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Abstract. Public key encryption with keyword search (PEKS) was pro-
posed by Boneh et al. in 2004; it allows users to search encrypted key-
words without losing data privacy. Although extensive studies have been
conducted on this topic, only a few focus on the insider keyword guessing
attack that will cause users to leak sensitive information. More specif-
ically, after receiving the trapdoor from the user, the malicious insider
(e.g. server) can randomly encrypt possible keywords using the user’s
public key. Then, the insider can test whether the trapdoor corresponds
to the selected keyword. To solve the above issue, we introduce the no-
tion of designated-ciphertext searchable encryption (DCSE) in this work.
Then, we propose a generic construction that employs an anonymous
identity-based encryption and key encapsulation mechanism. Addition-
ally, we demonstrated that our work satisfies the indistinguishability un-
der chosen-keyword attack (IND-CKA) and indistinguishability under
insider keyword guessing attack (IND-IKGA) in the standard model.
Moreover, we provide an instantiation from the NTRU lattices. Com-
pared with other state-of-the-art schemes, our scheme is not only more
efficient and practical, it also provides more robust security.

Keywords: quantum-resistant · searchable encryption · insider keyword guess-
ing attack

1 Introduction

With the development of the 5G and Internet of Things (IoT), the importance
of cloud storage is increasing. However, because the cloud providers cannot be
easily trusted, to avoid data leakage or abuse, data owners need to ensure the
privacy of sensitive data. One straightforward method is encrypting data be-
fore uploading to cloud servers. Unfortunately, encrypted data cannot be used
for some useful operations, such as sorting or searching. Specifically, searching
functionality is important for cloud storage. If a data owner wants to search
for some specific files among the encrypted data, it becomes necessary to down-
load and decrypt all the data to search. To solve this issue, in 2000, Song et
al. proposed the first searchable encryption (SE) that allows the ciphertext to
be searched using the corresponding trapdoor [27]. Because their construction
used symmetric key primitive, only the owner of a secret key can generate the
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ciphertext and trapdoor. Therefore, similar to the symmetric encryption, their
work suffers from the key distribution problem when being deployed in public
cloud environments. To circumvent this issue and allow multiple data owners
to easily generate different ciphertexts for a single data receiver, Boneh et al.
proposed the first public key encryption with keyword search (PEKS) in 2004
[4]. The scheme, unlike [27], is built on a public key cryptosystem. Consider the
following scenario. A data owner, Alice, wants to store files that can be accessed
and searched for by a data receiver, Bob, to a cloud server without leaking data
information. Therefore, before uploading these files, she encrypted them with the
keywords, using Bob’s public keys. If Bob would like to request the cloud server
to search for the encrypted files that contain keyword “important”, he can gen-
erate the trapdoor for “important” using his private key. Then, the cloud server
could use the trapdoor to search for encrypted files tagged with the keyword
“important”.

Because PEKS is more suitable for purposes such as cloud service, IoT, and
email service, many schemes have been proposed over these two decades. How-
ever, as most of the schemes assume the insider (e.g. cloud server, mail server,
and IoT gateway) is trustworthy, they do not take into account the attack from
insiders. In actual fact, due to the small number of commonly used keywords,
the insider can guess the keyword from a trapdoor to obtain some useful infor-
mation, called insider keyword guessing attack (IKGA). More concretely, after
receiving a trapdoor from a data receiver, the malicious insider can randomly
encrypt possible keywords using the receiver’s public key. Then, the insider can
test whether the trapdoor corresponds to the selected keywords. Unfortunately,
scant research on how to construct a PEKS that can resist IKGA [20, 16, 12].

On the other hand, because Shor has demonstrated the existence of quan-
tum algorithms that can solve the discrete logarithm assumption and integer
factor assumption [26, 25], the potential threat of quantum computers to classi-
cal cryptography is predictable. Specifically, Google recently proposed a 53-qubit
quantum computer [2]. There is no doubt that quantum computer will mature
over the next few decades. To resist quantum computer attacks, many studies
on quantum-resistant PEKS have been proposed [3, 29, 21, 30]. However, only
two works are IKGA secure [21, 30]. However, these schemes are not practical
enough, because of size constraints; public keys and private keys can be as large
as hundreds of megabytes (MB). Therefore, how to construct an efficient, prac-
tical, and IKGA secure quantum-resistant scheme is a significant and emerging
issue.

1.1 Contributions

In this paper, we introduce a new cryptographic primitive called “designated-
ciphertext searchable encryption” (DCSE). This notion aims to provide a search-
able encryption scheme that is secure against IKGA. Our strategy is to prevent
an insider from producing useful ciphertexts that may be tested successfully on
the corresponding trapdoor. In a DCSE scheme, a data sender can generate a
searchable ciphertext and its corresponding tag by encrypting a keyword using
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a data receiver’s public key. While only the data receiver can generate a use-
ful trapdoor using a (keyword, tag) pair. Using the valid trapdoor, the insider
(cloud server) can search the corresponding ciphertext. Because the trapdoor is
only useful for the corresponding tag that is assigned to a ciphertext. Therefore,
it is difficult for the insider to generate useful ciphertext that can be tested with
the trapdoor.

The generic construction for DCSE is presented in our work by employing an
anonymous identity-based encryption IBE = {Setup, Extract, Enc, Dec} and
an IND-CCA2 secure key encapsulation mechanism KEM = {KeyGen, Encaps,
Decaps}. A high-level overview of our generic construction is provided below.
The data receiver’s public and private keys are generated using IBE .Setup and
KEM.KeyGen. To generate a searchable ciphertext for a keyword w and its
corresponding tag, the data sender first generates an encapsulation e and a key
k using KEM.Encaps with the data receiver’s public key, and sets e as the tag.
Then, he/she encrypts the concatenation of the keyword w and the key k to a
ciphertext c using IBE .Enc. To search for the ciphertext encrypted the keyword
w, the data receiver needs to obtain a key k′ from the encapsulation e using
KEM.Decaps. Then, he/she extracts a trapdoor t from the concatenation of
the keyword w and the key k′, and sends t to the insider. Finally, using the
trapdoor t, the insider can test the ciphertexts, and find the one that matches
the keyword.

Additionally, we provide rigorous proofs to demonstrate that this generic
construction satisfies the criteria of indistinguishability under chosen-keyword
attack (IND-CKA) and indistinguishability under insider keyword guessing at-
tack (IND-IKGA).

Furthermore, we provide an instantiation utilizing two efficient and secure
lattice-based constructions: the identity-based encryption from NTRU proposed
by Ducas et al. [11] and the NTRU-based key encapsulation mechanism pro-
posed by Húlsing et al. [17]. The security of these constructions is based on
the ring-LWE and NTRU assumption that, in turn, makes our instantiation
quantum-resistant. We experimentally evaluate the performance of the instan-
tiation. Each encryption, trapdoor, test algorithm only takes approximately 1,
0.3, 0.01 (ms) respectively on a modern laptop. In comparison with other state-
of-the-art schemes, our scheme is not only more efficient and practical, it also
provides more robust security.

1.2 Manuscript Organization

The remainder of this manuscript is organized as follows. In Section 2, we in-
troduce some notations and preliminaries used in the work. In Section 3, we
introduce two cryptographic building blocks: identity-based encryption (IBE)
and key encapsulation mechanism (KEM). In Section 4, we introduce a new no-
tion, “designated-ciphertext searchable encryption,” and define its system model
and security requirements. In Section 5, we construct the DCSE from the IBE
and KEM, and provide its security proofs. In Section 6, an efficient NTRU-based
DCSE is proposed. Finally, we conclude this work in Section 7.
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2 Preliminary

2.1 Notations

For simplicity and readability, we use the following notations throughout the
paper. Let λ be the natural security parameter. We use standard notations, O
and o, to classify the growth of functions. The notation negl(n) is denoted as
an arbitrary function f is negligible in n, where f(n) = o(n−c) for every fixed
constant c. The notation poly(n) is denoted as an arbitrary function f(n) =
O(nc) for some constant c. By N (resp. Z and R) we denote the set of positive
integers (resp. integers and reals). In addition, for a prime q, Zq denotes a finite
field (or Galois field) with order q. For a power-of-two n, R = Z[X]/(Xn + 1)
and Rq = Z[x]/(xn + 1). The PPT is short for probabilistic polynomial-time.
For two string a, b, the concatenation of a and b is denoted as a‖b. Matrices are
denoted by bold capital letters (e.g., X). For a vector x and a matrix X, the
Euclidean norm of x and X is denoted by ‖x‖ and ‖X‖ respectively. For a finite
set Q, a ← Q denotes that a is sampled from Q with uniform distribution. For
two vectors a, b, the inner product of a and b is denoted as 〈a, b〉.

2.2 Pseudorandom Generator

In our generic construction, we use a pseudorandom generator to generate a
“pseudorandom”. Informally, we say that a distribution D is pseudorandom if
there does not exist any polynomial-time distinguisher that can distinguish a
string s ← D from a string s chosen randomly and uniformly. We recall the
definition of the pseudorandom generator in [18] Definition 3.15 below.

Definition 1 (Pseudorandom generator). Let F : {0, 1}n → {0, 1}n′
be a

deterministic polynomial-time algorithm, where n′ = poly(n) and n′ > n. We say
that F is a pseudorandom generator if it satisfies the following two conditions:

– Expansion: For every n, it holds that n′ > n.

– Pseudorandomness: For all PPT distinguishers, D,

|Pr[D(r) = 1]− Pr[D(F (s)) = 1]| ≤ negl(n),

where r is chosen randomly and uniformly from {0, 1}n′
, the seed s is chosen

randomly and uniformly from {0, 1}n, and the probabilities depend on the
random coins used by D and the choice of r and s.

2.3 Lattices

The construction of our instantiation is based on the NTRU lattices. In this sec-
tion, we first briefly introduce the lattices theory, and then review some lattices
hardness assumptions.
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Lattices A m-dimension lattice Λ is an additive discrete subgroup of Rm. Basi-
cally, a lattice is the set of all the integer combinations of some linearly indepen-
dent vectors, called the basis of the lattice. The formal definition of the lattice
is as follows.

Definition 2 (Lattice). Let B = [b1| · · · |bn] ∈ Rm×n be an m×n matrix, where
b1, · · · , bn ∈ Rm are n linear independent vectors. The m-dimensional lattice Λ
generated by B is the set,

Λ(B) = Λ(b1, · · · , bn) =

{ n∑
i=1

biai|ai ∈ Z
}

.

In addition, we call a lattice full-rank when n = m.

Hardness Assumptions In 2005, Regev introduced a new lattice hardness
assumption, called learning with errors (LWE), and he demonstrated that several
worst-case lattice problems can be reduced to the LWE problem [23]. In addition,
he proposed the first public key cryptosystem based on the hardness of the LWE
assumption.

Definition 3 (LWE Assumption). Given n,m ∈ N, q as a prime, a proba-
bility distribution χ over Zq. Suppose there exists an oracle Ons that outputs m
samples of the form (a, 〈a, s〉+ e) where a ∈ Znq and e ∈ χ are chosen freshly at
random for each sample, and s← Znq is the same for every sample. The search-
LWE assumption is to find the s. In addition, let Or be an oracle that outputs
samples (a, b)← (Znq ×Znq ) uniformly at random. The decision-LWE assumption
is to guess whether you are interacting with Ons or Or.

With Regev’s seminal work, many LWE-based cryptosystems were subse-
quently proposed [13, 14, 1, 7, 8]. Unfortunately, these cryptosystems encountered
practical problems, because of the overly large key sizes and inefficiency. To solve
the issue, in 2009, Lyubashevsky et al. introduced an algebraic variant of the
LWE assumption [28] called ring-LWE [19]. The ring-LWE assumption is the
LWE assumption specifically for polynomial rings over finite fields that can also
be stated in “search” version and “decision” version that are defined as follows.

Definition 4 (Ring-LWE Assumption). Given n,m ∈ N, let q be a prime, a
probability distribution χ over Rq. Suppose there exists an oracle Os that outputs
m samples of the form (a, 〈a, s〉 + e) where a ∈ Rq and e ∈ χ is chosen freshly
at random for each sample, and s ← Rq is the same for every sample. The
search-Ring-LWE assumption is to find the s. In addition, let Or be an oracle
that outputs samples (a, b) ← (Rq × Rq) uniformly at random. The decision-
Ring-LWE assumption is to guess whether the user is interacting with Os or
Or.

Another lattice hardness assumption is the NTRU assumption, defined by
Hoffstein et al. in 1998 [15].
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Definition 5 (NTRU Assumption). Let χ be a probability distribution over
Rq. The NTRU assumption is to distinguish the following two distributions.
The first distribution sample is a polynomial h = g/f , where f, g ← χ and f
is invertible, and the second distribution uniformly samples a polynomial h over
Rq.

3 Cryptographic Building Blocks

In this section, we recall two important cryptographic primitives that are used
as building blocks in our generic construction. They are the identity-based en-
cryption and key encapsulation mechanism.

3.1 Identity-based Encryption

The identity-based encryption (IBE) is an essential primitive of public key en-
cryption, in which the public key of a user is information that can identify the
user (such as e-mail address, name, and social security number). Its concept was
first proposed by Shamir as early as 1984 [24]. However, the first construction
was realized by Cocks based on the quadratic residuosity problem in 2001 [9].
Later, Boneh and Franklin proposed a more practical and secure IBE using the
pairing technique [5, 6].

An IBE scheme is a four-tuple of PPT algorithms IBE = (Setup, Extract,
Enc, Dec), described as follows:

– Setup(1λ): Taking the security parameter λ as input, this algorithm outputs
a master private key msk and master public key mpk.

– Extract(msk, id): Taking the master private key msk and an identity id as
input, this algorithm outputs the corresponding private key skid for the iden-
tity.

– Enc(mpk, id,m): Taking the master public key, mpk, an identity id, and a
message m as input, this algorithm outputs a ciphertext ct encrypted by id.

– Dec(skid, ct): Taking a private key skid, and a ciphertext ct as input, this
algorithm outputs a decrypted message m′.

Definition 6 (Correctness of IBE).
We say that an IBE scheme, IBE, is correct if

Pr[Dec(skid, Enc(mpk, id,m)) = m] = 1− negl(λ),

where (mpk,msk)← Setup(1λ) and skid ← Extract(msk, id).

Besides, an IBE must satisfy the indistinguishability under adaptive chosen-
identity chosen-plaintext attack (IND-ID-CPA), defined using the following game
between a challenger B and an adversary A.

Game IND-ID-CPA:
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– Setup. In this stage, B runs the Setup(1λ) algorithm to generate the master
public key mpk and master private key msk. Then, B keeps msk secret, and
sends mpk to A.

– Phase 1.Amakes a polynomially bounded number of queries to the Extract
oracle on any identity id, and B returns a private key skid to A.

– Challenge. In this stage, A sends two challenge messages, m0,m1, and a
challenge identity, id∗, to B, where id∗ has never been queried to Extract
oracle. After receiving the messages and identity, B chooses a random bit,
b← {0, 1}, and generates the challenge ciphertext, ct∗ ← Enc(mpk, id∗,mb).
Finally, B returns ct∗ to A.

– Phase 2. A can continue to ask for the Extract oracle the same as in
Phase 1. The only restriction is that A cannot issue an Extract query on
the challenge identity id∗.

– Guess. A outputs its guess b′. The adversary is said to win the game if
b′ = b. The advantage of A is as follows:

AdvIND−ID−CPAIBE,A (λ) = |Pr[b′ = b]− 1
2 |.

Definition 7 (IND-ID-CPA of IBE).
We say that an IBE scheme IBE is IND-ID-CPA secure, if no PPT adversary

A can win the above game with an advantage exceeding negl(λ).

Moreover, we say that an IBE scheme IBE is anonymous if it satisfies the
following stronger notion of security:

Game IND-ANON-ID-CPA:

– Setup. In this stage, B runs the Setup(1λ) algorithm to generate the master
public key mpk and master private key msk. Then B keeps msk secret, and
sends mpk to A.

– Phase 1.Amakes a polynomially bounded number of queries to the Extract
oracle on any identity id, and B returns a private key skid to A.

– Challenge. In this stage, A sends a challenge message m, and two challenge
identities id0, id1 to B, where id0 and id1 have never been queried to Extract
oracle. After receiving the messages and identities, B chooses a random bit,
b← {0, 1}, and generates the challenge ciphertext, ct∗ ← Enc(mpk, idb,m).
Finally, B returns ct∗ to A.

– Phase 2. A can continue to ask for the Extract oracle, the same as in
Phase 1. The only restriction is that A cannot issue an Extract query on
the challenge identities id0 and id1.

– Guess. A outputs its guess b′. The adversary is said to have won the game,
if b′ = b. The advantage of A is defined as follows:

AdvIND−ANON−ID−CPAIBE,A (λ) = |Pr[b′ = b]− 1
2 |.

Definition 8 (Anonymous IBE).
We say that an IBE scheme IBE is anonymous if is no PPT adversary A

can win the above game with an advantage exceeding negl(λ).
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3.2 Key Encapsulation Mechanism

The key encapsulation mechanism (KEM), first proposed by Cramer and Shoup,
is a variant of the public key encryption [10]. Rather than encrypting a message,
KEM “encaps” a random value using public key, and outputs an encapsulation.
With the corresponding private key, anyone can “decaps” the encapsulation to
obtain the same random value.

A KEM is a three-tuple of PPT algorithms, KEM = (KeyGen, Encaps,
Decaps), described as follows.

– KeyGen(1λ): Taking the security parameter λ as input, this algorithm out-
puts a public key pk and a private key sk.

– Encaps(pk): Taking the public key pk as input, this algorithm outputs a key
k and an encapsulation e.

– Decaps(sk, e): Taking the private key sk and an encapsulation e as input,
this algorithm outputs the corresponding key k, or an invalid symbol ⊥.

Definition 9 (Correctness of KEM).
We say that a KEM scheme, KEM, is correct, if

Pr[Decaps(sk, e) = k : (k, e)← Encaps(pk)] = 1− negl(λ),

where (pk, sk)← KeyGen(1λ).

Indistinguishability under the adaptive chosen-ciphertext-attack (IND-CCA2)
security of a KEM is defined using the following game between a challenger B
and an adversary A.

Game IND-CCA2:

– KeyGen. In this stage, B runs the KeyGen(1λ) algorithm to generate the
public/private key pair (pk, sk). Then, B sends pk to A.

– Phase 1. A makes a polynomially bounded number of queries to the Decaps
oracle on any encapsulation e; B returns a key k or invalid symbol ⊥ to A.

– Challenge. In this stage, B chooses a random bit b ← {0, 1}. Then, B
generates (e∗, k∗0) ← Encaps(pk), and randomly chooses k∗1 from the key
space K. Finally, B returns the challenge ciphertext (e∗, k∗b ) to A.

– Phase 2. A can continue to ask for the Decaps oracle, same as in Phase
1. The only restriction is that A cannot issue a Decaps query on e∗.

– Guess. A outputs its guess b′. The adversary is said to have won the game
if b′ = b. The advantage of A is defined as

AdvIND−CCA2
KEM,A (λ) = |Pr[b′ = b]− 1

2 |.

Definition 10 (IND-CCA2 of KEM).
We say that a KEM scheme KEM is IND-CCA2 secure, if there is no PPT

adversary A that can win the above game with an advantage exceeding negl(λ).
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4 Designated-ciphertext Searchable Encryption

In this section, we formalize the system model of a designated-ciphertext search-
able encryption (DCSE) scheme and its security models.

4.1 System Model

We extend the system model of the PEKS in [4]. In more detail, the trapdoor in
the DCSE is not only assigned to a keyword, it is assigned to a ciphertext. Let
λ be a security parameter and W be a keyword space.

A DCSE is a four-tuple of PPT algorithms DCSE = (KeyGen, DCSE,
Trapdoor, Test), described as follows.

– KeyGen(1λ): Taking the security parameter λ as input, this algorithm out-
puts a public key pk and a private key sk.

– DCSE(pk, w): Taking a data receiver’s public key pk, and a keyword w ∈ W,
this algorithm outputs a searchable ciphertext c and a tag of ciphertext v.

– Trapdoor(sk, w′, v′): Taking a data receiver’s private key sk, a keyword w′ ∈
W, and a tag of ciphertext v′, this algorithm outputs a trapdoor t.

– Test(c, t): Taking a searchable ciphertext c, and a trapdoor t as input, this
algorithm outputs 1 if t matches c and 0 otherwise.

Definition 11 (Correctness of DCSE).
Let λ be a security parameter,W be a keyword space, (pk, sk)← KeyGen(1λ),

and (c, v) be a searchable ciphertext and a tag of the ciphertext be generated from
DCSE(pk, w), where w ∈ W. We say that a DCSE scheme is correct if:

Pr[Test(c, Trapdoor(sk, w, v)) = 1] = 1− negl(λ).

4.2 Security Models

We require that a DCSE scheme satisfies the following two security require-
ments: indistinguishability under chosen-keyword attack (IND-CKA) and indis-
tinguishability under insider keyword guessing attack (IND-IKGA). The follow-
ing two games are executed by an adversary A and a challenger B. Note that
because the ability of a malicious insider exceeds that of a malicious outsider,
we only consider the insider keyword guessing attack here.

Indistinguishability under Chosen-keyword Attack The IND-CKA secu-
rity ensures that the adversary cannot obtain any information on the keyword
from a ciphertext and its corresponding tag.

Game IND-CKA:

– KeyGen. In this stage, B runs the KeyGen(1λ) algorithm to generate the
user’s public key pk and private key sk. Then, B sends sk to A.
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– Phase 1.Amakes a polynomially bounded number of queries to the Trapdoor
oracle. When A issues such a query on (w, v), B returns a trapdoor t to A
using Trapdoor algorithm with the private key sk.

– Challenge. A sends two challenge keywords w0, w1 ∈ W, where w0, w1 have
not been queried in Phase 1. B chooses a random bit b← {0, 1}, generates
the challenge ciphertext (c∗, v∗)← DCSE(pk, wb), and returns it to A.

– Phase 2. A can continue to ask for the Trapdoor oracle, same as in Phase
1. The only restriction is that A cannot issue a Trapdoor query on w0 or
w1.

– Guess. A outputs its guess b′. The adversary is said to have won the game
if b′ = b.

The advantage of A wins this game is defined as

AdvIND−CKADCSE,A (λ) = |Pr[b′ = b]− 1
2 |.

Definition 12 (IND-CKA of DCSE).
We say that a DCSE scheme DCSE is IND-CKA secure if there is no PPT

adversary A that can win the above game with an advantage exceeding negl(λ).

Indistinguishability under Insider Keyword Guessing Attack The IND-
IKGA security ensures that the adversary cannot obtain any information about
the keyword from a trapdoor.

Game IND-IKGA:

– KeyGen. In this stage, B runs the KeyGen(1λ) algorithm to generate the
user’s public key pk and private key sk. Then, B sends pk to A.

– Phase 1. A makes a polynomially bounded number of queries to the Trap-
door oracle. When A issues such a query on (w, v), B returns a trapdoor t
to A using Trapdoor algorithm with private key sk.

– Challenge. A sends two challenge keywords w0, w1 ∈ W, where w0, w1 have
not been queried in Phase 1. B chooses a random bit b← {0, 1}, a valid tag
v∗, and generates the challenge trapdoor t∗ ← Trapdoor(sk, wb, v

∗). Finally,
B returns t∗ to A.

– Phase 2. A can continue to ask for the Trapdoor oracle, same as in Phase
1. The only restriction is that A cannot issue a Trapdoor query on w0 or
w1.

– Guess. A outputs its guess b′. The adversary is said to have won the game
if b′ = b.

The advantage of A wins this game is defined as

AdvIND−IKGADCSE,A (λ) = |Pr[b′ = b]− 1
2 |.

Definition 13 (IND-IKGA of DCSE).
We say that a DCSE scheme DCSE is IND-IKGA secure, if there is no PPT

adversary A, that can win the above game with an advantage exceeding negl(λ).
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5 Efficient Generic Construction of DCSE

In this section, we first propose a generic construction of the DCSE from an
anonymous IBE and an IND-CCA2 KEM. Then, we present rigorous proofs to
demonstrate that this construction satisfies the correctness and security require-
ments defined in Section 4.

5.1 Generic Construction

To construct a DCSE scheme DCSE , we first set the following parameters.
Let IBE = (Setup,Extract, Enc,Dec) be an anonymous IBE scheme, and
KEM = (KeyGen,Encap,Decaps) be an IND-CCA2 secure KEM. Let W be
the keyword space of DCSE , and let K be the key space of KEM. Let F : X → Y
be a pseudorandom generator with appropriate domain X and range Y. Here, the
domain X includes the set of any keyword w ∈ W concatenating any key k ∈ K.
That is, X = {w‖k | w ∈ W∧k ∈ K}. Furthermore, let the range Y include an ap-
propriate length of randomness used by the algorithm IBE .Extract. In addition,
let H be a collision-resistant hash function defined on {0, 1}∗×{0, 1}∗ → {0, 1}∗.

We present a generic construction of DCSE from Algorithm 1 to Algorithm
4.

Algorithm 1 KeyGen(1λ)

Input: a security parameter 1λ

Output: user’s key pair (pk, sk)
1: (pk1, sk1)← KEM.KeyGen(1λ)
2: (pk2, sk2)← IBE .Setup(1λ)
3: Set public key pk = (pk1, pk2), private key sk = (sk1, sk2)
4: Output a key pair (pk, sk)

Algorithm 2 DCSE(pk, w)

Input: user’s public key pk = (pk1, pk2) and a keyword w ∈ W
Output: a ciphertext c and its corresponding tag v
1: (e, k)← KEM.Encaps(pk1)
2: Randomly choose r ← {0, 1}∗
3: f ← F (w‖k)
4: ct← IBE .Enc(pk2, f, r)
5: Compute h = H(ct, r)
6: Output a ciphertext c = (ct, h) and tag v = e
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Algorithm 3 Trapdoor(sk, w, v)

Input: user’s private key sk = (sk1, sk2), a keyword w ∈ W, and a tag of the ciphertext
v = e

Output: a trapdoor t for keyword w and tag v
1: k ← KEM.Decaps(v, sk1) k = ⊥
2: if k = ⊥ then
3: Set trapdoor t to be an invalid symbol ⊥
4: else
5: f ← F (w‖k)
6: Set trapdoor t← IBE .Extract(sk2, f)
7: end if
8: Output a trapdoor t

Algorithm 4 Test(c, t)

Input: a ciphertext c = (ct, h), and a trapdoor t
Output: 1 if t matches c or 0 otherwise
1: if t = ⊥ then
2: Output 0
3: else
4: r ← IBE .Dec(t, ct)
5: Output 1 if H(ct, r) = h and 0, otherwise
6: end if

5.2 Correctness and Security Proofs

Theorem 1. The proposed construction is correct, according to Definition 11.

Proof (Proof of Theorem 1). Let (c = (ct, h), v) ← DCSE(pk, w) be a valid
ciphertext and its corresponding tag, and let t ← Trapdoor(sk, w, v) be a valid
trapdoor, where (pk, sk) ← KeyGen(1λ). Because t is actually the private key
of identity F (w‖k) in the IBE scheme, and ct is a ciphertext that encryptes a
random value r using identity F (w‖k). With the correctness of the IBE scheme
(Definition 6), one can obtain r ← IBE .Dec(t, ct) with overwhelming probability.
Therefore, H(ct, r) = h; thus, we have Test(c, t) = 1.

In the following, we prove that the proposed scheme is IND-CKE secure and
IND-IKGA secure.

Theorem 2. The proposed scheme DCSE is IND-CKA secure if the underlying
KEM scheme KEM is IND-CCA2 secure, the IBE scheme IBE is anonymous,
and F is a secure pseudorandom generator.

Proof (Proof of Theorem 2). We prove Theorem 2 using a sequence of games,
defined as follows.

– Game0: This is the original IND-CKA game, as shown in Section 4.2.
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– Game1: We now make a minor change to the above game. Rather than
obtain k from KEM.Encaps(pk1), we choose k′ from the range of the output
of KEM.Encaps(pk1) randomly.

– Game2: We now transform Game1 into Game2. In this game, let f =
F (w‖k′); we substitute the value ct← IBE .Enc(f, r) with ct← IBE .Enc(f ′, r),
where f ′ is chosen randomly from Y, and Y is the output range of F .

Let Advi denote the adversary’s advantage of winning in Gamei. We have
the following claims.

Claim. For all the PPT algorithms A01, |Adv0 − Adv1| is negligible, if the un-
derlying KEM scheme KEM is IND-CCA2 secure.

Proof. Suppose that there exists an adversaryA01 such that |Adv0−Adv1| is non-
negligible, then, there exists another challenger B01 that can win the IND-CCA2
game in the underlying KEM scheme KEM with non-negligible advantage.

– KeyGen. B01 first invokes the IND-CCA2 game of KEM to obtain pk1.
Next, B01 computes (pk2, sk2)← IBE .Setup(1λ). Finally, B01 sets the public
key pk = (pk1, pk2), and sends pk to A01.

– Phase 1. In this phase, A01 can make polynomially many Trapdoor queries
with (pk, w, v), and B01 responds as follows. B01 first invokes KEM.Decaps
oracle on v. The oracle returns an invalid symbol ⊥ or a valid key k. If the
oracle returns ⊥, B01 also responds with ⊥ to A01. Otherwise, B01 computes
f ← F (w‖k) and t← IBE .Extract(sk2, f). Finally, t is returned to A01.

– Challenge. A01 sends two challenge keywords w0, w1 ∈ W, where w0, w1

have not been queried in Phase 1. After receiving these challenge keywords,
B01 chooses a random bit b← {0, 1}, and runs the following steps:

• Invoke the Challenge phase of the IND-CCA2 game to obtain the chal-
lenge ciphertext (e∗, k∗)

• Pick r∗ ← {0, 1}∗
• Compute f∗ ← F (wb‖k∗)
• Compute ct∗ ← IBE .Enc(f∗, r∗)
• Compute h∗ = H(ct∗, r∗)
• Set v∗ = e∗

Then, B01 returns (c∗ = (ct∗, h∗), v∗) to A01.
– Phase 2. A01 can continue to make Trapdoor queries, same as in Phase

1. The only restriction is that A01 cannot make a Trapdoor query on w0 or
w1.

– Guess. A01 outputs its guess b′. Then B01 outputs b′.

Note that, if k∗ is a valid key, B01 gives the view of Game0 to A01; if k∗

is a random element, then B01 gives the view of Game1 to A01. Therefore, if
|Adv0 − Adv1| is non-negligible, B01 must also have non-negligible advantage
against the IND-CCA2 game of the underlying KEM scheme.

Claim. For all the PPT algorithms, A12, |Adv1 − Adv2| is negligible, if the un-
derlying IBE scheme IBE is anonymous.
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Proof. Supposing that there is an adversary A12 such that |Adv1 − Adv2| is
non-negligible, then, there exists another challenger B12 that can win the IND-
ANON-ID-CPA game of the underlying IBE scheme IBE with non-negligible
advantage. B12 constructs a hybrid game interacting with an adversary A12 as
follows:

– KeyGen. B12 first invokes the IND-ANON-ID-CPA game of IBE to obtain
pk2; then, B12 computes (pk1, sk1) ← KEM.KeyGen(1λ). Finally, B12 sets
the public key pk = (pk1, pk2), and sends pk to A12.

– Phase 1. In this phase, A12 is able to make polynomially many Trapdoor
queries with the (pk, w, v), and B12 responses as follows. B12 first obtains
k ← KEM.Decaps(v, sk1). If k is an invalid symbol ⊥, B12 returns ⊥ to A12.
Otherwise, B12 invokes IBE .Extract oracle on F (k‖w) to obtain a trapdoor
t. Finally, B12 sends t to A12.

– Challenge. A12 sends two challenge keywords w0, w1, where w0, w1 have
not been queried in Phase 1. B12 chooses a random bit b ← {0, 1}, and
performs the following steps:

• Compute (e∗, k∗)← KEM.Encaps(pk1)
• Randomly choose k′∗ from the range of the output of KEM.Encaps(pk1)
• Randomly choose f ′ ← Y
• Pick r∗ ← {0, 1}∗
• Invoke the Challenge phase of the IND-ANON-ID-CPA game using F (wb‖k′∗, r∗)

and (f ′, r∗) to obtain the challenge ciphertext ct∗

• Compute h∗ = H(ct∗, r∗)
• Set v∗ = e∗

Then, B12 returns (c∗ = (ct∗, h∗), v∗) to A12.
– Phase 2. A12 can continue to make Trapdoor queries, similar to Phase 1.

The only restriction is that A12 cannot make a Trapdoor query on w0 or w1.
– Guess. A12 outputs its guess b′. Then, B12 outputs b′.

Note that if ct∗ is generated from (F (wb‖k′∗), r∗), B12 gives the view of
Game1 to A12; if ct∗ is generated from (f ′, r∗), then B12 gives the view of
Game2 to A12. Therefore, if |Adv1−Adv2| is non-negligible, B12 must also have
non-negligible advantage in the IND-ANON-ID-CPA game of the underlying
IBE scheme.

Claim. Adv2 = 0

Proof. The proof is intuitive. Because the ciphertext c∗ is irrelevant to the key-
words w0, w1, the ciphertext reveals nothing about the information of the key-
words. The adversary A2 can only return b′ by guessing. Therefore, Adv2 = 0.

Combining Claim 5.2, Claim 5.2, and Claim 5.2, we can conclude that the
advantages of the adversary of the three adjacent games are negligibly close, and
thus |Adv0−Adv2| is negligibly close to 0. This completes the proof of Theorem
2.
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Theorem 3. The proposed scheme is IND-IKGA secure, if the underlying KEM
scheme KEM is IND-CCA2 secure, and F is a secure pseudorandom generator.

Proof (Proof of Theorem 3).
We prove Theorem 3 through a sequence of games, defined as follows.

– Game0: This is the original IND-IKGA game, as shown in Section 4.2.
– Game1: This game is identical to Game0, except that k is randomly chosen

from the output range of KEM.Encaps(pk1), rather than being computed
from KEM.Encaps(pk1).

– Game2 This game is the same as Game1, except that f is chosen randomly
from Y, instead of being computed from F (wb‖k).

Let Advi denote the adversary’s advantage in Gamei. We have the following
claims.

Claim. For all the PPT algorithms, A01, |Adv0 − Adv1| is negligible, if the un-
derlying KEM scheme KEM is IND-CCA2 secure.

Proof. Supposing that there exists an adversary A01 such that |Adv0 − Adv1|
is non-negligible, then, there exists another challenger B01 that can win the
IND-CCA2 game of the underlying KEM scheme KEM with non-negligible ad-
vantage.

– KeyGen. B01 first invokes the IND-CCA2 game of KEM to obtain pk1.
Next, B01 computes (pk2, sk2)← IBE .Setup(1λ). Finally, B01 sets the public
key pk = (pk1, pk2), and sends pk to A01.

– Phase 1. In this phase, A01 can make polynomially many Trapdoor queries
with (pk, w, v), and B01 responses as follows. B01 first invokes KEM.Decaps
oracle on v. The oracle returns an invalid symbol ⊥ or a valid key k. If
the oracle returns ⊥, B01 also responses ⊥ to A01. Otherwise, B01 computes
f = F (w‖k) and t← IBE .Extract(sk2, f). Finally, t is returned to A01.

– Challenge. A01 sends two challenge keywords w0, w1 ∈ W, where w0, w1

have not been queried in Phase 1. B01 chooses a random bit b ← {0, 1},
and runs the following steps:
• Invoke the Challenge phase of the IND-CCA2 game to obtain the chal-

lenge (e∗, k∗)
• Compute f∗ ← F (wb‖k∗)
• Compute t∗ ← IBE .Extract(sk2, f)

Then, B01 returns t∗ to A01.
– Phase 2. A01 can continue to make Trapdoor queries, same as in Phase 1.

The only restriction is that A01 cannot make a Trapdoor query on w0 or w1.
– Guess. A01 outputs its guess b′. Then, B01 outputs b′.

Note that if k∗ is a valid key, B01 gives the view of Game0 to A01; if k∗

is a random element, then, B01 gives the view of Game1 to A01. Therefore, if
|Adv0 −Adv1| is non-negligible, B01 must also have non-negligible advantage in
the IND-CCA2 game.
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Claim. For all the PPT algorithms, A12, |Adv1 − Adv2| is negligible, if F is a
secure pseudorandom generator.

Proof. We prove the claim by describing a PPT reduction algorithm B12 that
plays a pseudorandom generator security game. Given a challenge string T ∈ Y
and the description of a pseudorandom generator F , B12 constructs a hybrid
game, interacting with an adversary A12 as follows.

– KeyGen. B12 chooses the public parameters, as described in Section 5.1,
except that, instead of choosing a proper pseudorandom generator from the
pseudorandom generator family, B12 sets F as the public parameter. Then,
B12 generates the key pair (pk, sk) ← KeyGen(1λ), and sends pk to A12.
Note that B12 has full control of the private key sk.

– Phase 1. In this phase, A12 can make polynomially many Trapdoor queries
using (pk, w, v). Due to the knowledge of sk, B12 answers the queries by
simply running the Trapdoor algorithm.

– Challenge. A12 sends two challenge keywords w0, w1 ∈ W, where w0, w1

have not been queried in Phase 1. B12 chooses a random bit b ← {0, 1},
and runs the following steps:

• Set f∗ = T

• Compute t∗ ← IBE .Extract(sk2, f∗)
Then, B12 returns t∗ to A12.

Note that, if T is generated from F , B12 provides the view of Game1 to
A12; if T is a random string sampled from Y, then B12 provides the view of
Game2 to A12. Therefore, if |Adv1−Adv2| is non-negligible, B12 must also have
non-negligible advantage against the pseudorandom generator security game.

Claim. Adv2 = 0.

Proof. The proof is intuitive. Because the trapdoor t∗ is irrelevant to the key-
words, w0 and w1, the trapdoor reveals nothing about the information of the
keywords. The adversary A2 can only return b′ by guessing. Therefore, Adv2 = 0.

Combining Claim 5.2, Claim 5.2, and Claim 5.2, we can conclude that the
advantages of the adversary of four adjacent games are negligibly close, and, thus,
|Adv2 = Adv0| is negligibly close to 0. This completes the proof of Theorem 3.

6 Efficient Instantiation and Comparison

In this section, we first propose an NTRU-based instantiation. Then, we compare
different aspects in our instantiation with other state-of-the-art schemes.
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6.1 Efficient Instantiation

Our instantiation utilizes Ducas et al.’s IBE [11] and Hülsing et al.’s KEM [17],
hereafter referred to as DLP-IBE and HRSS-KEM, respectively, which are in-
troduced below.

The DLP-IBE is the first lattice-based IBE scheme with practical parame-
ters. Its security is based on the NTRU and Ring-LWE assumptions. In addition,
the DLP-IBE has also been proven to be an anonymous IBE [3]. The first imple-
mentation of the DLP-IBE was provided by Ducas1, written in C++, and based
on the NTL library2. Although this implementation is very efficient, it is merely
a Proof of Concept (PoC) without any optimization. To improve efficiency, Mc-
Carthy et al. propose a practical implementation of the DLP-IBE [22], written
in ANSI C, using the number theoretic transform (NTT) optimizations.

The HRSS-KEM is a candidate cryptographic KEM in the Round 2 of the Na-
tional Institute for Standards and Technology (NIST) Post-Quantum Project.3.
In the work, Hülsing et al. first provide a OW-CPA secure NTRU-based encryp-
tion scheme with optimized parameters; then, they transform the scheme into a
IND-CCA2 secure NTRU-based KEM under quantum-accessible random oracle
model (QROM).

For concrete instantiation, we use SHA256 as a secure hash function, and
symmetric encryption AES-256 as a pseudorandom generator. For the DLP-
IBE, we select parameters n = 1024, q ≈ 227 for 192-bit security level, and for
HRSS-KEM, we select parameters n = 701, p = 3, q = 8192 for 128-bit security
level. Based on the projects45 of [11] and [17], we implement our NTRU-based
DCSE written in Language C on Intel core i7-8700 3.2GHz CPU with 10G RAM.

6.2 Comparison

To compare with other state-of-the-art schemes, we set the parameters as follows.
For the pairing-based PEKS scheme [4], we choose the 160-bit group order and
2048-bit group elements G,GT . For the NTRU-based PEKS scheme [3], we choose
n = 1024, q = 227 for 192-bits security level. While for the LWE-based PEKS
schemes [29, 21, 30], we adopt the secure parameter the same as [29], that is
n = 256, dimension m = 9753, and prime q = 4093. In addition, we set the
number of distinct keywords k = 1 and unusual keywords k′ = 1 for [21], and
the security level l = 10 for [30].

Table 1 shows the comparison of our scheme with other schemes on the basis
of its security properties. Only [21, 30], and our scheme possess both quantum-
resistance IKGA security. Unfortunately, although the LWE-based schemes [29,

1 https://github.com/tprest/Lattice-IBE
2 https://www.shoup.net/ntl/
3 https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
4 https://github.com/safecrypto/libsafecrypto
5 https://github.com/ntru-hrss/ntru-hrss
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21, 30] are quantum-resistant and supportive of other useful functions, as illus-
trated in Table 2, their overly large key sizes makes them impractical. Further-
more, compared with two IKGA secure quantum-resistant PEKS schemes [21,
30], our public key size and private key sizes are 1/115 and 1/2322 times smaller,
respectively.

Table 1. Comparison with related schemes on the basis of security properties

Schemes Quantum-resistance IKGA security

[4] 7 7

[3] 3 7

[29] 3 7

[21] 3 3

[30] 3 3

Ours 3 3

Table 2. Comparison with related schemes on the basis of Key size, Trapdoor size,
and Ciphertext size (in Bytes). Note that |ID| refers to the length of user identity.

Schemes PK SK Trapdoor Ciphertext

[4] 0.38 0.19 0.38 0.57

[3] 27.2 35 27 52

[29] |ID| 560128 113 113

[21] 3657.42 139325.1 71.42 57.14

[30] 3657.05 139325.1 142.86 14.28

Ours 31.88 59.98 38.98 23

In Table 3, we compare our instantiation with other two practical PEKS
schemes [4, 3] on the basis of efficiency. Compared with [4], although our instan-
tiation is 0.31x and 0.62x slower than that of the KeyGen and Test algorithms,
respectively, our instantiation is 17x and 42x faster than that of the the En-
crypt and Extract algorithms, respectively. As for [3], our instantiation is 245x,
9x, 11x, and 363x faster than that of the KeyGen, Encrypt, Extract, and Test
algorithms, respectively. Additionally, we carefully experiment with the time re-
quired for the algorithms under different execution times (100, 500, 1000, 2000,
5000, 10000), the results are shown in Figure 1 to Figure 4.

7 Conclusions and Open Problems

This work mainly proposed a new cryptographic primitive, designated-ciphertext
searchable encryption (DCSE), to counter the insider keyword guessing attack
in public key searchable encryption. We provided a generic construction of the
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Table 3. Time taken (operations per second) by different operations of KeyGen (key
generation), Encryption (PEKS in [4, 3] and DCSE in our scheme), Extract, and Test.

Scheme KeyGen Encryption Extract Test

[4] 84.88 186.48 17.41 100908.17

[3] 0.10 349.28 67.42 174.64

Ours 26.56 3224.35 739.06 63451.77

Fig. 1. Time taken by the key generation algorithm

DCSE using an anonymous IBE and a IND-CCA2 KEM, and proved its security
in the standard model. Furthermore, we provided a quantum-resistant instantia-
tion from NTRU lattices utilizing [11] and [17]. In conclusion, this work provides
a novel solution to the insider keyword guessing attack in a searchable encryp-
tion. In addition to yielding interesting theoretical results, the proposed scheme
is very efficient and safe compared with other state-of-the-art schemes.

However, the proposed scheme has two challenges. The first is the commu-
nication overhead of the trapdoor that can be solved by designating multiple
ciphertexts instead of only one. The second challenge is the complexity of the
DCSE’s construction; therefore, it is necessary to provide a simpler generic con-
struction of the DCSE.
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