses the coefficients of the elliptic curves, so we
conclude Proposition 3 and get the following lemma. To reduce the computa-
tional cost in each loop, knowing the initial value of A, we can make some
precomputation to simplify the resulting coefficients.

Lemma 2. Let A ∈ Fp such that EA : y2 = x3 + Ax2 − x ∈ ELL(OK). We
define

A′ =
−6N + 2M + 1

M

2
√

(−2N + 2M + 1
M )N

, A′′ =
6Ñ + 2M̃ + 1

M̃

2
√
−(2Ñ + 2M̃ + 1

M̃
)Ñ

where M = −A+
√
A2+4

2 , M̃ = −A−
√
A2+4

2 , N =
√
M2 + 1 and Ñ =

√
M̃2 + 1.

Then

[(2,
π − 1

2
)]EA = EA′ , [(2,

π + 1

2
)]EA = EA′′ .

We can work with the XZ-only projective Montgomery coordinates and the
projective parameters (A : 1) = (a : c) as in [25] to get further speed-up.

Rescaling to Edwards Curves Apart from the direct formula, we also try the
rescaling to Edwards curves. First we give the 2-isogeny withe kernel 〈(M, 0)〉
between the X coordinate of Y 2 = X3 + AX2 − X and the y coordinate of
ax2 + y2 = 1 + dx2y2 which will be used to compute the first 2-isogeny and the
final rescaling.

X =
uy + 1

u

y − 1
, y =

X + 1
u

X − u
,

where u is the X coordinate of the point of order 4 in E : Y 2 = X3 +AX2 −X
satisfying u2−2Mu−1 = 0 and u2 = −

√
d
a . And then we give the 2-isogeny with

kernel 〈(0,−1)〉 between Edwards curves which will be used from the second to
|ei|-th 2-isogeny in the loop.

Proposition 4. Let Ea,d : ax2 + y2 = 1 + dx2y2 be an elliptic curves over a
field. Let G = 〈(0,−1)〉 and φ be the separable isogenies such that ker(φ) = G.
Then, up to composition with a isomorphism, there are curves Ea′ : a′x′2 +y′2 =
1 + x′2y′2 such that

φ : Ea,d → Ea′ : (x, y) 7→ (αxy, β
y2 −B1

y2 −B2
),

where α =
√
a

B1
, β = −B2

B1
, a′ = β2. The values of B1, B2 can be solved through

B1 +B2 = 2a
d and B1B2 = a

d .

Proof. Write x′ = αxy and y′ = β y
2−B1

y2−B2
with B1 + B2 = 2a

d = 2B1B2. Substi-

tuting them to the equation of elliptic curves a′x′2 + y′2 = 1 + x′2y′2, we can
get





a′ = β2,

B2
1β

2 = B2
2 ,

2α2β2(B2 −B1) = (β2 − 1)d,

β
1−B1

1−B2
= 1.

.

So α =
√
a

B1
, β = −B2

B1
, a′ = β2 with B1 +B2 = 2a

d and B1B2 = a
d .

Map the Point of Special Order Apart from the direct derivation of the
isogenies, the correspondence between the points of special orders are always
used to obtain the isogenies. Now to get the specific 2-isogenies between elliptic
curves of the form y2 = x3 +Ax2 − x, we used the ∞ and the points of order 2
and 4. Since we only need the coefficients of the resulting curves, we now give
the resulting coefficients directly.

Proposition 5. Let A ∈ Fp such that EA : y2 = x3 +Ax2− x ∈ ELL(OK). Let

M = −A+
√
A2+4

2 , M = A+
√
A2+4
2 . Define

A′ =
1

b
− b and A′′ = −(

1

b
− b)

where b = −2(M+
√

1 +M2)
√
M

√√
1 +M2 and b = −2(M+

√
1 +M

2
)
√
M

√√
1 +M

2
.

Then

[(2,
π − 1

2
)]EA = EA′ and [(2,

π + 1

2
)]EA = EA′′

Proof. Write EA : y2 = x(x −M)(x − M̃) where M = −A+
√
A2+4

2 is square.
Let P0(x0, y0) be the point of order 4 in EA satisfying that x20 − 2Mx0 − 1 = 0.
Assume that the points of order 2 in EA′ : Y 2 = X3+A′X2−X are (0, 0), (b1, 0)
and (b2, 0), so

A′ = −(b1 + b2), b1 = − 1

b2
.

Then we can write the x coordinate map of the 2-isogeny between EA and EA′

as X =
αM(x+ 1

x0
)2

x−M , which maps ∞ and (M, 0) to ∞, (0, 0) and (−A−M, 0) to

(b1, 0), (x0, y0) and (x0,−y0) to (b2, 0), (− 1
x0
, y0
x2
0
) and (− 1

x0
,− y0

x2
0
) to (0, 0). So

α2 =
x40

x40 − 1
where x40 − 1 = 4x20M(x0 −M),

b1 =
−α
x20

, b2 =
x20
−α

.

.

We must ensure that x0−a is a square, so x0 = M+
√
M2 + 1 and finally we

can obtain b2 = −2(M +
√

1 +M2)
√
M

√√
1 +M2 and A′ = −(b2 − 1

b2
). The

proof of the 2-isogenies with kernel 〈(−A−
√
A2+4

2 , 0)〉 is omitted here because it
can be easily obtained by changing the sign and using the quadratic twist.



Comparation Finally we compare the computational cost of the 2-isogeny
corresponding to [(2, π−12 )] in Table 1.

Table 1. Compare the Computational Cost

Methods Rescaling Rescaling Cost Each Loop

To Mon. [20] Yes F2: 3S+4s+3F+2M+8A 1S+1s+3A+2M
FR: 2S+1s+3F+1M+5A

Direct [Pro.3] No - 3S+2s+6A+5M+3F
Edw. [Pro.4] Yes F2: 1S+1s+1F+2M+3A 1S+1s+3A+2M+1F

FR: 2S+1s+1F+3M+3A
Points [Pro.5] No - 4S+2s+5A+3M+2F

We use many abbreviations for the concision. The “Rescaling” represents
whether rescalings are needed, the “Rescaling Cost” (resp. the “Each Loop”) is
the cost of the rescaling process (resp. the cost of each loop to compute |ei| iso-
genies of degree li). “F2” and “FR” are the cost of the first 2-isogeny and that of
the final rescaling respectively. And “S”,“s”,“F”,“M” and “A” represent “Square
root”, “Square”, “Fraction”,“Multiplication” and “Addition” respectively.

4 Some Improvements to CSURF

We improve the implementation of CSURF from two way. One is offering a new
ideal representation and gaining a speed-up of about 6.02%, the other is changing
the direction of the loop and also gaining a speed-up of about 28.69%

4.1 Collisions in CSURF and A New Ideal Representation

In CSIDH, Castryck W. et al assumed the surjectivity of the group homomor-
phism

Zn → cl(O), (e1, · · · , en) 7→
n∏
i=1

[l]eii

and the uniformity of resulting distribution
∏n
i=1[l]eii , with O = Z[π]. How-

ever, Hiroshi Onuki and Tsuyoshi Takagi [11] found that (e1, · · · , en) and (e1 +
3, · · · , en + 3) represented the same ideal class in CSIDH-512. But the colli-
sions don’t exist in cl(OK) when p ≡ 7(mod 8). So in CSURF [20], the authors
chose a finite field Fp with p = 4 · 2 · 3 · (3 · . . . · 389)− 1 and a near-optimal set
I = [−137, 137]×[−4, 4]3×[−5, 5]46×[−4, 4]25 to sample exponent vectors, which
can avoid the collisions in [11]. By assuming the surjectivity and the uniformity,
they claimed that the near-optimal interval I resulted in 2255.995 distinct secret
vectors. Now we give another kind of collisions in CSURF.

We consider a more general case than CSURF and describe the notation first.
Let p = 4 · 2 · lr11 . . . lrnn − 1 be a prime, where li are distinct odd primes and ri



are positive integers. The imaginary quadratic field K = Q(π) with Frobenius
map π has maximal order OK = Z[ 1+π2 ] and equation order O = Z[π]. As in
CSURF-512, π has two eigenvalues λ = 1 and µ = −1 in Z/liZ, so the primes
li split in O as liO = li · li for i = 1, · · · , n, where li = liO + (π − 1)O and
li = liO + (π + 1)O. The decomposition also exists in OK .

We now define ideals of OK as l0 = 2OK + π−1
2 OK , l0 = 2OK + π+1

2 OK .

Proposition 6. In the general case of CSURF,

l0l
r1
1 · · · lrnn =

π − 1

2
OK , l0l

r1
1 · · · l

rn
n =

π + 1

2
OK .

Proof. Note that li = 〈li, (π − 1)〉 = 〈li, π−12 〉, so

l0l
r1
1 · · · lrnn =〈2, π − 1

2
〉 · 〈l1,

π − 1

2
〉r1 · · · · 〈ln,

π − 1

2
〉rn

=〈2lr11 · · · lrnn ,
π − 1

2
〉 = 〈1− π

2

4
,
π − 1

2
〉

=〈π − 1

2
〉.

and l0l
r1
1 · · · l

rn
n = 〈π−12 〉 = 〈π+1

2 〉, from which the statement follows.

The above proposition shows that l0l
r1
1 · · · lrnn is principal ideal, so in CSURF

the action of the ideal class corresponding to the vector (1, 2, 1, . . . , 1) is trivial.
This directly implies the following corollary, which shows explicit collisions of
the ideal class representation in CSURF.

Corollary 1. In CSURF, the exponent vectors

(e0, e1, e2, . . . , en) and (e0 + 1, e1 + 2, e2 + 1, . . . , en + 1)

represent the same ideal class.

In general, one way to avoid the above collisions is to change the interval
where we sample the exponents. For CSIDH, Meyer et al.[22] used different
intervals for ei to gain a speed-up. To guarantee the security level and the ”al-
most” surjective and uniform representation, we change the interval and get a
new representation which omits [l74]. The final representation is of the form

[le00 le11 · · · l
e73
73 ] for I ′ = [−141, 141]× [−4, 4]3× [−6, 6]13× [−5, 5]33× [−4, 4]24.

There are 283· 927· 1313· 1133 ≈ 2255.999 distinct secret vectors in I ′ which guar-
antees the 256-bit size class group. The interval from which we sample isogenies
of degrees 3, 5 and 7 is relatively small because of the high failure probabil-
ity of finding torsion points. Intuitively, we economize on the computation of
largest isogeny of degree 389 which will induce a speed-up. To evaluate the per-
formance, we change the the source code of CSURF-512 which can be found at
https://github.com/TDecru/CSURF and gain a speed-up of about 6.02%. The
estimate is based on 2000 experiments in both settings in the computer algebra
system Magma.

https://github.com/TDecru/CSURF


4.2 Change the Direction of the Loop

As the original implementation of CSIDH, CSURF goes through the primes in as-
cending order in its implementation, starting with small degree isogenies. Michael
Meyer and Steffen Reith [25] gave some faster ways to implement CSIDH, one
of which is changing the direction of the loop. Going through the primes in de-
scending order can eliminate the larger factors of p+1 first, and therefore end up
with multiplications by significantly smaller factors as we proceed through the
loop. To verify the point in CSURF, we change the the source code of CSURF-
512 and gain a speed-up of about 28.69% comparing to the original performance.
The experiments are also implemented in the computer algebra system Magma.

5 Conclusion

In the article, we consider a new form of supersingular elliptic curves over Fp
with p ≡ 7 (mod 8). We show that the curves are uniquely isomorphic to a
curve in the form of y2 = x3 + Ax2 − x if and only if they have endomorphism
ring OK and hence A can be a unique representation of the Fp- isomorphism
classes, which implies they can replace the curves in CSIDH. To prove the unique
representation and efficient computation, we give some important lemmas and
propositions. To our knowledge, Wouter Castryck and Thomas Decru also use
curves of the same form in their protocol CSURF and obtain a speed-up, but
we prove the uniqueness of the representative of Fp-isomorphism classes from a
different perspective. We also offer some formulae for the 2-isogenies with com-
paration. Moreover, we show there exists another kind of collisions in the ideal
representation in CSURF. And to avoid the collisions, we offer a new represen-
tation which enhances the efficiency for about 6.02%. We also try to change the
direction of the loop in the implementation of CSURF, which gives a speed-up
of about 28.69%.
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A Lemma 3

Montgomery elliptic curves appeal to people by their properties. One can use
x throughout and use the Montgomery Ladder to compute [l]E efficiently. The
following lemma shows that the specific elliptic curves have similar properties.

Lemma 3. Let E be an elliptic curve given by an equation y2 = x3 +Ax2 − x.
P1 = (x1, y1) and P2 = (x2, y2) are two points on E with x1 6= x2 and x1x2 6= 0.
Then P1 + P2 = (x3, y3) satisfies

x3(x1 − x2)2x1x2 = B(x1y2 − x2y1)2, (1)

P1 − P2 = (x4, y4) satisfies

x4(x1 − x2)2x1x2 = B(x1y2 + x2y1)2, (2)

and

x3x4 =
(x1x2 + 1)2

(x1 − x2)2
.

Proof. By the group law on E, we have x3 = (y1−y2)2
(x1−x2)2

−A− x1 − x2. So

x3(x1 − x2)2x1x2 = (y1 − y2)2x1x2 − (A+ x1 + x2)(x1 − x2)2x1x2

= (y1 − y2)2x1x2 − (
y21
x1
− y22
x2

)(x1 − x2)x1x2 = (x1y2 − x2y1)2.

Since P1 − P2 = P1 + (−P2), the equation (2) can be obtained by replacing x3
and y2 in (1) by x4 and −y2 respectively. Then we have

x3x4 =
((x2y1)2 − (x1y2)2)2

x21x
2
2(x1 − x2)4

=
(x1x2(1 + x1x2)(x1 − x2))2

x21x
2
2(x1 − x2)4

=
(x1x2 + 1)2

(x1 − x2)2
.

B Proof of Proposition 1

It is similar to the proof of [2, Theorem 1]. Assume that G = 〈P 〉 is a cyclic
group of order 2d + 1. Let xi = x(iP ) for i = 1, . . . , 2d. Then by Lemma 3, we
see that

X = x

2d∏
i=1

xxi + 1

x− xi
= x

d∏
i=1

(
xxi + 1

x− xi
)2 = x

d∏
i=1

(τ∗iPx) · (τ∗−iPx) =
∏
Q∈G

τ∗Qx,

where τQ : E → E is the translation by Q ∈ E. One can show that Y = c0yX
′

is a multiple of
∑
Q∈G τ

∗
Qy, so it is also invariant under translation by elements

of G. We also see that the only poles of F (X,Y ) = Y 2 −X3 −AX2 +X are at
the points in G. Therefore if F (X,Y ) vanishes at ∞, then it is zero.



To show that F (X,Y ) vanishes at ∞, we consider its Laurent series expan-
sion. Let t = x

y and s = 1
y . Then dividing y2 = x3 + ax2 − x by y3 yields

s = t3 + ast2 − s2t.

Substituting the value for s into the right hand side, we obtain

s = t3 + a(t3 + at2s− ts2)t2 − (t3 + at2s− ts2)2t

= t3 + at5 + (a2 − 1)t7 + (a3 − 3a)t9 +O(t11).

So

y =
1

s
= t−3(1− at2 + t4 + at6 +O(t8)),

x = ty = t−2(1− at2 + t4 + at6 +O(t8)).

Then we have

(
xxi + 1

x− xi
)2 = (xi + (x2i + 1)t2 + (a+ xi)(x

2
i + 1)t4 + (x2i + 1)((a+ xi)

2 − 1)t6 +O(t8))2,

so

X = x

d∏
i=1

(
xxi + 1

x− xi
)2 = X−2t

−2 + (σ − a)X−2 +X2t
2 +X4t

4 +O(t6), (3)

where

X−2 =

d∏
i=1

x2i , σ = 2

d∑
i=1

(xi +
1

xi
), X2 =

1 + (3σ2 − 2aσ + 4)X2
−2

5X−2
,

X4 =
3a+ 5σ + (−6a2σ + 4aσ2 + 32a+ 10σ3)X2

−2
35X−2

.

A calculation shows that

F (X,Y ) = Y 2 −X3 −AX2 +X = k0t
−6 + k1t

−4 + k2t
−2 + k3 +O(t),

where

k0 = (c20 −X−2)X2
−2, k1 = (−2c20a− 3(σ − a)X−2 −A)X2

−2,

k2 = (4c20 + c20a
2 − 2A(σ − a)− 3X2)X2

−2 − 2c20X−2X2 − 3X3
−2(σ − a)2 +X−2,

k3 = 4c20X−2(aX2 −X4)− 3X4X
2
−2 − 6X2X

2
−2(σ − a)−X3

−2(σ − a)3 − 2AX2X−2

−AX2
−2(σ − a)2 +X−2(σ − a).

It is easy to check that k1 = k2 = k3 = k4 = 0 when c20 =
∏d
i=1 x

2
i , and

A = c20(a − 3
∑
T∈G\{OE}(xT −

1
xT

)). Since the curve EA : y2 = x3 − Ax2 + x
is nonsingular, it is an elliptic curve. The rational map φ defines a morphism
which maps the identity element of E to that of EA, so it is an isogeny.
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