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Abstract. We study the problem of building non-interactive proof
systems modularly by linking small specialized “gadget” SNARKs in
a lightweight manner. Our motivation is both theoretical and practi-
cal. On the theoretical side, modular SNARK designs would be flexi-
ble and reusable. In practice, specialized SNARKs have the potential
to be more efficient than general-purpose schemes, on which most
existing works have focused. If a computation naturally presents
different “components” (e.g. one arithmetic circuit and one boolean
circuit), a general-purpose scheme would homogenize them to a sin-
gle representation with a subsequent cost in performance. Through
a modular approach one could instead exploit the nuances of a com-
putation and choose the best gadget for each component.
Our contribution is LegoSNARK, a “toolbox” (or framework) for
commit-and-prove zkSNARKs (CP-SNARKs) that includes:
1) General composition tools: build new CP-SNARKs from proof
gadgets for basic relations simply.
2) A “lifting” tool: a compiler to add commit-and-prove capabilities
to a broad class of existing zkSNARKs efficiently. This makes them
interoperable (linkable) within the same computation. For example,
one QAP-based scheme can be used prove one component; another
GKR-based scheme can be used to prove another.
3) A collection of succinct proof gadgets for a variety of relations.
Additionally, through our framework and gadgets, we are able to
obtain new succinct proof systems. Notably:
– LegoGro16, a commit-and-prove version of Groth16 zkSNARK,
that operates over data committed with a classical Pedersen vector
commitment, and that achieves a 5000× speedup in proving time.
– LegoUAC, a pairing-based SNARK for arithmetic circuits that has
a universal, circuit-independent, CRS, and proving time linear in
the number of circuit gates (vs. the recent scheme of Groth et al.
(CRYPTO’18) with quadratic CRS and quasilinear proving time).
– CP-SNARKs for matrix multiplication that achieve optimal prov-
ing complexity.



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Zero-Knowledge SNARKs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Building the LegoSNARK Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Commit and Prove SNARKs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Composition Properties of CP-SNARKs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Commit-Carrying SNARKs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Existing CP-SNARKs and cc-SNARKs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Bootstrapping our Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 CP-SNARKs for Pedersen-like Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 CP-SNARK for Pedersen Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 CP-SNARK for Linear Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Efficient CP-SNARKs for Polynomial Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 Preliminaries and Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 A CP-SNARK for Sum-Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 A CP-SNARK for Hadamard Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 A CP-SNARK for Self Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5 A CP-SNARK for Linear Properties of Committed Vector . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 A CP-SNARK for Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 LegoSNARK Applications and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1 Preliminaries and Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Arithmetic Circuit Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Parallel Computation on Joint Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.1 Commit-and-Prove SNARKs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 LegoAC1 for Arithmetic Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.4 Parallel Checks on Joint Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



A Security proof of CP-SNARK composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.1 Proof of Knowledge Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.2 Proof of Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B Proofs for the General Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B.1 Proof of Knowledge Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
B.2 Proof of Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C Supplementary Results on CPlink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
C.1 Proof of CPlink Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
C.2 An extension of CPlink for Prefixes of a Committed Vector . . . . . . . . . . . . . . . . . . . . . . . . 56

D A zkSNARK for Linear Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
E A Construction of PolyCom and CPpoly from zk-vSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
F Additional Material on CP-SNARKs for PolyCom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

F.1 Proof of our CPsc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
F.2 Proof of Security of CPhad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
F.3 Proof of CPsfprm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
F.4 Proof of CPlin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
F.5 A CP-SNARK for Data-Parallel Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

G A CP-SNARK for Internal Products from Thaler’s Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 64
G.1 CMT Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
G.2 Thaler’s Protocol for Trees of Multiplications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
G.3 Adapting zk-vSQL to Thaler’s Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

H Commit and Prove SNARKs from existing schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
H.1 “Adaptive Pinocchio” [Vee17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
H.2 Lipmaa’s Hadamard Product Argument [Lip16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
H.3 zk-vSQL [ZGK+17b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
H.4 Geppetto [CFH+15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
H.5 cc-SNARKs based on Groth’s SNARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3



1 Introduction

Zero-knowledge proofs (ZKPs), introduced by Goldwasser, Micali and Rackoff [GMR89], let a prover
convince a verifier of a statement without revealing more information than its validity. This power of
ZKPs—simultaneously providing integrity (the prover cannot cheat) and privacy (the verifier does
not learn any of the prover’s secrets)—has found countless applications, including multiparty com-
putation [GMW87], signature schemes [Sch91], public-key encryption [NY90], and, more recently,
blockchain systems [BCG+14, AJ18].

Some zero-knowledge proof systems—called succinct or simply zkSNARKs, zero-knowledge Suc-
cinct Non-interactive Argument of Knowledge—have short and efficiently verifiable proofs [Mic00,
GW11, BCCT12]. Succinctness is desirable in general but is especially critical in applications where
verifiers would not invest significant computational resources (e.g. if they are unwilling to do it for
reasons of scalability and cost, or if they are computationally weak).
Motivation. The last years have seen remarkable progress in the construction of zkSNARKs.
Different lines of work (cf. Section 1.2 for a detailed review) have built a variety of schemes that are
highly expressive, supporting general computations in the class NP. The general-purpose nature of
these schemes makes them very attractive to practitioners. At the same time, this high expressivity
comes at a cost in terms of performance. To achieve generality, these constructions abstract specific
features of computation by assuming one single unifying representation (e.g., boolean or arithmetic
circuits, state-machine transitions, RAM computations), and this abstraction is often a source of
overhead, for two main reasons.

First, general-purpose zk-SNARKs may miss opportunities for significant optimizations by not
exploiting the nuances of a computation. In contrast, specialized solutions can gain efficiency by
exploiting specific structural properties. For example, recent works [CMT12, WTas+17] show how to
highly optimize the GKR protocol[GKR08] for the case of parallel computations. A further example
is the specialized protocol for the multiplication of n× n matrices we propose in Section 5.6. Here,
our prover runs in O(n2) time as opposed to any circuit-based approach running in at least O(n3)
time.

Second, computation tends to be heterogeneous, often consisting of several subroutines of dif-
ferent nature, e.g. both arithmetic and boolean components. If we design SNARKs assuming one
single general representation then we will not be able to provide the best match for all the different
subroutines. In this context specialized protocols are clearly not an answer either as they fail when-
ever faced with a non homogeneous computation. As a concrete example, the GKR-like protocols
mentioned above are highly efficient when executed on parallel computations, but they fail to be
succinct if a computation also includes heavily sequential subroutines (e.g. iterated block ciphers).

In contrast, specialized solutions can gain efficiency by exploiting specific structural proper-
ties. For example, recent works [CMT12, WTas+17] show how to highly optimize the GKR proto-
col[GKR08] for the case of parallel computations. A further example is the specialized protocol for
the multiplication of n×n matrices we propose in Section 5.6. Here, our prover runs in O(n2) time
as opposed to a circuit-based approach running in at least O(n3) time.

A Modular Approach for zk-SNARKs. In this paper we study an alternative approach to the
design of zkSNARKs that would gain the advantages of specialized proof systems without inheriting
their shortcomings when applied to heterogeneous computations. With this goal in mind we propose
to build zkSNARKs by proceeding in a modular “bottom-up” fashion. Most current works use a “top-
down” approach: they build general-purpose schemes adopting one single representation that must
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be shared across all the different subroutines in the program. On the other hand, in this work
we consider designing a “global” SNARK for a computation C through a (lightweight) linking of
“smaller” specialized SNARKs for the different subroutines composing C. We call these interlinked
specialized SNARKs proof gadgets, as they act as basic building blocks that one can compose and
reuse according to the situation.

The modular approach has multiple benefits.3 First, it allows for reducing complexity: instead of
focusing on handling arbitrary computation using a single representation, one can focus on a smaller,
more specific problem (e.g., log-depth computation, membership proof, range proof, algebraic group
relation etc.), and exploit its nuances to get a more efficient solution. This way, one could maximize
efficiency by letting each subroutine of C be handled by a different proof system, specialized and
efficient for that type of computation. Second, modularity allows for flexibility and costs reduction:
a proof gadget can be reused in several systems and one can easily plug in a new solution, or replace
an old one.

Modularity from Commit-and-Prove SNARKs. To realize this modular approach we rely on
the well known commit-and-prove (CP) methodology [Kil89, CLOS02]. With a CP scheme one can
prove statements of the form “cck(x) contains x such that R(x,w)” where cck(x) is a commitment.
To see how the CP capability can be used for modular composition consider the following example
of sequential composition in which one wants to prove that ∃w : z = h(x;w), where h(x;w) :=
g(f(x;w);w). Such a proof can be built by combining two CP systemsΠf andΠg for its two building
blocks, i.e., respectively f and g: the prover creates a commitment cck(y) of y, and then uses Πf

(resp. Πg) to prove that “cck(y) contains y = f(x;w) (resp. contains y such that z = g(y;w))”.

Challenges of the CP modular composition. The composition idea sketched above implicitly
assumes that Πf and Πg work on the same commitment cck(y). Namely, in order to be composed,
different CP schemes must be compatible with the same commitment scheme (and commitment key).
Essentially we need a sort of universal commitment scheme that is as decoupled 4as possible from
the specific argument systems that will operate on it.

We argue that achieving such universality with state-of-the-art zkSNARKs entails major chal-
lenges:

(a) Most of the popular zkSNARKs, e.g., [PHGR13, Gro16], are not explicitly commit-and-prove.
This limitation can be overcome using a (somewhat folklore) approach in which the SNARK Π
additionally proves the correct opening of the commitment, i.e., R(x,w)∧“cck(x) opens to x”. This
approach has two main drawbacks: (i) Π must be expressive enough to include the commitment
verification in its language, but in our vision Π is a SNARK for a specialized task and may
not have this capability; (ii) even if Π were expressive enough (e.g., supports arbitrary circuits),
encoding commitment verification incurs significant overheads.5

(b) Some existing SNARKs have commit-and-prove capabilities [Gro10, CFH+15, Lip16, Vee17]. Yet,
each of these schemes uses its own specific commitment scheme. In some cases [CFH+15] the
commitment keys are relation-dependent, which means commitments cannot be generated before

3 Most of these benefits are the typical ones of modularity, a design approach that is successfully used in a variety
of fields, such as architecture, manufacturing, software design, and programming.

4 We find it apt to describe this notion in terms of coupling, the common measure of how interconnected two
components are in a software system.

5 For example, we experimentally found that, when handling a Pedersen commitment to a vector of length 2048
with [Gro16], the proving overhead is 428 secs (7 minutes).
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fixing one or multiple relations.6 In the other cases, despite being relation-independent, commit-
ment keys have a very specific structure that may not fit other proof systems. In summary, a main
limitation of existing commit-and-prove SNARKs is their incompatibility, between them and with
other potentially more efficient candidates to be developed.

1.1 Our Results

LegoSNARK Framework. We present LegoSNARK, a framework for commit-and-prove zk-
SNARKs (CP-SNARKs) that includes:

– Definitions that formalize CP-SNARKs and their variants.
– Composition recipes that show how to use different CP-SNARKs in a generic and secure way for

handling conjunction, disjunction and sequential composition of relations. This composition result
enables the use of modularity in designing CP-SNARKs for complex relations out of schemes for
simpler relations.

– A generic construction to efficiently turn a broad class of zkSNARKs into CP-SNARKs that can be
composed together. This class includes several existing schemes such as ones based on quadratic
arithmetic programs [PHGR13, CFH+15, Gro16], or zk-vSQL [ZGK+17a, ZGK+17b]. For this
transformation we only need a “minimal” CP-SNARK, CPlink, for proving that two commitments
(under different schemes) open to the same value.

LegoSNARK Gadgets.We populate our framework by constructing new CP-SNARKs for several
basic relations, such as:

– CPlink for proving that two different Pedersen-like commitments open to the same vector.7 Plugging
CPlink in our generic construction solves the challenges (a) and (b) mentioned above and gives us
interoperable versions of several existing schemes.

– CPlin for proving that a linear relation F ·u = x holds for a committed vector u, a public matrix
F and public vector x.

– CPhad for proving that a vector u0 is the Hadamard product of u1 and u2, when all the three
vectors are committed.

– CPsfprm for proving a self-permutation, i.e., that yi = yφ(i) for a public permutation φ and a
committed vector y.

– CPmm for proving that matrix X is the product of committed matrices A and B.

All the aforementioned schemes have succinct proofs and work for Pedersen-like commitments in
bilinear groups. This means that by using our generic construction with CPlink they can be turned
to support the same commitment and then be composed.

LegoSNARK Applications and Evaluation. Using our initial set of specialized proof gadgets,
our next step is to combine them in order to build new succinct proof systems for different use
cases, mentioned below. Our results offer various improvements over the state of the art. We have
also implemented some of our solutions to test their concrete performance.
6 This could be mitigated by using universal circuits, paying a (multiplicative) logarithmic overhead in parameters
size and prover complexity.

7 By “Pedersen-like” we mean schemes where the verification algorithm is the same as in Pedersen scheme [Ped92]
for vectors (but the bases can have a different distribution).
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1) Efficient Commit-Ahead-of-Time. Through our generic construction instantiated with
CPlink we also obtained commit-and-prove versions of popular efficient zkSNARKs, such as Groth’s
[Gro16], that can prove statements about data committed using the Pedersen scheme for vectors
[Ped92], in which bases are random group elements that can be generated without trusted setup.
Such commit-and-prove schemes are useful in applications where one needs to commit before the
SNARK keys for a relation are created, e.g., to post commitments on a blockchain so that one can
later prove statements about the committed data. By applying our solution to [Gro16] we obtain a
scheme that is 5000× faster than Groth16, where the commitment is encoded in the circuit.

2) CP-SNARKs for Parallel Computation. Consider the problem of proving (in zero-knowl-
edge) correctness of a computation that consists of the same subcircuit executed in parallel. The
recent Hyrax system [WTS+18] is suitably designed for and shows good performances on this type
of circuit. It requires, however, an additional verification cost whenever the repeated subcircuits
share (non-deterministic) inputs, which is common. The verifier thus pays an additional factor
linear in the total width of the circuit. Using our LegoSNARK framework we show how to build a
new CP-SNARK based on Hyrax that avoids this problem. The idea is that parallel computation
on joint inputs can be expressed as the combination of a fully parallel computation (after inputs
were appropriately duplicated) and a permutation check to ensure that inputs have been duplicated
correctly. We build this by combining our CPlin gadget with a version of Hyrax modified to work
with the polynomial commitment of zk-vSQL [ZGK+17b].

3) CP-SNARKs for Arithmetic Circuits. We give two main constructions of CP-SNARKs
for arithmetic circuit (AC) satisfiability. Table 1 summarizes a theoretical comparison with other
schemes in the literature (selected among the ones with similar succinctness).

Our first scheme, LegoAC, relies on an encoding of AC based on Hadamard products and lin-
ear constraints from [BCC+16] and can be built from CPlin and CPhad gadgets. We evaluate two
instantiations:

- LegoAC1—from our CPlin and a CPhad from [Lip16]—is secure in the generic group model (GGM),
enjoys constant-size proofs, and has a log n factor in proving time (similar to [PHGR13, Gro16]);

- LegoAC2—from our CPlin and CPhad gadgets—is secure in the GGM and random oracle model, it
has log n-size proofs but only linear proving time.

The second CP-SNARK, LegoUAC, builds on an encoding of AC based on Hadamard products,
additions and permutation from [Gro09, BCG+17] and can be built from our CPhad and CPsfprm

gadgets.8 The main novelty of LegoUAC is to admit a universal, circuit-independent CRS, in the
“specialization” model of [GKM+18] where the universal CRS can be specialized to a circuit C
with a deterministic algorithm. LegoUAC’s CRS has O(N) size where N is an upper bound on the
number of gates of the circuits; in contrast, the CRS has quadratic size in the recent scheme in
[GKM+18]. Our LegoUAC also improves on the approach applying an efficient system, say [Gro16],
on a universal circuit [Val76, GKS17], which would incur at least a logarithmic multiplicative factor
in circuit size.

1.2 Related Work

The idea of combining two different NIZKs to improve efficiency when handling heterogeneous
computations has been considered by Chase et al. [CGM16] and more recently by Agrawal et
8 Additions are handled for free if the commitment is linearly homomorphic.
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Scheme Uni KG time Prove time Ver. time |crs| |π|
[PHGR13, Gro16] – n+m m+ n logn |x| n+m O(1)

LegoAC1 – n+m n logn |x| n O(1)

LegoAC2 – n+m n |x|+ logn n logn

[GKM+18] X n2 m+ n logn |x| n2 O(1)

LegoUAC X N∗ N |x|+ log2N N∗ log2N

Table 1: Comparing pairing-based zkSNARKs for arithmetic circuits with m wires and N gates, of
which n are multiplication gates, na (resp. nc) are addition (resp. multiplication-by-constant) gates,
and N∗ = max(n, na, nc). Numbers in the table are in O(·) notation.

al. [AGM18]. In [AGM18], they propose combining the Pinocchio scheme [PHGR13] with Sigma-
protocol-based NIZKs and show an efficient construction for computations that combines algebraic
relations in a cryptographic group and arbitrary computation. Their approach reveals beneficial
and improves performances. The solution in [AGM18] is tailored to two specific proof systems and
their combination methodology does not always preserve succinctness. In contrast, our techniques
are general, apply to a variety of existing proof systems and preserve succinctness (they compose
succinct schemes into succinct schemes).

Succinct ZK Proofs. In the past years several research lines have built a variety of zk-SNARKs
for general NP statements. Here we provide an overview of each line, especially focusing on their
differences in performance.

A major research line is the one based on the seminal paper of Gennaro et al. [GGPR13] who
proposed a pairing-based SNARK based on the NP-complete language of quadratic span/arithmetic
programs. This approach improves on previous approaches by Ishai et al. [IKO07], Groth [Gro10] and
Lipmaa [Lip12], and is the basis of several works such as [PHGR13, BCG+13, BFR+13, BSCTV14,
KPP+14, CFH+15, BBFR15, WSR+15, Gro16, FFG+16, GKM+18]. The zkSNARKs in this family
enjoy constant-size proofs and fast verification, the latter depending only linearly on the statement
size; on the downside, they feature large overheads at proving time, costly (although amortizable)
preprocessing and security properties based on non-standard non-falsifiable assumptions.

A second research line builds on the MPC-in-the-head approach of Ishai et al. [IKOS07] to
construct a ZK argument from an MPC protocol. The first scheme that refined and experimented this
approach is ZKBoo [GMO16], then improved in [CDG+17]; a more recent work in this line is Ligero
[AHIV17]. These schemes do not need trusted setup and show excellent proving performances on
Boolean circuits, since they rely only on symmetric-key cryptographic primitives. On the downside
their proofs are not fully succinct, being linear in the circuit size |C| in [GMO16], and Õ(

√
|C|) in

[AHIV17].
The works [ZGK+17a, ZGK+17b, WTS+18] stem from the interactive proof techniques for

low-depth circuits pioneered in Goldwasser et al. [GKR08] and later refined in [CMT12, Tha13,
WJB+17]. The resulting succinct ZK arguments are made non-interactive in the random oracle
model. These schemes offer good proving performance and use asymptotically fewer cryptographic
operations than those from the MPC-in-the-head family; they can be instantiated without [WTS+18]
(or with a circuit-independent [ZGK+17b]) trusted setup. On the other hand their proof size and
verification time depend on the structure of the circuit at hand, notably on the depth and in some
cases on the width.

Building on the work of Groth [Gro09], two recent proposals [BCC+16, BBB+17] give ZK argu-
ments for arithmetic circuit satisfiability that can be instantiated without trusted setup. The first
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scheme of Bootle et al. [BCC+16] has proofs of size O(
√
M) whereM is the number of multiplication

gates in the circuit, while their second scheme (improved in [BBB+17]) has proofs of size O(logM)
but has a linear time verifier.

Compared to the results from the latter three research lines we described, our instantiations
have the disadvantage of needing a trusted setup9, although in some cases this is universal and thus
reusable. In terms of performances, however, our results are more succinct, both in terms of proof
size and verifier time.

A recent line of work [BSBHR18] builds on the seminal works of Kilian [Kil92] and Micali
[Mic94], and generalizations of PCPs (IOPs) [BCS16, RRR16] in order to construct systems (dubbed
zkSTARKs) that are general-purpose (capturing very general computations that can be expressed
as state-machine transitions), do not require trusted setup and offer good timings for prover and
verifier. On the downside, the memory costs for the prover are still high and their security relies on
a non-standard conjecture about Reed-Solomon codes.

1.3 Roadmap

The paper is organized as follows. Section 2 introduces notation and preliminar definitions. Section
3 provides the basis for building our framework: composing CP-SNARKs, the notion of cc-SNARKs
and our compiler to import existing schemes in the framework. Sections 4 and 5 present constructions
both for Pedersen-like commitments and polynomial commitments. Section 6 explains how to apply
LegoSNARK to build schemes for arithmetic circuits. Section 7 gives experimental details of our
library. We conclude in Section 8.

This text is the full work of our shorter version published at CCS’19. Several results only appear
in this long version. Namely: security proofs, formal definitions, more schemes and constructions,
and further details.

2 Preliminaries

We use λ ∈ N to denote the security parameter, and 1λ to denote its unary representation. Through-
out the paper we assume that all the algorithms of the cryptographic schemes take as input 1λ,
and thus we omit it from the list of inputs. For a distribution D, we denote by x ← D the fact
that x is being sampled according to D. We remind the reader that an ensemble X = {Xλ}λ∈N is
a family of probability distributions over a family of domains D = {Dλ}λ∈N. We say two ensem-
bles D = {Dλ}λ∈N and D′ = {D′λ}λ∈N are statistically indistinguishable (denoted by D ≈s D′) if
1
2

∑
x |Dλ(x) − D′λ(x)| < negl(λ). If A = {Aλ} is a (possibly non-uniform) family of circuits and

D = {Dλ}λ∈N is an ensemble, then we denote by A(D) the ensemble of the outputs of Aλ(x) when
x ← Dλ. We say two ensembles D = {Dλ}λ∈N and D′ = {D′λ}λ∈N are computationally indistin-
guishable (denoted by D ≈c D′) if for every non-uniform polynomial time distinguisher A we have
A(D) ≈s A(D′).

We denote by [n] the set of integers {1, . . . , n} and by [: n] the set {0, 1, . . . , n− 1}. By (uj)j∈[`]
we denote the tuple (u1, . . . , u`).

9 We stress that only our concrete instantiations require a trusted setup—our general composition framework does
not.
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2.1 Relations

Let {Rλ}λ∈N be a family of polynomial-time decidable relations R on pairs (x,w) where x ∈ Dx is
called the statement or input, and w ∈ Dw the witness. We write R(x,w) = 1 to denote that R holds
on (x,w), else we write R(x,w) = 0. When discussing schemes that prove statements on committed
values we assume that Dw can be split in two subdomains Du×Dω. Finally we sometimes use an even
finer grained specification of Du assuming we can split it over ` arbitrary domains (D1×· · ·×D`) for
some arity `. In our security definitions we assume relations to be generated by a relation generator
RG(1λ) that, on input the security parameter 1λ, outputs R together with some side information,
an auxiliary input auxR, that is given to the adversary. We define RGλ as the set of all relations
that can be returned by RG(1λ).

2.2 Commitment Schemes

We recall the notion of non-interactive commitment schemes.

Definition 2.1. A commitment scheme is a tuple of algorithms Com = (Setup,Commit,VerCommit)
that work as follows and satisfy the notions of correctness, binding and hiding defined below.

– Setup(1λ)→ ck takes the security parameter and outputs a commitment key ck. This key includes
descriptions of the input space D, commitment space C and opening space O.

– Commit(ck, u)→ (c, o) takes the commitment key ck and a value u ∈ D, and outputs a commitment
c and an opening o.

– VerCommit(ck, c, u, o)→ b takes as input a commitment c, a value u and an opening o, and accepts
(b = 1) or rejects (b = 0).

Correctness. For all λ ∈ N and any input u ∈ D we have:

Pr
[
ck← Setup(1λ), (c, o)← Commit(ck, u) : VerCommit(ck, c, u, o) = 1

]
= 1.

Binding. For every polynomial-time adversary A:

Pr

[
ck← Setup(1λ)

(c, u, o, u′, o′)← A(ck)
:
u 6= u′ ∧ VerCommit(ck, c, u, o) = 1

∧ VerCommit(ck, c, u′, o′) = 1

]
= negl

Hiding. For ck← Setup(1λ) and ∀ u, u′ ∈ D, the following two distributions are statistically close:

Commit(ck, u) ≈ Commit(ck, u′)

2.3 Zero-Knowledge SNARKs

We recall the definition of (pre-processing) zero-knowledge succinct non-interactive arguments of
knowledge (zkSNARKs, for short) [BCCT12, BCC+17].

Definition 2.2 (SNARK). A SNARK for {Rλ}λ∈N is a triple of algorithms Π = (KeyGen,Prove,
VerProof) that work as follows and satisfy the notions of completeness, succinctness and knowledge
soundness defined below. If Π also satisfies zero-knowledge we call it a zkSNARK.
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– KeyGen(R) → (ek, vk) takes the security parameter λ and a relation R ∈ Rλ, and outputs a
common reference string consisting of an evaluation and a verification key.

– Prove(ek, x, w)→ π takes an evaluation key for a relation R, a statement x, and a witness w such
that R(x,w) holds, and returns a proof π.

– VerProof(vk, x, π)→ b takes a verification key, a statement x, and either accepts (b = 1) or rejects
(b = 0) the proof π.

Completeness. For any pair (x,w) satisfying the relation, the verifier always accepts the corre-
sponding proof. Formally, ∀λ ∈ N, R ∈ Rλ and (x,w) such that R(x,w), it holds:

Pr[(ek, vk)← KeyGen(R), π ← Prove(ek, x, w) : VerProof(vk, x, π) = 1] = 1

Succinctness. Π is said succinct if the running time of VerProof is poly(λ) (λ+ |x|+ log |w|) and
the proof size is poly(λ) (λ+ log |w|).

Knowledge Soundness. Let RG be a relation generator such that RGλ ⊆ Rλ. Π has knowledge
soundness for RG and auxiliary input distribution Z, denoted KSND(RG,Z) for brevity, if for
every (non-uniform) efficient adversary A there exists a (non-uniform) efficient extractor E such
that Pr[GameKSNDRG,Z,A,E = 1] = negl. We say that Π is knowledge sound if there exists benign RG and
Z such that Π is KSND(RG,Z).

GameKSNDRG,Z,A,E → b

(R, auxR)←RG(1λ) ; crs := (ek, vk)← KeyGen(R) ; auxZ ← Z(R, auxR, crs)(
x, π

)
← A(R, crs, auxR, auxZ) ; w ← E(R, crs, auxR, auxZ) ; b = VerProof(vk, x, π) ∧ ¬R(x,w)

Composable Zero-Knowledge. A scheme Π satisfies composable zero-knowledge for a relation
generator RG if there exists a simulator S = (Skg,Sprv) such that both following conditions hold for
all adversaries A:

Keys Indistinguishability.

Pr
[
(R, auxR)← RG(1λ), crs← KeyGen(R) : A(crs, auxR) = 1]

≈ Pr
[
(R, auxR)← RG(1λ), (crs, tdk)← Skg(R) : A(crs, auxR) = 1

]
Proof Indistinguishability. For all (x,w) such that R(x,w) = 1,

Pr
[
(R, auxR)← RG(1λ), (crs, tdk)← Skg(R) : π ← Prove(ek, x, w),A(crs, auxR, π) = 1

]
≈ Pr

[
(R, auxR)← RG(1λ), (crs, tdk)← Skg(R) : π ← Sprv(crs, tdk, x),A(crs, auxR, π) = 1

]
Remark 2.1. In the notion of knowledge soundness defined above we consider two kinds of auxiliary
inputs, auxR generated together with the relation by RG, and auxZ that is generated from some
distribution Z that may depend on the common reference string that in turn depends on R. An
example of this appears in our proof of Theorem B.1. Notice that although our notion is implied
by a notion where auxiliary inputs can be arbitrary, our aim is a precise formalization of auxiliary
inputs; this is useful to justify why certain auxiliary inputs should be considered benign, as required
to avoid known impossibility results [BCPR14, BP15]. Finally, we also note that our notion is also
implied by SNARKs that admit black-box extractors (as may be the case for those relying on
random oracles [Mic00]).
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zkSNARKs with Specializable Universal CRS

In the SNARK notion presented above, the common reference string generated by KeyGen is tied
to a specific relation R ∈ Rλ. A variant of this notion is that of SNARKs for universal relations in
which the output of KeyGen depends only on the family Rλ and can be used to prove and verify
statements about any R ∈ Rλ. Due to the practical concerns on the execution of KeyGen, SNARKs
for universal relations are more convenient as one can reuse and amortize the cost of one setup. In a
recent work, Groth et al. [GKM+18] introduced the notion of zkSNARK with specializable universal
common reference string. In a nutshell, this notion formalizes the idea that key generation for R can
be seen as the sequential combination of two steps: a first probabilistic algorithm that generates a
CRS for the universal relation, and a second deterministic algorithm that specializes this universal
CRS into one for a specific R. We remark that our UC SNARKs follow this model.

More formally, letRλ be a family of relations. The universal relation R∗ forRλ defines a language
with instances (R, x) such that R∗(R, x,w) holds iff R ∈ Rλ and R(x,w) holds.

A Π = (KeyGen,Prove,VerProof) is said a zkSNARK with specializable universal common refer-
ence string [GKM+18] if there exist algorithms Derive,Prove∗,VerProof∗ such that:

– Derive(crs, R) → crsR is a deterministic algorithm that takes as input a crs := (ek, vk) pro-
duced by KeyGen(R∗) and a relation R ∈ Rλ, and outputs a specialized common reference string
crsR := (ekR, vkR).

– Prove(ek, (R, x), w)→ π runs (ekR, vkR)← Derive(crs, R) and returns π ← Prove∗(ekR, x, w).
– VerProof(vk, (R, x), π)→ b runs (ekR, vkR)← Derive(crs, R) and returns b← VerProof∗(vkR, x, π).

3 Building the LegoSNARK Framework

3.1 Commit and Prove SNARKs

In a nutshell, a commit-and-prove SNARK (CP-SNARK) is a SNARK that can prove knowledge
of (x,w) such that R(x,w) holds w.r.t. a witness w = (u, ω) and u opens a commitment cu.10 Our
formal definitions below add some syntactic sugar to this idea to explicitly handle relations where
the input domain Du is more fine grained and splits over ` subdomains. For reasons that will shortly
become clear, we call these subdomains commitment slots. This splitting is often natural (e.g., if u is
a binary string, one can think of u := (u1, . . . , u`) for suitable substrings), and it is crucial to exploit
the compositional power of CP-SNARKs, as we show in Section 3.2. We assume the description of
the splitting is part of R’s description.

Definition 3.1 (CP-SNARKs). Let {Rλ}λ∈N be a family of relations R over Dx × Du × Dω
such that Du splits over ` arbitrary domains (D1 × · · · × D`) for some arity parameter ` ≥ 1. Let
Com = (Setup,Commit,VerCommit) be a commitment scheme (as per Definition 2.1) whose input
space D is such that Di ⊂ D for all i ∈ [`]. A commit and prove zkSNARK for Com and {Rλ}λ∈N
is a zkSNARK for a family of relations {RCom

λ }λ∈N such that:

– every R ∈ RCom is represented by a pair (ck, R) where ck ∈ Setup(1λ) and R ∈ Rλ;
– R is over pairs (x,w) where the statement is x := (x, (cj)j∈[`]) ∈ Dx × C`, the witness is

w := ((uj)j∈[`], (oj)j∈[`], ω) ∈ D1 × · · · × D` ×O` ×Dω, and the relation R holds iff∧
j∈[`]

VerCommit(ck, cj , uj , oj) = 1 ∧R(x, (uj)j∈[`], ω) = 1

10 Our notion assumes that only a portion of the witness is explicitly committed in cu.
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Furthermore, when we say that CP is knowledge-sound for a relation generator RG and auxiliary
input generator Z (denoted KSND(RG,Z), for short) we mean it is a knowledge-sound SNARK for
the relation generator RGCom(1λ) that runs ck ← Setup(1λ) and (R, auxR) ← RG(1λ), and returns
((ck, R), auxR).

We denote a CP-SNARK as a triple of algorithms CP = (KeyGen,Prove,VerProof). For ease of
exposition, in our constructions we adopt the syntax for CP’s algorithms defined below.

– KeyGen(ck, R)→ crs := (ek, vk) generates the common reference string.
– Prove(ek, x, (cj)j∈[`], (uj)j∈[`], (oj)j∈[`], ω)→ π outputs the proof of correct commitment.
– VerProof(vk, x, (cj)j∈[`], π)→ b ∈ {0, 1} rejects or accepts the proof.

Remark 3.1 (Comparing with existing definitions). To define the Geppetto scheme [CFH+15] the
authors define a notion of commit-and-prove SNARKs. Here we highlight the main differences
between their definition and ours. First, our commitment key can be generated without fixing a
priori a relation (or a set of relations, e.g., a multi-QAP). Second, in their model one needs to
commit to data using a commitment key corresponding to a specific portion of the input (in their
lingo a “bank”), whereas in our model one can just commit to a vector of data, and only at proving
time one assigns that data to a specific input slot. Third, we do not require the commitments does
not need to have a trapdoor. Our notion is closer to the one given by Lipmaa [Lip16] (although
[Lip16] uses trapdoor commitments) and is in fact a specialized SNARK notion when considering
relation families including verifying openings of commitments.

3.2 Composition Properties of CP-SNARKs

In this section, we formally show how the commit-and-prove capability can be used to combine
different CP-SNARKs securely.

Conjunction of relations with shared inputs. Let {R(0)
λ }λ∈N and {R(1)

λ }λ∈N be two families
of relations such that, for every λ ∈ N the input domains D(0)

u and D(1)
u of relations R0 ∈ R(0)

λ and
R1 ∈ R(1)

λ respectively can split as follows: D(0)
u := D0 ×D2 and D(1)

u := D1 ×D′2 with D2 = D′2.11

In other words we require these relations to share a commitment slot that we call the shared slot.
Given the above relation families, we define {R∧λ}λ∈N as the family of relations where for every

λ ∈ N, R∧λ = {R∧R0,R1
: R0 ∈ R(0)

λ , R1 ∈ R(1)
λ } and R

∧
R0,R1

(x0, x1, u0, u1, u2, w
∗) is defined as follows:

R∧R0,R1
(x0, x1, u0, u1, u2, (w0, w1)) := R0(x0, u0, u2, w0) ∧ R1(x1, u1, u2, w1)

Let Com be a commitment scheme, for b ∈ {0, 1} let CPb be a CP-SNARK for Com and
{R(b)

λ }λ∈N. In Figure 1 we show a construction of a CP-SNARK CP∧ for Com and {R∧λ}λ∈N. It
is also easy to see that if both CP0 and CP1 are CP-SNARKs with specializable universal CRS, then
so is the resulting CP∧ .

Theorem 3.1. If Com is a computationally binding commitment and, for b ∈ {0, 1}, CPb is a
zero-knowledge CP-SNARK for Com and relation family {R(b)

λ }λ∈N, then there is a zero-knowledge
CP-SNARK CP∧ for Com and {R∧λ}λ∈N.
11 Note such a splitting is rather general, as D2 and D′2, or D0, or D1 may be empty.
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CP∧.Prove(ek∗, x0, x1, (cj)j∈[:3],

CP∧.KeyGen(ck, R∧R0,R1
) :

(ek0, vk0)← CP0.KeyGen(ck, R0)

(ek1, vk1)← CP1.KeyGen(ck, R1)

ek∗ := (ekb)b∈{0,1}

vk∗ := (vkb)b∈{0,1}

return (ek∗, vk∗)

(uj)j∈[:3], (oj)j∈[:3], ω0, ω1) :

π0 ← CP0.Prove(

ek0, x0, (c0, c2), (u0, u2), (o0, o2), ω0)

π1 ← CP1.Prove(

ek1, x1, (c1, c2), (u1, u2), (o1, o2), ω1)

return π∗ := (πb)b∈{0,1}

CP∧.VerProof(vk∗, x0, x1, (cj)j∈[:3], π
∗) :

b
(0)
ok ← CP0.VerProof(vk0, x0, (c0, c2), π0)

b
(1)
ok ← CP1.VerProof(vk1, x1, (c1, c2), π1)

return b
(0)
ok ∧ b

(1)
ok

Figure 1: CP-SNARK construction for AND composition

Correctness and succinctness follow by inspection. Knowledge-soundness and zero-knowledge
follow rather easily from the respective properties of the underlying schemes. In particular, for
knowledge-soundness the basic idea is that in order for an adversary to break CP∧ it must break
either one of the two underlying schemes, CP0,CP1, or the binding of the commitment scheme. We
give a full proof of knowledge-soundness and zero-knowledge in Appendix A.

Functions composition. A CP-SNARK for conjunction of relations can be easily used for proving
correctness of composed functions, e.g., proving that ∃(y, w) : z = f(x, y, w), where f(x, y, w) :=
h(g(x,w), y). Indeed, let Rh(x′, y, z) = 1 iff ∃(x′, y) : h(x′, y) = z, and Rg(x, x′) = 1 iff ∃(x′, w) :
g(x,w) = x′, then ∃ (y, w) : z = f(x, y, w) can be expressed as Rh(x′, y, z) ∧Rg(x, x′).
Disjunction of relations with shared inputs. We can reduce the case of OR composition to
the conjunction construction above. For this we assume relations are defined over elements of a
ring. For a relation R(u) denote by R̂(u, t) the relation such that R̂(u, 0) = 1 iff R(u) = 1 and
R̂(u, t) = 1 iff R(u) = 0 whenever t 6= 0. We can now express the disjunction of R0(u0), R1(u1)
as R∨R0,R1

(u0, u1, t0, t1) := R̂0(u0, t0) ∧ R̂1(u1, t1) ∧ t0t1 = 0. For this approach to work we need
the proof systems for the two relations R0, R1 to support their modified version R̂0, R̂1, which is
the case for proof systems supporting general arithmetic or boolean circuits. Finally, we need a
simple efficient proof system for the relation Rmul(t0, t1) = 1 iff t0 · t1 = 0, where both t0 and t1 are
committed in two different slots.

Composing more than two relations. By iterating the application of our Theorem 3.1 we
can build CP-SNARKs that handle conjunctions and/or disjunctions of more than two relations.
In order to maintain the succinctness property, one should apply composition only a small (e.g.,
constant, logarithmic) number of times. However, this is arguably the case when we deal with
real-world heterogeneous computations. The following example scenarios consider heterogeneous
computations that can be split naturally into two “homogeneous” components: square-and-multiply
algorithms (splitting the relation into the conjunction of all the iterated squarings and the final
inner product), aggregation queries to a database (that can be split in a “filter” and an “aggregate”
component), proving a property P for a datum in a Merkle tree, as done in Zcash [BCG+14] (that
can be split in a membership verification component and the property P , which could in turn be
decomposed further).

3.3 Commit-Carrying SNARKs

In this section we define a variant of SNARKs that lies in between standard SNARKs and CP-
SNARKs. We call these schemes SNARKs with commit-carrying proofs (or commit-carrying SNARKs,
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cc-SNARKs for short). In a nutshell, a cc-SNARK is like a SNARK in which the proof contains
a commitment to the portion u of the witness. Essentially the difference is that in cc-SNARKs
we assume the extractor outputs the opening of the commitment returned along with the proof.
Formalizing this idea requires to make explicit the commitment scheme associated to the SNARK,
as well as the commitment key that is part of the common reference string. In the next section we
discuss how many of the existing SNARK constructions satisfy this property. Later, in Section 3.5
we show that cc-SNARKs can be lifted to become full fledged, composable, CP-SNARKs. These two
results together allow us to compose several existing SNARKs. We define commit-carrying SNARKs
as follows:

Definition 3.2 (cc-SNARK). A commit-carrying zkSNARKs for {Rλ}λ∈N is a tuple of algo-
rithms ccΠ = (KeyGen,Prove,VerProof,VerCommit) that work as follows and satisfy the notions of
completeness, succinctness, knowledge soundness, zero knowledge and binding as defined below.

– KeyGen(R)→ (ck, ek, vk): the key generation takes as input the security parameter λ and a relation
R ∈ Rλ, and outputs a common reference string that includes a commitment key, an evaluation
key and verification key.

– Prove(ek, x, w) → (c, π; o): the proving algorithm takes as input an evaluation key, a statement
x and a witness w := (u, ω) such that the relation R(x, u, ω) holds, and it outputs a proof π, a
commitment c and opening o such that VerCommit(ck, c, u, o) = 1.

– VerProof(vk, x, c, π) → b: the verification algorithm takes a verification key, a statement x, a
commitment c, and either accepts (b = 1) or rejects (b = 0) the proof π.

– VerCommit(ck, c, u, o) → b: the commitment verification algorithm takes as input a commitment
key, a commitment c, a message u and an opening o and accepts (b = 1) or rejects (b = 0).

cc-SNARKs can be seen as a less versatile version of CP-SNARKs (clearly, a CP-SNARK implies
a cc-SNARK). In a cc-SNARK the commitment key depends on the relation taken by KeyGen, and a
commitment is freshly created by the Prove algorithm and is tied to a single proof; in a CP-SNARK
the commitment key is independent of relations and commitments can also be created independently
and shared across different proofs. Futhermore, in the literature, there are examples of schemes that
lie in between our notions of CP-SNARK and cc-SNARK; this is the case for commit and prove
SNARKs in which the commitment key is relation-dependent, e.g., [CFH+15, Vee17].

Completeness. For any λ ∈ N, R ∈ Rλ and (x,w) such that R(x,w) = 1, it holds

Pr
(
(ck, ek, vk)← KeyGen(R), (c, π; o)← Prove(ek, x, w) : VerProof(vk, x, c, π)

)
= 1

Succinctness. ccΠ is said succinct if the running time of VerProof is poly(λ) (λ+ |x|+log |w|) and

the size of the proof is poly(λ) · (λ+ log |w|).

Knowledge Soundness. Let RG be a relation generator such that RGλ ⊆ Rλ. ccΠ satisfies
knowledge soundness for RG and auxiliary input distribution Z, or ccKSND(RG,Z), if for every
(non-uniform) efficient adversary A there exists a (non-uniform) efficient extractor E such that
Pr[GameccKSNDRG,Z,A,E = 1] = negl. We say that ccΠ is knowledge sound if there exist benign RG and Z
such that ccΠ is ccKSND(RG,Z).
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GameccKSNDRG,Z,A,E → b ∈ {0, 1}
(R, auxR)←RG(1λ)
crs := (ck, ek, vk)← KeyGen(R)

auxZ ← Z(R, auxR, crs) (x, c, π)← A(R, crs, auxR, auxZ) (u, o, ω)← E(R, crs, auxR, auxZ)

b← VerProof(vk, x, c, π) = 1 ∧ (VerCommit(ck, c, u, o) = 0 ∨R(x, u, ω) = 0)

Composable Zero-Knowledge. A scheme ccΠ has composable zero-knowledge for a relation
generator RG if for every adversary A there exists a simulator S = (Skg,Sprv) such that both
following conditions hold for all adversaries A:

Keys Indistinguishability.

Pr
(
(R, auxR)← RG(1λ), crs← KeyGen(R) : A(crs, auxR) = 1

)
≈ Pr

(
(R, auxR)← RG(1λ), (crs, tdk)← Skg(R) : A(crs, auxR) = 1

)
Proof Indistinguishability.

∀(x,w) : Pr

[
(R, auxR)← RG(1λ), (crs, tdk)← Skg(R), (c, π; o)← Prove(ek, x, w)

A(crs, auxR, c, π) = 1 ∧R(x,w) = 1
:

]

≈Pr

[
(R, auxR)← RG(1λ), (crs, tdk)← Skg(R), (c, π)← Sprv(crs, tdk, x)

A(crs, auxR, c, π) = 1 ∧R(x,w) = 1
:

]

Binding. For every polynomial-time adversary A the following probability is negl(λ):

Pr

[
(R, auxR)← RG(1λ), crs := (ck, ek, vk)← KeyGen(R)

(c, u, o, u′, o′)← A(R, crs, auxR)
:

VerCommit(ck, c, u′, o′) ∧
VerCommit(ck, c, u, o) ∧ u 6= u′

]

Remark 3.2. While our definitions consider the case where the proof contains a commitment to a
portion u of the witness w = (u, ω), notice that this partition of the witness is arbitrary and thus
this notion also captures those constructions where the commitment is to the entire witness if one
thinks of a void ω.

cc-SNARKs with Weak Binding

Let us now define a weaker variant of cc-SNARKs that differs from the one given in Definition 3.2
in that the underlying commitment scheme is not binding in the usual sense. Slightly more in detail,
we consider the case where the commitment refers to the whole witness (i.e., ω is an empty string)
and it is actually possible to find collisions for a given commitment as long as these collisions are
among valid witnesses, or more precisely we require to be computationally infeasible to find two
different witnesses that validly open the commitment such that one falsifies the relation and the
other one satisfies it. Worth noting that our generic compiler can also turn weak cc-SNARKs into
CP-SNARKs.
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Definition 3.3 (cc-SNARKs with Weak Binding). We define cc-SNARKs with Weak Binding
as in Definition 3.2 with two exceptions: we assume that the scheme is defined only for relations
such that Dω = ∅; we replace the binding property with the one below.

Weak Binding. ∀ polynomial-time adversary A and u 6= u′ the following probability is negl(λ):

Pr

[
(R, auxR)← RG(1λ), crs := (ck, ek, vk)← KG(R), (x, c, u, o, u′, o′, π)← A(R, crs, auxR)

VerCommit(ck, c, u, o) ∧ VerCommit(ck, c, u′, o′) ∧ VerProof(vk, x, c, π) ∧ ¬R(x, u) ∧R(x, u′)
:

]

3.4 Existing CP-SNARKs and cc-SNARKs

In this section, we provide a summary of existing schemes that can be explained, with no or little
modification, under our CP-SNARK and cc-SNARK notions. In fact, existing QAP-based schemes
[PHGR13, BSCTV14, Gro16] are not fully binding but can satisfy our weak binding. In Appendix
H.5 we prove that [Gro16] is a weak cc-SNARK.

Existing CP-SNARKs. The following list is a summary. Details supporting the following claims
appear in Appendix H.

– Adaptive Pinocchio [Vee17] is a CP-SNARK for relations RQ(x, (uj)j∈[`], ω) where RQ is a
quadratic arithmetic program (QAP), and the commitment scheme is the extended Pedersen
commitment of Groth [Gro10] in which the i-th basis of the commitment key is gxi for a random
x.

– The scheme in [Lip16][Section 4] is a CP-SNARK for Hadamard product relations Rhad(a, b, c)
over Z3m

q , i.e. Rhad holds iff ∀i ∈ [m] : ai · bi = ci. In this case the commitment scheme is a variant
of the extended Pedersen scheme where the ith basis of the commitment key is g`i(x) for a random
x and `i being the i-th Lagrange basis polynomial.

– zk-vSQL [ZGK+17b] is a CP-SNARK for relations R((uj)j∈[`]) where R is an arithmetic circuit,
and the commitment is a polynomial commitment that, we observe (cf. Appendix H), can also be
explained as a variant of extended Pedersen.

Existing cc-SNARKs. Geppetto [CFH+15] is a commit-and-prove SNARK for QAP relations
RQ(x, u, ω), with a relation-dependent commitment key. This scheme immediately yields a cc-
SNARK where VerCommit is also a variant of extended Pedersen.

Existing Weak cc-SNARKs. There exist other schemes in the literature that fit the cc-SNARK
syntax, but fail to satisfy the binding property. This is the case for some QAP-based schemes,
such as Pinocchio [PHGR13, BSCTV14] or the efficient SNARK of Groth [Gro16]. For the latter
[Gro16] we prove in Appendix H.5 that it is a weak cc-SNARK for QAP relations RQ(u) QAP.12

Worth noting that our generic compiler in the next section allows to turn also weak cc-SNARKs
into CP-SNARKs.

A New Efficient cc-SNARK for QAPs. We show that the SNARK of [Gro16] can be modified
to obtain a cc-SNARK for QAP relations RQ(u, ω), where the witness portion committed in a
fully binding way can be chosen (see Appendix H.5). Compared to the other cc-SNARKs for QAPs
mentioned above, this scheme offers nearly optimal efficiency (essentially due to the fact that we
start from [Gro16] whereas [CFH+15, Vee17] build on [PHGR13]).
12 Using similar ideas we believe that such a result also holds for the Pinocchio variant in [BSCTV14].
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3.5 Bootstrapping our Framework

A key requirement to apply the composition results of the LegoSNARK framework is to start from
CP-SNARKs that share the same commitment scheme. In practice this is not always the case (see
for example the discussion in the previous section). In this section we propose a solution to this
issue by giving a generic compiler for turning a cc-SNARK ccΠ for a family of relations {Rλ}λ∈N
into a CP-SNARK CP that supports the same relations and works for a given, global, commitment
scheme Com. Incidentally, since a CP-SNARK CP for commitment Com′ is also a cc-SNARK, our
compiler can also turn CP into a CP-SNARK for another commitment Com.

As noted in the introduction one could solve the interoperability problem if the cc-SNARK (or
even any SNARK) is sufficiently expressive so as to encode the commitment verification algorithm
VerCommit in its relations (e.g., as a circuit). This approach of letting the SNARK take care of
the commitment verification however has two main drawbacks. First, recall that in our vision, the
cc-SNARK ccΠ may be a proof system for a specialized task, and thus may not be able to express
VerCommit in its language. Second, even if ccΠ is expressive enough, such encodings of VerCommit
(for various choices of schemes) are notoriously very expensive. Our approach to deal with this
issue is to propose a slightly different methodology that shifts the problem of expressing a relation
about VerCommit from ccΠ to a CP-SNARK that is tailored to this problem. Our idea in brief:
linking a proof-dependent commitment c′ from ccΠ to a general-purpose commitment c from a
CP-SNARK. Specifically we rely on a CP-SNARK (from now on CPlink) able to prove that the two
commitments, c′ and c (actually a collection of cj) , open to the same value. In other words CPlink

is a minimal tool able to turn a ccΠ into a full fledged CP-SNARK CP that supports some general
purpose commitment. The fact we require CP-SNARK to create a CP-SNARK is a curious aspect
of this approach. What we require however is less than what we get: we only need to start from a
simple scheme CPlink that handles a specific relation to create CP-SNARKs for disparate families of
relations. Since CPlink is a simple object we can obtain from it efficient instantiations (as confirmed
by our concrete construction proposed in Section 4.1).

Our cc-SNARK-lifting compiler. Let ccΠ be a cc-SNARK for a family of relations {Rλ}λ∈N
where, for every λ, R ∈ Rλ is over tuples in Dx×Du×Dω, and Du splits over ` subdomains (D1×· · ·×
D`) for some arity parameter `. Consider the commitment verification algorithm ccΠ.VerCommit.
For any λ ∈ N and any ck′ ∈ {ccΠ.KeyGen(R)}R∈Rλ , we define the relation Rlink that has input
space Dlink

x = C′, and witness space Dlink
ω = Dlink

u × Dlink
ω such that Dlink

u = D1 × · · · × D` and
Dlink
ω := O′, where C′ and O′ are the commitment and opening space of the commitment of ccΠ.

For compactness we represent Rlink with (ck′,Dlink
x ,Dlink

u ,Dlink
ω ). Then, Rlink is defined as follows:

Rlink
(
xlink, (ulinkj )j∈[`], ω

link
)
:= ccΠ.VerCommit(ck′, xlink, (ulinkj )j∈[`], ω

link)

We remark that, above, xlink ∈ C′ is a commitment for ccΠ.VerCommit and ωlink ∈ O′ is its opening.
Let CPlink be a CP-SNARK for Com and a family of relations {Rlink

λ }λ∈N such that for every
λ ∈ N the relation Rlink defined above is in Rlink

λ . In Table 2 we describe a CP-SNARK CP for
{Rλ}λ∈N that works by using ccΠ and CPlink.

The correctness of CP follows by that of the two schemes CPlink and ccΠ. The same holds for
succinctness. In the following theorem we state how knowledge soundness and zero-knowledge of
CP follow from the corresponding properties of CPlink and ccΠ. The formal statement appears in
Appendix B, and proofs appear in Appendix B.1 and B.2 respectively.
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CP.KeyGen(ck, R)→ (ek, vk) CP.Prove(ek, x, (cj , uj , oj)j∈[`], ω)→ π :=
(
c′, πlink, π′

)
(ck′, ek′, vk′)← ccΠ.KeyGen(R) (c′, π′, o′)← ccΠ.Prove(ek′, x, (uj)j∈[`];ω); (x

link, ωlink) := (c′, o′)

Build Rlink from (ck′,Dlink
x ,Dlink

u ,Dlink
ω ) πlink ← CPlink.Prove(eklink, xlink, (cj)j∈[`], (uj)j∈[`], (oj)j∈[`], ω

link)

(eklink, vklink)← CPlink.KeyGen(ck, Rlink) CP.VerProof(vk, x, (cj)j∈[`], π)→ {0, 1}
return

(
(ck′, ek′, eklink), (vk′, vklink)

)
CPlink.VerProof(vklink, c′, (cj)j∈[`], π

link) ∧ ccΠ.VerProof(vk′, x, c′, π′)

Figure 2: Generic Construction of CP from CPlink and ccΠ.

Theorem 3.2. If ccΠ is a zk-cc-SNARK (or a weak cc-SNARK) for {Rλ}λ∈N and CPlink is a
zk-CP-SNARK for {Rlink

λ }λ∈N, then the scheme CP in Figure 2 is a zk-CP-SNARK for {Rλ}λ∈N.

4 CP-SNARKs for Pedersen-like Commitments

In this section we propose two CP-SNARKs that work for any commitment scheme whose verification
algorithm is the same as the extended Pedersen commitment (essentially a multi-exponentiation).
This class of commitments includes those underlying several existing SNARKs, such as all the ones
we mentioned in section 3.4. Notable, this also includes the “classical” extension of Pedersen whose
key is a set of random group elements, which can be sampled in a transparent way; in other words
no trusted setup is needed for this commitment key.13

For vectors committed in this way, we show two schemes. Our first scheme (given in Section
4.1) allows to prove that another commitment, with the same verification algorithm but different
key, opens to the same vector. This is essentially an efficient realization of the CPlink CP-SNARK
needed in our compiler of Section 3.5, and that works for cc-SNARKs whose underlying commitment
verification has the same structure as Pedersen. Our second scheme (given in Section 4.2) instead
allows one to prove correctness of a linear function of the committed vector (i.e., that x = F · u).

In what follows we start by recalling facts and notation about bilinear groups and the Pedersen
commitment.

Bilinear Groups. A bilinear group generator BG(1λ) outputs (q,G1,G2,GT , e), where G1, G2, GT

are additive groups of prime order q, and e : G1 × G2 → GT is an efficiently computable, non-
degenerate, bilinear map. In this paper, we consider Type-3 groups where it is assumed there is no
efficiently computable isomorphism between G1 and G2. We use bracket notation of [EHK+13], i.e.,
for s ∈ {1, 2, T} and a ∈ Zq, we write [a]s to denote a · gs ∈ Gs, where gs is a fixed generator of
Gs. From an element [a]s ∈ Gs and a scalar b it is possible to efficiently compute [ab] ∈ Gs. Also,
given elements [a]1 ∈ G1 and [b]2 ∈ G2, one can efficiently compute [a · b]T by using the pairing
e([a]1, [b]2), that we compactly denote with [a]1 · [b]2. Vectors and matrices are denoted in boldface.
We use the bracket notation also for matrix operations, i.e., [A]1 · [B]2 = [A ·B]T . For a vector a
and for i < j we denote by a[i,j] its portion (ai, . . . aj).

13 The sampling of random group elements can be heuristically instantiated in the random oracle model by letting
these elements be the output of a suitable hash function. The main advantage of this hash-based instantiation is
that the commitment key has constant-size and no bound on the size of the vectors must be fixed a priori.
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Pedersen Vector Commitment. Let us recall the extended Pedersen commitment scheme for
vectors of size n. Here we consider an instantiation on a group G1.

Ped.Setup(1λ): sample [h]1 ← Gn+1
1 from a distribution D, and output ck := [h]1;

Ped.Commit([h]1,w) : sample o←$Zq and return (c, o) := ((o,w>) · [h]1, o);
Ped.VerCommit([h]1, c,w, o) : output 1 iff c = (o,w>) · [h]1.

Above D is a probability distribution over the group elements that allows to argue that the scheme
is perfectly hiding and computationally binding. For example, D may be the uniform distribution, in
which case we obtain the classical scheme that is binding under the discrete logarithm assumption,
or D may output powers of random values, e.g., hi = si for an s←$Zq, that has also been proved
computationally binding under a suitable assumption.

In our constructions we only require the commitment scheme to have the same verification
algorithm as Ped.VerCommit.

Tool: SNARK for Linear Subspaces. In our CP-SNARK constructions we make use of a SNARK
for the linear subspace relation RM([x]1,w) such that:

RM([x]1,w) = 1 ⇐⇒ [x]1 = [M]1 ·w ∈ Gl
1, where [M] ∈ Gl×t

1 ,w ∈ Ztq
Namely, given a fixed public matrix [M]1 and a public vector [x]1, one can prove knowledge of a
vector w such that [x]1 = [M]1 · w. We denote a SNARK for this family of relations with ssΠ.
A candidate scheme for ssΠ is the Kiltz-Wee QA-NIZK scheme Π ′as [KW15] that works in bilinear
groups. As described in [KW15], the security of this scheme requires that l > t, which is not satisfied
in our setting where matrices have always more columns than rows. This means that, when M has
full rank, RM is satisfied for any [x]1. In fact, what we need is an argument of knowledge for this
language. For this, by extending a recent result [FLSZ17], we show the knowledge soundness of Π ′as
[KW15], without the l > t restriction, under the discrete logarithm assumption, in the algebraic
group model [FKL18]. We recall the scheme and its security statement in Appendix D. For knowledge
soundness, the matrix [M]1 must be generated using a witness sampleable distribution Dmtx, i.e.,
there must exist a polynomial time algorithm that samples M in Zq such that [M]1 has the same
distribution as the one sampled with Dmtx. We note that this is satisfied by our use cases where M
includes bases of Pedersen-like commitment schemes.

4.1 CP-SNARK for Pedersen Verification

Our scheme CPlink is designed to work with, as global commitment scheme, any Com such that
Com.VerCommit = Ped.VerCommit. Furthermore, it handles any cc-SNARK scheme ccΠ whose
underlying commitment algorithm also follows Pedersen verification, i.e., ccΠ.VerCommit = Ped.
VerCommit. Let us stress that although the verification algorithm is the same the commitment keys
are not. In particular, the key of Com is completely independent of the relations to be proven (e.g.,
are random group elements) whereas the key of ccΠ is relation-dependent.

More formally, let Com be a commitment scheme such that Com.VerCommit = Ped.VerCommit.
We build a CP-SNARK CPlink for Com and for the following class of relations Rlink. Fixed a security
parameter λ (and the group setting for λ as well), Rlink is over (Dx × D1 × · · · × D` × Dω), where
Dx = G1,Dω = Zq and Dj = Znjq for some nj such that

∑
j nj = m. Rlink is parametrized by a

commitment key [f ]1 ∈ Gm+1
1 ,and is defined as:

Rlink
(
c′, (uj)j∈[`], o

′) = 1 ⇐⇒ c′
?
= (o′,u>1 , . . . ,u

>
` ) · [f ]1
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Before describing the construction in full detail, let us present the main ideas.
Let ck = [h]1 ∈ Gn+1

1 be the key of the global commitment Com. In our CPlink the public
inputs of the prover are ` commitments (cj)j∈[`] and another commitment c′; the witness is a set of
openings ((uj)j∈[`], (oj)j∈[`]) for commitments (cj)j∈[`], and an opening o′ for c′. In particular, the
prover must prove that

Rlink
Ped(c

′, (cj)j∈[`], (uj)j∈[`], (oj)j∈[`], o
′) = 1 ⇐⇒∧

j∈[`]
cj = (oj ,u

>
j ) · [h[0,nj ]]1 ∧ c′ = (o′,u>1 , . . . ,u

>
` ) · [f ]1

The description of our scheme CPlink follows:

CPlink.KeyGen(ck, Rlink): parse ck = [h]1 ∈ Gn+1
1 , and let Rlink : G1 × D1 × · · · × D` × Zq be the

relation defined above with ck′ = [f ]1 ∈ Gm+1
1 . Use [h]1, [f ]1 and Rlink to build a matrix M as in

equation (1). Compute (ek, vk)← ssΠ.KeyGen([M]1) and return (ek, vk).
CPlink.Prove(ek, c′,(cj)j∈[`], (uj)j∈[`], (oj)j∈[`],o

′) : define [x]1 and w as in as in equation (1), compute
π ← ssΠ.Prove(ek, [x]1,w) and return π.

CPlink.VerProof(vk, c′, (cj)j∈[`], π): set [x]1 as in (1) and return ssΠ.VerProof(vk, [x]1, π).

The key idea of the construction is that this relation can be expressed as a linear subspace relation
RM([x]1,w) where M,x,w can be defined as follows from the inputs of Rlink

Ped, with l = ` + 1 and
t = m+ `+ 1:

[x]1︷ ︸︸ ︷
c1
...
c`
c′


1

=

[M]1︷ ︸︸ ︷
h0 0 . . . 0 0 h[1,n1] 0 . . . 0

0 h0 . . . 0 0 0 h[1,n2] . . . 0
...

...
. . .

...
...

...
...

. . .
...

0 0 . . . h0 0 0 0 . . . h[1,n`]

0 0 . . . 0 f0 f [1,n1] f [n1+1,n2] . . . f [n`−1+1,n`]


1

w︷ ︸︸ ︷

o1
...
o`
o′

u1
...
u`


(1)

In the theorem below we show that CPlink is knowledge-sound and zero-knowledge assuming so
is ssΠ. We show the formal statement in Appendix C.1, where we also prove the security of CPlink

based on that of ssΠ. Appendix C.2 shows how to extend CPlink to handle a more general class of
relations that essentially checks that a set of vectors (uj)j∈[`] is a prefix, of known length, of a vector
u′ committed in c′.

Efficiency. When using ssΠ from [KW15], the key generation algorithm outputs an evaluation
key of m+ `+ 1 G1 elements and a verification key with l + 1 G2 elements. The prover cost is one
multi-exponentiation of length m + ` + 1 while the verifier needs l + 1 pairings to check the one
group element composing the proof.

Theorem 4.1. If ssΠ is KSND(ssΠ.RG,Z) where Z is an auxiliary input distribution, then the CP-
SNARK construction CPlink given above is KSND(CPlink.RG,Z). Furthermore, if ssΠ is composable
ZK for ssΠ.RG, then CPlink is composable ZK for CPlink.RG.
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4.2 CP-SNARK for Linear Properties

In this section we show a CP-SNARK for the relation Rlin that checks linear properties of (com-
mitted) vectors: for a fixed public matrix F ∈ Zn×mq , relation Rlin

F over public input x ∈ Znq and
witness u ∈ Zmq , with u := (uj)j∈[`] and uj ∈ Znjq , holds iff x ?

= F · u.
Our scheme, called CPPed

lin , is quite similar to CPlink and essentially consists into invoking ssΠ to
prove that the above subspace relation holds. The full description of our scheme CPPed

lin follows:

CPPed
lin .KeyGen(ck, Rlin

F ): parse ck = [h]1 ∈ Gm+1
1 . Use [h]1 and Rlin

F to build a matrix [M] as in
equation (2). Compute (ek, vk)← ssΠ.KeyGen([M]1) and return (ek, vk).

CPPed
lin .Prove(ek,x, (cj)j∈[`], (uj)j∈[`], (oj)j∈[`]): define [x′]1 and w′ as in equation (2), and return

π ← ssΠ.Prove(ek, [x′]1,w
′).

CPPed
lin .VerProof(vk,x, (cj)j∈[`], π): set [x′]1 as in (2) and return ssΠ.VerProof(vk, [x′]1, π).

The scheme CPPed
lin considers each uj to be committed using a commitment scheme Com such

that Com.VerCommit = Ped.VerCommit, and whose key is ck = [h]1 ∈Gm∗+1
1 , with m∗ ≥m.14 The

idea is to express such a commit-and-prove relation with the linear subspace relation RM([x′]1,w
′)

that holds iff [x′]1 = [M]1 ·w′, where [x′]1 ∈ Gl
1, [M]1 ∈ Gl×t

1 and w′ ∈ Ztq can be built from the
inputs of Rlin

F as follows (for l = `+ n and t = m+ `):

[x′]1︷ ︸︸ ︷
c1
...
c`
x


1

=

[M]1︷ ︸︸ ︷
h0 0 . . . 0 h[1,n1] 0 . . . 0

0 h0 . . . 0 0 h[1,n2] . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . h0 0 0 . . . h[1,n`]

0 F


1

w′︷ ︸︸ ︷

o1
...
o`
u1
...
u`


(2)

Efficiency. When using ssΠ from [KW15], the prover cost is one multi-exponentiation of length
m + ` while the verifier needs ` + |x| + 1 pairings. If x is some fixed value, as in our applications,
|x| of these pairings either disappear (if x = 0) or can be precomputed. Furthermore, it is possible
to see that the cost of KeyGen is O(` · t + nF ) where nF is the number of nonzero entries of F .
Essentially this cost depends on the sparsity of the matrix; this is crucial in our applications where
for example F includes the W matrices representing the linear constraints of a circuit [BCC+16].

We state the following theorem. We omit the proof, which is essentially the same as that of
Theorem C.1.

Theorem 4.2. Let F ∈ Zn×mq be a matrix from a distribution Dmtx, and Z be an auxiliary input
distribution. If ssΠ is KSND(ssΠ.RG,Z) where ssΠ.RG is a relation generator that samples ck and
F ← Dmtx, then the CP-SNARK construction CPPed

lin given above is KSND(Dmtx,Z). Furthermore,
if ssΠ is composable ZK for ssΠ.RG, then CPPed

lin is composable ZK for Dmtx.

14 While in our description we use the same commitment key for every uj , our scheme easily extends to the case
where different commitment keys are used.
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5 Efficient CP-SNARKs for Polynomial Commitments

In this section we show a collection of zero-knowledge CP-SNARKs for a variety of relations over
vectors committed using a specific commitment scheme from [ZGK+17b]. This scheme is for com-
mitting to multivariate polynomials and it can be used for vectors by converting them into their
multilinear extension polynomials. Although this commitment scheme has a specially structured
commitment key, its verification algorithm can be casted as a form of Pedersen verification; this
means we can apply our results of Section 3.5 to turn all the CP-SNARKs in this section into ones for
a standard Pedersen commitment, or to simply make them work under some common Pedersen-like
scheme. Among the CP-SNARKs in this section, worth mentioning are one for Hadamard product
and one for the self permutation relation. Notably these schemes have a CRS that is universal (and
in some cases deterministically specializable).

5.1 Preliminaries and Building Blocks

We review the main building blocks of our constructions.

Polynomial Commitments

The specific commitment scheme we consider here is the polynomial commitment underlying the
verifiable polynomial delegation (VPD) scheme of Zhang et al. [ZGK+17b]. In a nutshell, a VPD
allows one to commit to multivariate polynomials and later prove their evaluations (also commit-
ted) at a public point. Here we show that their VPD scheme can be seen as a CP-SNARK for
such polynomial commitment, for relations encoding polynomial evaluations. Namely, whereas in
[ZGK+17b] VPD is presented as a single primitive, here we separate the commitment scheme from
the argument system. With this simple change (together with a slightly stronger zero-knowledge
notion) we can use our composition results to argue security when commitments are reused across
different proofs.

Formally, we consider a commitment scheme whose message space D includes both values in
a finite field F and a class F of polynomials with coefficients in F, with µ variables and maximal
degree δ in each variable. We denote these partitions of D = F ∪ F as Dpol = F and Dval = F
and we use a flag type to differentiate between them so that f ∈ F when type = pol, and f ∈ F
when type = val.15 In addition to satisfying the notion of Definition 2.1, we assume the scheme to
be knowledge extractable and to have a trapdoor generation. For convenience, we summarize its
definition below.

Definition 5.1 (Extractable Trapdoor Polynomial Commitments). An extractable trapdoor
polynomial commitment scheme for a class of polynomials F is a tuple of algorithms PolyCom =
(Setup,Commit,CheckCom,VerCommit) that work as follows.

Setup(1λ)→ ck : takes the security parameter and outputs a commitment key ck.
Commit(ck, f, type)→ (cf , of ) : takes the commitment key ck, a flag type ∈ {pol, val} and an ele-
ment f ∈ Dtype, and outputs a commitment cf and an opening of . We use ComPoly(ck, ·) and
ComVal(ck, ·) as shorthands for Commit(ck, ·, pol) and Commit(ck, ·, val) respectively. We also as-
sume that type is part of cf , namely it is not hidden.

CheckCom(ck, c)→ b : takes as input a commitment c and accepts it as valid (b = 1) or not (b = 0).
15 Note that the only ambiguity can occur when differentiating a degree-0 polynomial from a point.
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VerCommit(ck, cf , f, of )→ b : takes as input commitment c, element f ∈ D and opening of , and
accepts (b = 1) or rejects (b = 0). If f is a degree-0 polynomial the same algorithm applies to
commitments created using ComVal

PolyCom must satisfy correctness, binding and (perfect) hiding as in Definition 2.1 (with the ad-
ditional requirements that correctness also implies that CheckCom accepts, and binding holds for
adversarial commitments that are accepted by CheckCom). In addition PolyCom must satisfy the
trapdoor and extractability properties defined below.

Trapdoor. There exists three algorithms (ck, td) ← Sck(1λ),(c, st) ← TdCom(td, type) and
o ← TdOpen(td, st, c, f) such that: the distribution of the commitment key returned by Sck is per-
fectly/statistically close to the one of the key returned by Setup; for any type ∈ (pol, val), any
f ∈ Dtype, (c, o) ≈ (c′, o′) where (c, o) ← Commit(ck, f, type), (c′, st) ← TdCom(td, type) and
o′ ← TdOpen(td, st, c′, f).

Extractability. PolyCom is knowledge extractable for auxiliary input distribution Z if for every
(non-uniform) efficient adversary A there exists a (non-uniform) efficient extractor E such that
Pr[GameextrZ,A,E = 1] = negl.

GameextrZ,A,E

ck← Setup(1λ) ; auxZ ← Z(1λ) ; c← A(ck, auxZ) ; (f, o)← E(ck, auxZ)

return CheckCom(ck, c)
?
= 1 ∧ VerCommit(ck, c, f, o)

?
= 0

Linearly Homomorphic Commitments. For the constructions presented in this section we
assume that the commitments are linearly homomorphic. That is we assume existence of a de-
terministic algorithm (c′, o′) ← HomEval(ck, g, (cj)j∈[`], (oj)j∈[`]) such that, for a linear function
g : F` → F, if VerCommit(ck, cj , aj , oj) = 1 then VerCommit(ck, c′, g((aj)j∈[`]), o

′) = 1. In the paper
we assume HomEval takes in the vector of ` coefficients of g.

Zero-knowledge CP-SNARKs for PolyCom

Constructions in this section use the following existing CP-SNARKs for the scheme PolyCom:

– CPeq: a CP-SNARK for relation Req(u1, u2) := u1
?
= u2, where u1, u2 ∈ F.

– CPprd: a CP-SNARK for relation Rprd(u1, u2, u3) := u3
?
= u1 · u2, where u1, u2, u3 ∈ F.

– CPpoly: a CP-SNARK for the relation Rpoly over Dx ×D1 ×D2 where Dx = Fµ, D1 = F , D2 = F
and Rpoly(x, f, y) := y

?
= f(x). For zero-knowledge, we assume that CPpoly satisfies a notion

where the commitment key is generated in trapdoor mode and the CPpoly simulators (Skg,Sprv)
get access to the commitment trapdoor produced by Sck. Note that such notion is weaker than the
one of Definition 3.1 but sufficient to argue that a scheme satisfying this notion is a cc-SNARK.

In Appendix E we show pairing-based constructions of PolyCom and CPpoly extracted from
the verifiable polynomial delegation scheme of Zhang et al. [ZGK+17b]. As observed by Zhang
et al. constructions for CPeq and CPprd can be obtained using standard techniques from classical
sigma-protocols. Finally, we observe that all these schemes share the same (deterministic) KeyGen
algorithm that, on input the commitment key ck, simply partitions the elements of ck into ek = ck
and vk = cvk, where cvk is a subset of the elements in ck that is sufficient to run algorithms
CheckCom,ComVal and HomEval.
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Efficiency. Both proof-of-equality and proof-of-product (Appendix A in [WTas+17]) are built
as Sigma protocols, where both prover and verifier run in constant time. They can be made non-
interactive using the Fiat-Shamir heuristic [FS87]. The proof in CPeq consists of one group element
and one field element. In CPprd, the prover sends 3G1 + 5F. The proof in CPpoly for polynomial
evaluation CPpoly needs 2(µ + 1) group elements, its verifier runs in O(µ) and the prover in time
O(m). Here, µ is the number of variables of the polynomial and m is its number of monomials. The
KeyGen algorithm of CPpoly outputs an evaluation key of (2(δ+1)µ+3)G1+(µ+3)G2 elements and
a subset verification key of size (µ + 3)G2, where δ is the maximum degree in each variable of the
committed polynomial. For clarification, note that by construction the public parameters P within
the commitment key are formed by two group elements per element in the set of all multisets of
{1, . . . , µ} where each element appears at most δ times. Asymptotically, the crs of CPpoly contains
O(
(
µδ+µ
µδ

)
) group elements. As will be explained, in our setting δ = 1, which keeps the crs size small.

Multilinear Extensions

Given a function f : {0, 1}µ → F, its unique multilinear extension (MLE) is the (unique) multilinear
polynomial f̃ : Fµ → F such that f(b) = f̃(b) for all b ∈ {0, 1}µ. Such multilinear extension is
defined as the following polynomial

f̃(X1, . . . , Xµ) =
∑

b∈{0,1}µ
χb(X1, . . . , Xµ) · f(b)

where χb(X1, . . . , Xµ) =
∏µ
j=1 χbj (Xj), χ1(X) = X and χ0(X) = 1−X. For a vector u ∈ Fm (for

some m = 2µ), its unique MLE is the MLE ũ of the function u : {0, 1}µ → F such that, for every
0 ≤ i ≤ m−1 with i =

∑µ−1
j=0 ij2

j , u(i0, . . . , iµ−1) = ui+1. Note that by using MLEs one can commit
to a vector u using PolyCom by committing to its MLE ũ, with maximum variable degree δ = 1.

Let eq : {0, 1}µ×{0, 1}µ → {0, 1} be the equality predicate (eq(a, b) = 1 iff a = b) and let ẽq be
its MLE (which has a closed-form representation that allows evaluation in time O(µ) [Tha13]). We
recall the following lemma from [Rot09] (as restated in [Tha13]):

Lemma 5.1 ([Rot09, Lemma 3.2.1]). For any polynomial h : Fµ→ F extending p : {0, 1}µ → F
(i.e., such that ∀b ∈ {0, 1}µ : h(b) = p(b)), it holds

p̃(X) =
∑

b∈{0,1}µ
ẽq(X, b) · h(b).

5.2 A CP-SNARK for Sum-Check

The sum-check protocol [LFKN92] is an interactive proof that allows a prover to convince a verifier
of the validity of a statement of the form t =

∑
b∈{0,1}µ g(b) where g : Fµ → F. The protocol consists

of µ rounds, it is public coin, and the running time of the verifier in it is O(
∑µ

i=1 degi(g)) plus the
cost of evaluating g once (on a random point).

Here we propose a zero-knowledge variant of the sum-check protocol where both the polyno-
mial g and the target value t are committed and one proves knowledge of these values such that
t =

∑
b∈{0,1}µ g(b). Precisely, we work with polynomials g defined as the product of p + 1 polyno-

mials of the form g(S) =
∏p
i=0 gi(S), such that all the gi’s, except g0, are committed. Namely, we
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show a CP-SNARK CPsc for commitment scheme PolyCom and the relation Rsc(x,u), with x ∈ F
and u ∈ F×Fp, that is formally defined as:

Rsc(g0, (t, (gj)j∈[p]))=1 ⇐⇒ g(S)=
∏p
i=0gi(S) ∧ t=

∑
b∈{0,1}µ g(b)

Our scheme, dubbed CPsc, is built as a generalization of the protocol recently proposed in
[ZGK+17b, WTS+18] that works for a relation that is the same as the above one except that only t
is committed while g is public to the verifier. For the reader familiar with the zero-knowledge sum-
check protocol in [ZGK+17b, Construction 2], what we do here is to modify their protocol using the
following ideas: whereas in [ZGK+17b] the verifier has access to g and computes a commitment to
g(s) for a random point s on its own, in our case the verifier has access to a commitment cg of g and
we let the prover create a commitment to g(s) and use CPpoly to prove its correctness with respect
to cg. More precisely, the verifier does not have a commitment to g but rather commitments to the
factors of g. Hence our prover proceeds by additionally creating commitments to each gi(s), it proves
their correct evaluations and then uses CPprd to prove that g(s) =

∏p
i=0 gi(s) with respect to these

commitments. Making these changes results in a protocol that is the same as that in [ZGK+17b]
except for the last round from the prover to the verifier. Indeed we can prove the security of our
protocol by making a reduction to the one of [ZGK+17b]. In Figure 3 we give a detailed description
of this protocol for the case p = 2; this is sufficient for our applications.

Protocol Πsc:

Common input: ct, g0, c1, c2; P’s input: (t, ot, g1, o1, g2, o2)

P : g(S) :=
∏2
i=0gi(S), c0 := ct, t0 := t, ρ0 := ot, let f(A0, . . . Ak) := A0 +

∑d
j=0Aj := (2, 1, . . . , 1)

for i = 1 . . . µ :

P : hi(X) :=
∑
bi+1,...,bµ∈{0,1}g(s1, . . . , si−1, X, bi+1, . . . , bµ) :=

∑d
j=0ajX

j

P : compute {(comaj , ρaj )← ComVal(ck, aj)}dj=0, (com∗i−1, ρ
∗
i−1)← HomEval(ck, f, {comaj}

d
j=0), {ρaj}

d
j=0)

πeq ← CPeq.Prove(ck, comi−1, com∗i−1, ti−1, hi(0) + hi(1), ρi−1, ρ
∗
i−1)

P → V : {comaj}
d
j=0, πeq

V : {CheckCom(cvk, comaj )}
d
j=0, compute (com∗i−1, ·)← HomEval(ck, f, {comaj}

d
j=0), ·)

V : CPeq.VerProof(cvk, comi−1, com∗i−1, πeq), si ←$F, (comi, ·)← HomEval(ck, (1, si, . . . , s
d
i ), {comaj}

d
j=0, ·)

V → P : si ∈ F
P : ti ← hi(si), (comi, ρi)← HomEval(ck, (1, si, . . . , s

d
i ), {comaj}

d
j=0, {ρaj}

d
j=0)

endfor

P : {(c′j , o′j)← ComVal(ck, g′j := gj(s)), πj ← CPpoly.Prove(ek, s, (cj , c
′
j), (gj , g

′
j), (oj , o

′
j))}j=1,2

P : (c∗1, o
∗
1)← HomEval(ck, g0(s), c

′
1, o
′
1), π

∗ ← CPprd.Prove(ck, (c∗1, c
′
2, comµ), (g0(s) · g′1, g′2, g(s)), (o∗1, o′2, ρµ))

P → V : c′1, c
′
2, π1, π2, π

∗

V :
∧
j=1,2CheckCom(cvk, c′j) ∧ CPpoly.VerProof(vk, s, cj , c

′
j , πj)

V : (c∗1, ·)← HomEval(ck, g0(s), c
′
1, ·),CPprd.VerProof(vk, (c∗1, c

′
2, comµ), π

∗)

Figure 3: Our sum-check protocol over committed result and polynomial with 3 factors (p = 2); in
black are the steps identical to [ZGK+17b].
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Efficiency. In CPsc, the verifier needs time O(µ) plus the time to compute g0(s). The prover’s
costs include the running time in the sum-check protocol and the creation of the CPpoly proofs. If
the gi are multilinear, CPpoly.Prove time is O(2µ). Also, from [Tha13], if the polynomials gi allow
for evaluation in O(µ) time or are MLE of vectors, the prover’s cost in sum-check can be reduced
to O(2µ). More detailed, our verifier runs linearly on the number of variables of the polynomial and
the prover time is linear on the number of monomials of the factors of the target polynomial. The
degree-d polynomial g(S) can have up to m monomials (in particular, m ≤ 2µ). Note that in the
i−th iteration, the prover evaluates the target polynomial 2µ−i times. This means 2µ times in one
whole execution of the scheme. For each variable of the polynomial, the prover sends one CPeq proof
and commitments to each nonzero coefficient of hi(X), at most (d + 1) of them. Finally, he sends
commitments to the evaluations of the two factor polynomials, two CPpoly proofs and one CPprd

proof. The crs in this case is as long as the one for CPpoly, with δ = 1 and then (δ + 1)µ ≥ m.

Theorem 5.1. Assume PolyCom is an extractable linearly homomorphic commitment, CPpoly and
CPprd are zkSNARKs for relations Rpoly and Rprd respectively, and Construction 2 in [ZGK+17b]
is a ZK interactive argument for sum-check. Then there is a ZK interactive argument for relation
Rsc. Furthermore, by applying the Fiat-Shamir heuristic we get a zkSNARK in the random oracle
model, that we call CPsc.

5.3 A CP-SNARK for Hadamard Products

In this section we propose a CP-SNARK for PolyCom for the relation Rhad over (Fm)3 such that:

Rhad(u0,u1,u2) = 1 ⇐⇒ ∀i ∈ [m] : u0,i = u1,i · u2,i

Let m = 2µ and let ũj : Fµ → F be the MLE of uj . Clearly, the relation holds iff for all b ∈ {0, 1}µ
we have ũ0(b) = ũ1(b) · ũ2(b). If the relation holds, observe that the polynomial ũ1(X) · ũ2(X) is
an extension of the vector u0, but not a multilinear one. From Lemma 5.1 this equality holds:

ũ0(X) =
∑

b∈{0,1}µ
ẽq(X, b) · ũ1(b) · ũ2(b)

Without considering zero-knowledge, the main idea of our protocol is that, to check the above
equality, the verifier starts by picking a random point r←$Fµ, and then the prover uses CPsc to
show that t = ũ0(r) =

∑
b∈{0,1}µ g(b), where g(S) = ẽq(r,S) · ũ1(S) · ũ2(S). Notice indeed that g

can be written as the product of three polynomials g(S) :=
∏2

0 gi(S), of which the first one is public:
g1(S) = ũ1(S), g2(S) = ũ2(S) and g0(S) := ẽq(r,S). Finally, the prover also needs to convince
the verifier that t = ũ0(r), which is done using a CP-SNARK CPpoly for proving correctness of
polynomial evaluations. Therefore we build a CP-SNARK CPhad for Rhad and PolyCom by using
CP-SNARKs CPpoly,CPsc for PolyCom as building blocks. Furthermore, we describe the scheme as
a non-interactive one by letting r ← H((cj)j∈[:3]) using the random oracle model for H. The full
scheme is given below.
Efficiency. Computing π0 takes time O(m), and the same holds for πsc. The latter follows by
observing that the factors of g(S) satisfy the good efficiency conditions for CPsc, i.e., ẽq(r, s) can
be computed in O(µ) time and ũ1, ũ2 are MLE of vectors of length m = 2µ. For similar reasons,
the verifier’s time is O(µ). More detailed, our CPhad that proves the result of Hadamard products
u0 = u1 ◦ u2 with m = 2µ elements each. The prover runs linear in the number of monomials of

27



CPhad.KeyGen(ck)→(ek, vk) CPhad.Prove
(
ek, (cj)j∈[:3], (uj)j∈[:3], (oj)j∈[:3]

)
→π :=(ct, π0, πsc)

(eks, vks)←CPsc.KeyGen(ck) r ← H((cj)j∈[:3]) ; t← ũ0(r) ; (ct, ot)← ComVal(ck, t)

(ekp, vkp)←CPpoly.KeyGen(ck) π0 ← CPpoly.Prove(ekp, r, (c0, ct), (ũ0, t), (o0, ot))

ek := (ck, eks, ekp, H) πsc ← CPsc.Prove(eks, ẽq(r,S), (ct, c1, c2), (t, ot, ũ1, o1, ũ2, o2))

vk := (cvk, vks, vkp, H) CPhad.VerProof
(
vk, (cj)j∈[:3], π

)
→ b ∈ {0, 1}

r ← H((cj)j∈[:3]) ; b← CPpoly.VerProof(vkp, r, c0, ct, π0)

b← b ∧ CPsc.VerProof(vks, ẽq(r,S), (ct, c1, c2), πsc)

Figure 4: CP-SNARK CPhad for relation Rhad

ũ0(X), which is at most m, and the verifier time is linear in its number of variables µ. The prover
sends one value commitment, one CPpoly proof and one CPsc. Note the polynomial used inside sum-
check is at most degree d = 3 in each variable. The crs includes the group elements output by
CPpoly.KeyGen with δ = 1, and the description of the hash function H : (G1,G1)

3 → Fµ used as a
random oracle to achieve noninteractivity.

We state the following result; its proof is in Appendix F.2.

Theorem 5.2. In the random oracle model, assuming that PolyCom is an extractable trapdoor com-
mitment, CPpoly,CPsc are zero-knowledge CP-SNARKs for PolyCom and relations Rpoly and Rsc

respectively, then the scheme CPhad described above is a zero-knowledge CP-SNARK for PolyCom
and relation Rhad.

5.4 A CP-SNARK for Self Permutation

In this section we propose a CP-SNARK for PolyCom for the relation Rsfprm
φ defined below.

Definition 5.2 (Self permutation of a vector). Let D be some domain (e.g., a finite field F),
let n0, . . . , n` be positive integers such that Dj := Dnj and let m =

∑`
j=0 nj. Given a permutation

φ : [m]→ [m], we define a relation Rsfprm
φ over D0 × · · · × D` = Dm such that:

Rsfprm
φ

(
x, (uj)j∈[`]

)
= 1 ⇐⇒ ∀i ∈ [m] : yi = yφ(i), where y := (x, (uj)j∈[`])

Our scheme uses a probabilistic test to prove a permutation of vectors due to [Gro09, BCG+17].
For this we need of a CP-SNARK for proving that t =

∏m
i=1 yi with respect to a commitment to

point t and vector y. We call such a relation internal product Ripd. A formal definition follows:

Definition 5.3 (Internal product). Let n1, . . . , n` be positive integers and let m =
∑`

j=1 nj. We
define the relation Ripd over F× Fn1 · · · × Fn` such that:

Ripd
(
u0,y := (uj)j∈[`]

)
= 1 ⇐⇒ u0

?
=
∏̀
j=1

nj∏
i=1

y′j,i

We give a formal description of CPipd in Figure 19 and its computation complexity in Appendix G.
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In what follows we present the main ideas to build a CP-SNARK for Rsfprm from one for Ripd.
Next, we discuss how a CP-SNARK for internal products can be instantiated.

Recall that the goal is to prove that, for a permutation φ : [m] → [m] a committed vector
y satisfies yi = yφ(i), ∀i ∈ [m]. Consider the following vectors in Fm, 1, v = (1, . . . ,m), and
φ = (φ(1), . . . , φ(m)), and assume that the prover committed to y. Let the verifier choose two
random values r, s←$F and define the vectors y′ := y + r · v − s · 1 and y′′ := y + r · φ− s · 1.

If y is a permutation of itself according to φ, then (y + r · φ) is a permutation of (y + r · v)
according to φ; however, if y is not a self-permutation according to φ then with overwhelming
probability over the choice of r some of the entries of y + r · φ will not be in the vector y + r · v.
In our scheme the idea is to let the prover show that

∏
i y
′
i = z =

∏
i y
′′
i using CPipd on (z,y′) and

(z,y′′). However, if some entries of y+r· are not in φ 6= y+r ·v,
∏
i(yi+r ·i−s) =

∏
i(yi+r ·φ(i)−s)

holds with negligible probability over the choice of s by the Schwartz-Zippel lemma, thus a prover
can be succesful only by cheating with CPipd.

We consider an instantiation of CPipd based on Thaler’s protocol for trees of multiplications
[Tha13]. Ripd can be expressed with an arithmetic circuit that is a tree of multiplications over
m = 2µ inputs. Thaler showed that for this specially regular circuit the CMT protocol can be
adapted so that the prover and verifier run in time O(m) and O(µ2), respectively. To build a CP-
SNARK for Ripd, we thus modify the zk-vSQL protocol [ZGK+17b] so as to work over Thaler’s
protocol instead of CMT. The changes are quite minimal and mainly regard the equation that links
the adjacent layers of the tree. We show this protocol in Appendix G.

One detail to be noted here is that such CPipd works with binary tree circuits, meaning that their
input should be a power of two length, so we tweak our definition of the self-permutation relation
accordingly. We must work on `+ 1 vectors such that, each has length nj = 2µj (this is immediate
since we commit to MLEs of vectors) but their concatenation has length

∑`
j=0 nj = m which may

not be a power-of-two.
To solve this issue, we execute CPipd on each block and then aggregate the `+1 committed results

using a simple zero-knowledge argument for proving a product relation over three commitments,
i.e., CPprd. This results in about ` + 1 calls to CPipd and CPprd. Although this makes proofs grow
with `, we observe that in all our applications ` is some small constant, e.g., 8−10 in our arithmetic
circuits encoding.

Efficiency. From the efficiency observations about CPipd given above, we get that CPsfprm.Prove
and CPsfprm.VerProof run in time O(m) and O(log2m) respectively. More in depth, our CPsfprm,
built from CPipd, is used for proving that a vector y ∈ Fm is a self-permutation. This scheme
works for vectors whose components y := (x, (uj)j∈[`]) have power-of-two length nj = 2µj such that
m =

∑`
j=0 nj , where ` is typically some small constant. For each of its (`+1) components, the prover

runs 2 calls to CPipd and iteratively builds 2 proofs-of-product and a final call to CPeq. This means
the prover runs in timeO(m), the verifier runs in polylogarithmic time inm. The prover sends (4`+5)
commitments, 1 opening, 2(`+ 1) short CPipd proofs, 2` CPprd proofs and 1 proof-of-equality. Note
that in each iteration, the length of the current vector is some ni < m. This means that performing
(`+1) calls to CPipd costs the prover O(

∑`
i=0 ni) = O(m). Conversely, the length of such (`+1) CPipd

proofs is notably larger than the hypothetical length of one single CPipd proof over y ∈ Fm, except
that our m is not necessarily a power of two as the tree of multiplications requires. Here, the length
of these (2`+2) CPipd proofs is

∑`
j=0(11µ

2
j+25µj)+2`+2 group elements and

∑`
j=0(µ

2
j+15µj) field

elements. For brevity, we can express this kind of calculations asymptotically as O(log2m). Note
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CPsfprm.KeyGen(ck)→ (ek := (ck, ekp), vk := (cvk, vkp)) :

(ekp, vkp)← CPipd.KeyGen(ck)

CPsfprm.Derive((ek, vk), Rsfprm
φ )→ (ekφ, vkφ) :

for j = 0 . . . ` : {(c1,j , o1,j)← ComPoly∗(ck, 1̃j); (cv,j , ov,j)← ComPoly∗(ck, ṽj); (cφ,j , oφ,j)← ComPoly∗(ck, φ̃j)}

ekφ := (ek, {c1,j , o1,j , cv,j , ov,j , cφ,j , oφ,j}`j=0, φ) ; vkφ := (vk, {c1,j , cv,j , cφ,j}`j=0)

CPsfprm.Prove∗(ekφ,x, (cj)j∈[`], (uj)j∈[`], (oj)j∈[`])→ π :

(r, s)← H((cφ,j)j∈[0,`],x, (cj)j∈[`]) and let ρ = (1, r,−s) ; (c0, o0)← ComPoly(ck, x̃)

for j = 0 . . . ` :

(c′j , o
′
j)← HomEval(ck,ρ, (cj , cv,j , c1,j), (oj , ov,j , o1,j)) ; y′j := yj + r · vj − s · 1j ; z′j :=

∏nj

i=1
y′j,i

(c′′j , o
′′
j )← HomEval(ck,ρ, (cj , cφ,j , c1,j), (oj , oφ,j , o1,j)) ; y′′j := yj + r · φj − s · 1j ; z′′j :=

∏nj

i=1
y′′j,i

(cz′j , oz′j )← ComVal(ck, z′j) ; π′j←CPipd.Prove
(
ekp,cz′j ,(c

′
j,i)i∈[nj ],z

′
j ,(y

′
j,i)i∈[nj ],oz′j ,(o

′
j,i)i∈[nj ]

)
(cz′′j , oz′′j )← ComVal(ck, z′′j ) ; π′′j ←CPipd.Prove

(
ekp,cz′′j ,(c

′′
j,i)i∈[nj ],z

′′
j ,(y

′′
j,i)i∈[nj ],oz′′j ,(o

′′
j,i)i∈[nj ]

)
if j

?
= 0 : { w′0 := z′0 ; w′′0 := z′′0 ; cw′0 := cz′0 ; cw′′0 := cz′′0 }

else :

w′j←w′j−1 ·z′j ; (cw′j , ow′j )← ComVal(ck,w′j) ;πw′j←CPprd.Prove(ck,cw′j−1
,cz′j ,cw′j ,w

′
j−1,z

′
j ,w
′
j ,ow′j−1

,oz′j ,ow′j )

w′′j ←w′′j−1 ·z′′j ; (cw′′j , ow′′j )← ComVal(ck,w′′j );πw′′j ←CPprd.Prove(ck,cw′′j−1
,cz′′j ,cw′′j ,w

′′
j−1,z

′′
j ,w

′′
j ,ow′′j−1

,oz′′j ,ow′′j )

endif

endfor

πz ← CPeq.Prove(ck, cw′
`
, cw′′

`
, w′`, w

′′
` , ow′

`
, ow′′

`
)

return π := (c0,o0,{cz′j ,cz′′j , cw′j ,cw′′j , π
′
j ,π
′′
j }`j=0,{πw′j ,πw′′j }

`
j=1,πz)

CPsfprm.VerProof∗
(
vkφ,x, (cj)j∈[`], π

)
→ b :

(r, s)← H((cφ,j)j∈[0,`],x, (cj)j∈[`]) and let ρ = (1, r,−s) ; b← VerCommit(cvk, c0, x̃, o0)

for j = 0 . . . ` :

(c′j , ·)← HomEval(cvk,ρ, (cj , cv,j , c1,j), ·)
(c′′j , ·)← HomEval(cvk,ρ, (cj , cφ,j , c1,j), ·)
b← b ∧ CheckCom(cvk, cz′j ) ∧ CPipd.VerProof(vkp, cz′j , (c

′
j,i)i∈[nj ]) ∧ CheckCom(cvk, cw′j )

∧ CheckCom(cvk, cz′′j ) ∧ CPipd.VerProof(vkp, cz′′j , (c
′′
j,i)i∈[nj ]) ∧ CheckCom(cvk, cw′′j )

if j 6= 0 : { b← b ∧ CPprd.VerProof(cvk, cw′j−1
, cz′j , cw′j , πw′j ) ∧ CPprd.VerProof(cvk, cw′′j−1

, cz′′j , cw′′j , πw′′j ) }

endfor

b← b ∧ CPeq.VerProof(cvk, cw′
`
, cw′′

`
, πz)

Figure 5: CP-SNARK for specializable universal relation Rsfprm
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its upper bound for any constant ` using the fact that
∑`

j=0 log
2 nj < ` log2 max{nj}`0 < ` log2m.

Here the crs size is the same as that in CPipd: (2m+ 3)G1 + (µ+ 3)G2 elements.

Theorem 5.3. In the random oracle model, assuming that PolyCom is an extractable and linearly-
homomorphic trapdoor commitment, CPipd, CPprd are zero-knowledge CP-SNARKs for PolyCom and
relations Ripd and Rprd respectively, then CPsfprm in Figure 5 is a zero-knowledge CP-SNARK for
PolyCom and relation Rsfprm.

5.5 A CP-SNARK for Linear Properties of Committed Vector

In this section we show a CP-SNARK for PolyCom that has a specializable universal CRS for
relations Rlin

F

(
x,u

)
:= x

?
= F · u where F ∈ Zn×mq , x ∈ Znq and u ∈ Zmq . More precisely, our CPlin

works for a family of relations R that includes all Rlin
F for all matrices F ∈ Fn×m.

The scheme is based on the interactive proof for Matrix multiplication of Thaler [Tha13]. In a
nutshell, we specialize this protocol to the case of a matrix-vector multiplication and we turn it into
a ZK argument using ideas similar to those in [ZGK+17b].

Our scheme makes use of the building blocks defined in Section 5.1: a polynomial commitment
scheme PolyCom, and CP-SNARKs CPpoly and CPsc for the relations Rpoly and Rsc respectively.

Review of Thaler’s Matrix Multiplication protocol. We begin by reviewing the idea of
Thaler’s matrix multiplication protocol in our specific case of proving x = F ·u. Let ν := log n, µ :=
logm. We let F̃ : {0, 1}ν × {0, 1}µ → Zq be the multilinear extension (MLE) of F , i.e., the unique
multilinear polynomial such that F̃ (i1, . . . , iν , j1, . . . , jµ) = Fi,j . Similarly, let ũ and x̃ be the MLE
of u and x respectively. The protocol exploits that the MLE x̃ can also be expressed as x̃(R) =∑

b∈{0,1}µ F̃ (R, b) · ũ(b). In particular, since this MLE is unique, if F̃ and ũ are MLE of F and
u respectively, then x̃ is a MLE of x = F · u. Next, starting from this observation, the verifier
picks a random r, and then starts a sum-check protocol where the prover convinces the verifier that
t = x̃(r) =

∑
b∈{0,1}µ g(b) for the polynomial g(S) := F̃ (r,S) · ũ(S). At the end of the sum-check

the verifier instead of computing g(s) directly, it gets it by evaluating F̃ (r, s) and ũ(s) and by
computing their product.

The idea to turn the above protocol into a commit and prove argument is rather simple and
consists into using a CP-SNARK for the sumcheck relation with a committed polynomial g, or
more precisely for the case when a commitment to g is implicitly given through commitments to its
factors (see the CPsc scheme). To see this, let us write g(S) :=

∏p
0 gi(S), where g1(S) := F̃ (r,S),

g2(S) = ũ(S), and g0(S) := 1 is the constant polynomial. A commitment to ũ(S) is part of the
statement, a commitment to F̃ (R,S) can be generated when specializing the relation to F in the
Derive algorithm. However, note that CPsc expects a commitment to a µ-variate polynomial, whereas
F̃ is in ν+µ variables. For this, we let the prover commit to the partial evaluation of F̃ on r, i.e., to
the polynomial g1(S) and uses this commitment and polynomial in CPsc. Then, what is left to show
is that such committed g1(S) is actually the partial evaluation of the other committed polynomial
F̃ . To prove this, the idea is that the verifier chooses a random σ←$Fµ, and the prover uses CPpoly

to prove that g1(σ) = F̃ (r,σ).
We show the full protocol CPlin in Figure 6.

Efficiency. Our CPlin proves the result of a matrix-vector multiplication F ·u = x for F ∈ Fn×m.
The prover sends one CPsc proof, two CPpoly proofs, three commitments and two field elements.
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CPlin.KeyGen(ck)→ (ek, vk) :

(eks, vks)← CPsc.KeyGen(ck) ; (ekp, vkp)← CPpoly.KeyGen(ck)

ek := (ck, eks, ekp) ; vk := (cvk, vks, ekp)

CPlin.Derive((ek, vk),F ) :→ (ekF , vkF )

(cF , oF )← ComPoly∗(ck, F̃ )

ekF := (ek, cF ,F , oF ) ; vkF := (vk, cF )

CPlin.Prove∗(ekF ,x, cu,u, ou)→ π :

Let g(S) := F̃ (r,S) · ũ(S) ≡ g1(S) · ũ(S) ; g0(S) := 1 ; (c1, o1)← ComPoly(ck, g1)

r ← H1(cF , cu,x), ; σ ← H2(cF , c1, r) ; y∗ ← g1(σ) ; (c∗, o∗)← ComVal∗(ck, y∗)

π1 ← CPpoly.Prove(ekp,σ, (c1, c
∗), (g1, y

∗), (o1, o
∗))

πF ← CPpoly.Prove(ekp, (r,σ), (cF , c
∗), (F̃ , F̃ (r,σ)), (oF , o

∗))

t← x̃(r) ; (ct, ot)← ComVal(ck, t) ; πsc ← CPsc.Prove(eks, g0(S), (ct, c1, cu), (t, ot, g1, o1, ũ, ou))

π := (ct, ot, c1, c
∗, y∗, π1, πF , πsc)

CPlin.VerProof∗
(
vkF ,x, cu, π

)
→ b ∈ {0, 1} :

r ← H1(cF , cu,x) ; t← x̃(r) ; σ ← H2(cF , c1, r) ; Let g0(S) := 1

b← VerCommit(cvk, ct, t, ot) ∧ VerCommit∗(cvk, c∗, y∗) ∧ CPsc.VerProof(vkp, g0(S), (ct, c1, cu), πsc)

∧ CPpoly.VerProof(vks,σ, (c1, c
∗), π1) ∧ CPpoly.VerProof(vkp, (r,σ), (cF , c

∗), πF )

Figure 6: CP-SNARK for specializable universal Rlin

Here the polynomial used inside sum-check is at most degree 2 in each of its µ = logm variables.
Here, p = 2 = d because g0 is the constant polynomial and does not increase the total maximum
degree inside sum-check. Also, the number of variables for the first CPpoly proof over g1(S) is logm
and the number of monomials is m. For the second one over F̃ (r,S) with N monomials, the number
of variables is log n+ logm = logN . The crs output by the derivation function includes matrix F .,
whereas the output of CPlin.KeyGen has (2 · 2ν+µ + 3)G1 + (ν + µ+ 3)G2 elements; that is, we are
not considering the derived version including the description of matrix F (as this is part of the
statement).

Theorem 5.4. In the random oracle model, assuming PolyCom is an extractable trapdoor commit-
ment and CPpoly and CPsc are zero-knowledge CP-SNARKs for PolyCom, then CPlin in Figure 6 is
a zero-knowledge CP-SNARK for PolyCom and relations Rlin.

5.6 A CP-SNARK for Matrix Multiplication

In this section we propose a CP-SNARK for PolyCom for the relation Rmm over DA × DB × DC
where DA = Fn×n′ , DB = Fn′×m, DC = Fn×m and Rmm(A,B,C) = 1 ⇐⇒ C = A ·B. Namely,
for two committed matrices A and B, one can prove that another committed matrix C equals to
their product.

The scheme is inspired by the interactive proof of matrix multiplication of Thaler [Tha13],
making it a ZK argument with similar ideas to those in [ZGK+17b]. We build our scheme for the
polynomial commitment scheme PolyCom and CP-SNARKs CPpoly and CPsc for the relations Rpoly

and Rsc for factored polynomials.
We present this scheme for square matrices for readability, but the protocol can be simply

adapted to the general form. Let matrices A,B,C ∈ Fn×n, we build their multilinear extension
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C̃ ∈ Fµ×Fµ → F with µ = log n, which is the unique polynomial such that C̃(i1, . . . , iµ, j1, . . . , jµ) =
Ci,j if {ik}µk=1 and {jk}µk=1 are the binary representation of indexes i and j (resp. Ã and B̃).

Then, we can represent matrix multiplication as

C̃(I,J) =
∑

b∈{0,1}µ
Ã(I, b) · B̃(b,J)

where (I,J) could be seen as as a single vector of length 2µ. However, we will stick to this notation
instead as it makes clearer that multilinearity is conserved after the product of Ã and B̃.

The protocol works as follows. The prover evaluates C̃ on a randomly chosen value (ρ|σ) and
obtains a proof that the output t is indeed the result of the polynomial evaluation t = C̃(ρ,σ)
using CPpoly. Then, the prover convinces the verifier that C̃ is well-formed using CPsc, i.e. t =∑

b∈{0,1}µ g(b). Here g(S) =
∏2

0 gi(S), where g1(S) := Ã(ρ,S), g2(S) := B̃(S, σ) and g0(S) := 1 is
the all-ones constant polynomial.

Efficiency. The cost of this scheme is given by the complexity of CPpoly and CPsc. The proving
time of the former is linear in the number of monomials of the polynomial C̃, which is 22µ by
construction. Similarly, the latter’s is linear in the monomials of g(S), which is again 22µ. This
makes a linear prover in the number of elements (N = n2). The verifier runtime is linear in the
number of variables of the polynomials (i.e. 2µ). The crs size is given by that of CPpoly for committed
polynomials of length 2µ and δ = 1 (because Ã, B̃ and C̃ are multilinear polynomials of log n+log n
variables). That is, it has linear length in the matrix size with 2n2 + 3 G1 and 2µ+ 3 G2 elements.
The proof involves one CPpoly proof (4µ + 2 G1, with 2µ variables), one CPsc proof (11µ + 11 G1

and µ+ 5 F, with µ variables) and one commitment (2 G1).

Theorem 5.5. In the random oracle model, assuming that PolyCom is an extractable trapdoor com-
mitment, CPpoly and CPsc are zkSNARKs for PolyCom and relations Rpoly and Rsc respectively, then
the scheme CPmm

16 described above is a zkSNARK for PolyCom and relation Rmm.

CP-SNARK for Matrix Multiplication with Known Output

In this section we propose a variation of our CPmm for PolyCom for the relation Rmmp over DX ×
DA ×DB where Dx = Fn×m, DA = Fn×n′ , DB = Fn′×m and Rmmp(X,A,B) = 1 ⇐⇒ X = A ·B.
Namely, for two committed matrices A and B, one can prove that a public matrix X equals to
their product. This version is more efficient than the obvious solution of opening the commitment
to C in the CPmm scheme.

These two versions only vary only subtly on the way the matrix X is treated. Here, the verifier
can check the correct evaluation on a random value t ?

= X̃(ρ,σ), with no need of relying on CPpoly.
We give the complete protocol in Figure 7 for completeness but we do not provide a formal proof,
as its security is trivially implied by that of CPmm.

The asymptotic complexity of the prover in this scheme is the same as that in CPmm. In practice
however, the prover is twice faster, as it will not run CPpoly. Conversely, the verifier will be slower
because evaluating X̃(ρ,σ) is more costly than verifying a CPpoly proof (about O(n2) field operations
vs. O(log n) group operations). Note here that evaluating the MLE of X as

X̃(x1, . . . , x2µ) :=
∑

b∈{0,1}2µ
χb(x1, . . . , x2µ) ·X(b)

16 This scheme was occasionally referred to as LegoMM in the proceedings version of this paper.
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CPmm.KeyGen(ck)→ (ek, vk) : CPmm.Prove(ek, cA, cB , cC ,A,B,C, oA, oB , oC , )→ π :

(eks, vks)← CPsc.KeyGen(ck) (ρ|σ)← H(cA, cB , cC) ; t← C̃(ρ,σ)

(ekp, vkp)← CPpoly.KeyGen(ck) (ct, ot)← ComVal(ck, t)

return (ck, ekp, eks, H), (cvk, vkp, vks, H) Define constant function g0(S) := 1

CPmm.VerProof(vk, cA, cB , cC , π)→ b ∈ {0, 1} : Let g(S) := Ã(ρ,S) · B̃(S,σ) ≡ g1(S) · g2(S)

Define constant function g0(S) := 1 πt ← CPpoly.Prove(ekp, (ρ,σ), (cC , ct), (C̃, t), (oC , ot))

b← CPpoly.VerProof(vkp, (ρ,σ), cC , ct, πt) πsc ← CPsc.Prove(eks, g0(S), (ct, cA, cB), (t, ot, Ã, oA, B̃, oB))

∧ CPsc.VerProof(vks, g0(S), (ct, cA, cB), πsc) return π ← (ct, πt, πsc)

CPmmp.KeyGen(ck)→
(
ek, vk

)
:

(eks, vks)← CPsc.KeyGen(ck)

return
(
(ck, eks, H), (cvk, vks, H)

)
CPmmp.Prove(ek, cA, cB ,X,A,B, oA, oB)→ π :

(ρ|σ)← H(X, cA, cB) ; t← X̃(ρ,σ) ; (ct, ot)← ComVal(ck, t)

Let g(S) := Ã(ρ,S) · B̃(S,σ) ≡ g1(S) · g2(S) ; g0(S) := 1

π ← CPsc.Prove(eks, g0(S) := 1, (ct, cA, cB), (t, ot, Ã, oA, B̃, oB))

CPmmp.VerProof(vk,X, cA, cB , π)→ b ∈ {0, 1} :

(ρ,σ)← H(X, cA, cB) ; t← X̃(ρ,σ) ; (ct, ot)← ComVal(ck, t) ; g0(S) := 1

b← CPsc.VerProof(vks, g0(S), (ct, cA, cB), π)

Figure 7: CP-SNARK for matrix multiplication with committed output (top) and CP-SNARK for
matrix multiplication with known output (bottom)

where χb(x1, . . . , x2µ) :=
∏2µ
j=1

(
bj · xj + (1 − bj)(1 − xj)

)
, takes both the prover and the verifier

22µ · 2µ operations naively. Following the strategy of [Tha13], the terms χb can be precomputed
offline so that computing each χb(x) ·X(b) takes a constant time and evaluating X̃(ρ,σ) becomes
a quadratic-time task in n (as 22µ = n2).

Efficiency. Our CPmmp proves matrix multiplication X = A · B where the output X is given
in clear. We consider square matrices of N = n × n elements with n = 2µ. Both prover and
verifier evaluate the X̃ on a 2µ−length random point. By construction of the MLE X̃(r1, . . . , r2µ) =∑

b∈{0,1}2µ X(b)
∏2µ
j=1 χbj (rj), this carries a cost of 2

2µ·2µ = 2n2 log n = O(N log n) field operations,
which can be reduced to O(N) through dynamic programming techniques [Tha13]. As the degree–2
polynomial g(S) inside sum-check has µ variables, the proving algorithm in CPsc involves O(µ)
group operations. Checking πsc requires O(µ) more group operations from the verifier. The proof
contains one CPsc proof consisting of (11µ+11)G1 and (µ+5)F. The crs in this scheme is the same
as the one in CPsc for p = 2 = d and δ = 1, which also coincides with that of CPmm. That is, it has
linear length in the matrix size with (2n2 + 3)G1 and (2µ+ 3)G2 elements. We do not include the
description of the public matrix as this is part of the statement.

Theorem 5.6. In the random oracle model, assuming that PolyCom is an extractable trapdoor com-
mitment and CPsc is a zkSNARK for PolyCom and relation Rsc, then the scheme CPmmp is a zk-
SNARK for PolyCom and relation Rmmp.
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6 LegoSNARK Applications and Evaluation

In this section we show how to use the modular commit-and-prove approach to obtain new CP-
SNARKs for computations expressible by arithmetic circuits (ACs) and we discuss the resulting
instantiations. Precisely, we show new CP-SNARKs for (1) arithmetic circuit satisfiability, and (2)
parallel computation on joint inputs.

In both constructions the idea is to break the target problem into the conjunction of simpler
relations with shared input. Once having done this, and assuming the existence of CP-SNARKs
for these simpler relations and that share the same commitment scheme, we immediately obtain a
CP-SNARK for the target problem by applying our composition Theorem 3.1. Furthermore, thanks
to our lifting transformation of Section 3.5 sharing the same commitment scheme is not a restricting
requirement.

6.1 Preliminaries and Building Blocks

We begin by formalizing some basic relations useful to express our target problems.

Equalities Among Vector Entries. A common building block in both schemes of this section is
a system for proving that the entries of a vector satisfy a set of equalities between them. Namely,
given a set S of pairs of indices (i, k), we define a relation Rveq

S that holds for a vector u iff ui = uk
for all (i, k) ∈ S.

Definition 6.1 (Relation for equalities among vector entries). Let D be some domain (e.g.,
a finite field F), let n0, . . . , n` be positive integers such that Dj := Dnj and let m =

∑`
j=0 nj. Given

a set S = {(i1, k1), . . . , (il, kl)} ⊂ [m]× [m], we define a relation Rveq
S over D0×· · ·×D` = Dm such

that: Rveq
S

(
x, (uj)j∈[`]

)
= 1 ⇐⇒ ∀(i, k) ∈ S : yi = yk, where y := (x, (uj)j∈[`]).

In what follows, we discuss different ways to encode this relation.
The relation Rveq

S can be expressed using Rsfprm
φ in Definition 5.2 for an appropriate permutation

φ that encodes S. The idea is that a set S ⊂ [m] × [m] can be seen as the description of an
undirected graph with 2m vertices. From S it is possible to extract another set S′ ⊂ [m] × [m]
that contains a cycle ((i1, k1), . . . , (it, kt)) for every connected component of the graph represented
by S. Taking the product of all the cycles in S′ defines a permutation φ : [m] → [m] such that
∀(i, k) ∈ S : yi = yk iff ∀j ∈ [m] : yj = yφ(j). Then for such φ computed from S we have
Rveq
S (x, (uj)j∈[`]) ⇐⇒ Rsfprm

φ (x, (uj)j∈[`]). We refer to [Gro09, BCG+17] for more details on the
idea of this permutation encoding. Here is a small example. Consider an arbitrary m and assume
S = {(1, 2), (1, 3), (3, 4), (6, 7)}. One can define a permutation φS over [m] as: φS(1) = 2, φS(2) = 3,
φS(3) = 4, φS(4) = 1, φS(6) = 7, φS(7) = 6, and φS(j) = j for all 8 ≤ j ≤ m.

At this point one can either assume to have a proof system for Rsfprm
φ (as in Section 5.4) or to

use an encoding of Rsfprm
φ based on linear constraints that can be obtained as follows. The idea is to

define a relation on a vector y ∈ Fm that is true iff Z ·y = 0, where Z ∈ Fm′×m, with m′ ≤ m, is the
matrix obtained by removing the zero rows from (I −Σφ) ∈ Fm×m, where Σφ is the permutation
matrix representing φ. Then clearly Rsfprm

φ (x, (uj)j∈[`]) holds iff Rlin
Z (0,x, (uj)j∈[`]) holds, where the

relation Rlin, modelling the linear property over (committed) vectors, is formally defined as follows.
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Definition 6.2 (Linear property relation). Let n1, n2,m1, . . . ,m` be integers such that {Dx,j :=
Dnj}j∈[1,2], {Du,j := Dmj}j∈[`], and m = n2 +

∑`
j=1mj. Given a matrix F ∈ Dn1×m, we define a

relation Rlin
F over Dx,1 ×Dx,2 ×Du,1 × · · · × Du,` such that:

Rlin
F

(
x1,x2, (uj)j∈[`]

)
=1 ⇐⇒ F · y = x1, where y :=(x2, (uj)j∈[`])

Note that the above relation Rlin is slightly different from the one supported by CPPed
lin of Section

4.2. The only difference is that in CPPed
lin the linear function is not applied over public inputs.

However, this small discrepancy can be easily solved by adding a commitment to the additional
public input x2 and opening this commitment.

Summary of the Building Blocks. In Table 2 we recall the various commit-and-prove SNARKs
presented Sections 4 and 5 along with a summary of their efficiency measures. First-level dependen-
cies between the different building blocks can be found in the first column of the table. We wanted
to show the minimal requirements to build such constructions, regardless of the inner instantiation
of each modular component. That is, for each row we are pointing out the CP-SNARKs that appear
only in the description of their respective protocol.

6.2 Arithmetic Circuit Satisfiability

Let us consider the problem of arithmetic circuit satisfiability.

Definition 6.3. Let C : Fnx ×Fnw → Fl be an arithmetic circuit, where nx, nw, l ∈ N denote input,
witness and output length. We define the arithmetic circuit satisfiability relation Rac

C (x,w) as the
set of pairs such that C(x,w) = 0l.

CP-SNARKs
P V

|crs| |π|
Dependencies Scheme G1 G2 G1 F

CPlink O(m+ `) O(`) m+ `+ 1 `+ 2 1 0

CPPed
lin O(m+ `) O(`+ n) m+ ` n+ `+ 1 1 0

CPeq ∧ CPpoly ∧ CPprd → CPsc O(m) O(µ) 2(δ + 1)µ + 3 µ+ 3 µ(2d+ 2p+ 3) + 4p+ 3 µ+ 5

CPpoly ∧ CPsc → CPlin O(N) O(logN) 2N + 3 logN + 3 2 logN + 13µ+ 21 µ+ 7

CPsc → CPmmp O(n2) O(n2) 2n2 + 3 2µ+ 3 11µ+ 11 µ+ 5

CPpoly ∧ CPsc → CPmm O(n2) O(µ) 2n2 + 3 2µ+ 3 15µ+ 15 2µ+ 5

CPpoly ∧ CPsc → CPhad O(n) O(µ) 2n+ 3 µ+ 3 15µ+ 15 µ+ 5

CPeq ∧ CPpoly ∧ CPprd → CPipd O(n) O(µ2) 2n+ 3 µ+ 3 11µ2/2 + 25µ/2 + 2 µ2/2 + 15µ/2

CPeq ∧ CPipd ∧ CPprd → CPsfprm O(n) O(µ2) 2n+ 3 µ+ 3
∑`
j=0(11µ

2
j + 25µj) + 16`+ 13

∑`
j=0(µ

2
j + 15µj) + 10`+ 2

Table 2: Direct dependencies and concrete theoretical costs of our CP-SNARKs. In CPsc we denote:
by m the number of monomials in the sumcheck polynomial; by µ the number of variables in the
sumcheck polynomial (note m ≤ 2µ); by δ the degree of the committed polynomial (if δ = 1, it
holds that (δ + 1)µ ≥ m); by d the maximum degree of each variable in the sumcheck polynomial;
by p the number of polynomial factors committed. For all remaining schemes, we denote: by n the
length of vectors, the order of square matrices or the largest dimension in a matrix; by µ the size
of the multilinear extensions involved, which above it is always such that µ = log n; by N the size
of the CPlin and CPPed

lin matrix, of dimension 2ν × 2µ = n×m; by µj the logarithm of the length of
the j-th set of variables; by ` the total number of commitments.

36



We show two solutions to model the above relation using a commit-and-prove paradigm. The
first one relies on the encoding put forward by Bootle et al. [BCC+16] that reduces the relation Rac

to an Hadamard product and a set of linear constraints. The second one is similar to that of Groth
[Gro09] (recently used in [BCG+17]) and encodes arithmetic circuit satisfiability using Hadamard
products, additions and permutations of (committed) vectors.

Arithmetic Circuit Satisfiability through Hadamard and Linear Constraints

Following [BCC+16, BBB+17], an arithmetic circuit C can be described by a tuple (nx, nu, N,W L,
WR,WO,W x,W U , c) where nx and nu are the input and (committed) witness lengths respectively,
N is the number of multiplication gates, and matricesW L,WR,WO ∈ FQ×N ,W x ∈ FQ×nx ,W U ∈
FQ×nu and vector c ∈ FQ describe a system of linear equations over the wires of C. Using such a
definition, C is satisfied by (x,u) if there exist three vectors uML ,u

M
R ,u

M
O ∈ FN such that

uML ◦ uMR = uMO ∧ W L · uML +WR · uMR +WO · uMO +W x · x+W U · u = c

Rac
C (x,u,uw) := Rhad(uML ,u

M
R ,u

M
O ) ∧Rlin

F (c, (x,u,uML ,u
M
R ,u

M
O ))

where F = (W x,W U ,W L,WR,WO) ∈ FQ×(nx+nu+3N).
By the above definition of Rac

C and our Theorem 3.1 we obtain the following corollary.

Corollary 6.1. If there exist CP-SNARKs CPhad and CPlin for a commitment scheme Com and for
relations Rhad and Rlin respectively, then there is a CP-SNARK LegoAC for Com and relation Rac

C .

Instantiations. We evaluate two instantiations of LegoAC:

– LegoAC1: from our CPPed
lin (Section 4.2) and Lipmaa’s CP-SNARK for Hadamard products [Lip16].

LegoAC1 is a CP-SNARK for the commitment scheme of [Lip16], and its security holds in the
generic group model (due to GGM security of CPPed

lin ).
– LegoAC2: from our CPPed

lin (Section 4.2) and our CPhad (Section 5.3). This is a CP-SNARK for
PolyCom, and its security holds in the GGM and random oracle model (the latter due to CPhad).

If needed, both schemes can be lifted to work with a standard Pedersen commitment using CPlink.
Their complexity, summarized in Table 1, results from the combined efficiency of the building blocks
plus the observation that the matrices W L,WR,WO are sparse and with a number of nonzero
entries linear in the number of circuit wires.

Arithmetic Circuit Satisfiability through Hadamard, Addition and Equalities

Any arithmetic circuit C consists of NA addition gates, NM multiplication gates, both of fan-in 2,
and NC multiplication-by-constant gates, of fan-in 1. Each gate has a left input, a right input and
an output wire;17 also each output wire can be input to another gate. This means that C can be
described by integers NA, NM , NC , a vector c ∈ FNC of constants, and the wiring information saying
that the output wire of addition/multiplication i is the left/right input of addition/multiplication
gate j. With such a representation ∃w : C(x,w) = 0l can be encoded by showing the existence of
an assignment to the inputs and outputs of C’s gates that satisfies every gate, that is consistent
with the wiring of C as well as with the public input x and the output 0.
17 We model gates of fan-in 1 as having one single left input.
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More formally, consider an arithmetic circuit C : Fnx × Fnw → Flwith NA addition gates, NM

multiplication gates, and NC multiplication by constant gates, and where we split the witness w
between committed witness u ∈ Fnu and free witness ω ∈ Fnω . Assume we arrange the wires of C
so as to have, orderly: the nx input wires, the nu committed witness wires, the l output wires, the
3NA left, right and output wires of the addition gates, the 3NM left, right and output wires of the
multiplication gates, and the 2NC input and output wires of the multiplication-by-constant gates.
All these wires can be indexed by integers from 1 to m = nx+ nu+ l + 3(NA+NM ) + 2NC , and the
wiring information of C can be described by a set S of pairs (i, k) ∈ [m] × [m] indicating that the
wire at position i is connected to the wire at position k.

Therefore we model an arithmetic circuit C with a tuple (nx, nu, l, NA, NM , NC , c, S). Then
proving ∃(u,ω) Rac

C (x,u,ω) can be done by proving the existence of a vector uw, that is the
concatenation of vectors uw := (uAL ,u

A
R,u

A
O,u

M
L ,u

M
R ,u

M
O ,u

C
I ,u

C
O), such that

Rac
C (x,u,uw) := Radd(u

A
L ,u

A
R,u

A
O) ∧Rhad(uCI , c,u

C
O)

∧ Rhad(uML ,u
M
R ,u

M
O ) ∧Rveq

S ((x,0),u,uw)

where Radd(u
A
L , u

A
R, u

A
O) is the relation expressing the predicate uAL +uAR

?
= uAO, and R

had(uML ,u
M
R ,

uMO ) is the Hadamard product relation uML ◦ uMR
?
= uMO (i.e., uML,j · uMR,j = uMO,j for all j ∈ [3NM ]).

If Com is a linearly homomorphic and extractable commitment scheme, a proof system for Radd

comes for free. Therefore, by definition of Rac
C and our Theorem 3.1 we obtain the following corollary.

Corollary 6.2. If there exist CP-SNARKs CPhad and CPveq for a linearly-homomorphic extractable
commitment scheme Com and for relations Rhad and Rveq respectively, then there is a CP-SNARK
LegoUAC for Com and relation Rac

C .

Instantiating LegoUAC with Universal CRS. Both the schemes LegoAC1 and LegoAC2 consid-
ered earlier have a circuit-specific CRS due to the circuit-specific CRS of CPPed

lin .18 The LegoUAC
scheme obtained in the corollary above can be instantiated in such a way to have universal CRS
of linear-size. To this end, we recall that Rveq can be expressing using Rsfprm, and therefore we
evaluate an instantiation of LegoUAC with our CPhad and CPsfprm schemes. Both schemes admit a
universal CRS that can be deterministically specialized (due to specializing CPsfprm’s CRS to the
circuit-dependent permutation φ). The complexity of LegoUAC is depicted in Table 1 and stems
from that of our CPhad and CPsfprm.

6.3 Parallel Computation on Joint Inputs

We consider the problem of proving (in zero-knowledge) the correctness of a computation that
consists in the parallel execution of the same subcomputation on (partially) shared inputs. Slightly
more in detail, we consider relations Rparjnt(u) :=

∧N
j=1R

′(u′j) where each u′j is a subset of the
entries of u. This relation has several use cases. One example is proving knowledge of all the leaves
of a Merkle tree of height N with respect to a public root; the corresponding relation can be seen
as the parallel check of 2N − 1 hash verification relations (i.e., RH(x1, x2, y) := H(x1, x2)

?
= y) that

share some of the inputs. Another example is proving correctness of the output of a sequential
computation whose internal step is always the same (e.g., the square-and-multiply algorithm).
18 Using our CPlin for PolyCom would give us an instantiation with a universal CRS, but unfortunately one of size
Q ·N , that is quadratic in circuit size.
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(a) In Rpar, R′ inputs are disjoint (b) In Rparjnt, R′ inputs are joint

Figure 8: Inputs structures for parallel relations.

One way to deal with Rparjnt is by defining the arithmetic circuit that computes it (cf. Fig. 8b).
The Hyrax system is particularly designed for parallel circuits [WTS+18]; they deal with non-parallel
input by introducing a (non-parallel) redistribution layer (RDL) layer that redistributes the input
and feeds it to the identical sub-circuits at the next level. Unfortunately an effect of using an RDL
is that the verifier must pay an additional cost linear in the total width of the circuit. This makes
verification time pretty high in applications like the Merkle tree example above.

Here we propose another natural modelling of relations with joint inputs, that is the simple
conjunction of two relations: Rpar that models fully parallel checks of some R′ on disjoint inputs,
and another relation that models the consistency of the shared inputs across the (fully) parallel
executions. The advantage of this encoding is that Rpar is now fully parallel and one could use for
it a system for parallel computation without any caveat, whereas to check the consistency of shared
input one can use a system for the Rveq relation from Definition 6.1. More formally, we define a
parallel relation on disjoint inputs as follows.

Definition 6.4 (Parallel relation on disjoint inputs). For a relation R′ over D′ and an integer
N ≥ 1, a parallel relation Rpar

R′ on disjoint inputs is defined as Rpar
R′ (u) :=

∧N
j=1R

′(uj), where
u := (uj)j∈[N ] ∈ (D′)N .

From Rpar and Rveq we define a relation for parallel checks on joint inputs.

Definition 6.5 (Parallel relation on joint inputs). Let n0, n1, n′, N ∈ N be integers such that
n′, N ≥ 1 and n0, n1 ≥ 0, and let m = n0 + n1 + N · n′. Let D be some domain, R′ be a relation
over D′ := Dn′, and S a set of the form S = {(i1, k1), . . . , (il, kl)} ⊂ [m]× [m]. Rparjnt

R′,S is a relation
over Dx ×D1 ×D2, with Dx := Dn0, D1 := Dn1 and D2 := DNn

′, such that:

Rparjnt
R′,S (x,u1,u2) := Rpar

R′ (u2) ∧Rveq
S (x,u1,u2)

Basically, Rparjnt
R′,S models the parallel checking of R′ on N different subsets of the entries of (x,u1)

(consisting of a public x and committed u1) where such subsets are defined by the set S, and their
concatenation is the vector u2. Alternatively, if x,u1 are empty, Rparjnt

R′,S models the parallel checking
of R′ on N different sets of inputs with some shared values (as specified by S).

From the definition of Rparjnt and our Theorem 3.1 we obtain the following corollary.

Corollary 6.3. If there exist CP-SNARKs CPpar and CPveq for a commitment scheme Com rela-
tions Rpar and Rveq respectively, then there is a CP-SNARK CPparjnt for Com and relations Rparjnt.

Instantiations. Following the corollary above, we consider an instantiation of CPparjnt (that we
call LegoPar) obtained as follows. As CPveq we use our scheme CPPed

lin using the encoding of Rveq

with linear constraints. As CPpar we use an adaptation of Hyrax using the polynomial commitment
PolyCom of zk-vSQL. We call HyrPoly-Par this scheme invoked on circuits without RDL (i.e., it
supports Rpar), and HyrPoly-RDL the same scheme for circuits with an RDL (i.e., it supports Rparjnt).
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We compare the efficiency of LegoPar and HyrPoly-RDL on Rparjnt relations. Let d and G be
depth and width of the arithmetic circuit evaluating R′. Proving time and proof size have the same
complexity in both solutions; verifier time is O(d(G+log(NG))) in LegoPar and O(d(G+log(NG))+
|u| + NG) in HyrPoly-RDL. We note that due to the use of CPPed

lin , the CRS of LegoPar becomes
specific to the input wiring of Rparjnt, whereas in HyrPoly-RDL the CRS is just the commitment key.
On the other hand, this one-time preprocessing allows the verifier to later check any number of proofs
in shorter time.19 In Section 7 we discuss an experimental comparison based on an implementation.

7 Experimental Evaluation

We designed and implemented LegoSNARK,20 a library for commit-and-prove SNARKs that includes
a design framework for composable CP-SNARKs, and the implementation of a collection of proof
gadgets: our CPlink and CPPed

lin , the Hadamard product CP-SNARK of [Lip16], and the CPpoly from
[ZGK+17b]21. LegoSNARK is written in C++; for polynomial operations and bilinear pairings we
use the libraries underlying libsnark [librk]. We executed our experiments on a virtual machine
running Debian GNU/Linux with 8 Xeon Gold 6154 cores and 30 GB of RAM. We ran all tests
single threaded. In our experiments, we tested the performance of some of our instantiations and
compared to different baseline systems.

7.1 Commit-and-Prove SNARKs

We consider a generic application of proving commit-and-prove relations where commitments are
created using the Pedersen scheme for vectors, i.e., proving ∃(u, o, ω)R(u, ω)∧VerCommit(ck, c, u, o).

As baseline system, we use the Groth16 zkSNARK in libsnark on the libsnark gadget circuit for
multi-scalar additions over a SNARK-friendly elliptic curve (to model the Pedersen computation).
We call this CPGro16. We compare CPGro16 to a CP-SNARK, LegoGro16, obtained by applying
our cc-SNARK-lifting compiler with our CPlink scheme to the cc-variant of [Gro16], ccGro16, that
we present in Appendix H.5. We measured the overhead of dealing with the commitment in both
schemes (the R-dependent costs would be the same in both cases) at the increase of the committed
vector’s size (from 8 to 2048).22 On the largest instance (n = 2048) LegoGro16’s proving time is
5K× (0.08 vs. 428 s) faster than CPGro16, at the price of a verification that is 1.2× slower (4.1
vs 3.4 ms), and a slightly larger proof (191 vs. 127 Bytes). LegoGro16’s CRS is also 7K× shorter
(130KB vs. 950MB).

In the case of LegoGro16, such overhead in proving time is essentially that of creating the
additional element D of the proof that contains a commitment to the data and to create a CPlink

proof to link D to the external commitment. The LegoGro16 proof is longer because of these two
additional elements of G1. And for verification, the CPlink verification must be executed. With
respect to the CRS, in LegoGro16 we have the additional elements of the CRS needed to create D
and the CPlink CRS, that is essentially one vector of n elements of G1. In CPGro16, all the overhead

19 We do not see a way to run a similar preprocessing in HyrPoly. We evaluated the possibility to commit, in
preprocessing, to the MLE of the RDL wiring so that the prover would compute this on behalf of the verifier
and prove its correct evaluation using CPpoly. This idea however would require a commitment key quadratic in the
circuit width, which is prohibitively large.

20 A Github repository for the code is https://github.com/imdea-software/legosnark .
21 For this we adapted to our library the code provided by the authors of [ZGK+17b].
22 At n = 4096 CPGro16 ran out of memory.
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in proving time and CRS is related to the size and degree of the QAP that models the computation
of the Pedersen commitment. This was done by selecting an appropriate gadget in libsnark, which
optimizes the task by selecting a suitable elliptic curve.

Table 3 shows our experimental results that compare the schemes LegoGro16 and CPGro16 with
respect to the overhead for dealing with data committed using a Pedersen vector commitment. The
experiments considered vectors of different length n.

7.2 Matrix Multiplication

We evaluate our CPmmp scheme for matrix multiplication against a solution based on Groth16
[Gro16]. We remind the reader that in this version of matrix product relation the output matrix is
given in the clear as part of the statement to be proven (rather than being committed as in CPmm).
Our scheme has a faster prover and smaller crs using an asymptotically more efficient verifier with
a longer, but still succinct, proof. Our experiments confirm the theoretical costs of these schemes.

We evaluate both proving and verification time when delegating a square matrix multiplication
with size N = n × n field elements, ranging from n = 16 to n = 256. We observe our scheme
noticeably improves on proving time as our prover runs in linear time in the number of elements
in the matrix (n2), whereas Groth’s runs in quasicubic time in n. Even if our verifier is slower for
smaller matrices, the O(n2) work in our scheme involves only field operations whereas in Groth16
one needs to do a O(n2)-wide multiexponentiation. On the largest instance we measured (square
matrices with n = 128 rows and columns), our proving time is roughly 1300× faster (109 seconds
vs. 84 milliseconds) and verification time is 1.8× faster (51 vs. 28 milliseconds). This is a tradeoff
between the running time and the proof length: only 3 group elements in Groth16 vs O(log n) in
our scheme (127 bytes vs. 32 kilobytes).

Table 4 shows concrete performance measurements of both schemes, showing a clear proving
time improvement in our scheme.

7.3 LegoAC1 for Arithmetic Circuits

We tested our LegoAC1 scheme (see Section 6.2) for arithmetic circuits and compared it to Groth16
as a baseline system. We considered two benchmark applications:
(a) proving knowledge of a SHA256 pre-image on 512-bit inputs; for this we used the existing circuit
gadgets implemented in libsnark (for Groth16), and in Bulletproofs [bulk1] (for LegoAC1).
(b) matrix factoring, i.e., proving knowledge of two n× n matrices A,B whose product is a public
matrix C; for this we designed suitable constraints systems, considering 32-bit integers entries and
a varying n = 16, 32, 64, 128.

Overall, our experiments show that LegoAC1 performs slightly worse than Groth16. For exam-
ple, for SHA256 proving time is 1.2× slower (0.7 vs. 0.9 s); verification is up to 2× slower (0.9 vs.
1.8 ms) and improves with larger inputs; our key generation is about 5 − 6× slower. Proof size is
constant: 350B in LegoAC1 and 127B in Groth16. Noteworthy that most of LegoAC1 key generation
time (about 70%) is taken by the corresponding algorithm for CPPed

lin ; this is mainly due to an unop-
timized technique for dealing with sparse matrices like the ones that encode the linear constraints
W L,WR,WO, and we expect this to be improved in the future.

In a way this result is not surprising: Groth16 is an extremely optimized and well explored
scheme, whereas for LegoAC1 we believe that more optimizations could be explored (in a similar
way as Groth16 optimized Pinocchio). More remarkably, LegoAC1 has a built-in commit-and-prove
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LegoGro16 CPGro16

n KG
(ms)

P
(ms)

crs
(KB)

KG
(s)

P
(s)

crs
(MB)

8 3.677 3.044 0.51 3.928 1.185 3.653
16 5.949 4.202 1.02 7.307 2.252 7.305
32 10.90 5.201 2.04 13.78 4.461 14.61
64 19.37 8.979 4.08 26.04 8.685 29.22

128 32.49 15.58 8.16 50.69 16.50 58.44
256 57.76 19.50 16.32 102.8 33.02 116.9
512 117.8 30.84 32.64 292.0 65.42 233.7
1024 241.2 55.35 65.28 876.3 133.3 467.5
2048 466.6 84.09 130.6 1011 428.7 935.0

|π| (B) 191.13 127.38
V (ms) 4.129 3.4

Table 3: Performance comparison of LegoGro16
and CPGro16. Numbers for the two schemes are
in different units. Those for CPGro16 are three or-
ders of magnitude larger.

Time Space
P V crs π

CPmmp O(n2) O(n2) O(n2) O(logn)
Groth16 O(n3 logn) O(n2) O(n3) O(1)

CPmmp Groth16

n P V |π| P V
(ms) (ms) KB (s) (ms)

16 35.36 22.74 21 0.181 4.312
32 46.26 23.19 24 1.379 6.060
64 55.78 24.00 28 11.61 12.60

128 83.78 28.03 32 109.3 50.99
256 149.7 40.01 36

Table 4: Comparing CPmmp and Groth16 for
n× n matrices

LegoAC1 Groth16

n KG
(s)

P
(s)

V
(ms)

KG
(s)

P
(s)

V
(ms)

16 1.105 0.278 3.097 0.210 0.150 1.662
32 7.569 1.680 4.697 1.227 0.957 3.696
64 52.86 11.90 10.73 8.848 7.177 9.686
128 419.8 89.70 35.71 69.21 58.60 34.83

|π| (B) 350.25 127.38

Table 5: Performance of LegoAC1 comparing
to Groth16

capability, which means its proofs are done with respect to matrices that committed in a Pedersen
commitment (in a canonical vectorized form). This property is not present in Groth16, and can be
useful in several applications.

For example, in the matrix factoring case, LegoAC1 works with commitments to the three matri-
ces that could be reused. This is a powerful feature as we could prove a statement like “B = A2k for
a committed matrix A” by doing k proofs, one for each squaring step (i.e., to show that Bi = B2

i−1);
this can be done by reusing the same CRS for one matrix factoring relation. In contrast, proving
B = A2k directly with Groth16 would require a very large CRS and a memory intensive prover that
would not scale for large k and n.

We give the experimental results that compare our LegoAC1 commit-and-prove zkSNARK
against the Groth16 scheme, in the SHA256 and matrix factoring applications explained above.
For SHA256, Groth16 needs 1.9s for key generation of a CRS of 5.1MB, 0.7s for proving and
0.9ms for verification; LegoAC1 needs 7.9s for key generation of a CRS of 6.2MB, 0.9s for proving
and 1.8ms for verification. For matrix factoring, we used n × n matrices of 32-bit integers with
n ∈ {16, 32, 64, 128}. Detailed timings are in Table 5.

Finally, we remark that LegoAC1 is commit-and-prove, which means its proofs are done with
respect to matrices that committed in a Pedersen commitment (in a canonical vectorized form).
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(a) Proving time comparison for
LegoPar and HyrPoly-RDL.

(b) Verification time comparison
for LegoPar and HyrPoly-RDL.

(c) P time (component-wise) for
LegoPar (left) and HyrPoly-RDL (right).

Figure 9: Performance comparison of systems for parallel relations. Lower on the y axis is bet-
ter (in (c), axis y is log-scale).We remind the reader that LegoPar = HyrPoly-Par + CPlin =

(GirnoRDL + CPLego
poly ) + CPlin and HyrPoly-RDL = GiryesRDL + CPHyr

poly.

7.4 Parallel Checks on Joint Inputs

We compare performances of our LegoPar system with a baseline system, i.e. HyrPoly-RDL (see
Appendix F.5). Our choice of an Hyrax-based system for comparison is due to its optimization for
parallel computations, and thus enhancing the latter implies refinements in all computations where
Hyrax applies today.

Recall that LegoPar consists of our CPPed
lin and HyrPoly-Par. To evaluate HyrPoly-Par and HyrPoly-

RDL we executed separately the part concerning PolyCom and CPpoly, and the one that includes the
ZKGir++ core. To benchmark the latter, we used the original Python code (appropriately modified
for the commitment part) from the Hyrax project [gitax] (run using the JIT-compiling interpreter
PyPy [pypPy]).23

We benchmarked LegoPar and HyrPoly-RDL on a highly parallel computation, that is proving
knowledge of an assignment to the leaves of a Merkle tree [Mer88] (cf. Section ?? to see how it can
be expressed using Rparjnt). We used SHA256 for the hash and a varying number of leaves (from 2 to
29). For this computation we generated two circuits using the Hyrax tool: one fully parallel to be fed
to HyrPoly-Par and one with the RDL for HyrPoly-RDL. Recall that in LegoPar the RDL is checked
using CPPed

lin . We finally note that the two largest inputs in our evaluation required extending the
available RAM from 30 to 75GB for both schemes.

Results. Figure 9 compares the costs (proving and verification time) in the two schemes for repeated
computation. Overall LegoPar is faster than HyrPoly-RDL, both in proving and verification time. On
our largest input, proving in LegoPar is 1.25× faster; verifying is more than 2.5× faster. Verification
is expected to become faster due to the asymptotic difference in the verification time.

– Proving time: On larger inputs LegoPar has a faster (up to 1.25×) proving time (Figs. 9a). In
both schemes most of the computation is due to ZKGir++: approximately 50% for LegoPar and
75% for HyrPoly-RDL. The higher time of ZKGir++ in HyrPoly-RDL is explained by the additional
round for the RDL. On the other hand, LegoPar spends twice as much time for the proving step
of CPpoly. This is because it evaluates a polynomial with twice as many terms, in turn requiring
roughly twice the number of exponentiations. (This is due to the RDL output u2, on which

23 Full integration of this component into our library is future work.
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LegoPar operates, being twice as long as the RDL input u1 (also the “bottom-layer” input), on
which CPpoly runs in HyrPoly-RDL).

– Verification time: On larger inputs LegoPar has a shorter (up to 2.5×) verification time (Fig. 9b).
This speedup is due to increase with larger inputs, as the verifier in HyrPoly-RDL has to perform an
additional verification step for the RDL in ZKGir++ (requiring a number of field operations roughly
linear in the width of the circuit). On the other hand LegoPar performs the same step through
a constant number of pairings (two) in CPveq. In both schemes ZKGir++ dominates running time
(more than 99.5%)24.

Discussion. Partly, the different performances we observed are due to specific features of the circuit
chosen for benchmarks (we chose Merkle tree verification, due to its relevance in practice). In a circuit
for parallel computation, at least two features, both related to the RDL, can have impact: (i) how
“large” the output u2 of the RDL is w.r.t. its input u1; (ii) how “complex” the RDL is. A higher
ratio |u2|/|u1| will determine the difference in running time for the CPpoly.Prove component. In our
circuit of choice the ratio was 2.

8 Conclusions

We have described LegoSNARK, a framework for commit-and-prove zkSNARKs that comprises def-
initions, a general composition result, and a “lifting” construction. The LegoSNARK tools are useful
as they enable designing zkSNARKs in a modular way (due to the framework of definitions and the
composition theorem) and they allow to efficiently add commit-and-prove capabilities to a variety
of existing schemes thus made interoperable. Furthermore we have proposed efficient proof gadgets
for specialized relations and shown how to combine them into succinct proof systems for more com-
plex relations. We have described instantiations of these new proof systems and evaluated them
against prior work. The results show they have competitive performances. Specifically they show
slightly worse (but still acceptable) performances in some applications (general arithmetic circuits)
and significant improvements in others (commit-ahead-of-time systems, parallel computations).

A limitation of our current instantiations is their reliance on pairing-based systems with a trusted
setup. Interestingly in some cases this is only needed to generate the commitment key of PolyCom.
We believe this is doable by a large-scale MPC ceremony similar to the powers-of-tau round 1 of
[BGM17] since the CRS includes only monomials in the exponent. It is future work to explore
this direction. Nonetheless we note that this limitation is not inherent. The basic results of the
framework (i.e., Section 3) are general enough to be instantiated in the future with schemes without
trust assumptions. Finally, another future work direction is investigating new and more efficient
proof gadgets CP-SNARKs for specialized relations and test them in specific applications.
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A Security proof of CP-SNARK composition

In this section we provide a proof of Theorem 3.1. We first define relation generators and auxiliary
input generators for this construction.

AuxRG(1λ) :

(R0, aux
(0)
R )← RG0(1λ)

(R1, aux
(1)
R )← RG1(1λ)

return (Rb, aux
(b)
R )b∈{0,1}

RGb(1λ) :

(Rb, aux
(b)
R )b∈{0,1} ← AuxRG(1λ)

aux
(b)
R := (R1−b, (aux

(b)
R )b∈{0,1})

return (Rb, aux
(b)
R )

Z∗((ck, R∧R0,R1
), (ek∗, vk∗), (auxR, aux′R)) :

(aux
(b)
Z )b∈{0,1} ← AuxZ(ck, (crsb, Rb, aux

(b)
R )b∈{0,1})

return (aux
(b)
Z )b∈{0,1}

AuxZ(ck, (crsb, Rb, aux
(b)
R )b∈{0,1}) :

aux
(0)
Z ← Z0(ck, R0, crs0, aux

(0)
R )

aux
(1)
Z ← Z1(ck, R1, crs1, aux

(1)
R )

return (aux
(b)
Z )b∈{0,1}

RG∗(1λ) :

(Rb, aux
(b)
R )b∈{0,1} ← AuxRG(1λ)

return (R∧R0,R1
, (aux

(b)
R )b∈{0,1})

Zb(ck, Rb, crsb, aux
(b)
R ) :

Parse auxR as (R1−b, (aux
(b)
R )b∈{0,1})

crs1−b ← CP1−b.KeyGen(ck, R1−b)

{aux
(b)
Z ← AuxZ(ck, (crsb, Rb, aux

(b)
R )b∈{0,1})}

return aux
(b)
Z := (crs1−b, (aux

(b)
Z )b∈{0,1})

Figure 10: Relation and Auxiliary Input Generators for AND Composition Construction

A.1 Proof of Knowledge Soundness

We state the following lemma.
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Lemma A.1. If Com is computationally binding, and if CPb is KSND(RGb,Zb) (where RGb,Zb
are defined in terms of RGb,Zb in Figure 10) for b ∈ {0, 1}, then the scheme CP∧ in Figure 1 is
KSND(RG∗,Z∗) where RG∗,Z∗ are as defined in Figure 10.

Proof Let A∗ be an adversary against the soundness of CP∧ with respect to RG∗ and Z∗. Now for
b ∈ {0, 1} consider adversary Ab (defined in Figure 11) against CPb with respect to RGb and Zb. By
the fact that CPb is KSND(RGb,Zb) there exists an extractor Eb such that Pr[GameKSNDRGb,Zb,Ab,Eb

= 1]

is negligible.
We define an extractor E∗ for CP∧ in Figure 11, and we claim is such that Pr[GameKSNDRG∗,Z∗,A∗,E∗ = 1].
First observe that with overwhelming probability the values u2 and u′2 in E∗ are equal, conditioned
to the openings being all correct for their respective commitments (i.e., conditioned to VerCommit
returning 1 on each of them). In fact, if it were otherwise, we could then break the binding of Com
(as done in the proof of Theorem B.1).

We now define the following notations:{
GdCom(cb, ub, ob) := Com.VerCommit(ck, cb, ub, ob) = 1

}
b∈{0,1}

GdCom(c2, u2, o2) := Com.VerCommit(ck, c2, u2, o2) = 1

GdCom(c2, u
′
2, o
′
2) := Com.VerCommit(ck, c2, u

′
2, o
′
2) = 1

For b ∈ {0, 1}, by the soundness properties of CPb and the definition of Eb, E∗ we have that pb, as
defined below, is negligible.

pb := Pr[b
(b)
ok ∧ (¬GdCom(cb, ub, ob) ∨ ¬GdCom(c2, u2, o2) ∨Rb(xb, ub, u2, ωb) = 0)]

where all the symbols above are as defined in the construction of E∗. Now we can observe that

Pr[GameKSNDRG∗,Z∗,A∗,E∗ = 1] = . . .

= Pr
[
b
(0)
ok ∧ b

(1)
ok ∧ (¬GdCom(c0, u0, o0) ∨ ¬GdCom(c1, u1, o1) ∨ ¬GdCom(c2, u2, o2)

∨R0(x0, u0, u2;ω0) = 0 ∨R1(x1, u1, u2;ω1) = 0)
]

≤ Pr
[
b
(0)
ok ∧ (¬GdCom(c0, u0, o0) ∨ ¬GdCom(c2, u2, o2) ∨R0(u0, u2, ω0) = 0)

]
+

Pr[b
(1)
ok ∧ (¬GdCom(c1, u1, o1) ∨ ¬GdCom(c2, u

′
2, o
′
2) ∨R1(u1, u

′
2, ω1) = 0)] + negl(λ) ≤ p0 + p1 + negl(λ) ≤ negl(λ)

where in the last two inequalities we used our earlier observations on the openings of u2 and u′2 and p0 and p1
being negligible respectively. �

Ab(ck, (crsb, Rb), aux
(b)
R , aux

(b)
Z ) :

Parse aux
(b)
R as (R1−b, (aux

(b)
R )b∈{0,1})

Parse aux
(b)
Z as (crs1−b, (aux

(b)
Z )b∈{0,1})

(x0, x1, (cj)j∈[:3], π
∗ := (πb)b∈{0,1})

← A∗
(
ck, (crs0, crs1, R

∧
R0,R1

),

(aux
(b)
R )b∈{0,1}, (aux

(b)
Z )b∈{0,1}

)
return (xb, cb, c2, πb)

E∗(ck, ((crsb)b∈{0,1}, R
∧
R0,R1

), aux
(b)
R , aux

(b)
Z ) :

aux
(b)
R := (R1−b, (aux

(b)
R )b∈{0,1}) for b ∈ {0, 1}

aux
(b)
Z := (crs1−b, (aux

(b)
Z )b∈{0,1}) for b ∈ {0, 1}(

(x0, u0, u2), (o0, o2), ω0

)
← E0(ck, (crs0, R0), aux

(0)
R , aux

(0)
Z )(

(x1, u1, u
′
2), (o1, o

′
2), ω1

)
← E1(ck, (crs1, R1), aux

(1)
R , aux

(1)
Z )

return
(
(xb)b∈{0,1}, (uj)j∈[:3], (oj)j∈[:3], (ωb)b∈{0,1}

)
Figure 11: Adversary and Extractor for Proof of Lemma A.1
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A.2 Proof of Zero-Knowledge

We state the following lemma.

Lemma A.2. If CPb is zero-knowledge for Com and RGb for b ∈ {0, 1}, then the scheme CP∧ in
Figure ?? is a zero-knowledge CP-SNARK for Com and RG∗ (where relation generators are defined
in Figure 10).

Proof We construct the following two simulators for RG∗ from simulators for CP0,CP1. Then
ZK follows through a standard hybrid argument.

S∗kg(ck, R∧R0,R1
)

for b ∈ {0, 1} : (crsb, td
(b)
k )← S(b)

kg (ck, Rb)

return (crs∗ := (crsb)b∈{0,1}, td∗k := (td
(b)
k )b∈{0,1})

S∗prv((crsb)b∈{0,1}, (td
(b)
k )b∈{0,1}, (xb)b∈{0,1}, (cj)j∈[:3])

for b ∈ {0, 1} : πb ← S(b)
prv (crsb, td

(b)
k , xb, (cb, c2))

return (πb)b∈{0,1}
�

B Proofs for the General Compiler

Theorem B.1. Let CP.RG be a relation generator such that CP..RGλ ⊆ Rλ, and let CP.Z be
an auxiliary input distribution. Then the scheme CP in Table 2 is KSND(CP.RG,CP.Z) and com-
posable zero-knowledge for CP.RG whenever: (i) ccΠ is ccKSND(ccΠ.RG, ccΠ.Z) and composable
zero-knowledge for ccΠ.RG, (ii) CPlink is KSND(CPlink.RG,CPlink.Z) and composable zero-knowledge
for CPlink.RG, where the relation generators and auxiliary input distributions ccΠ.RG, ccΠ.Z,
CPlink.RG, CPlink.Z are the ones in Figure 12. This result also holds when ccΠ is a cc-SNARK
with weak binding (Definition 3.3).

CPlink.RG(1λ) :

(R, auxR)← CP.RG(1λ)
(ck′, ek′, vk′)← ccΠ.KeyGen(R)

Rlink :=(ck′,Dlink
x ,Dlink

u ,Dlink
ω )

auxlinkR :=
(
ek′, vk′, R, auxR

)
return (Rlink, auxlinkR )

CPlink.Z((ck, Rlink), auxlinkR , crslink) :

Parse auxlinkR as
(
ek′, vk′, R, auxR

)
; Parse crslink as (eklink, vklink)

Get ck′ from Rlink ; ek := (ck′, ek′, eklink) ; vk := (vk′, vklink)

return auxlinkZ ← CP.Z((ck, R), auxR, (ek, vk))

ccΠ.RG(1λ) :

(R, auxR)← CP.RG(1λ)

ck← CP.Setup(1λ)

return (R, aux′R := (ck, auxR))

ccΠ.Z(R, aux′R, crs′) :

Parse crs′ as (ck′, ek′, vk′) and aux′R as (ck, auxR) ; Rlink := (ck′,Dlink
x ,Dlink

u ,Dlink
ω )

(eklink, vklink)← CPlink.KeyGen(ck, Rlink) ; ek := (ck′, ek′, eklink) ; vk := (vk′, vklink)

auxZ ← CP.Z((ck, R), auxR, (ek, vk))

return aux′Z := (eklink, vklink, auxZ)

Figure 12: Relation and Auxiliary Input Generators for Theorem B.1

B.1 Proof of Knowledge Soundness

Proof First, recall that proving the knowledge soundness of a CP-SNARK scheme CP for relation
generator CP.RG means proving the knowledge soundness of CP as a SNARK for the corresponding
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relation generator CP.RGCom that, we recall, honestly generates the commitment key ck← Setup(1λ)
and generates (R, auxR) using CP.RG and outputs ((ck, R), auxR).

Our proof proceeds in the following steps.
First, assume there exists an adversary CP.A against scheme CP that runs in the experiment

GameKSND
CP.RGCom,CP.Z and outputs a tuple (x, (cj)j∈[`], π) such that CP.VerProof(vk, x, (cj)j∈[`], π) = 1.

Then, from such CP.A we can build:

1. an adversary ccΠ.A against ccΠ that runs in the experiment GameccKSNDccΠ.RG,ccΠ.Z (with the relation
and auxiliary input generators ccΠ.RG, ccΠ.Z defined in Fig. 12), and outputs (x, c′, π′);

2. an adversary CPlink.A against CPlink that runs in the experiment GameKSNDCPlink.RGCom,CPlink.Z (with
the relation and auxiliary input generators CPlink.RGCom,CPlink.Z defined in Fig. 12), and that
outputs (c′, (cj)j∈[`], πlink);

The two adversaries ccΠ.A,CPlink.A are defined below. By looking at the way their inputs are sam-
pled in their respective games GameccKSNDccΠ.RG,ccΠ.Z and GameKSNDCPlink.RGCom,CPlink.Z , and how the relation
and auxiliary input generators are defined, the input received by CP.A in both simulations (the one
by ccΠ.A and the one by CPlink.A) is distributed identically as the input CP.A would receive in
GameKSND

CP.RGCom,CP.Z .

ccΠ.A(R, crs′, aux′R, aux′Z) :

Parse aux′R as (ck, auxR) ; aux′Z as (eklink,vklink, auxZ) ; crs′ as (ck′, ek′, vk′)

ek := (ck′, ek′, eklink) ; vk := (vk′, vklink) ;
(
x,(cj)j∈[`], π :=

(
c′, πlink, π′

) )
←CP. A

(
(ck, R),(ek, vk),auxR,auxZ

)
return (x, c′, π′)

CPlink.A((ck,Rlink),crslink,auxlinkR ,auxlinkZ ) :

Parse auxlinkR as
(
ek′, vk′, R, auxR

)
; crslink as (eklink, vklink) ; auxlinkZ as auxZ ; Rlink as (ck′,Dlink

x ,Dlink
u ,Dlink

ω )

ek := (ck′, ek′, eklink) ; vk := (vk′, vklink) ;
(
x, (cj)j∈[`], π :=

(
c′, πlink, π′

) )
← CP. A((ck, R), (ek, vk), auxR, auxZ)

return
(
c′, (cj)j∈[`], π

link)

Second, observe that:

– If ccΠ is ccKSND(ccΠ.RG, ccΠ.Z) then for every ccΠ.A there exists an extractor ccΠ.E that
returns ((u′j)j∈[`], o

′, w′) such that
Pr[GameccKSNDccΠ.RG,ccΠ.Z,ccΠ.A,ccΠ.E = 1] is negligible.

– If CPlink is KSND(CPlink.RGCom,CPlink.Z) then for every
CPlink.A there exists extractor CPlink.E that returns

(
(ulinkj )j∈[`], (o

link
j )j∈[`], ω

link
)
such that the

following probability is negligible
Pr[GameKSNDCPlink.RGCom,CPlink.Z,CPlink.A,CPlink.E = 1].

Hence, let ccΠ.E and CPlink.E be the extractors corresponding to our adversaries ccΠ.A and CPlink.A
respectively. From the existence of the two extractors ccΠ.E and CPlink.E we construct extractor
CP.E as below.
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CP.E((ck, R), (ek, vk), auxR, auxZ) :

Parse ek as (ck′, ek′, eklink) ; vk as (vk′, vklink) ; crs′ := (ck′, ek′ vk′)

aux′R := (ck, auxR) ; aux′Z := (eklink, vklink, auxZ) ;
(
(u′j)j∈[`], o

′, ω′
)
← ccΠ.E(R, crs′, aux′R, aux′Z)

Rlink := (ck′,Dlink
x ,Dlink

u ,Dlink
ω ) ; auxlinkR :=

(
ek′, vk′, R∗, auxR

)
; auxlinkZ := auxZ(

(ulink
j )j∈[`], (o

link
j )j∈[`], ω

link)← CPlink.E((ck, Rlink), crslink, auxlinkR , auxlinkZ )

return
(
(ulink
j )j∈[`], (o

link
j )j∈[`], ω

′)
Combining the steps above, we have shown that for any CP adversary CP.A there exists a

corresponding extractor CP.E . We are left to prove that Pr[GameKSNDCP.RGCom,CP.Z,CP.A,CP.E = 1] = negl.
Recall that the output of CP.A is of the form

(
x, (cj)j∈[`], π

)
with π =

(
c′, πlink, π′

)
, and for CP.E is

of the form
(
(ulinkj )j∈[`], (o

link
j )j∈[`], w

′).
For convenience we use the following shorter notations about “good proofs” and “good commit-

ments”:

GdPf(π′) := ccΠ.VerProof(vk′, x, c′, π′) = 1

GdPf(πlink) := CPlink.VerProof(vklink, c′, (cj)j∈[`], π
link) = 1

GdCom(cj , u
link
j ) := VerCommit(ck, cj , u

link
j , olinkj ) = 1

GdCom′(c′, ulink) := ccΠ.VerCommit(ck′, c′, (ulinkj )j∈[`], ω
link) = 1

GdCom′(c′, u′) := ccΠ.VerCommit(ck′, c′, (u′j)j∈[`], o
′) = 1

Rlink(xlink, ulink, ωlink) := ccΠ.VerCommit(ck′, xlink, (ulinkj )j∈[`], ω
link)

Let us define the following events:

bad :=
( ∨
j∈[`]

¬GdCom(cj , u
link
j ) ∨ ¬R(x, ulink, ω′)

)
bad′ :=

(
¬GdCom′(c′, u′) ∨ ¬R(x, u′, ω′)

)
;

bad◦ :=
( ∨
j∈[`]

¬GdCom(cj , u
link
j )∨¬GdCom(c′, xlink)∨¬Rlink(xlink, ulink, ωlink)

)
By the knowledge soundness of CPlink and ccΠ we have that Pr[GdPf(πlink) ∧ bad◦] = negl(λ) and
Pr[GdPf(π′) ∧ bad′] = negl(λ), and we abbreviate nλ := negl(λ) for convenience. Let us now first
consider the case when cc-SNARK is binding and observe that:

Pr[GameKSNDCP.RGCom,CP.Z,CP.A,CP.E = 1]

= Pr[GdPf(π′) ∧ GdPf(πlink) ∧ bad] (1)

≤ Pr[GdPf(πlink)∧bad◦]+Pr[GdPf(π′)∧bad∧Rlink(c′,ulink,ωlink)
∧
j∈[`]

GdCom(cj ,u
◦
j)] (2)

≤ Pr[GdPf(π′)∧¬R(x, ulink, ω′) ∧Rlink(c′, ulink, ωlink)] + nλ (3)

≤ Pr[GdPf(π′)∧¬R(x, ulink, ω′) ∧Rlink(c′,ulink,ωlink)∧(¬Rlink(c′,u′,o′)∨u′=ulink)] + (4)

Pr[Rlink(c′, ulink, ωlink)∧Rlink(c′, u′, o′) ∧ u′ 6= ulink] + nλ

≤ Pr[GdPf(π′)∧¬R(x, ulink, ω′)∧Rlink(c′,ulink,ωlink)∧(¬Rlink(c′,u′,o′)∨u′=ulink)]+nλ (5)

≤ Pr[GdPf(π′) ∧
(
(¬R(x, u′, ω′) ∧Rlink(c′, u′, ωlink)) ∨

(¬Rlink(c′, u′, o′) ∧ ¬R(x, ulink, ω′) ∧Rlink(c′, ulink, ωlink))
)
] + nλ (6)

≤ Pr[GdPf(π′) ∧
(
¬R(x, u′, ω′) ∨ ¬Rlink(c′, u′, o′)

)
] + nλ (7)

≤ negl(λ) (8)
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Above, (1) follows by spelling out the winning condition of the experiment considering our con-
struction of CP.VerCommit; (2) follows first partitioning over bad◦ and then by observing that
¬bad◦ :=Rlink(c′,ulink,ωlink)

∧
j∈[`] GdCom(cj , u

link
j ); (3) follows by knowledge soundness of CPlink; (4)

follows after partitioning on the event Rlink(c′,u′,o′)∧u′ 6=ulink; (5) is by the binding property of the
commitment of ccΠ;25 (7) holds by using that Pr[((E1∧E′1)∨(E2∧E′2))]≤ Pr(E1 ∨E2)]; finally, (8)
follows by knowledge soundness of ccΠ.

The case of weak binding. Let us now consider the case in which ccΠ has only weak binding. In
this case the commitment returned by ccΠ.Prove refers to the whole witness w = u, which in the
previous proof means that the value ω′ returned by ccΠ.E is empty.

To show that with this change the adversary and extractor still have negligible probability of
making the knowledge soundness experiment output 1, we closely follow the analysis we already
carried out by equations 1 through 8 above. We slightly deviate after (3) and obtain

Pr[GameKSNDCP.RGCom,CP.Z,CP.A,CP.E = 1]

...

≤ Pr[GdPf(π′) ∧ ¬R(x, ulink) ∧Rlink(c′, ulink, ωlink)] + negl(λ) (3)

≤ Pr[GdPf(π′)∧¬R(x, ulink)∧Rlink(c′,ulink,ωlink)∧(¬Rlink(c′,u′,o′)∨u′=ulink)] +
Pr[GdPf(π′)∧¬R(x, ulink)∧Rlink(c′,ulink,ωlink)∧Rlink(c′,u′,o′)∧u′ 6=ulink] + nλ

For the case u′ = ulink we proceed exactly as before. For the case u′ 6= ulink, defining comsOpen :=
Rlink(c′, ulink, ωlink) ∧Rlink(c′, u′, o′), we have

Pr[GdPf(π′)∧¬R(x, ulink)∧comsOpen∧ u′ 6= ulink]

≤ Pr[GdPf(π′)∧¬R(x, ulink)∧comsOpen ∧ u′ 6= ulink∧R(u′, w′)] + nλ

≤ negl(λ)

where the two inequalities follow respectively from knowledge soundness and weak binding of ccΠ.
�

B.2 Proof of Zero-Knowledge

Skg(ck, R)

(crs′, td′k)← S ′kg(R) ; Parse crs′ as (ck′, ek′, vk′)

(crslink, tdlink
k )← S◦kg((ck′,Dlink

u ,Dlink
w ))

return (crs := (crslink, crs′), tdk := (tdlink
k , td′k))

Sprv(crs, tdk, x, (cj)j∈[`])

Parse crs as (crslink, crs′); crs′ as (ck′, ek′, vk′); tdk as (tdlink
k , td′k)

(c′, π′)← S ′prv(crs′, td′k, x) ; πlink ← S◦prv(crslink, tdlink
k , c′, (cj)j∈[`])

return π :=
(
c′, πlink, π′

)
Figure 13: Zero-knowledge simulators for our generic CP.

25 We can do this through an adversary that would first run A and E and then return (c′, (ulink, ωlink), (u′, o′)).
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HSkg(ck, R)

crs′ ← ccΠ.KeyGen(R)

Parse crs′ as (ck′, ek′, vk′)

(crslink, tdlink
k )← S◦kg(ck′,Dlink

x ,Dlink
u ,Dlink

ω )

crs := (crslink, crs′) ; tdk := tdlink
k

return (crs, tdk)

HSprv(crs, tdk, x,w)

Parse x as (x, (cj)j∈[`]) ; crs as (crslink, crs′) ; crs′ as (ck′, ek′, vk′)

Parse w as ((uj)j∈[`], (oj)j∈[`], ω) ; tdk as (tdlink
k , td′k)(

c′, π′, o′
)
←ccΠ.Prove(ek′, x, (uj)j∈[`], ω)

πlink ← S◦prv(crslink, tdlink
k , c′, (cj)j∈[`])

return
(
c′, πlink, π′

)
Figure 14: Hybrids for proof of ZK of Theorem B.1 (differences with original simulators in blue).

Proof Let A be an adversary. Since the scheme CPlink is zero-knowledge there exists a simulator
S◦ = (S◦kg,S◦prv) such that keys and proof indistinguishability hold for A as in Definition 2.2.
Similarly, since the scheme ccΠ is zero-knowledge26 there exists a simulator S ′ = (S ′kg,S ′prv) such
that keys and proof indistinguishability hold for A as in Definition 3.3. In Figure 13 we show
simulators S = (Skg,Sprv) for the CP scheme of Figure 2, and below we argue that keys and proof
indistinguishability hold for such simulators.

Proof Indistinguishability. fixed arbitrary A, x, (cj)j∈[`], (oj)j∈[`], (uj)j∈[`], ω, we define three
hybrids (Figure ??): H0,H1 and Hsim, and claim that H0 ≈ H1 ≈ Hsim, which, by definition of
the hybrids, implies proof indistinguishability. We skip the proof of the claim as it follows from a
standard hybrid argument.

Below we use the same notation as in Definition 3.1: define x := (x, (cj)j∈[`]),w :=
((uj)j∈[`], (oj)j∈[`], ω); the relation R over pairs (x,w) both tests commitment openings and
the underlying relation R. H0 is defined as the probability that an adversary outputs 1 when a
proof is computed through CP.Prove. This is the same as in Definition 2.2 for the case in which
A takes in input an actual proof:

H0 := Pr

[
(R, auxR)← RGCom(1λ) ; (crs, tdk)← Skg(R) ; π ← CP.Prove(crs, x,w)

R(x,w) = 1 ∧ A(crs, auxR, π) = 1
:

]
In H1 we replace the sub-proof πlink for CPlink with its respective simulated version (see Figure
14 for a definition of HSprv):

H1 := Pr

[
(R, auxR)←RGCom(1λ) ; (crs, tdk)← Skg(R) ; π ← HSprv(crs, tdk, x,w)

R(x,w) = 1 ∧ A(crs, auxR, π) = 1
:

]
We define Hsim as the simulated proof output as in the standard zero-knowledge experiment
(Definition 2.2). We point out that the only change from H` consists in replacing the actual
proof for ccΠ with its simulated version:

Hsim := Pr

[
(R, auxR)←RGCom(1λ) ; (crs, tdk)← Skg(R) ; π ← Sprv(crs, tdk, x)

R(x,w) = 1 ∧ A(crs, auxR, π) = 1
:

]

Figure 15: Hybrids for proof indistinguishability of CP.
26 We notice that for this proof we only need the zero-knowledge of ccΠ, and it does not matter if ccΠ has binding

or weak binding.
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Keys indistinguishability: we proceed by a standard hybrid argument. Consider the hybrid
simulator HSkg in Figure 14. By construction of HSkg and the keys indistinguishability for S ′kg,S◦kg
we have that:

Pr
[
(ck, R, auxR)← RGCom(1λ), crs← CP.KeyGen(ck, R) = 1 : A(ck, crs, auxR) = 1]

≈ Pr
[
(ck, R, auxR)← RGCom(1λ), (crs, tdk)← HSkg(ck, R) : A(ck, crs, auxR) = 1

]
≈ Pr

[
(ck, R, auxR)← RGCom(1λ), (crs, tdk)← Skg(ck, R) : A(ck, crs, auxR) = 1

]
�

C Supplementary Results on CPlink

This section contains the security proof and an extension of the CPlink scheme.

C.1 Proof of CPlink Security

The following theorem shows that CPlink is knowledge-sound and zero-knowledge assuming so is ssΠ.

Theorem C.1. Let CPlink.RG be a relation generator and CPlink.Z be an auxiliary input distri-
bution. If ssΠ is KSND(ssΠ.RG, ssΠ.Z) where ssΠ.RG is a relation generator as in Figure 16 and
ssΠ.Z = CPlink.Z,then the CP-SNARK construction CPlink given above is KSND(CPlink.RG,CPlink.Z).
Furthermore, if ssΠ is composable ZK for ssΠ.RG, then CPlink is composable ZK for CPlink.RG.

ssΠ.RG(1λ)→ ([M]1, auxlinkR )

[h]1 ← Ped.Setup(1λ) using distribution D

(Rlink, auxlinkR )← CPlink.RG(1λ)

Define [M]1 from [h]1, R
link

Figure 16: Relation generator on which we base ssΠ security.

Knowledge Soundness. Consider an arbitrary adversary A against CPlink. From A we can con-
struct an adversary A′ against ssΠ as follows.

A′([M]1, crs, auxR, auxZ) :

Extract [f ]1, [h]1 from [M]1 ; ([x]1, π)← A
(
([h]1, R

link), crs, auxR, auxZ
)

; Parse [x]1 as ( (cj)j∈[`], c
′)

return (c′, (cj)j∈[`], π)

E(([h]1, Rlink), crs, auxR, auxZ) :

Compute matrix [M]1 ; w ← ssΠ.E([M]1, crs, auxR, auxZ) ; Parse w as ((oj)j∈[`], o
′, (uj)j∈[`])

return ((uj)j∈[`], (oj)j∈[`], o
′)
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By knowledge soundness of ssΠ, for every such A′ there is an extractor ssΠ.E , that we can use to
build the above extractor E for A. In particular, the knowledge soundness of ssΠ and the definition
of M give us that E ’s output is such that the following probability is negligible:

Pr
(
ssΠ.VerProof(vk, (cj)j∈[`], c

′) = 1 ∧
( ∨
j∈[`]

(
cj 6= (oj ,u

>
j ) · [h[0,nj ]]1

)
∨ c′ 6= (o′,u>1 , . . . ,u

>
` ) · [f ]1

)

Hence we can conclude that Pr[GameKSNDCPlink.RG,CPlink.Z,A,E = 1] = Pr[GdPf ∧ (BadComm∨BadRel)] ≤
negl(λ) using: GdPf := CPlink.VerProof(vk, c′, (cj)j∈[`], π) = 1, BadComm :=

∨
j∈[`] cj 6= (oj ,u

>
j ) ·

[h[0,nj ]]1, BadRel := c′ 6= (o′,u>1 , . . . ,u
>
` ) · [f ]1.

Zero-Knowledge. From the zero-knowledge property of ssΠ we know there exists a simulator
ssΠ.S = (ssΠ.Skg, ssΠ.Sprv) such that keys and proof indistinguishability hold for an arbitraryA as in
Definition 2.2. We now define the following key simulator CPlink.Skg such that CPlink.Skg([h]1, Rlink) :=
ssΠ.Skg([M]1). Keys indistinguishability follows directly from the assumption on ssΠ.Skg. Anal-
ogously, we obtain proof indistinguishability by defining a proof simulator CPlink.Sprv such that
CPlink.Sprv(crs, tdk, c

′, (cj)j∈[`]) := ssΠ.Sprv(crs, tdk, [x]1), with [x]1 = ((cj)j∈[`], c
′).

C.2 An extension of CPlink for Prefixes of a Committed Vector

Fixed a security parameter λ (and the bilinear group setting for λ as well), Rlink
pre is a relation over

(Dx × D1 × · · · × D` × Dω), where Dx = G1, Dω = Znω+1
q and Dj = Znjq for some nj such that

nω +
∑

j nj = m. Rlink
pre is parametrized by a commitment key [f ]1 ∈ Gm+1

1 , and is defined as:

Rlink
pre

(
c′, (uj)j∈[`], (u`+1, o

′)
)
=1 ⇐⇒ c′

?
= (o′,u>1 , . . . ,u

>
`+1) · [f ]1

Similarly to the case of Rlink, this relation can be expressed as a linear subspace relation,
RM([x]1,w), where M,x,w are as follows:

x︷ ︸︸ ︷
c1
...
c`
c′

=

M︷ ︸︸ ︷

h0 0 . . . 0 0 h[1,n1] 0 . . . 0 0

0 h0 . . . 0 0 0 h[1,n2] . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . h0 0 0 0 . . . h[1,n`] 0

0 0 . . . 0 f0 f [1,n1] f [n1+1,n2] . . . f [n`−1+1, f [n`+1,
n`] n`+1]



w︷ ︸︸ ︷

o1
...
o`
o′

u1
...

u`+1


Given the above encoding, it is straightforward to extend our scheme CPlink to support the

relation Rlink
pre instead of Rlink.

D A zkSNARK for Linear Subspaces

Here we recall the QA-NIZK scheme for linear subspaces Π ′as of Kiltz and Wee [KW15], in the
MDDH setting where k = 1.

ssΠ.KeyGen([M]1∈Gl×t
1 ): k←$Zlq, a←$Zq; P := M>k; C :=a · k
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return
(
ek := [P]1 ∈ Gt

1, vk := ([C]2, [a]2) ∈ Gl
2 ×G2

)
ssΠ.Prove(ek, [x]1,w): return [π]1 ← w>[P]1 ∈ G1

ssΠ.VerProof(vk, [x]1, [π]1):] check that [x]>1 · [C]2 = [π]1 · [a]2
ssΠ.Skg(1λ): run as ssΠ.KeyGen and output tdk = k and (ek, vk)

ssΠ.Sprv(tdk, [x]1): return [π]1 ← k>[x]1

In the following theorem we prove the knowledge soundness of the scheme given above. The proof
holds under the discrete logarithm assumption in the algebraic group model of [FKL18]; this can
also be interpreted as a proof in the (bilinear) generic group model. We also note that a similar
proof about the use of this scheme in a non-falsifiable setting [KW15] also appeared in [FLSZ17].

Theorem D.1. Assume that Dmtx is a witness sampleable matrix distribution. Then, under the
discrete logarithm assumption, in the algebraic group model, the QA-NIZK Π ′as in [KW15] (in the
MDDH setting k = 1) is a knowledge-sound SNARK for linear subspace relations with matrices from
Dmtx.

Proof Consider an algebraic adversary A against the knowledge soundness of ssΠ. Its input
consists of the matrix [M]1 and the associated auxiliary input aux, along with the common reference
string [P]1, [C]2, [a]2. Let [z]1 be a vector that contains M and the portion of aux that has elements
from the group G1, and also assume [z] includes [1]1. A returns a pair ([x]1, [π]1) along with
coefficients that “explain” these elements as linear combinations of its input in the group G1. Let
these coefficients be:

[x]1 :=X0 [P]1 +X1 [z]1 =X0 [M>k]1 +X1 [z]1

[π]1 := π
>
0 [P]1 + π

>
1 [z]1 = π

>
0 [M

>k]1 + π
>
1 [z]1

We define the extractor E to be the algorithm that runs the algebraic A and returns w := π0, i.e.,
the coefficients of [π]1 corresponding to P. Next, we have to show that the probability that the
output of (A, E) satisfies verification while x 6= Mw is negligible. In other words, assume that the
output of A is such that:

[x]>1 · [a · k]2 = [π]1 · [a]2 and [x]1 6= [M]1π0

If A returns such a tuple with non-negligible probability, we show how to build an algorithm B that
on input ([k]1, [k]2) outputs nonzero elements A ∈ Zl×lq , b ∈ Zlq, c ∈ Zq such that

k>A k + k>b+ c = 0

Such a B can in turn be reduced to an algorithm B′ that solves discrete log, i.e., on input ([α]1, [α]2)
return α.

Algorithm B([k]1, [k]2) proceeds as follows. First, it usesDmtx to sample ([M]1, aux) along with its
G1 witness (i.e., a vector z of entries in Zq). Second, it samples a←$Zq and runs A([z,P]1, [a, a·k]2)
(notice that A’s input can be efficiently simulated). Third, once received the output of A, B sets
A :=X0 M>, b :=X1z −M π0 and c = −π>1 z. Notice that

k>Ak + k>b+ c = k> X0 M>k + k>X1z − k>M π0 − π>1 z
= k> X0 M>k + k>X1z − π
= k>x− π = 0
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Also, one among A, b and c must be nonzero. Indeed, if they are all zero then X1z −Mπ0 = 0,
that is x = Mπ0, which contradicts our assumption on A’s output.

To finish the proof, we show how the above problem can be reduced to discrete log in asymmetric
groups, i.e., B′ on input ([α]1, [α]2) returns α. B′ samples r, s ∈ Zlq and implicitly sets k := α ·r+s.
It is easy to see that ([k]1, [k]2) can be efficiently simulated with a distribution identical to the
one expected by B. Next, given a solution (A, b, c) such that k>A k + k>b + c = 0 one can find
a′, b′, c′ ∈ Zq such that:

0 = (αr + s)> A (αr + s) + (αr + s)>b+ c

= α2(r>Ar) + α · (r>As+ s>Ar + r>b) + (s>As+ s>b+ c)

= a′α2 + b′α+ c′

In particular, with overwhelming probability (over the choice of s that is information theoretically
hidden from B’s view) c′ 6= 0. From this solution B′ can solve the system and extract α. �

E A Construction of PolyCom and CPpoly from zk-vSQL

We show a pairing-based construction of the commitment PolyCom and CP-SNARK CPpoly that are
“extracted” from the verifiable polynomial delegation scheme of Zhang et al. [ZGK+17b]. Basically,
we separate the algorithms related to committing from the ones related to proving and verifying
evaluations of committed polynomials. Except for that, the only noticeable difference is that in
our case we can prove that cy opens to y = f(x) (with respect to cf which opens to f) for a
given cy instead of one that is freshly generated at proving time. As we show below, this difference
would matter only for zero-knowledge, for which we give a proof a slightly different than the one in
[ZGK+17b].

Setup(1λ): let F be µ-variate polynomials of degree d in each variable. Sample α, β, s1, . . . , sµ+1

←$Zq uniformly at random, compute P = {[
∏
i∈W si, α

∏
i∈W si]1}W∈Wµ,d

, and output ck =
(P, [sµ+1, αsµ+1, βsµ+1]1, [α, β, s1, . . . , sµ+1]2).

ComPoly(ck, f)→ (cf , of ): sample of ←$Zq, compute cf,1 = [f(s1, . . . , sµ) + ofsµ+1]1,
cf,2 = [α(f(s1, . . . , sµ) + ofsµ+1)]1 and output cf = (cf,1, cf,2).

ComVal(ck, y)→ (cy, oy): sample oy←$Zq, compute cy,1 = [y + oysµ+1]1, cy,2 = [β(y + ofsµ+1)]1
and output cy = (cy,1, cy,2).

CheckCom(ck, c): we assume one knows the type for which c was created. If type = pol, output 1 iff
c1 · [α]2 = c2 · [1]2. If type = val, output 1 iff c1 · [β]2 = c2 · [1]2.

VerCommit(ck, c, f, o)→b : output c1
?
= [f(s1, . . . , sµ) + osµ+1]1.

Theorem E.1 ([ZGK+17b]). Under the (µ+ 1)δ–Strong Diffie-Hellman and the (δ, µ)–Extended
Power Knowledge of Exponent assumptions (see [ZGK+17b]), PolyCom is an extractable trapdoor
polynomial commitment.

The proof of the theorem follows from Theorem 1 in [ZGK+17b]. The only property that is not
proved there is the trapdoor property, which is however straightforward to see if one considers a
simulator Sck that sets the values α, β, s1, . . . , sµ+1 as trapdoor.

Next, we show a CP-SNARK for polynomial evaluation relations Rpoly:
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CPpoly.KeyGen(ck): set ek := ck and vk := ([α, β, s1, . . . , sµ+1]2)

CPpoly.Prove(ek,x, f, y, of , oy): sample o1, . . . , oµ←$Zq; find polynomials qi such that f(Z1, . . . , Zµ)+

ofZµ+1 − (y + oyZµ+1) =
µ∑
i=1

(Zi − xi)(qi(Zi, . . . , Zµ) + oiZµ+1) +Xµ+1(of − oy −
µ∑
i=1

oi(Zi − xi).

For i = 1 to µ, compute ci := (ci,1, ci,2) = [qi(s1, . . . , sµ) + oisµ+1, α(qi(s1, . . . , sµ) + oisµ+1)]1,
cµ+1 := (cµ+1,1, cµ+1,2) = [of − oy −

∑µ
i=1 oi(si − xi), α(of − oy −

∑µ
i=1 oi(si − xi))]1. Output

π := (c1, . . . , cµ+1).
CPpoly.VerProof(vk,x, cf , cy, π): parse π := (c1, . . . , cµ+1), output (cf,1 − cy,1) · [1]2 =

cµ+1,1·[sµ+1]2
∑µ

i=1 ci,1·[(si−xi)]2 and CheckCom(vk, cf )∧CheckCom(vk, cy)
∧µ+1
i=1 CheckCom(vk, ci).

Theorem E.2 ([ZGK+17b]). Under the (µ+ 1)δ–Strong Diffie-Hellman and the (δ, µ)–Extended
Power Knowledge of Exponent assumptions (see [ZGK+17b]), CPpoly is a zero-knowledge CP-SNARK
for Rpoly.

Correctness and knowledge soundness are immediate from Theorem 1 in [ZGK+17b]. The only dif-
ference is in the zero-knowledge property. For this, consider the following proof simulator algorithm,
Sprv(td,x, cf , cy): for i = 1 to µ, sample ci,1←$G1 and compute ci,2 = α · ci,1. Next, compute cµ+1,1

such that (cf,1− cy,1) · [1]2 = cµ+1,1 · [sµ+1]2+
∑µ

i=1 ci,1 · [(si−xi)]2 holds and set cµ+1,2 ← β · cµ+1,1.
It is straightforward to check that proofs created by Sprv are identically distributed to the ones
returned by CPpoly.Prove.

F Additional Material on CP-SNARKs for PolyCom

In this section we present more CP-SNARKs for PolyCom.

F.1 Proof of our CPsc

We give a full description of the interactive protocol in Figure 3.
Proof We show the security of our protocol by reducing it to the one of [ZGK+17b, Construction
2]. For this let us recall the following theorem from [ZGK+17b]:

Theorem F.1 ([ZGK+17b, Theorem 2]). For any µ-variate total-degree-d polynomial g : Fµ →
F with m non-zero coefficients, assuming Com is an extractable linearly homomorphic commitment
scheme, and CPeq is a zero-knowledge non-interactive argument for testing equality of commitments
for Com, then there is an interactive argument for the relation

VerCommit(ck, ct, t, ot) = 1 ∧ t =
∑

b∈{0,1}µ
g(b)

Moreover, we recall below the last two steps of Construction 2 in [ZGK+17b] (i.e., Construction
2 is the same as in our Figure 3 with the blue part replaced by the following steps):

1 : Common input: ct, g; P’s input: (t, ot)
2 : P : (c∗µ, o

∗
µ)← ComVal(ck, g(s)) ; π∗ ← CPeq.Prove(ck, (c∗µ, comµ), g(s), (o

∗
µ, ρµ))

3 : P → V : c∗µ, o
∗
µ, π

∗

4 : V : VerCommit(cvk, c∗µ, g(s), o
∗
µ)∧CPeq.VerProof(vk,(c∗µ,comµ), π

∗)
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For knowledge soundness, the idea of the proof is that for any adversary A against CPsc we can
create an adversary B against Construction 2 in [ZGK+17b].

Similarly to [ZGK+17b], we begin by observing that the commitments c1, c2 as well as all the
commitments comaj ’s sent during the µ rounds are extractable. By extractability, for any successful
A there exists an extractor EA that, on the same input of A, outputs with all but negligible prob-
ability valid openings of all these commitments. Thus we define B as the adversary that executes
(A, EA), obtains g1, g2, reconstructs the polynomial g(S), and then keeps executing A until the end
of the protocol, forwarding its messages to its challenger. This is done until the last step where A
sends c′1, c′2, π∗. Notice that B also has the commitments comaj sent by A in step µ as well as their
openings extracted through EA. Thus, B can compute homomorphically the commitment comµ and
its opening.

With this knowledge, B executes the last two lines in Figure 3 (acting as the verifier): if all
verifications pass and B has an opening of comµ to g(s), then it executes the lines 2–4 above and
sends (c∗µ, o∗µ, π∗) to its challenger.

If all verifications pass but B has an opening of comµ to a value different from g(s), then it must
be the case that A cheated in one of the proofs π1, π2, π∗. By the knowledge soundness of CPpoly

and CPprd this however occurs only with negligible probability.
To show zero-knowledge, we build a simulator that can simulate the verifier’s view without

knowing the prover’s input. Our simulator is the same as the one in [ZGK+17b] up to their step
(d). For step (e), we let our simulator additionally create commitments (c′1, c

′
2) to dummy values

and then run the ZK simulators of CPpoly and CPprd to simulate proofs (π1, π2, π∗). By the proof in
[ZGK+17b], the verifier’s transcript except for the last message (c′1, c′2, π1, π2, π∗) is indistinguishable
from an honest one. The indistinguishability with respect to the last message follows immediately
from the zero-knowledge CPpoly and CPprd. �

F.2 Proof of Security of CPhad

Proof Let Ahad be the adversary against CPhad that, on input (ck, eks, ekp) and interacting
with the random oracle H, returns a statement (cj)j∈[:3] and a proof π that verifies correctly. For
any such Ahad we can define a non-interactive adversary A∗had that additionally takes as input a
sequence of random values ri, for i = 1 to Q, such that ri is used to answer the i-th query of Ahad

to the random oracle H. For any Ahad making Q queries to H there exists an index i ∈ [0, Q] such
that the commitments (cj)j∈[:3] returned at the end of its execution were queried to H in the i-th
query (letting i = 0 being the case in which they were not asked at all). From the above adversary
A∗had we can define Acom as the non-uniform adversary that on input (ck, eks, ekp, r1, . . . , ri−1)
runs Ahad (in the same way as A∗had does) up to its i-th query H((cj)j∈[:3]) and returns (cj)j∈[:3].
By the extractability of the commitment, for Acom there exists an extractor Extcom that on the
same input of Acom outputs openings (ũj)j∈[:3], (oj)j∈[:3]. We define the extractor Ehad to be the
one that runs Extcom and returns its output. Notice that by the extractability of PolyCom it holds
VerCommit(ck, cj , ũj , oj) for j = 0, 1, 2 with all but negligible probability.

Next, we need to argue that this adversary-extractor pair (Ahad, Ehad) has negligible probability
of winning in the knowledge soundness experiment. From A∗had we can define two adversaries Ap
and Asc against CPpoly and CPsc respectively, and by using the knowledge soundness of the two CP-
SNARKs we have that for each of these adversaries there is a corresponding extractor that gives us
a value t such that ũ0(r) = t and t =

∑
b∈{0,1}µ ẽq(r, b) · ũ1(b) · ũ2(b) hold respectively with all but

negligible probability. Furthermore, the binding of PolyCom implies that the values and openings
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for all the commitments (cj)j∈[:3], ct obtained using these extractors are all the same with all but
negligible probability (otherwise we could define a reduction against the binding of PolyCom).

Since VerCommit(ck, cj , ũj , oj) for j = 0, 1, 2, the only way for the adversary to win is when
the relation Rhad is not satisfied. Since we have vectors in MLE form, the check of relation Rhad

can be equivalently written as ∀b ∈ {0, 1}µ : ũ0(b)
?
= ũ1(b) · ũ2(b). Let us define the polynomial

ũ∗0(X) =
∑

b∈{0,1}µ ẽq(X, b) · ũ1(b) · ũ2(b); essentially ũ∗0(X) is the MLE of the vector that should
correctly verify the Rhad relation. In particular, by lemma 5.1, ũ∗0(X) agrees with ũ1(X) · ũ2(X)
on all boolean points. Thus, if the relation does not hold we must have ũ∗0(X) 6= ũ0(X). However,
from above we have that ũ0(r) = ũ∗0(r) holds. Notice that from the construction of Ehad, the
polynomials ũ0(X), ũ1(X), ũ2(X) are independent from r (this is because the extractor Ecom that
returned this polynomial did not have r = ri among its inputs), and ũ∗0(X) is fully determined from
ũ1(X), ũ2(X). Therefore, by the Schwartz-Zippel lemma, the event ũ∗0(X) 6= ũ0(X)∧ũ0(r) = ũ∗0(r)
occurs with negligible probability over the random choice of r.

The zero-knowledge of CPhad relies on the hiding of PolyCom and the zero-knowledge of CPpoly

and CPsc. Building simulators Skg and Sprv for CPhad from the corresponding simulators for CPpoly

and CPsc is fairly straightforward and is omitted here. �

F.3 Proof of CPsfprm

Proof Let Asfprm be the adversary against CPsfprm that, on input (ck, ekp) and interacting with
the random oracle H, returns a statement (φ, x, (cj)j∈[`]) and a proof π that verifies correctly. For
any such Asfprm we can define a non-interactive adversary A∗sfprm that additionally takes as input
a sequence of random values (ri, si), for i = 1 to Q, such that (ri, si) are used to answer the i-th
query of Asfprm to the random oracle H. For any Asfprm making Q queries to H there exists an index
i ∈ [0, Q] such that for the relation statement (φ, x, (cj)j∈[`]) returned at the end of its execution,
((cφ,j)j∈[0,`],x, (cj)j∈[`]) was queried to H in the i-th query (letting i = 0 being the case in which
they were not asked at all, and cφ,j be deterministically derived from φ). From the above adversary
A∗sfprm we can define Acom as the non-uniform adversary that on input (ck, ekp, r1, s1, . . . , ri−1, si−1)
runs Asfprm (in the same way as A∗sfprm does) up to its i-th query H((cφ,j)j∈[0,`],x, (cj)j∈[`]) and
returns (cj)j∈[`]. By the extractability of the commitment, for Acom there exists an extractor Ecom
that on the same input of Acom outputs openings (ũj)j∈[`], (oj)j∈[`]. We define the extractor Esfprm
to be the one that runs Ecom and returns its output. Notice that by the extractability of PolyCom
it holds VerCommit(ck, cj , ũj , oj) for j = 0, 1, 2 with all but negligible probability.

Next, we need to argue that this adversary-extractor pair (Asfprm, Esfprm) has negligible probabil-
ity of winning in the knowledge soundness experiment. Recall that we have VerCommit(ck, cj , ũj , oj)
for j ∈ [`] and, by the linear homomorphic property of PolyCom, for all j ∈ [0, `], c′j and c′′j are
commitments to the MLE of y′j := yj + r · vj − s · 1j and y′′j := yj + r · φj − s · 1j respectively.
Also, in order for the adversary to be successful it must be the case that the relation does not hold,
i.e., y is not a self-permutation according to φ. Notice that the vector y is independent of (r, s)
since it was returned by Ecom without having these values in its view. This allows us to argue that
with overwhelming probability over the choice of r it is the case that at least one of the entries
of y + r · φ is not in y + r · v. Moreover, when these vectors have different entries the equation∏
i(yi + r · i− s) =

∏
i(yi + r · φ(i)− s) holds with negligible probability over the choice of s by the

Schwartz-Zippel lemma.
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Hence we have that with all but negligible probability
∏
i(yi + r · i− s) 6=

∏
i(yi + r · φ(i)− s),

which means that at one of the statements in the CPipd, CPprd or CPeq proofs is not correct. We
can reduce these cases to the knowledge soundness of CPipd, CPprd or CPeq using a fairly standard
reduction, in which from an adversary A∗sfprm that falls into the above conditions (i.e., an (r, s) that
cause the above inequality) we build either an adversary Aipd against CPipd, or an adversary Aprd

against CPprd or an Aeq against CPeq.
The zero-knowledge of CPsfprm follows from the hiding of PolyCom (for creating dummy com-

mitments (cz′j , cz′′j )j∈[0...`]) and the zero-knowledge of all the underlying CP-SNARKs. �

F.4 Proof of CPlin

Proof Let Alin be the adversary against CPlin that, on input (ck, eks, ekp) and interacting with
the random oracles H1, H2, returns a statement (F ,x, cu) and a proof π that verifies correctly.
For any such Alin we can define a non-interactive adversary A∗lin that additionally takes as input
a sequence of random values {ri}i, {σj}j , for i = 1 to Q1 and j = 1 to Q2, such that ri (resp.
σj) is used to answer the i-th (resp. j-th) query of Alin to the random oracle H1 (resp. H2). For
any Alin making Q1 queries to H1 there exists an index i ∈ [0, Q1] such that for the statement
(F ,x, cu) returned at the end of its execution the i-th query to H1 (letting i = 0 being the case in
which they were not asked at all) is (cF ,x, cu). From the above adversary A∗lin we can define Acom
as the non-uniform adversary that on input (ck, eks, r1, . . . , ri−1) runs Alin (in the same way as A∗lin
does) up to its i-th query H(cF ,x, cu) and returns cu. By the extractability of the commitment, for
Acom there exists an extractor Ecom that on the same input of Acom outputs an opening ũ, ou. We
define the extractor Elin to be the one that runs Extcom and returns its output. Notice that by the
extractability of PolyCom it holds VerCommit(ck, cu, ũ, ou) with all but negligible probability.

Next, we need to argue that this adversary-extractor pair (Alin, Elin) has negligible probability
of winning in the knowledge soundness experiment. In a similar way as we argued extractability of
cu, we can show that it is possible to extract the polynomial g1 that correctly opens c1.

Recall that the adversary is successful if the verifications pass and the relation does not hold,
i.e., F · u 6= x. Considering MLEs, this means there is some a ∈ {0, 1}ν such that

x̃(a) 6=
∑

b∈{0,1}µ
F̃ (a, b)ũ(b).

This means that the following polynomial inequality holds:

x̃(R) 6=
∑

b∈{0,1}µ
F̃ (R, b) · ũ(b)

First, we argue that with all but negligible probability over the choice of r we have t = x̃(r) 6=∑
b∈{0,1}µ F̃ (r, b)ũ(b). Indeed, r is random and independent from x, F̃ , ũ and the two polynomials

would be equal when evaluated on r with probability at most ν/|F| by Schwartz-Zippel. Thus we
can continue the proof assuming that t 6=

∑
b∈{0,1}µ F̃ (r, b) · ũ(b).

Next, consider that for the extracted g1 there are two possible cases: (i) g1(S) = F̃ (r,S), and
(ii) g1(S) 6= F̃ (r,S).

If (i) occurs, then we can immediately build an adversary against the soundness of CPsc.
If (ii) occurs, consider two subcases: (ii.a) g1(σ) = F̃ (r,σ), and (ii.b) g1(σ) 6= F̃ (r,σ). However,

by Schwartz-Zippel (ii.a) occurs with negligible probability µ/|F| over the choice of σ. And if (ii.b)
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occurs then it is possible to do a reduction to the soundness of CPpoly (since at least one of the
claims y∗ = g1(σ) or y∗ = F̃ (r,σ) is false).

The zero-knowledge of CPlin follows immediate from the zero-knowledge of CPsc. �

F.5 A CP-SNARK for Data-Parallel Computations

In this section we discuss how a CP-SNARK for relations Rpar and Rparjnt, and for the commitment
scheme PolyCom of [ZGK+17b] can be obtained by merging ideas from [ZGK+17b] and [WTS+18].
Such a merge of techniques was hinted possible in [WTS+18]. Here we give more details on how
such a scheme looks like. The main motivation of studying such a scheme is that the commitment
part of the proof (and similarly a factor of the verification time) is O(log |w|), instead of O(

√
|w|).

An Abstract Version of Hyrax. Hyrax [WTS+18] is a zero-knowledge proof, based on discrete
log in the random oracle model that is based on the CMT protocol [CMT12]. Hyrax extends CMT,
which is particularly suited for circuits composed of parallel identical basic blocks, by supporting
non-determinism in zero-knowledge, as well as including other optimizations. Its basic structure
as an interactive protocol: (i) the prover creates a commitment cw to the witness w (a vector of
field elements); (ii) the parties run a ZK variant of CMT (including optimizations from Giraffe++
[WJB+17]); (iii) the prover “links” together the outputs of steps (i) and (ii). For this, it must prove
that the MLE w̃ of the witness in cw evaluated on a random point qd is equal to another value y
committed in ζ.

In Figure 17 we formalize this structure via a generic use of a commitment scheme for polynomials
and a proof system for proving the correct evaluations of committed polynomials. For these two tools
we use the syntax formalized in Appendix F. We call this scheme Hyrax-Abstract. It is clear from the
security proof of [WTS+18] that one could rephrase their security statement so that Hyrax-Abstract
has witness extended emulation if PolyCom is an extractable commitment and CPpoly is a NIZK
argument of knowledge for polynomial evaluations.

Instantiating Hyrax-Abstract with PolyCom. We call Hyrax−PolyCom the instantiation of Hyrax-
Abstract with the PolyCom commitment and CPpoly argument from [ZGK+17b] as described in
Appendix E. This is essentially the only difference with the original Hyrax scheme that uses (an
extension of) a matrix commitment of size O(|w|1/l) and Bulletproof for proving polynomial eval-
uations with O(|w|(l−1)/l) verification time. In HyrPoly there is instead a succinct commitment (of
constant size) and a verification time, in step (iii), of O(log(|w|)).

Using HyrPoly for Data-Parallel Computations. Hyrax, and in particular its Gir++ core
protocol, is designed to work on arithmetic circuits of fan-in two, consisting of N identical sub-
computations, each having d layers and width at most G. For this class of circuits, consider-
ing Hyrax’s cost analysis combined with the costs of PolyCom commitment and CPpoly, we have
that in HyrPoly: the verifier runs in time O(|x| + |y| + dG + λd log(NG)) and proofs have length
O(λd log(NG)).

It is easy to see that the relation Rpar((uj)j∈[N ]) :=
∧N
j=1R

′(uj) can be modeled with an arith-
metic circuit C consisting of N copies of a circuit C ′ that outputs 0 on uj iff R′(uj) holds.

If we instead consider a parallel relation with joint inputs, i.e., Rparjnt(u) :=
∧N
j=1R

′(u′j) where
each u′j is a subset of the entries of u, a corresponding circuit can be built by taking the parallel
C as for Rpar, and by adding one layer – called redistribution layer (RDL) in [WTS+18] – that
appropriately duplicates and redistributes wires from the input layer to the input wires of each C ′
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Hyrax-Abstract.Setup(1λ)→ ck :

ck← PolyCom.Setup(1λ)

Hyrax-Abstract.KeyGen(ck)→ (ek, vk) :

(ek, vk)← CPpoly.KeyGen(ck)

Hyrax-Abstract.Prove(ek, u)→ π :

(cũ, oũ)← ComPoly(ck, ũ)

(πcore, qd, ζ)← ZK-Gir++CoreP(ek, u)

y ← ũ(qd); (cy, oy)← ComVal(ck, y)

πeval ← CPpoly.Prove(ek, qd, (cũ, cy), (ũ, y), (oũ, oy))

πeq ← NIPoK-EqP(cy, ζ)

π ←
(
cũ, πcore, cy, πeval, πeq

)

Hyrax-Abstract.VerProof
(
vk, cũ, πcore, cy, πeval, πeq

)
:

(qd, ζ)← ZK-Gir++CoreV(vk, πcore)

Run and test CheckCom(vk, cũ) and CheckCom(vk, cy)

Run and test CPpoly.VerProof(vk, qd, cũ, cy, πeval)

Run and test NIPoK-EqV(πeq, cy, ζ)

Accept if all tests above pass

Figure 17: Pseudocode for Hyrax-Abstract.

copy. In the case of using an RDL, the verifier of Hyrax, and also in our HyrPoly scheme, incurs an
additional overhead in running time of the verifier O(|x|+ |u|+NG). Essentially, for this break of
parallelism the verifier must pay a cost in the total width of the circuit.

For the sake of our experiments, we call HyrPoly-Par the HyrPoly scheme executed on fully
parallel circuits (no RDL), and we call HyrPoly-RDL the version of Hyrax− PolyCom executed with
circuits with an RDL.

G A CP-SNARK for Internal Products from Thaler’s Protocol

In this section we show how to modify the zk-vSQL protocol of [ZGK+17b] with a special class of
circuits that simply consist of a tree of multiplications. The basic idea is to replace the CMT protocol
over homomorphic commitment schemes proposed in [ZGK+17b] with an analogous version of the
protocol proposed by Thaler [Tha13] for the specific case of trees of multiplications. The advantage
of this encoding is to bring the prover runtime linear in the number of gates in the circuit.

We first explain some preliminaries and then present this construction.

G.1 CMT Protocol

The CMT protocol [CMT12] is a variant of the GKR protocol [GKR08] where the prover runs in
time O(S logS), where S is the size of the circuit. This protocol provides a proof that an element
is the output of a circuit evaluated over a certain input. That is y = C(x), where C is a circuit of
depth d, x are the wires of layer d and y is claimed to be the output wire of the first layer 0. In
short, the prover reduces recursively a claim on layer i to another claim on layer (i + 1), until he
obtains a publicly verifiable claim on the input. In order to do that, both prover and verifier engage
in a sum-check protocol for each layer, using one polynomial representing the values of the wires in
layer i. Its multilinear extension links layer i (of size si) to layer (i+ 1) by a summation of wiring
predicates as follows

Ṽi(q) =
∑

b∈{0,1}si
l,r∈{0,1}si+1

g(i)q (b, r, l) :=
∑

b∈{0,1}si
l,r∈{0,1}si+1

β̃i(q, b) ·
(
ãddi+1(l, r, b)·(Ṽi+1(l) + Ṽi+1(r)) + m̃uli+1(l, r, b)·Ṽi+1(l)·Ṽi+1(r)

)
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where Ṽi returns the value of one gate, β̃i(q, b) = q
?
= b is a selector function, and õpni(l, r, b) checks

whether the value of gate b at layer i is the result of an opn ∈ {add,mul} addition or multiplication
gate with l and r being its left and right inputs in the (i+ 1)-th layer.

The standard version of the protocol suggests that for each layer of the circuit the verifier has
to check two claims. This results in O(2d) calls to the sum-check protocol. However, an ingenious
technique shows how to use a single claim per layer using a line through both values. Then the
verifier chooses one random point on which they perform a single sum-check invocation per layer,
resulting in O(d) calls.

G.2 Thaler’s Protocol for Trees of Multiplications

In [Tha13], Thaler proposes another variation of the CMT/GKR protocol [GKR08, CMT12] for some
specific classes of circuits, allowing for a logarithmic factor reduction in the prover’s runtime. One of
his protocols takes advantage of circuits where all gates perform the same operation, and whose wires
are settled in a binary tree structure. He denotes these regular circuits by trees of multiplications
or additions. This section only shows the notation of the former one due to its suitability for our
construction of CPsfprm. Nonetheless, moving to the addition case is straightforward.

The main difference that will be discussed here is a different polynomial for sum-check, as well
as the notation of the wiring predicates. Thaler’s protocol assumes highly structured wiring in order
to reduce the number of arguments of the predicates. Namely, given a gate at layer i with label
b ∈ {0, 1}si , we assume its value is the result of a multiplication of gates of layer (i+1) with labels
(b|0) ∈ {0, 1}si+1 and (b|1) ∈ {0, 1}si+1. This means, the number of inputs to the circuit is a power
of two and each layer has half the size of its preceding one. On this basis, the resulting polynomial
of each layer is much simpler as shown below:

Ṽi(q) =
∑

b∈{0,1}si
g
(i)
q (b) =

∑
b∈{0,1}si

β̃i(q, b) · Ṽi+1(b|0) · Ṽi+1(b|1)

This tweak, together with a series of precomputations of β̃i(q, b) and Ṽi+1(b) values allows to obtain
a linear-time prover.

G.3 Adapting zk-vSQL to Thaler’s Protocol

Here we show how to change the CMT protocol over homomorphic commitments in [ZGK+17b,
Construction 3] in order to work with circuits that are a tree of multiplication gates using Thaler’s
representation [Tha13] to achieve faster prover runtime. From the point of view of security, this
modification of [ZGK+17b, Construction 3] does not require any significant change; essentially a
proof would be a rewrite of the one in [ZGK+17b]. The precise description of the protocol is however
interesting and therefore we give it for completeness in Figure 18.

Let C : Fm → F be a depth-d binary tree of multiplications such that C(y) = z represents the
operation z =

∏m
i=1 yi where m is a power of two, and let ck ← Setup(1λ) be a commitment key

of a linearly homomorphic commitment scheme. The protocol in Figure 18 allows a prover P to
convince a verifier V that C(y) = z with respect to y and z committed in {cyj}j∈{1...m} and cz.

As in [ZGK+17b], let CPeq (resp. CPprd) be a zero-knowledge argument of knowledge for testing
equality of two committed values (resp. the product relation between three commitments).

A Succinct Zero Knowledge Argument for Rprd. In Figure 19 we give the succinct version of
the protocol TTMCom presented in Figure 18. The protocol is almost identical to Construction 4 in
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TTMCom :

1 : Common input: cvk ; r0 = 0 ; c0 := cz ; (cyj )j∈{1...m}

2 : P input: ck ; t0 := z ; o0 := oz ; y ; (oyj )j∈{1...m}

3 : for i = 0 . . . d− 1 :

4 : Run Step 1 of Construction 2 [ZGK+17b] (sum-check over homomorphic commitments)

5 : on the claim ti = Vi(ri) =
∑

b∈{0,1}si
g(i)ri (b)

6 : At the end of Step 1, P and V hold r′i ∈ Fsi and commitment c′i to t
′
i = g(i)ri (r

′
i)

7 : P : Claims that VerCommit(cvk, c′i, t
′
i, o
′
i) = 1

8 : P : (cR, oR)← ComVal
(
ck, vR := Ṽi+1(r

′
i|0)
)

; (cL, oL)← ComVal
(
ck, vL := Ṽi+1(r

′
i|1)
)

9 : P : (c∗, o∗)← ComVal
(
ck, v∗ := vL · vR

)
10 : P → V : cR, cL, c

∗

11 : P and V run CPprd

(
ck, (cL, cR, c

∗); ((vL, vR, v
∗), (oL, oR, o

∗))
)

12 : P : (c∗i , o
∗
i )← HomEval(cvk, β̃i(ri, r

′
i), c

∗, o∗)

13 : V : (c∗i , ·)← HomEval(cvk, β̃i(ri, r
′
i), c

∗, ·)
14 : P and V run CPeq

(
ck, (c′i, c

∗
i ); (t

′
i, (o

′
i, o
∗
i ))
)

15 : P : Computes {(c`j , o`j )← ComVal(ck, `j)}
si+1

j=0 where `(ρ) = Ṽi+1(r
′
i|ρ) for ρ ∈ F and {`j}

si+1

j=0 its coefficients

16 : P → V : {c`j}j∈{0...si+1}

17 : P : c`(0) ← c`0 ; (c`(1), o`(1))← HomEval(cvk, (1, . . . , 1), {c`j , o`j}j∈[0,si+1])

18 : V : c`(0) ← c`0 ; (c`(1), ·)← HomEval(cvk, (1, . . . , 1), {c`j}
si+1

j=0 , ·)
19 : P and V run CPeq

(
ck, (cR, c`(0)); (vR, oR, o`0)

)
; CPeq

(
ck, (cL, c`(1)); (vL, oL, o`(1))

)
20 : V → P : r′′i ←$F and define ri+1 ← (r′i|r′′i )
21 : V : (ci+1, ·)←HomEval

(
ck, (1, r′′i , ..., r

′′
i
si+1), {c`j}j∈[0,si+1], ·

)
22 : P : ri+1 ← (r′i|r′′i ) ; ti+1 ← Ṽi+1(ri+1) ; (ci+1,oi+1)←HomEval

(
ck,(1, r′′i , ..., r

′′
i
si+1),{c`j , o`j}j∈[0,si+1]

)
23 : endfor

24 : P → V : y ; (oyj )j∈{1...m} ; o0

25 : V : {VerCommit(cvk, cyj , yj , oyj )}
m
j=1 ; VerCommit(cvk, c0, t0, o0)

26 : V : (c∗y, o
∗
y)← ComVal(ck, Ṽy(rd)) where MLE(Vy(j) = yj) = Ṽy

27 : V → P : o∗y

28 : P and V run CPeq

(
ck, (c∗y, cd); (Ṽy(rd), o

∗
y, od)

)
Figure 18: Thaler’s tree of multiplications over homomorphic commitment schemes. Main differences
from [ZGK+17b, Construction 3] in blue

[ZGK+17b] except for a few simplifications due to the fact that in our case the input and output of
the circuit are assumed to be already committed and these commitments are known to the verifier,
and that all the input is committed (i.e., there is no public input). Basically, the idea is that prover
and verifier run the TTMCom protocol until they get to the end of the last round (line 23). Then
the last lines of TTMCom, in which the prover opens the commitments to input and output and
the verifier gets convinced that cd opens to ỹ(rd), are replaced with a step that does the same:
the prover uses CPpoly to prove that cd opens to ỹ(rd) with respect to the commitment cy. For the
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SuccinctZK− TTM :

Preprocessing: generate the commitment key

(ck, cvk)← PolyCom.Setup(1λ) for m-variate multilinear polynomials.
(ek, vk)← CPpoly.Setup(ck)

Evaluation: on common input (cy, cz) ; P input (z, ỹ, oy)
V : CheckCom(vk, cy) ∧ CheckCom(vk, cz)

P,V : Execute TTMCom until line 23 :

Both hold rd, cd;P holds an opening od of Ṽd(rd) = ỹ(rd)

P → V : πy ← CPpoly.Prove(ek, rd, (cy,cd), (ỹ,ỹ(rd)), (oy,od))

V : CPpoly.VerProof(vk, rd, cṼd , cd, πd)

Figure 19: Succinct zero-knowledge argument for TTMCom

polynomial commitments and the proof system for their evaluations we use our notation of Section
F.

Efficiency. Our CPipd is a succinct zero-knowledge argument for Rprd that uses a variant of
Thaler’s protocol for trees of multiplications [Tha13] over homomorphic commitment schemes
[ZGK+17b, Construction 4]. Here, we compute a proof of the product of the elements of a vec-
tor y ∈ Fm where m = 2µ. This is encoded as a depth−µ circuit C of size S = (m − 1) with m
inputs and 1 output element. By the regularity of the circuit, here the number of gates of each layer
is double the size of the previous one Si = 2Si−1, meaning that logSi+1 = si+1 = si + 1 where si is
the number of variables of the target polynomial at layer i. Since the polynomial used inside CPsc

is a product of three polynomials, each of its si variables will be at most degree 3. Considering that
the output layer has an only gate, then the sum for the whole circuit of the number of variables
of all target polynomials can be computed as

∑µ−1
i=0 si =

∑µ−1
i=0 i =

µ2−µ
2 . The SuccinctZK− TTM

construction shows that the proof consists of (µ
2−µ
2 + 3µ) CPeq proofs, µ CPprd proofs, 1 CPpoly

proofs and 5µ2−µ
2 commitments. The prover requires linear time in the circuit size and the verifier

runs in quadratic time in the circuit depth. Its crs has length (2 · 2µ + 3)G1 + (µ+ 3)G2. We refer
the reader to Table 2 for a summary.

H Commit and Prove SNARKs from existing schemes

In this section we give details supporting our claims of Section 3.4.

Background on Quadratic Arithmetic Programs. Since several of the SNARKs considered in
this section rely on quadratic arithmetic programs [GGPR13] here we recall this notion.

Definition H.1 (QAP [GGPR13]). A Quadratic Arithmetic Program (QAP) Q = (A,B, C, t(Z))
of sizem and degree d over a finite field F is defined by three sets of polynomials A := {ai(Z)}mi=0,B :=
{bi(Z)}mi=0, C := {ci(Z)}mi=0 of degree ≤ d − 1, and a target degree-d polynomial t(Z). Given Q we
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define a relation RQ over pairs (x,w) ∈ Fn × Fm−n that holds iff there exists a polynomial h(X)
(of degree at most d− 2) such that:(

m∑
k=0

yk · ak(Z)

)
·

(
m∑
k=0

yk · bk(Z)

)
=

(
m∑
k=0

yk · ck(Z)

)
+ h(Z)t(Z) (9)

where y0 = 1, yk = xk for all k = 1 to n, and yk = wk−n for k = n+ 1 to m.

H.1 “Adaptive Pinocchio” [Vee17]

The Adaptive Pinocchio scheme proposed in [Vee17] yields a CP-SNARK for QAP relationsRQ(x,u,ω).
First, note that [Vee17] already presents the scheme as a commit-and-prove SNARK for QAP re-
lations RQ(u1, . . . ,u`,ω), and for an extractable trapdoor commitment scheme, which is the one
proposed by Groth in [Gro10]. Second, observe that the commitment key consists of two vectors
S := [1, s, s2, . . . , sd]1, S′ := [α, αs, αs2, . . . , αsd]2, for random s, α←$Zq, and the commitment to
uj is a pair (C,C ′) = (r,u>j ) · (S,S′). To see how this implies a CP-SNARK for RQ(x,u, ω), con-
sider ` = 2 so that the first input u1 is used for the public input x (the corresponding commitment
can be a dummy one) and the second one for the actual committed value u. Also, to fit our syntax
let C be the actual commitment whereas C ′ is part of the proof.

H.2 Lipmaa’s Hadamard Product Argument [Lip16]

The product argument proposed by Lipmaa in [Lip16] is a commit-and-prove SNARK for the
Hadamard product relation Rhad(a, b, c). In this case the commitment key ck are two vectors
S := [Z(χ), `1(χ), . . . , `m(χ)]

>
1 and S′ := [γZ(χ), γ`1(χ), . . . , γ`m(χ)]

>
2 , for random χ, γ←$Zq,

where, for m a power of two and ω the m-th root of unity modulo q, Z(X) =
∏m
i=1(X − ωi−1)

and `i(X) is the i-th Lagrange basis polynomial (such distribution of ck guarantees binding under
the m-PDL assumption [Lip12, Lip16]). A commitment to a is a pair (A1, A2) = (ra,a

>) · (S,S′)
(and similarly to b, c). As in the previous section, to fit our CP-SNARK syntax we can think of
A1, B1, C1 as the actual commitments and let their “knowledge components” as part of the proof.

H.3 zk-vSQL [ZGK+17b]

The zk-vSQL protocol [ZGK+17b] is a CP-SNARK for relations R((uj)j∈[`])27 where R is an arith-
metic circuit (that we assume to output some constant, e.g., 0, on acceptance), and for the com-
mitment scheme PolyCom introduced in [ZGK+17b] and recalled in Appendix E.28 The commit
and prove capability is immediate by the construction and security of [ZGK+17b]. In what follows
we observe that their commitments can also be seen as a variant of extended Pedersen commit-
ment. This observation is crucial to see that we can apply our lifting transformation using our
CPlink scheme to zk-vSQL. Let us recall that for an input u ∈ Zmq (for some m = 2µ), its commit-
ment is ComPoly(ck, ũ) where ũ is the multilinear extension of u (cf. Section 5.1 about multilinear
extensions). In particular, such MLE is the following µ-variate multilinear polynomial:

27 Precisely, although the scheme in [ZGK+17b] is described with a single u, the same technique used in its predecessor
[ZGK+17a] trivially allows to let it work with multiple commitments.

28 Here we are considering the non-interactive version in the random oracle model obtained after applying the Fiat-
Shamir transform.
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ũ(X1, . . . , Xµ) =

m−1∑
i=0

χi(X1, . . . , Xµ) · ui+1

Since c returned by ComPoly(ck, ũ, ρ) is defined as [ũ(s1, . . . , sµ)+ρsµ+1]1 and the common reference
string includes the monomials [

∏
j∈W sj ]1 for all possible subsets of indices W needed to evaluate

such a ũ, c can also be seen as a Pedersen commitment c = (ρ, u>) · [sµ+1, χ0(s1, . . . , sµ), . . . ,
χm−1(s1, . . . , sµ)]

>
1 = (ρ, u>)·ck, where the elements [χi(s1, . . . , sµ)]1 can be publicly computed from

the existing key. Note that this commitment is binding. This can be seen via a simple reduction
to the soundness of the polynomial delegation protocol in [ZGK+17b]. The idea is that from an
adversary that opens the commitment to two different polynomials ũ1, ũ2 one can sample a random
t such that with overwhelming probability y1 = ũ1(t) 6= ũ2(t) = y2, honestly compute a proof for
the evaluation of y1 = ũ1(t) and then claim this is an evaluation for ũ2(t).

H.4 Geppetto [CFH+15]

The Geppetto scheme [CFH+15] yields a cc-SNARK for QAP relations RQ(x,w) where x ∈ Znq
and w = (u,ω) with u ∈ Zn′q ,ω ∈ Zm−n−n′q for some integers n, n′. We recall that Geppetto is
a SNARK for MultiQAP relations. A polynomial MultiQAP is a tupleMQ = (`,J ,A,B, C, t(Z))
such that (A,B, C, t(Z)) is a QAP, and J = {I0, . . . , I`−1} is a partition of [m]. Let RMQ denote
the relation corresponding to MQ. To model RQ(x,u,ω) we consider a MultiQAP where ` = 3
and where the partition J consists of I0 = [n], I1 = {n+1, . . . , n+n′} and I2 = {n+n′+1, . . . ,m}
such that I0 and I1 are in the binding subset S.

To see how Geppetto yields a cc-SNARK for such family of relations, we consider the following
straightforward modification:

ccGep.KeyGen(RQ)→ (ck, ek, vk): run (EK,V K) ← Geppetto.KeyGen(RMQ); set ek = EK,
vk = V K and let ck be subset of EK consisting of [ryt(s), rccn+1(s), . . . , rccn+n′(s)]

>
1 ∈ Gn′+1

1 .

ccGep.VerCommit(ck, c,u, o)→ b: output 1 iff (o,u>) · ck = c.

ccGep.Prove(ek,x,u,ω)→ (c, π; o):
Compute commitments:
C0 ← Geppetto.Commit(EK0,x, 0),29 C1 ← Geppetto.Commit(EK1,u, o1), C2 ← Geppetto.Commit(EK2,ω, o2)
Compute the proof π′ ← Geppetto.Prove(EK, (x,u,ω), (0, o1, o2)).
Parse C1 as (C1,1, C1,α, C1,β) ∈ G3

1.
Output c = C1,1, π = (C1,α, C1,β , C2, π

′), and o = o1.

ccΠ.VerProof(vk,x, c, π)→ b: recompute C0 ← Geppetto.Commit(EK0,x, 0); reconstruct C1 ←
(c, C1,α, C1,β); check Geppetto.Verify(V Kj , Cj)j=1,2; check Geppetto.Verify(V K,C0, C1, C2, π

′).

We claim that assuming Geppetto is a commit-and-prove SNARK for MultiQAPs (according to the
commit-and-prove definition in [CFH+15]), then the scheme ccGep described above is a cc-SNARK
for QAP relations RQ(x,u,ω).

The correctness of ccGep immediately follows from the one of Geppetto, and the same holds for
knowledge soundness. Indeed, notice that the knowledge soundness satisfied by Geppetto provides
extractability of the commitment’s openings. The perfect zero-knowledge of ccGep follow from the
zero-knowledge of Geppetto and the perfect hiding of its commitments. Finally, we observe that by
29 Setting randomness 0 here is essentially a trick to let this commitment correspond to the public input of the

relation.
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Def. 10 in [CFH+15] the polynomials {ck(x)}k∈I1 are linearly independent; thus for a random s, the
vector [rct(s), rccn+1(s) , . . . , rccn+n′(s)]1 defines a Pedersen commitment key whose distribution
guarantees the binding property under the d-SDH assumption.

H.5 cc-SNARKs based on Groth’s SNARK

In this section we show that the SNARK of [Gro16] is a weak cc-SNARK, and then that it can be
modified to obtain an efficient cc-SNARK (with binding commitments). Below we start by giving a
background on non-interative linear proofs, that are instrumental for presenting the scheme.

Split Non-Interactive Linear Proofs of Degree 2. This notion, dubbed NILP for brevity, was
introduced by Groth [Gro16] as a refinement of the linear interactive proofs defined in [BCI+13]. A
NILP is a triple of algorithms (LinSetup,ProofMatrix,Test) working as follows. LinSetup takes in a
relation R (e.g., a QAP) and outputs two vectors σ1 ∈ Fµ1 ,σ2 ∈ Fµ2 . ProofMatrix on input a relation
R and a pair (x,w) outputs two matrices (Π1, Π2) ∈ Fk1×µ1 × Fk2×µ2 so that a proof (π1,π2) is
computed as (Π1 · σ1, Π2 · σ2). Test on input a relation R and a statement x outputs a collection
of matrices T1, . . . Tη ∈ F(µ1+k1)×(µ2+k2) such that a proof (π1,π2) is accepted iff (σ>1 ,π

>
1 ) · Ti ·

(σ>2 ,π
>
2 ) = 0 for all i = 1 to η. A NILP is required to satisfy completeness, statistical knowledge

soundness and zero-knowledge. Informally, completeness says that honestly computed proofs for true
statements are accepted. Knowledge soundness says that there must exist an extractor algorithm
that on input R, x and a prover strategy (Π1, Π2) outputs a witness w such that the probability
that (Π1 · σ1, Π2 · σ2) is accepted while R(x,w) = 0 is negligible (over the random choices of
LinSetup). Finally, (perfect) zero-knowledge states requires to show a simulator that with knowledge
of (σ1,σ2, R, x)) outputs proofs (π1,π2) that have the same distribution as honestly generated ones.

Groth’s zkSNARK [Gro16] is a weak cc-SNARK for QAP relations RQ(u). First, we
recall the scheme from [Gro16]: this scheme is obtained by instantiating the generic pairing-based
construction of Figure 20 with the Non-Interactive Linear Proof (NILP) in Figure 21.

Recall that for our claim we only consider the case of QAP relations where x is void and the
witness is w = u (i.e., the commitment is to the entire witness). This is enough to instantiate our
compiler of Section 3.5. To see why this scheme is a weak cc-SNARK for QAP relations RQ(u) we
make the following observations.

First, let the commitment c to u be the value [A]1 = r[δ]1+
∑m

k=0 uk · [ak(τ)]1+[α]1; this means
that ck is [δ, {ak(τ)}, α]1 where α, δ, τ are random. Second, for knowledge soundness we observe that
from the existing security proof we can also extract the opening r of [A]1. What is left to argue
is the binding of such commitment. Since the {ak(Z)}k polynomials are not necessarily linearly
independent (see, e.g., [Par15]) the commitment key ck does not guarantee binding. However, we

KeyGen(RQ)

(σ1,σ2)←$ LinSetup(RQ)

return σ := ([σ1]1, [σ2]2)

Prove(σ,RQ, x, w)

(Π1, Π2)←$ ProofMatrix(RQ, x, w)

[π1]1 ← Π1 · [σ1]1 ; [π2]2 ← Π2 · [σ2]2

return π = ([π1]1, [π2]2)

VerProof(σ, x, π)

T1, . . . , Tη ←$ Test(RQ, x)

return 1 iff ∀i ∈ [η] :

[ 0 ]T =
(

[σ1]1
[π1]1

)
· Ti ·

(
[σ2]2
[π2]2

)

Figure 20: Groth’s generic SNARK in asymmetric groups from a split NILP.
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LinSetup(RQ)→ (σ1,σ2)

α, β, γ, δ, τ ←$F∗

σ1 :=

(
1, α, δ, {τ i}d−1

i=0 ,

{
1

γ
(βai(τ) + αbi(τ) + ci(τ))

}n
i=0

,

{
1

δ
(βai(τ) + αbi(τ) + ci(τ))

}m
i=n+1

,

{
1

δ
τ it(τ)

}d−2

i=0

)
σ2 :=

(
1, β, γ, δ, {τ i}d−1

i=0

)
ProofMatrix(RQ,x,w)→ (Π1, Π2)

Compute h(Z) and define y from (x,w) as in (9) ; r, s←$F

Let Π1 ∈ F3×(m+2d+3), Π2 ∈ F1×(d+4) s.t. (A,C)> = Π1 · σ1, B = Π2 · σ2 with

A := α+

m∑
k=0

yk · ak(τ) + rδ; B := β +

m∑
k=0

yk · bk(τ) + sδ

C :=

m∑
k=n+1

yk ·
βak(τ) + αbk(τ) + ck(τ)

δ
+

d−2∑
i=0

hi
τ it(τ)

δ
+As+Br − rsδ

Test(RQ,x)→ T

Let T ∈ F(m+2d+5)×(d+5) encode the quadratic test: A ·B = α · β + C · δ + γ

(
n∑
k=0

xk
γ

(
βak(τ) + αbk(τ) + ck(τ)

))

Figure 21: Groth’s NILP for a QAP relation RQ(x,w).

can show as follows that the scheme satisfies weak binding. In a nutshell, this means that it is
computationally infeasible to open [A]1 to two different witnesses u and u′ with RQ(u) 6=RQ(u′).

Notice that from the two different valid openings (u,r) and (u′,r′) of [A]1 we can easily rule
out two cases. The first case is the one where r 6= r′: this can be immediately reduced to finding
the discrete log δ. The second case is the one when r = r′ and

∑
k(uk − u′k)ak(Z) is a nonzero

polynomial: this can be reduced to finding the discrete log τ (which is known as PDL problem
[Lip12]), as τ can be computed by factoring this polynomial. Therefore we are left with the case
when

∑
k(uk − u′k)ak(Z) is the zero polynomial, yet u 6= u′. We argue that it cannot be that

RQ(u) 6= RQ(u
′). Indeed, the existing proof [Gro16][Theorem 1] shows that equalities A = α+rδ+∑m

k=0Ck · ak(τ) and B = β + sδ +
∑m

k=0Ck · bj(τ) hold, where {Ck}mk=0 are the same coefficients
of the term

∑m
k=0Ck ·

αbk(τ)+βak(τ)+ck(τ)
δ in C. Therefore, if the commitment A opens to u′ then

it must be the case that Ck = u′k, but in this case the QAP would be satisfied (i.e., RQ(u′) = 1)
contradicting that u′ is an invalid witness for RQ.

A new cc-SNARK for QAP relations RQ(u,ω). Here we show how we can modify the
zkSNARK of [Gro16] in order to obtain a cc-SNARK for proving the satisfiability of QAP relations
of the form RQ(u,ω), that is a scheme where there is a binding commitment to a portion, u, of the
witness and where the public input is void.30

In our construction we consider an augmented QAP (in the sense of [BSCTV14]), which is a
QAP as in Definition H.1 with the additional property that the polynomials ak(X) for k = 0 to n
are linearly independent.
30 It is possible to extend this construction to support non-empty public inputs. For simplicity we keep public input

void as our interest is to use this scheme in order to obtain a full fledged CP-SNARK though our compiler of
Section 3.5 together with the CPlink scheme. In such a case, CPlink can take care of showing that a given prefix of
u is the public input.
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LinSetup(RQ)→ (σ1,σ2)

α, β, γ, δ, η, τ ←$F∗

σ1 :=

(
1, α, δ, {τ i}d−1

i=0 ,

{
1

γ
(βai(τ) + αbi(τ) + ci(τ))

}n
0

,
η

γ
,

{
1

δ
(βai(τ) + αbi(τ) + ci(τ))

}m
n+1

,

{
1

δ
τ it(τ)

}d−2

0

,
η

δ

)
σ2 :=

(
1, β, γ, δ, {τ i}d−1

i=0

)
ProofMatrix(RQ,w)→ (Π1, Π2)

Let w := (u,ω). Compute h(Z) as in (9) ; r, s, v←$F

Let Π1 ∈ F3×(m+2d+5), Π2 ∈ F1×(d+4) s.t. (A,C,D)> = Π1 · σ1, B = Π2 · σ2 and

A := α+

m∑
k=0

wk · ak(τ) + rδ ; B := β +

m∑
k=0

wk · bk(τ) + sδ ; D :=

n∑
k=0

wk ·
1

γ
(βak(τ) + αbk(τ) + ck(τ)) + v

η

γ

C :=

m∑
k=n+1

wk ·
βak(τ) + αbk(τ) + ck(τ)

δ
+ v

η

δ
+

d−2∑
i=0

hi
τ it(τ)

δ
+As+Br − rsδ

Test(RQ)→ T

Define T ∈ F(m+2d+7)×(d+5) encoding the following quadratic test: A ·B = α · β + C · δ +D · γ

Figure 22: Our NILP for an augmented QAP relation RQ(u,ω), to be used to obtain ccGro16.

Our new cc-SNARK, called ccGro16, is the scheme obtained by instantiating the generic SNARK
construction of [Gro16] recalled in Figure 20 with the NILP that we describe in Figure 22. To match
the cc-SNARK syntax we let the commitment be the proof element [D]1. Clearly, [D]1 can be seen
as a Pedersen commitment for the key ck = [ ηγ , {

1
γ (βai(τ) + αbi(τ) + ci(τ))}ni=0]1. By the linear

independence of the ai(Z) polynomials the binding of this commitment can be reduced to the PDL
assumption. Correctness and knowledge soundness follow from the proof of the generic construction
in [Gro16], assuming that the construction in Figure 22 is a NILP. We show that this is the case in
the following theorem.

Theorem H.1. The construction in Figure 22 is a NILP with perfect completeness, perfect zero-
knowledge and statistical knowledge soundness against affine provers.

Proof Perfect completeness is easy to verify. For perfect zero-knowledge, we define the simulator
that samples A,B,D←$F at random and then finds C so that the verification test is satisfied. This
shows that real and simulated proofs are identically distributed.

For knowledge soundness, let (Π1, Π2) ∈ F3×(m+2d+5) × F1×(d+4) be an affine prover strategy.
First, we define the extractor as the one that returns as witness component ω the entries of the second
row of Π1 corresponding to the terms

{
1
δ (βai(τ) + αbi(τ) + ci(τ))

}m
i=n+1

, and as witness component

u the entries in the third row of Π1 corresponding to the terms
{

1
γ (βai(τ) + αbi(τ) + ci(τ))

}n
i=1

.
For the cc-SNARK knowledge soundness, we need to additionally extract the commitment opening
that can be taken from the entry in the third row of Π1 corresponding to the term η

γ .
Once defined the extractor, we need to show that the probability that the proof verifies and the

relation RQ(u,ω) does not hold is negligible. This proof is essentially identical to the one used for
the NILP of [Gro16]. �
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