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Abstract. Classical secret sharing schemes are built on the assump-
tions that the number of participants and the access structure remain
fixed over time. Evolving secret sharing addresses the question of ac-
commodating new participants with changeable access structures. One
goal of this article is to initiate the study of evolving secret sharing shar-
ing such that both share generation and reconstruction algorithms can
be implemented by AC0 circuits. We give a concrete construction with
some minor storage assumption. Furthermore, allowing certain trade-offs
we consider the novel problem of robust redistribution of secret shares
(in AC0) in the spirit of dynamic access structure by suitably modify-
ing a construction of Cheng-Ishai-Li (TCC 2017). A naive solution to
the problem is to increase the alphabet size. We avoid this by modifying
shares of some of the old participants. This modification is also necessary
to make newly added participant(s) non-redundant to the secret sharing
scheme.

Keywords: Secret sharing, access structure, evolving access structure, dynamic
secret sharing, AC0 complexity class

1 Introduction

Secret sharing is a method to distribute a secret piece of information among
n many participants so that any predefined ”qualified” sets of participants can
recover the secret information, whereas every predefined ”forbidden” sets of par-
ticipants do not get any information about the secret. The monotone collection of
qualified sets of participants is called an access structure. Secret sharing schemes
have found applications in cryptography as well as in secure distributed com-
puting. So studying secret sharing scheme is, in itself very important. All the
classical secret sharing schemes assume that the number of participants is fixed,

1



as well as the access structure is well-defined beforehand. An access structure
is called an evolving access structure if any one (or both) of the above two pre-
sumptions fail to hold. So needless to say that the number of participants can be
potentially infinite and existing classical methodology fails to provide a secret
sharing scheme when the access structure is evolving. Some recent works (see
Section 1.2) have put forward secret sharing schemes for evolving access struc-
tures. In the same time frame, almost parallely, researchers have considered the
problem of minimizing the computational complexity of cryptographic primitives
and some recent positive results confirm the possibility of secret sharing with
minimal computational complexity. More precisely, secret sharing with added
randomness is possible with constant-depth, polynomial size circuits which con-
sists of the AND, OR and NOT gates with the AND and OR gates having
unbounded fan-in. In other words, secret sharing is possible with both share-
generation algorithm and reconstruction algorithms are in the complexity class
AC0.

1.1 Motivation

The motivation for this paper comes from the above two sources. On one hand
we see that it is possible to construct secret sharing schemes for evolving ac-
cess structures and on the other, there are robust schemes implementable in the
class AC0 for certain predefined access structures. We consider the problem of
whether it is possible to implement secret sharing schemes in AC0 for evolving
access structures while making it robust against an adversary - even a possibil-
ity would motivate further research along this direction. On the other hand, we
consider a practical situation when a dealer distributes a secret among several
participants and then goes offline. Anticipating threats from a malicious adver-
sary, the participants may want to redistribute their shares among some new
participants without actually recovering the secret. Hence it is important to im-
plement a secret sharing scheme in AC0(a very low complexity class) where the
access structure changes over time. We make a quick remark that the existing
works in secret sharing (with some extra functionality) in the literature make
use of basic primitives e.g. linear algebraic computation [28, 6], parity [18, 22]
etc. which cannot be implemented in AC0.

1.2 Related work

Classical Secret Sharing Secret sharing schemes were proposed independently
by Shamir [28] and Blakley [6] in 1979. They proposed schemes where any k (or
more) out of n participants are qualified to recover the secret with 1 < k ≤ n. The
resulting access structure is called a (k, n)-threshold access structure where k acts
as a threshold value for being qualified. Both schemes were fairly efficient in terms
of the size of the shares and computational complexity. Ito et al. [18] showed that
it is possible to construct secret sharing schemes for any monotone (general)
access structures but with exponential share sizes. Later, Karchmer et al. [19]
provided scheme with share size is polynomial in the monotone span program



complexity. A major objective in the area of secret sharing is to minimize the
share size.

Evolving Secret Sharing The classical secret sharing schemes assume that the
number of participants and the access structure is known in advance. Komargod-
ski et al. [20] introduced evolving secret sharing schemes where the dealer does
not know in advance, the number of participants that will participate and no
upper bound on their number. Thus, number of participants could be potentially
infinite and the access structure may change with time. Komargodski et al. [20]
considered the scenario when participants come one by one and receives their
share from the dealer; the dealer however cannot update the shares that he has
already distributed. The authors showed that for every evolving access structure
there exists a secret sharing scheme where the share size of the tth participant is
2t−1. They also constructed (k,∞)-threshold evolving secret sharing scheme for
constant k in which the share size of the tth participant is (k−1)logt+O(loglogt).
Furthermore, they have provided an evolving 2-threshold scheme which is nearly
optimal in the share size of the tth participant viz. logt + O(loglogt). Later,
Komargodski and Paskin-Cherniavsky [21] forwarded the idea of evolving k-
threshold schemes to evolving dynamic threshold schemes and provided a secret
sharing scheme in which the share size of the tth participant is O(t4logt) bits.
Furthermore, they showed how to transform evolving threshold secret sharing
schemes to robust schemes with the help of algebraic manipulation detection
(AMD) codes. Robustness of a secret sharing scheme means the correct secret
is reconstructed even if some of the participants maliciously hand in tampered
shares during the reconstruction process. A very recent work by Beimel and
Othman [5] considers the problem of ramp secret sharing for evolving threshold
schemes and drastically reduced the share size to O(1). Beimel and Othman [5],
construct evolving (a, b) ramp scheme defined as follows : Let 0 < a < b < 1.
Any set of participants whose maximum participant is the i-th participant and
contains at least ai participants can reconstruct the secret; however, we only re-
quire that any set such that all its prefixes are not a b-fraction of the participants
should not get any information on the secret.

Secret Sharing in AC0 The motivation to study secret sharing schemes that
can be implemented by constant-depth circuits comes from two different sources.
First, most well-known secret sharing schemes require computations that can
not be implemented by constant-depth circuits (i.e. AC0 circuits). For exam-
ple, Shamir’s scheme in [28] requires linear algebraic computations over finite
field and hence cannot be computed in AC0. Secondly, the visual secret sharing
schemes introduced by Naor and Shamir [25] require only computation of OR
function which can be implemented by AC0 circuit. Recent work by Bogdanov
et al. [7] considers the question of whether there exists secret sharing scheme
such that both share generation algorithm and secret reconstruction algorithm
are computable in AC0. They considered a variant of threshold secret sharing
scheme, known as ramp schemes where any k participants learn nothing about



the secret but when all n participants collaborate together, they are able to re-
construct the secret. The scheme is called ramp because unlike classical secret
sharing scheme there is a gap between the privacy threshold viz. k and recon-
structability threshold viz. n. Their construction connects the idea of approxi-
mate degree of a function with the privacy threshold of a secret sharing scheme.
Existing literature on the approximate degree lower bounds gives several secret
sharing schemes in AC0. Their schemes however achieve large privacy threshold
k = Ω(n) when the alphabet size is 2poly(n) and achieve k = Ω(

√
n) for binary

alphabets. The work of Bogdanov et al. [7] was followed up by a work of Cheng
et al. [10] who achieved privacy threshold k = Ω(n) with binary alphabets by
allowing negligible privacy error. They have also considered robustness of the
schemes in presence of honest majority with privacy threshold Ω(n), privacy

error 2−n
Ω(1)

and reconstruction error 1
poly(n) .

Dynamic Secret Sharing Many secret sharing schemes have been proposed
where the access structure changes over time. Dynamic secret sharing scheme
allows, without reconstructing the shared secret, to add or delete shareholders,
to renew the shares, and to modify the conditions for accessing the secret. This
important primitive of redistributing the secret was initially considered by Chen
et al. [9], Frankel et al. [16] and Desmedt-Jajodia [14].

To describe a dynamic secret sharing scheme more formally, let us consider
two sets of participants P and P ′ containing n and n′ many participants respec-
tively. Let us suppose that each participant Pj in P has received a share sj of the
secret value s. ΓP denote the access structure that specifies which subsets of P
are authorized to recover the secret s from their shares. The goal of redistribution
is that without the help of the original dealer, the participants in P ′ will receive
the shares of s in accordance with a possibly different access structure ΓP′ . In
the protocol, the participants in P act like virtual dealers, while participants in
P ′ are the ones who receive shares.

Nojoumian-Stinson [26] proposed unconditionally secure share re-distribution
schemes, in absence of a dealer, based on a previously existing VSS protocol of
Stinson-Wei [29]. In their construction, they have assumed less than one-fourth of
participants behave dishonestly and also that the number of participants is fixed
throughout. Their work was improved upon by the work of Desmedt-Morozov
[15] who relaxed the proportion of dishonest participants to one-third of the to-
tal population and also allowed the number of participants to change. A related
primitive viz. sequential secret sharing (SQS) was introduced by Nojoumian-
Stinson [27] as an application of dynamic threshold schemes. In this new primi-
tive, different (but related) secrets with increasing thresholds are shared among
a set of players who have different levels of authority. Subsequently, each subset
of the players can only recover the secret in their own level. Finally, the master
secret will be revealed if all the secrets in the higher levels are first recovered.

Secure Computation against moderately complex adversaries An im-
portant requirement of cryptography is to protect not only information but also



the computations that are performed on data. The traditional cryptographic
approach has been based on computational tasks which are easy for the honest
parties to perform and hard for the adversary. We have also seen a notion of mod-
erately hard problems being used to attain certain security properties. Degwekar
et al.[13] show how to construct certain cryptographic primitives in NC1 [resp.
AC0] which are secure against all adversaries in NC1 [resp. AC0]. In the paper
by Ball et al.[4], they present computational problems which are ”moderately
hard” on average. Continuing in this line Campanelli and Gennaro [8] prove that
it is possible to construct secure computation primitives that are secure against
”moderately complex” adversaries. They present definitions and constructions
for the task of fully homomorphic encryption and Verifiable Computation in the
fine-grained model. For possible applications of AC0 secret sharing to secure
broadcasting in presence of external adversaries we refer to Section 7.3 of [10].

1.3 Our Contribution

In this paper we make the following contributions:

1. We first consider the possibility of existence of an evolving secret sharing
scheme which can be implemented in AC0 which is the lowest complexity
class for which a secret can be reconstructed or a message be decoded with
negligible error probability. We give an explicit construction of an AC0 secret
sharing scheme such that any two participants are authorized to recover the
secret and the number of participants can be potentially infinite.

2. Next, we give the construction of a scheme which extends the robust AC0

secret sharing scheme in [10] to accommodate a bounded number of new par-
ticipants (in the sense of dynamic secret sharing schemes where one can add
new participants over time). Our novel idea is : during accommodating new
participants we have to modify the shares of some of the old participants.
As we see that this is necessary to keep the scheme AC0 computable and
not to make the new participants redundant to the scheme. An advantage of
modifying old shares is that we do not have to increase the alphabet size to
accommodate new participants. On the downside, we can only accommodate
a bounded number of new participants and when the capacity to accommo-
date the number of new participants is exhausted, the whole system has to
be refreshed again.

3. We consider the question of re-distribution of secret shares in the absence
of dealer. For example suppose after the dealer distributes the secret, he
creates a hierarchy among the participants who can now modify old shares
to accommodate new participants. This has a similarity with (hierarchical)
sequential secret sharing and is applicable in practical scenarios.

In parts 2 and 3 we note that the schemes are robust under non-adaptive
adversaries. While various secret sharing schemes have been proposed where the
access structures change over time, the authors are not aware of attempts to make
such schemes both robust and AC0 computable. This also opens up a future line



of work where one can consider low complexity evolving(dynamic) secret sharing
schemes robust under NC1 adversaries, adaptive adversaries, dishonest parties,
reducing reconstruction error and so on

Tradeoffs The existing constructions of evolving or dynamic or sequential se-
cret sharing schemes are not AC0 computable since they use linear algebraic
methods which are not in AC0. The construction technique that we follow does
not exactly implement these schemes in AC0. Rather we take a middle ground
with certain tradeoffs which helps us to incorporate key features of the above-
mentioned secret sharing schemes in our construction. For example in the case
of evolving secret sharing, the scheme is able to handle possibly infinitely many
new participants. To make our construction of a robust scheme where the num-
ber of participants increase over time AC0 computable, we can only handle a
bounded collection of new participants. Also for the construction of our evolv-
ing scheme in AC0, we make a storage assumption. In this paper we make no
attempt to reduce the share size of the secret sharing schemes or to construct
schemes robust under adaptive adversaries.

2 Preliminaries

We discuss some basic definitions and results that will be needed throughout the
paper. We mainly adopt the notations and definitions of [7, 20].

For a positive integer n the set {1, 2, . . . , n} is denoted by [n]. Let Pn = [n]
be a set of n participants. Let 2Pn denote the power set of Pn. A collection
A ⊂ 2Pn is said to be monotone if A ∈ A and A ⊂ B imply B ∈ A.

Definition 1. (Access structure) A ⊂ 2Pn is called a monotone access structure
if the collection A is monotone. Any subset A of Pn which are in A are called
qualified sets and F /∈ A are called forbidden.

Definition 2. (Threshold Access structure) Let n ∈ N and 0 < k ≤ n. A (k, n)-
threshold access structure A on a participant set [n] is defined by A = {X ⊂ [n] :
|X| ≥ k}.

We now define restriction of an access structure to its first m < n participants
which in essence describes the qualified sets formed by the participants in [m]
in A.

Definition 3. (Restriction of Access structure) Let An be an access structure
on a set of n participants Pn = [n] and let 1 ≤ m ≤ n− 1. The restriction of the
given access structure to the first m participants, denoted by An|m, is defined to
be the collection An|m = {X ∈ An : {m+ 1,m+ 2, . . . , n} ∩X = ∅}.
If it is clear from the context that An is an access structure on the participant
set [n] then we drop the suffix n and simply write A.

Definition 4. (Evolving Access structure) An infinite sequence of access struc-
tures {Ai}i∈N is called an evolving access structure if:



1. for every i ∈ N, Ai is an access structure over [i].
2. for every i ≥ 2, Ai|i−1 = Ai−1.

We now give the definition of evolving threshold access structure. We define
it in the sense of dynamic thresholds [21] where the threshold values change
over time. It is to be noted that in [20] an evolving threshold access structure
is defined so that the threshold value is fixed but the number of participants
increases.

Definition 5. (Evolving Threshold Access structure) A dynamic threshold ac-
cess structure is parametrized by an infinite sequence of thresholds k1 ≤ k2 ≤ . . .
such that for any t ∈ N, the access structure is defined by At = {X : |X| ≥ kt}.

Remark 1. We note that k1 = k2 = · · · = k can be a fixed value. This gives us
an evolving access structure where the threshold value is fixed but the number
of participants increases in an unbounded manner. We denote such an evolving
threshold access structure by (k,∞)- threshold access structure.

2.1 Secret Sharing Scheme

In a secret sharing scheme there is a dealer who has a secret s, a set of partic-
ipants [n] and an access structure A. The dealer shares the secret among the
participants in such a way that any qualified set of participants can recover the
secret but any forbidden set of participants has no information about the secret.

Definition 6. (Secret Sharing Scheme) A secret sharing scheme S for an access
structure A consists of a pair of algorithms (Share,Rec). Share is a probabilistic
algorithm that gets as input a secret s (from a domain of secrets S) and a number

n, and generates n shares Π
(s)
1 , Π

(s)
2 , . . . ,Π

(s)
n . Rec is a deterministic algorithm

that gets as input the shares of a subset B of participants and outputs a string.
The requirements for defining a secret sharing scheme are as follow:

1. (Correctness) For every secret s ∈ S and every qualified set B ∈ A, it must

hold that Pr[Rec({Π(s)
i }i∈B , B) = s] = 1.

2. (Security) For every forbidden set B /∈ A and for any two distinct se-

crets s1 6= s2 in S, it must hold that the two distributions {Π(s1)
i }i∈B and

{Π(s2)
i }i∈B are identical.

The share size of a secret sharing scheme S is the maximum number of bits
each participant has to hold in the worst case over all participants and all secrets.

Definition 7. (Ramp Secret Sharing Scheme) A (k, l, n) ramp secret sharing
scheme with k < l ≤ n, on a set of n participants is such that any subset of
participants of size greater than equal to l can recover the secret whereas, any
subset of size less than k has no information about the secret.



Definition 8. (Evolving Secret Sharing Scheme) Let A = {At}t∈N be an evolv-
ing access structure. A secret sharing scheme S for A consists of a pair of al-
gorithms (SHARE,REC). SHARE is a probabilistic algorithm and REC is a
deterministic algorithm which satisfy the following:

1. SHARE(s,Π
(s)
1 , Π

(s)
2 , . . . ,Π

(s)
t−1) gets as input a secret s from the domain of

secrets S and the secret shares of participants 1, 2, . . . , t− 1 and outputs the

share of the tth participant viz. Π
(s)
t .

2. (Correctness) For every secret s ∈ S, every t ∈ N and every qualified set

B ∈ At, it must hold that Pr[Rec({Π(s)
i }i∈B , B) = s] = 1.

3. (Security) For every t ∈ N and every forbidden set B /∈ At and for any
two distinct secrets s1 6= s2 in S, it must hold that the two distributions

{Π(s1)
i }i∈B and {Π(s2)

i }i∈B are identical.

2.2 Secret sharing scheme in AC0

Let Σ denote the set of alphabets. Two distributions µ and ν over Σn are called
k-wise indistinguishable if for all subsets S ⊂ [n] of size k, the projections µ|S
and ν|S of µ and ν to the coordinates in S are identical. Thus, while sharing
the secret bit 0 (resp. 1) if sampling is done using µ (resp. ν) then we wee a
direct connection to the fact that any k participants gain no information about
the secret bit. However, if there is a function f : Σn → {0, 1} which can tell
apart the distributions then f can be thought of as a reconstruction function.
Of course, the gap between the privacy threshold k and the reconstructability
threshold n makes the scheme a ramp scheme.

The definition is as follows.

Definition 9. (Secret Sharing for 1-bit secret) An (n, k, r) bit secret sharing
scheme with alphabet Σ, reconstruction function f : Σr → {0, 1} and reconstruc-
tion advantage α is a pair of k-wise indistinguishable distributions µ and ν over
Σn such that for every subset S of size r we have Pr[f(µ|S) = 1]−Pr[f(ν|S) =
1] ≥ α.

2.3 AC0 complexity class

AC0 is the complexity class which consists of all families of circuits having con-
stant depth and polynomial size. The gates in those circuits are NOT, AND and
OR, where AND gates and OR gates have unbounded fan-in. Integer addition
and subtraction are computable in AC0, but multiplication is not. It is also well
known that calculating the parity of an input cannot be decided by any AC0

circuits. For any circuit C, the size of C is denoted by size(C) and the depth
of C is denoted by depth(C). Recently, a lot of research [2, 3, 1, 4, 23] have been
done focusing on possibilities of obtaining cryptographic primitives in low com-
plexity classes e.g. AC0 or NC1. We describe some primitives that are needed
for our constructions.



Statistical Distance

The statistical distance between two random variables X and Y over Σn for
some alphabet Σ, is SD(X;Y ) which is defined as follows,

SD(X;Y ) =
1

2

∑
a∈Σn

|Pr[X = a] = Pr[Y = a]|.

We say that X is SD(X;Y )-close to Y .

Minsky-Papert CNF function

The sharing function, Share, used in our construction is based on the CNF
function given by Minsky-Papert [24]. This scheme can share one bit among
n participants, with binary alphabet, privacy threshold Ω(n1/3) and perfect
reconstruction.

Robust Secret Sharing Scheme

The ShareC function in the construction is the same as the sharing function
for secret sharing schemes based on error correcting codes. the construction first
amends the secret with a tag using an AMD code (such as the one in [12]). Then,
it uses Shamir’s scheme to encode the result into mn shares, for a carefully chosen
integer parameter m > 1. Finally, the resulting shares are bundled into n groups
of size m each which are distributed among the n participants. In other words, we
use a variant of Shamir’s scheme based on folded Reed-Solomon codes (instead
of plain Reed-Solomon codes) combined with an AMD pre-code. This is used to
provide robustness in the sense of error-detection.

Random Permutation

It is well known that random permutation is in AC0. For any n ∈ N, a permu-
tation over [n] is defined to be a bijective function π : [n]→ [n].

K-wise independent generators

A construction of K-wise independent generators based on unique neighbour
expander graphs were proposed by Guruswami-Smith [17]. A set of n random
variables, X1, ..., Xn, is said to be k-wise independent(and uniform) if any k of
them are independent(and uniformly distributed). For any r, n, k ∈ N, a function
g : {0, 1}r → Σn is a k-wise (uniform) independent generator, if for the uniform
distribution U on {0, 1}r, the random variables g(U) = {Y1, ..., Yn} are k-wise
independent (and uniform).



Expander Graphs

A bipartite graph G with N left vertices, M right vertices is a (K,A) vertex
expander if for all sets S ⊆ [N ] of at most K vertices, the neighborhood N(S) =
{u|∃v ∈ S : (u, v) ∈ E} is of size at least A∆|S|.

3 Main Results

In this Section we first show the existence of secret sharing scheme implementable
in AC0 which realizes a (2,∞)-evolving threshold access structure. Secondly, we
give a dynamic robust secret sharing scheme in AC0 which can be achieved in
the absence of the dealer.

3.1 AC0 construction of (2,∞)-secret sharing scheme

We now give a construction which shows that an AC0 secret sharing is pos-
sible for an evolving access structure where any two participants are qualified
to reconstruct the secret whereas any one participant is unable to get any in-
formation about the secret bit. This result shows the possibility to include an
unbounded number of participants in a secret sharing scheme where both the
share generation algorithm and reconstruction algorithm are in AC0.

Suppose the secret bit is s ∈ {0, 1}. Let (Share+, Rec+) be a 2-out-of-2
threshold secret sharing scheme which can be obtained using the techniques of
[7]. Applying this (Share+, Rec+) algorithm, multiple times we show how the
dealer prepares the shares for the participants.

Algorithm :

1. The dealer first applies Share+ algorithm on s and outputs (s1
1, s

2
1).

2. The dealer gives s1
1 to the participant 1.

3. When participant 2 arrives, the dealer again runs Share+(s) −→ (s2
2, s

3
2).

Share of 2 is (s2
1, s

2
2) and dealer stores s3

2.
4. When participant 3 arrives, the dealer again runs Share+(s) −→ (s3

3, s
4
3).

Share of 3 is (s2
1, s

3
2, s

3
3) and stores the value s4

3.
5. In general, for t ≥ 3, share of the t-th participant consists of

– the first t− 2 entries of the share of (t− 1)th participant
– stt−1 [which is obtained as the second entry of the output of Share+(s)

run for the (t− 1)th time to generate shares of participant t− 1]
– the random string stt which is the first entry of (stt, s

t+1
t ) ←− Share+(s)

run for the t-th time.
Figure 1 gives a pictorial depiction of share generation process for (2,∞)
access structure. Vertically shaded regions show the outputs of the basic
(2-out-of-2) Share+ algorithm run independently every time with the fixed
secret bit s as input.



Fig. 1: Distribution of shares using a basic 2-out-of-2 AC0 secret sharing scheme.

The reconstruction algorithm is simple. When two participants come together
they produce only the corresponding shares that connects them.

Theorem 1. There exists a (2,∞)-secret sharing scheme implementable in AC0

for which the share size of the t-th participant is linear in t.

Proof. It is easy to see the share size of the tth participant is linear in t. The
proposed scheme runs the basic (2-out-of-2) AC0 secret sharing scheme (inde-
pendently) multiple times. So both the sharing and reconstruction phases can
be implemented by AC0 circuits.

To prove that any two participants can recover the secret let us suppose
that participants i, j collaborate with each other. Without loss of generality,
let i > j. We observe that participant j has sjj and it can collaborate with

participant j + 1 (who has sj+1
j ) to recover the secret. Recall that, (sjj , s

j+1
j )

←− Share+(s) when run for the j-th time. Since, share of participant i includes
sj+1
j we have the proof.

The share generation algorithm ensures the secrecy of the scheme.

Remark 2. We observe that to improve the information rate of the scheme if we
start with l bit secrets and assume the existence of a basic 2-out-of-2 AC0 secret
sharing scheme (for l bit secret) with negligible privacy error as in [10]. It is
not very hard to see that the above construction gives a secret sharing sharing
scheme with the same privacy error as the basic one.

Example 1. (Yet another example)
Let us consider a star-graph based access structure where the internal node is
fixed over time but the number of leaves changes/increases over time. A minimal



qualified set is defined by two nodes which has an edge between them. More
precisely, {fixed internal node, any leaf} constitutes a minimal qualified set.
Let (Share+, Rec+) be a 2-out-of-2 threshold secret sharing scheme in which
from any two shares the secret can be reconstructed and any one share does not
reveal information about the secret. The dealer runs Share+(s) (one time) to
output (s1, s2). Dealer assigns s1 to the internal node and stores s2. Whenever,
a new leaf is added, the dealer assigns s2 to the leaf.

3.2 A dynamic threshold secret sharing scheme in AC0

Our goal is to construct dealer-free redistribution of shares which is AC0 com-
putable. In particular, we apply the techniques of Cheng et al. [10] and modify
it to accommodate participants who come one by one. Our proofs are in similar
line with those of [10], so we give the overview of our proofs. First we discuss
the method of Cheng et al. to construct robust secret sharing schemes in AC0.

Overview of technique In this section we first give an overview of the tech-
nique to construct robust secret sharing schemes in AC0. The following techinque
is used in [10]. Suppose there is a short random seed R. This random seed is
shared using the one-in-a-box function to get n-participants with privacy thresh-
old k0. One then uses R and the k-wise independent generator to generate an
n-bit string Y . To share a secret X, only Y ⊕ X is computed. To reconstruct
the secret, the n participants are used to reconstruct R, compute Y and then
to compute X. This whole procedure can be computed in AC0. To boost the
privacy threshold and make the scheme robust the following steps are taken:

1. The participants are divided into blocks of size O(log2n).
2. For each block a secret sharing scheme based on asymptotically good error-

correcting codes is applied to obtain O(log2n) shares.
3. These shares are further divided into O(logn) smaller blocks of size O(logn)

each and a random permutation of these smaller blocks is applied. By in-
creasing the alphabet size we can store each block together with its index
permutation as one share.

Suppose the adversary sees only a constant fraction of the shares. Since
a random permutation is applied, the adversary learns each block with some
constant probability. By using a Chernoff type bound, the fact that there are
two levels of blocks and by adjusting the parameters, it can be ensured that the
number of shares the adversary learns is below the privacy threshold of the larger
block and thus the adversary actually learns nothing. To extend to robust secret
sharing schemes, the robust schemes of Cheraghchi [11] are used in the first and
second blocks. One issue is that the adversary can modify some of the indices.
This information is necessary during reconstruction as a random permutation is
applied. To avoid this situation the index is stored multiple times in the second
block. By adjusting the parameters it can be ensured that at least 2/3rd of the
inputs are the same and we can use approximate majority during reconstruction
which can be computed in AC0.



Accommodating new participants: Suppose at a particular instance we
have a robust secret sharing scheme as before with n participants which is AC0

computable. In the next instance there are two cases- (a) One new participant
arrives and (b) a set of new participants arrives.

– In the first case where only one new participant arrives, the following steps
are taken:
1. Add it in any of the larger blocks. Adding a new participant in the larger

block keeps the size of the block O(log2n).
2. Store the additional informations like the generation of the new partici-

pant and to which block it is added multiples times and proceed as before,
i.e., step 3 of previous robust scheme.

The procedure to give this new participant a share is discussed later. This
whole procedure can be computed in AC0. Since the information of the
new participant is stored multiple times, approximate majority can be used
during the reconstruction part which is AC0 computable.

– In the second case when a collection of new participant arrives, an arbi-
trary number of new participants cannot be accommodated since we need
the whole procedure to be AC0 computable. The critical step which keeps
the procedure AC0 computable is the division of the participants and the
shares into small blocks of size O(log2n) and O(logn) respectively. So when
a collection of new participants arrive, keep adding them to a block until the
size remains O(log2n) and then proceed to the next block. This gives an up-
per bound on the number of new participants that one can accommodate to
keep the operations AC0 computable. Also by extending the alphabet size,
informations like the generation of a participant, to which block a partici-
pant is stored multiple times to keep the scheme robust. Once the partici-
pants are added to the respective blocks, the respective shares are computed
(the method is discussed below) to get an AC0 computable evolving access
structure which can accommodate a bounded collection of new participants.
When any more new participant cannot be accommodated, we refresh the
whole system. That is, all the available participants are taken , old and new,
as a set of participants and the whole system is constructed afresh. The new
number of participants is n added to the number of new participants that
arrived.

Generating a share of a new participant: To construct a share for the new
participant, our idea as follows :

1. Select a participant from the old set of participants, say A.
2. Take the first half of the share of A and copy it as the first half of the share

of the new participant.
3. Choose another old participant from the remaining participants, say B, copy

the first half of its share and assign it as the first half of the share of A and
the second half of the share of the new participant.

4. Hence the new share of A is the first half of the share of B concatenated
with the second half of the original share of A.



5. The share of the new participant is the first half of the original share of A
concatenated to the first half of the share of B.

6. Store the generation, the participant whose share is being copied, and to
which block the new participant(also which half) is added multiple times to
fool the adversary.

The advantage of this operation is that no set of n or less than n participants
can reconstruct the secret and all the participants combined have complete in-
formation about the secret. Hence this constitutes a ramp scheme.

Now we divide the shares into O(logn) blocks of size O(logn) each and pro-
ceed as before. This whole operation can be done in AC0 as proved later.

1. One can concatenate the shares of the older participants with padding and
permutations and give it to the new participant. But this method fails as
there is the original group of n participants who can completely reconstruct
the secret and hence it would not be a ramp scheme. Hence modifying the
shares of the original participants is necessary.

2. During reconstruction, in addition to applying the inverse permutation, the
blocks of the participants who were modified have to be restored. This whole
process fools the adversary because the adversary only sees a constant frac-
tion of the secret. In this case the overall effect of our modification is an
increase in the number of repeated characters combined with random per-
mutations. Hence using a Chernoff type bound one can conclude that the
adversary essentially learns nothing. Thus we have an (n + 1, n, k0) robust
evolving ramp scheme.

3. When a set of new participants arrive, we can repeat this same process
for each of the new participants, until the block size is exhausted. When
we cannot accommodate any more new participant, we refresh the whole
system. That is, now the we consider all the available participants, old and
new, as a set of participants and construct the whole scheme afresh. The
new number of participants is n added to the number of new participants
that arrived.

Remark 3. One issue here is how the participants A and B are selected. Who
makes the decision as to which participants’ shares are modified to construct
shares of the new participants. We have two ways to go about it.

1. Firstly the dealer can order the participants and include the information
multiple times in the shares. When a new participant arrives the old shares
are modified according to the order of the old participants. This is helpful in
the case of a dealer-free situation and the participants modify their shares
according to the order themselves.

2. When the dealer is present the dealer chooses as per the order which shares
to modify to construct the new share. As a tradeoff we assume that a little
storage is available to keep the information of the order of the shares.

3. In either way the adversary should not be able to get any information from
this order. Otherwise, the adversary, using the order of the participants may
completely determine the shares of the old and new participants.



3.3 Technical Details

Construction 1: A basic construction for accommodating one new par-
ticipant We shall assume previous constructions using random permutations,
k-wise independent generators and the ones using asymptotically good error cor-
recting codes. We construct the secret sharing scheme (Share1, Rec1) as follows.
First we recall some notations adopted from Cheng et al. [10].

For any n, k,m ∈ N with k,m ≤ n, alphabets Σ0, Σ, let (Share,Rec) be
an (n, k) secret sharing scheme with share alphabet Σ, message alphabet Σ,
message length m.

Let (ShareC , RecC) be an (nC , kC) secret sharing scheme from Lemma 3.13
of [10] with alphabet Σ, message length mC , where mC = δ0nC , kC = δ1nC ,
nC = O(logn) for some constants δ0 and δ1.

For any constant a ≥ 1, γ ∈ (0, 1], the paper by Ishai et.al [10] constructs the
following (n1 = O(na), k1 = Ω(n1) secret sharing scheme (Share1, Rec1) with
share alphabet Σ × [n1], message alphabet Σ, message length m1 = Ω(n1). For
clarity we include the algorithm as in [10].

Algorithm : Construction 1

– The Share1 function is as follows :- Share1 : Σm1 → (Σ × [n1])n1 .

1. Let n̄ = Θ(na−1) with large enough constant factor.
2. (Independent generator step) :- Let gτ : Σmn̄

0 → Σm1 be the l-wise

independent generator where l = Ω(mn̄log|Σ0|
log|Σ| )1−γ .

3. For a secret x ∈ Σm1 , we draw a string r = (r1, ..., rn̄) uniformly from
Σmn̄

0 .
4. Let y = (ys, yg), where ys = (Share(r1), ..., Share(rn)) ∈ (Σn)n̄ and
yg = gτ (r)⊕ x ∈ Σm1 .

5. Get ŷs ∈ (ΣmC )ns from ys by parsing ys,i to be blocks each having length
mC for every i ∈ [n̄], where ns = d n

mC
en̄.

6. Get ŷg ∈ (ΣmC )ng from yg by parsing yg to be blocks each having length
mC , where ng = dm1

mC
e.

7. Compute

(ShareC(ŷs,1), ..., ShareC(ŷs,ns), ShareC(ŷg,1), ..., ShareC(ŷg,ng ))

and parse it to be y1 = (y11, ..., y1n1
), where n1 = (ns + ng)nC .

8. (Generate a random permutation) π : [n1]→ [n1] apply it on y1 and this
is the output.

– At this stage a new participant arrives. Denote the new participant by t. Let
us suppose that the new participant has obtained a share by construction 3
in section 3.5. We denote it by S(t). From our discussion first want to add
the participant to a suitable block, and proceed. But in step 8 of the previous
algorithm we have already applied a a random permutation. Hence we can
do two things,



1. We can embed S(t) in y1(i.e., adding elements to the string y1 at suitable
positions) according to the random permutation already applied(this is
helpful when the dealer is present as the new participant is added)

2. We can concatenate S(t) with y1 from step 8 of previous algorithm and
apply one more random permutation to the concatenated string to get
the output. (This helps in the scenario when the dealer is absent, and
some participant(s) have the authority to distribute shares among the
new participants.)

In both the cases we store the relevant information multiple times.

Algorithm : Case 1 - Dealer is present

1. Add elements of the string S(t) at suitable positions of the string y1 as
per the random permutation.

2. Output is the new string yt with the share of the new participant added.

Algorithm : Case 2 - Dealer is absent

1. Concatenate y1 and S(t) to get the string y∗t .
2. Store the relevant information multiple times.
3. Apply a random permutation on the elements of the string y∗t to get the

output yt.

Reconstruction : The reconstruction function Rec1 is as follows :

Algorithm : Case 1 - Dealer was present

1. Retrieve S(t) from yt.
2. Using S(t), restore the original shares of the corresponding old partici-

pants.
3. Delete S(t).
4. Compute the inverse permutation to get y1.
5. Compute RecC on all the elements of y1 to get ys and yg.
6. Apply Rec on every entry of ys to get r.
7. Output gτ (r)⊕ yg.

Algorithm : Case 2 - Dealer was absent

1. Compute the inverse permutation to get y∗t .
2. Using S(t), restore the original shares of the corresponding old partici-

pants.
3. Delete S(t) from y.
4. Compute the inverse permutation to get y1.
5. Compute RecC on all the elements of y1 to get ys and yg.
6. Apply Rec on every entry of ys to get r.
7. Output gτ (r)⊕ yg.



Construction 2: Accommodating a collection of new participants Algorithm : Construction 2

1. The function Share1 is same in this case.
2. A new bounded collection of elements arrive.
3. Repeat steps of the previous construction (when a single participants) for

each element in the new collection keeping the bounds so that the operations
can be done in AC0.

4. Refresh when the blocks are exhausted.
5. Rec1 is same as in the previous case. Apply it for each new participant.

Theorem 2. Share1 and Rec1 can also be computed by AC0 circuits.

Proof. From the paper by Cheng et.al [10], we know that construction 1 can be
done in AC0. The extra functions that we are computing during adding a new
participant are :

1. Generating the share of the new participant.(This can be done is AC0 as
discussed later)

2. Concatenating the share S(t) to y1. This can be done in AC0.
3. Applying a random permutation which is in AC0.

As was shown in [10], the reconstruction function can be computed in AC0. In
our case the additional functions we are computing are

1. Inverse permutation 2.
2. Restoring the original shares of the old participants.
3. Deleting the shares of the old participants.

Now the inverse permutation can be computed in AC0. As we shall see later
that restoring the share includes dividing a share into two halves and concate-
nating to the half of another share. This whole operation can be done in AC0.
The remaining deletion operation can be done in AC0 too. Hence the Share1

and Rec1 functions can be computed in AC0.

Theorem 3. If the reconstruction error of (Share; Rec) is η , then the recon-
struction error of (Share1, Rec1) is n′ = n̄η.

Proof. The reconstruction is done in two phases. First the shares of the new
participants are used to restore the shares of the old participants. Next the old
participants are used to reconstruct the secret. Although we need all the partici-
pants to reconstruct the secret, in the second phase it is the old participants who
actually recover the secret. Hence our reconstruction error is essentially same as
that of [10]. Since the proof is same we refer the reader to Lemma 3.4 in [10].

3.4 Privacy

Our scheme differs from that of Cheng et.al[10] when a new participant (or a
collection of new participants) arrives. At this stage we recall Remark 3.4.



Note : We stipulated that the adversary does not have any information regarding
the order of the participants. So, from the adversary’s point the old participants
whose shares are modified when a new participant arrives is completely random
and the share of the new participant is independent of the previous shares. Hence
concatenating the share of the new participant does not affect the privacy of our
scheme. Coupling this with the random permutation effectively results only in
an increase in the length of the string. Hence our construction does not affect
the privacy of the original scheme of [10].

The overall effect is that the adversary only sees an increase in the number of
repeated alphabets. Since the adversary sees only a constant fraction of shares,
due to the repetitions and random permutations, it cannot infer any information
about the secret. The details are given next.

To show privacy, we need the following Chernoff Bound.

Negative Correlation Binary random variables X1, X2, ..., Xn are negative
correlated if ∀I ∈ [n],

Pr[∧i∈I(Xi = 1)] ≤
∏
i∈I

Pr[Xi = 1]

and
Pr[∧i∈I(Xi = 0)] ≤

∏
i∈I

Pr[Xi = 0]

.

Theorem 4. (Negative Correlation Chernoff Bound). Let X1, X2, ..., Xn be neg-
atively correlated random variables with X =

∑n
i=1Xi, µ = E(X). Then

– for any δ ∈ (0, 1), P r[X ≤ (1 − δ)µ] ≤ e−δ
2µ/2 and Pr[X ≥ (1 + δ)µ] ≤

e−δ
2µ/3.

– for any d ≥ 6µ, Pr[X ≥ d] ≤ 2−d.

Here we mention two lemmas regarding random permutations using which
we can show the privacy of our scheme. For proofs of these lemmas we refer to
Lemmas 3.7 and 3.8 of [10].

Lemma 1. Let π : [n]→ [n] be a random permutation. For any set S,W ⊆ [n],

let u = |W |
n |S|. Then the following holds.

– for any δ ∈ (0, 1), P r[|π(S)∩W | ≤ (1−δ)µ] ≤ e−δ2µ/2 and Pr[|π(S)∩W | ≥
(1 + δ)µ] ≤ e−δ2µ/3.

– for any d ≥ 6µ, Pr[|π(S) ∩W | ≥ d] ≤ 2−d.

Lemma 2. Let : [n] → [n] be a random permutation. For any W ⊆ [n] with
|W | = γn, any constant δ ∈ (0, 1), any t, l ∈ N+ such that tl ≤ 0.96

1+0.96γn any
S = S1, ..., Sl such that ∀i ∈ [l], Si ⊆ [n] are disjoint sets and |Si| = t, let Xi

be the indicator such that Xi = 1 is the event |π(Si) ∩ Wj| ≥ (1 + δ)γt. Let

X =
∑
i∈[l]Xi. Then for any d ≥ 0, Pr[X ≥ d] ≤ e−2d+(e2−1)e−ω(γt)l

.



Using the above lemmas one can show privacy of the secret sharing scheme
as follows.

Lemma 3. For any alphabet Σ, any n, k ∈ N with k ≤ n, for any distribution
X = (X1, ..., Xn) over Σn, let Y = ((Xπ−1(1) ◦ π−1(1)), ..., (Xπ−1(n) ◦ π−1(n)))
where π is a random permutation over [n] → [n]. For any adaptive observation
W with |W | = k, YW is the same distribution as Y[k].

For the proof of this lemma we refer the reader to Lemma 3.10 of [10].
This lemma essentially says that due to the random permutation the adversary
observing a constant fraction of the secret cannot learn anything about the
secret.

Using the above lemmas and Lemma 3.11 of [10] we have the following esti-
mates in our case :

Theorem 5. For any n,m ∈ N, m ≤ n, any ε, η ∈ [0; 1] and any constant a ≥
1,α ∈ (0; 1], if there exists an explicit (n′ = O(nalogn); (1−α)n′) secret sharing
scheme in AC0 with share alphabet Σ×[n′], message alphabet Σ0, message length
Ω(mna−1), adaptive privacy error O(na−1)(ε+2−Ω(k))) and reconstruction error
O(na−1η), then, assuming a predefined order on the participants and a small
storage to keep the information of the order of the participants, there exists an
explicit (n′ +O(log3n); (1− α)n′) dynamic secret sharing scheme with adaptive
privacy error O(na−1)(ε+2−Ω(k))) and reconstruction error O(na−1η). The share
and message alphabet and the message length of the new participants remain the
same.

This theorem follows from Theorem 3.12 of [10], theorem 3.5, theorem 3.6,
remark 3.4, the note in section 3.4 and the section 3.5 of our paper.

Construction 3 : Evolving access structures in AC0 - Share of the new
participant In this case the Share1 function and the distribution to the new
participant is same as before. The reconstruction function Rec1 is probabilistic.

Let us suppose that we have constructed the Share1 function. Suppose at
this stage a new participant arrives. We denote the new participants as t. We do
the following steps to get the share of t as S(t) :

Algorithm : Construction 3

1. Select a random participant from the old set of participants, say A (this step
is mentioned as random as the adversary has no information about the order
of the participants.).

2. Denote the share of A as {A1, A2}. Here A1 denotes the first half of the
share string of A and A2 denotes the second half of the share string of A.

3. Take the first half of the share of A, i.e., A1 and copy it as the first half of
the share of t.

4. Choose another old participant(next in order) from the remaining partici-
pants, say B.



5. Denote the share of B as {B1, B2}. Here B1 denotes the first half of the
share string of B and B2 denotes the second half of the share string of B.

6. The new share of A is {B1, A2}.
7. The share of t is {A1, B1}.

For the reconstruction procedure , it is clear that using the reconstruction
function as before, all the n+ 1 participants together can reconstruct the secret.
But now if n out of the n+1 participants are chosen, they do not have complete
information about the secret.

Note : Here we note that when a collection of new participants arrive we need
to choose new shares in a manner so that duplicate shares are not distributed
among new participants. This can be done by choosing the unused partitions of
shares of old participants or the shares of a different set of old participants can
be modified for each new participant.

Theorem 6. S(t) in construction 3 can be computed in AC0.

Proof. Since copying and concatenating strings can be done in AC0, S(t) can
be computed in AC0.

3.5 Estimates and Bounds

Share size of a new participant

– When a new participant arrives : When a new participant arrives, we
choose two participants of the previous generation. Take one half of the share
of the first participant, and one half of the share of the second participant,
concatenating them , applying a random permutation which is the share of
the new participant. So in this case, essentially we get that the size of the
share for the new participant remains the same.

– When a group of participant arrives : In this case the steps as before
are repeated for each new participant and the share size is the same as
before. The sizes of the share changes only when we need to refresh the
whole system, i.e., when the blocks are totally exhausted. When we refresh
the system and redistribute the shares, the size of the shares is exponential
in the total number of participants.

Total number of participants that can be accommodated

– The size of the outer and the inner levels are O(log2n) and O(logn) respec-
tively. For the computation to be carried out in AC0, we need to keep the
size of the outer block O(log2n). Hence we can accommodate upto O(log2n)
new participants for each block.



Bounds on the number of shares to be modified As mentioned in the
previous section when a new participant arrives we are modifying the share of
one old participant. The points to note for further analysis are :

1. The shares are divided into two halves.
2. Only the first half of the share of A is modified.
3. Only the share of A is modified.

Each of these points can be extended as we see.

1. Instead of dividing the shares into two halves, we may divide them into 3
equal sized blocks. Say A = {A1, A2, A3} and B = {B1, B2, B3}. Following
the method in section 3.5, we can modify the shares of A as {B1, A2, A3} and
give the share of t as {A1, B2, B3} or {A1, B2, A3} and so on. Extending this
idea, we can divide the shares into more partitions of smaller length. Ours is
a code based secret sharing scheme and hence we cannot divide the shares
into arbitrarily small partitions. This is because suppose we divide a share
into very small partitions and extend the method mentioned above to modify
the share of one participant (say A) and give it to the new participant (say
t), it may happen that the share of A remains the same which is not desirable
as we want to construct a ramp scheme and in this case n participants can
reconstruct the secret. If d is the distance of the code, we can divide the
share into at most d partitions.

2. Instead of modifying the first half of the share, we can modify the second half
of the share. The share of t can also be {B1, A1}. Hence the number of ways
we can give shares to the new participant is 8. This increases as we increase
the number of partitions. The advantage is that we can accommodate more
new participants without modifying any other old participant.

3. In our construction only the share of A was modified using the share of B.
Selecting A and B was done by a predefined order on the participants. Along
the line of sequential secret sharing one can give an hierarchical structure
on this scheme. On the set of participants let us suppose that the dealer
assigns a set of participants to have a higher hierarchy (as per the pre-
defined order), i.e., a subset of participants (say P1) only whose share are
to be modified and are given to the new participants. This is done until
the shares of the participants in P1 cannot be modified anymore. Then we
look at another subset of participants (say P2) which is disjoint from P1.
The condition for P1 to be disjoint from P2 is not necessary but we consider
it for simplicity. Hence in one generation(i.e., when new participants are
accommodated before exhaustion) we have the following hierarchy :

Dividing participants into groups of different levels.

(a) Dealer D and n participants P .
(b) The dealer puts an order on the participants.
(c) The dealer shares the secret among the participants.
(d) The set of participants P is divided into subsets P1, P2, .. and so on.



(e) When a new participant (say t1) arrives, modify the shares of P1 and
give the share to t1.

(f) Continue this process until the shares of the participants of P1 cannot be
modified anymore.

(g) When P1 is exhausted, continue the same process with P2 and so on.
(h) When all the subsets of the old set of participants are exhausted, i.e., the

system cannot accommodate any more new participants the whole system
is refreshed. The dealer again shares a secret among all the available
participants.

Conclusion and Open Issues

We give an explicit construction of an evolving secret sharing scheme imple-
mentable in AC0. Moreover, we consider the problem of redistributing secret
shares (in AC0) in absence of dealer. On the downside, our scheme can only ac-
commodate a bounded number of new participants for redistributing the secret
shares. Possibility (or impossibility) of constructing more threshold schemes in
AC0 can be some of the challenging questions. Moreover, fine-grained analysis
of secret sharing schemes in AC0 or NC1 can be an interesting follow up work.
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