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Abstract. In this paper we prove that embedding parity bits and other
function outputs in share string enables us to construct a secret sharing
scheme (over binary alphabet) robust against a resource bounded adver-
sary. Constructing schemes robust against adversaries in higher complex-
ity classes requires an increase in the share size and increased storage. By
connecting secret sharing with the randomized decision tree of a Boolean
function we construct a scheme which is robust against an infinitely pow-
erful adversary while keeping the constructions in a very low complexity
class, viz. AC0. As an application, we construct a robust secret sharing
scheme in AC0 that can accommodate new participants (dynamically)
over time. Our construction requires a new redistribution of secret shares
and can accommodate a bounded number of new participants.

Keywords: Robust Secret Sharing, Circuit Complexity, Randomized Decision
Tree Complexity, Share Redistribution.

1 Introduction

Classical Secret Sharing

Secret sharing schemes were proposed independently by Shamir [32] and Blakley
[6] in 1979. They proposed schemes where any k (or more) out of n participants
are qualified to recover the secret with 1 < k ≤ n. The resulting access structure
is called a (k, n)-threshold access structure where k acts as a threshold value
for being qualified. Both schemes were fairly efficient in terms of the size of the
shares and computational complexity. Ito et al. [21] showed that it is possible to
construct secret sharing schemes for any monotone (general) access structures
but with exponential share sizes. Later, Karchmer et al. [22] provided scheme
with share size is polynomial in the monotone span program complexity.



Secret Sharing in AC0

The motivation to study secret sharing schemes that can be implemented by
constant-depth circuits comes from two different sources. First, most well-known
secret sharing schemes require computations that can not be implemented by
constant-depth circuits (i.e. AC0 circuits). For example, Shamir’s scheme in [32]
requires linear algebraic computations over finite field and hence cannot be com-
puted in AC0. Secondly, the visual secret sharing schemes introduced by Naor
and Shamir [27] require only computation of OR during the secret reconstruc-
tion phase. This OR function can be implemented by AC0 circuit. Recent work
by Bogdanov et al. [7] considers the question of whether there exists secret shar-
ing scheme such that both share generation algorithm and secret reconstruction
algorithm are computable in AC0. They considered a variant of threshold secret
sharing scheme, known as ramp schemes where any k participants learn noth-
ing about the secret but when all n participants collaborate together, they are
able to reconstruct the secret. The scheme is called ramp because unlike clas-
sical secret sharing scheme there is a gap between the privacy threshold viz. k
and reconstructability threshold viz. n. Their construction connects the idea of
approximate degree of a function with the privacy threshold of a secret sharing
scheme. Existing literature on the approximate degree lower bounds gives sev-
eral secret sharing schemes in AC0. Their schemes however achieve large privacy
threshold k = Ω(n) when the alphabet size is 2poly(n) and achieve k = Ω(

√
n)

for binary alphabets. The work of Bogdanov et al. [7] was followed up by the
work of Cheng et al. [11] who achieved privacy threshold k = Ω(n) with bi-
nary alphabets by allowing negligible privacy error. They have also considered
robustness of the schemes in presence of honest majority with privacy threshold

Ω(n), privacy error 2−n
Ω(1)

and reconstruction error 1
poly(n) . Our constructions

in this paper are based on the the techniques in the paper by Cheng et al. [11].
For robustness we use the schemes of Cheragchi [12].

Redistribution of secret shares

Many secret sharing schemes have been proposed where the access structure
changes over time and the main aim is, without reconstructing the shared secret,
to add or delete shareholders, to renew the shares, and to modify the conditions
for accessing the secret. This important primitive of redistributing the secret was
initially considered by Chen et al. [10], Frankel et al. [18] and Desmedt-Jajodia
[16].

More formally, let us consider two sets of participants P and P ′ containing n
and n′ many participants respectively. Let us suppose that each participant Pj
in P has received a share sj of the secret value s. ΓP denote the access structure
that specifies which subsets of P are authorized to recover the secret s from
their shares. The goal of redistribution is that without the help of the original
dealer, the participants in P ′ will receive the shares of s in accordance with a
possibly different access structure ΓP′ . In the protocol, the participants in P
act like virtual dealers, while participants in P ′ are the ones who receive shares.
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Nojoumian-Stinson [28] proposed unconditionally secure share re-distribution
schemes, in absence of a dealer, based on a previously existing VSS protocol of
Stinson-Wei [35]. In their construction, they have assumed less than one-fourth of
participants behave dishonestly and also that the number of participants is fixed
throughout. Their work was improved upon by the work of Desmedt-Morozov
[17] who relaxed the proportion of dishonest participants to one-third of the
total population and also allowed the number of participants to change.

Secure Computation against moderately complex adversaries

An important requirement of cryptography is to protect not only information but
also the computations that are performed on data. The traditional cryptographic
approach has been based on computational tasks which are easy for the honest
parties to perform and hard for the adversary. We have also seen a notion of
moderately hard problems being used to attain certain security properties. Deg-
wekar et al. [15] show how to construct certain cryptographic primitives in NC1

[resp. AC0] which are secure against all adversaries in NC1 [resp. AC0]. Ball
et al. [5] present computational problems which are ”moderately hard” on aver-
age. Continuing in this line Campanelli and Gennaro [9] prove that it is possible
to construct secure computation primitives that are secure against moderately
complex adversaries. They present definitions and constructions for the task of
fully homomorphic encryption and Verifiable Computation in the fine-grained
model. For possible applications of AC0 secret sharing to secure broadcasting in
presence of external adversaries we refer to Section 7.3 of [11].

.

1.1 Our Contribution

In this paper we consider the following:

A fine-grained analysis of robust secret sharing schemes: We prove that
by embedding outputs of certain functions in the share string we can achieve
robustness against computationally bounded adversaries. This step removes the
requirement to compute the random permutation in the scheme of Cheng et al.
[11] which in turn helps us to reduce the share size. We consider adversarial
algorithms belonging to AC0, AC0[p], ACC0, TC0 and PP classes and analyse
the share sizes.

Connecting secret sharing schemes with the randomized decision tree
complexity of a Boolean function: Extending the previous idea we embed a
function with known randomized decision tree complexity in the string generated
by the method of Cheng et al. [11]. We argue that the scheme is robust against
an adversary who can see and modify a constant fraction of the share string.
To keep the whole scheme AC0-computable, it is ensured that the functions we
choose can be computed in AC0. In this case no assumption is made on the
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resource bound of the adversary. Hence this idea can be applied for functions
with known quantum query complexity and thereby to quantum adversaries too.
As in the previous case, embedding function output bits removes the requirement
to use the random permutation in the scheme of Cheng et al. [11].

Application As an application, we study redistribution of secret shares if a
bounded number of new participant(s) need to be accommodated (dynamically)
to the scheme constructed in the previous section. Our idea of redistribution
uses random partitions and is different from the ones previously used in the
literature. All the computations are in AC0.

2 Preliminaries

We discuss some definitions and results that will be needed throughout the paper.
We mainly adopt the notations and definitions of [7], [11].

For a positive integer n the set {1, 2, . . . , n} is denoted by [n]. Let Pn = [n]
be a set of n participants. Let 2Pn denote the power set of Pn. A collection
A ⊂ 2Pn is said to be monotone if A ∈ A and A ⊂ B imply B ∈ A.

Definition 1. (Access structure) A ⊂ 2Pn is called a monotone access structure
if the collection A is monotone. Any subset A of Pn which are in A are called
qualified sets and F /∈ A are called forbidden.

Definition 2. (Threshold Access structure) Let n ∈ N and 0 < k ≤ n. A (k, n)-
threshold access structure A on a participant set [n] is defined by A = {X ⊂ [n] :
|X| ≥ k}.

2.1 Secret Sharing Scheme

In a secret sharing scheme there is a dealer who has a secret s, a set of partic-
ipants [n] and an access structure A. The dealer shares the secret among the
participants in such a way that any qualified set of participants can recover the
secret but any forbidden set of participants has no information about the secret.

Definition 3. (Secret Sharing Scheme) A secret sharing scheme S for an access
structure A consists of a pair of algorithms (Share,Rec). Share is a probabilistic
algorithm that gets as input a secret s (from a domain of secrets S) and a number

n, and generates n shares Π
(s)
1 , Π

(s)
2 , . . . ,Π

(s)
n . Rec is a deterministic algorithm

that gets as input the shares of a subset B of participants and outputs a string.
The requirements for defining a secret sharing scheme are as follow:

1. (Correctness) For every secret s ∈ S and every qualified set B ∈ A, it must

hold that Pr[Rec({Π(s)
i }i∈B , B) = s] = 1.

2. (Security) For every forbidden set B /∈ A and for any two distinct se-

crets s1 6= s2 in S, it must hold that the two distributions {Π(s1)
i }i∈B and

{Π(s2)
i }i∈B are identical.
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The share size of a secret sharing scheme S is the maximum number of bits
each participant has to hold in the worst case over all participants and all secrets.

Definition 4. (Ramp Secret Sharing Scheme) A (k, l, n) ramp secret sharing
scheme with k < l ≤ n, on a set of n participants is such that any subset of
participants of size greater than equal to l can recover the secret whereas, any
subset of size less than k has no information about the secret.

2.2 k-wise indistinguishability

A construction of K-wise independent generators based on unique neighbour
expander graphs were proposed by Guruswami-Smith [20] . A set of n random
variables, X1, ..., Xn, is said to be k-wise independent(and uniform) if any k of
them are independent(and uniformly distributed). For any r, n, k ∈ N, a function
g : {0, 1}r → Σn is a k-wise (uniform) independent generator, if for the uniform
distribution U on {0, 1}r, the random variables g(U) = {Y1, ..., Yn} are k-wise
independent (and uniform).

Let Σ denote the set of alphabets. Two distributions µ and ν over Σn are
called k-wise indistinguishable if for all subsets S ⊂ [n] of size k, the projections
µ|S and ν|S of µ and ν to the coordinates in S are identical. Thus, while sharing
the secret bit 0 (resp. 1) if sampling is done using µ (resp. ν) then we wee a
direct connection to the fact that any k participants gain no information about
the secret bit. However, if there is a function f : Σn → {0, 1} which can tell
apart the distributions then f can be thought of as a reconstruction function.
Of course, the gap between the privacy threshold k and the reconstructability
threshold n makes the scheme a ramp scheme.

The definition is as follows.

Definition 5. (Secret Sharing for 1-bit secret) An (n, k, r) bit secret sharing
scheme with alphabet Σ, reconstruction function f : Σr → {0, 1} and reconstruc-
tion advantage α is a pair of k-wise indistinguishable distributions µ and ν over
Σn such that for every subset S of size r we have Pr[f(µ|S) = 1]−Pr[f(ν|S) =
1] ≥ α.

2.3 Circuit Complexity

AC0 is the complexity class which consists of all families of circuits having con-
stant depth and polynomial size. The gates in those circuits are NOT, AND and
OR, where AND gates and OR gates have unbounded fan-in. Integer addition
and subtraction are computable in AC0. It is also well known that calculating
the parity of an input cannot be decided by any AC0 circuit [19]. For any cir-
cuit C, the size of C is denoted by size(C) and the depth of C is denoted by
depth(C). Recently, a lot of research [1], [2], [3], [5], [24] have been done focusing
on possibilities of obtaining cryptographic primitives in low complexity classes
e.g. AC0 or NC1. NC1 is the class of decision problems decidable by uniform
Boolean circuits with a polynomial number of gates of at most two inputs and
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depth O(logn). Some other important complexity classes we consider in this
paper are :

– AC0[p] : Let

MODp(x1, ..., xn) =

{
0, if Σn

i xi = 0(modp)

1, otherwise
(1)

AC0[p] denote the set of functions f : {0, 1}∗ → {0, 1}∗ computable by
constant-depth unbounded fan-in circuits of NOT , OR andMODp (p prime)
gates. The following is well known.

Theorem 1. [31], [33] Majority /∈ AC0[p] for all primes p.

– ACC0 : A language belongs to ACC0 if it belongs to AC0[m] for some m.
It is known that AC0 ( ACC0. It is also known that AC0 ⊂ TC0 and
it is conjectured that ACC0 cannot compute majority implying that the
inclusion in TC0 is strict. From the work of Smolensky [33] it is known
that sub-exponential size AC0 circuits augmented with MODm gates (such
circuits when restricted to polynomial size define the class ACC0[m]) cannot
compute MODq if (m, q) = 1 and m is a prime power.

– TC0 : TC0 is the set of a functions computed by constant depth polynomial-
size threshold circuits. Threshold gates are defined as :

g(x1, ..., xl) =

{
1, if Σiwixi ≥ θ
0, otherwise

(2)

The relation between the above mentioned complexity classes is :

AC0 ( AC0[p] ( TC0 ⊂ NC1.

We also have TC0 ( PP.

– PP : PP is the class of decision problems solvable by a probabilistic Turing
machine in polynomial time, with an error probability of less than 1/2 for
all instances. PP contains the complexity classes BPP and NP . Also, PP
strictly contains the class TC0. For our purposes it is important to note that
for any integer k, PP 6⊆ SIZE(nk) where SIZE(nk) denote the class of
languages accepted by Boolean circuit families of size bounded by nk.

For more on these complexity classes we refer the reader to [4], [36].

2.4 Statistical Distance

The statistical distance between two random variables X and Y over Σn for
some alphabet Σ, is SD(X;Y ) which is defined as follows,

SD(X;Y ) =
1

2

∑
a∈Σn

|Pr[X = a] = Pr[Y = a]|.

We say that X is SD(X;Y )-close to Y .
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2.5 Minsky-Papert CNF function

The sharing function, Share, used in our construction is based on the CNF
function given by Minsky-Papert [26] . This scheme can share one bit among
n participants, with binary alphabet, privacy threshold Ω(n1/3) and perfect
reconstruction.

2.6 Robust Secret Sharing Scheme

The ShareC function in the construction is the same as the sharing function for
secret sharing schemes based on error correcting codes. The construction first
amends the secret with a tag using an AMD code (such as the one in [12], [14]).
Then, it uses Shamir’s scheme to encode the result into mn shares, for a carefully
chosen integer parameter m > 1. Finally, the resulting shares are bundled into n
groups of size m each which are distributed among the n participants. In other
words, we use a variant of Shamir’s scheme based on folded Reed-Solomon codes
(instead of plain Reed-Solomon codes) combined with an AMD pre-code. This
is used to provide robustness in the sense of error-detection.

2.7 Randomized decision tree complexity

Decision trees form a model for computing Boolean functions by successively
reading the input bits until the value of the function can be determined. In this
model, the only cost we consider the number of input bits queried. This allows
us to study the complexity of computing a function in terms of its structural
properties. Formally, a deterministic decision tree algorithm A on n variables is
a binary tree in which each internal node is labeled with an input variable xi,
and the leaves of the tree are labeled by either 0 or 1. Each internal node has two
outgoing edges, one labeled with 0, the other with 1. Every input x = (x1, ..., xn)
determines a unique path in the tree leading from the root to a leaf: if an internal
node is labeled by xi, we follow either the 0 or the 1 outgoing edge according to
the value of xi. The value of the algorithm A on input x, denoted by A(x), is the
label of the leaf on this unique path. Thus, the algorithm A computes a Boolean
function A : {0, 1}n → {0, 1}. We define the cost C(A, x) of a deterministic
decision tree algorithm A on input x as the number of input bits queried by
A on x. Let Pf be the set of all deterministic decision tree algorithms which
compute f . The deterministic complexity of f is

D(f) = minA∈Pfmaxx∈{0,1}nC(A, x).

In an extension of the deterministic model, we can also permit randomization
in the computation. A randomized decision tree algorithm A on n variables
is a distribution over all deterministic decision tree algorithms on n variables.
Given an input x, the algorithm first samples a deterministic tree B ∈R A, then
evaluates B(x). The error probability of A in computing f is given by

maxx∈{0,1}nPrB∈RA[B(x) 6= f(x)].
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The cost of a randomized algorithm A on input x, denoted also by C(A, x),
is the expected number of input bits queried by A on x. Let P δf be the set of
randomized decision tree algorithms computing f with error at most δ. The
two-sided bounded error randomized complexity of f with error δ ∈ [0, 1/2) is

Rδ(f) = minA∈P δfmaxx∈{0,1}
nC(A, x).

We write R(f) for R0(f). We know the exact randomized complexity of very
few Boolean functions. For more on randomized decision tree complexity we
refer the reader to [8], [13], [29], [25]. The functions for which exact values or
bounds on the randomized complexity are known will be used in the paper.
They are the NANDh and the recursive majority function denoted by 3MAJ .
NANDh denotes the complete binary tree of height h with NAND gates, where
the inputs are at the n = 2h leaves. The following was proved by Snir [34].

Theorem 2. [34] R(NANDh) ∈ O(nc) where c = log2( 1+
√

33
4 ) ≈ 0.753.

Let MAJ(x) denote the Boolean majority function of its input bits. The
ternary majority function 3MAJh is defined recursively on n = 3h variables, for
every h ≥ 0. We omit the height h when it is obvious from context. For h = 0
it is the identity function. For h ≥ 0, let x be an input of length n and let
x(1), x(2), x(3) be the

first, second, and third n/3 variables of x. Then

3MAJh(x) = MAJ(3MAJh−1(x(1)), 3MAJh−1(x(2)), 3MAJh−1(x(3)))

In other words, 3MAJh is defined by the read-once formula on the complete
ternary tree Th of height h in which every internal node is a majority gate. We
identify the leaves of Th from left to right with the integers 1, ..., 3h. The known
bound for the randomized complexity of 3MAJ was given by Magniez et al.[25].

Theorem 3. [25] For all δ ∈ [0, 1/2], we have

(1/2− δ) · 2.57143h ≤ Rδ(3MAJh) ≤ (1.007) · 2.64944h.

3 Main results and technical details

Here we mention that unless specified, all computations are done by taking the
alphabets to be binary alphabets.

3.1 Fine grained analysis of robust secret sharing schemes

Overview : Scheme Computable in AC0 We first describe the scheme of
Cheng et.al.[11] which has the following steps. First divide the parties obtained
into small blocks (see steps 1, 2 and 3 of Algorithm : Construction 1, section
3.1.3 of this paper), and then for each small block we use a good secret sharing
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scheme based on error correcting codes. Suppose the adversary gets to see a con-
stant fraction of the shares, then on average for each small bock the adversary
also gets to see only a constant fraction of the shares. Thus the adversary only
gets to learn the information from a constant fraction of the blocks. However,
this is still not enough, since the outer protocol only has threshold n(1). To
solve this problem use a threshold amplification technique in the second step.
Turn the inner protocol itself into another concatenated protocol (i.e., a larger
outer protocol combined with a smaller inner protocol), and then apply a ran-
dom permutation. Specifically, choose the size of the block mentioned above to
be O(log2n), apply a secret sharing scheme based on asymptotically good error
correcting codes and obtain O(log2n) shares. Divide these shares further into
O(logn) smaller blocks each of size O(logn), and now apply a random permu-
tation of these smaller blocks. If we use a slightly larger alphabet, we can now
store each block together with its index before the permutation as one share.
Note that we need the index information when we try to reconstruct the secret,
and the reconstruction can be done in AC0.

If the adversary modifies some indices, then we could run into situations
where more than one block have the same index. To overcome this difficulty, the
index is stored multiple times among the blocks in the second level. Specifically,
after we apply the random permutation, for every original index we randomly
choose O(logn) blocks in the second level to store it. As the adversary can only
corrupt a small constant fraction of the blocks in the second level, for each such
block, we can correctly recover its original index with probability 1− 1/poly(n)
by taking the majority of the backups of its index. Thus with probability 1 −
1/poly(n) all original indices can be correctly recovered. In addition, we use the
same randomness for each block to pick the O(logn) blocks, except we add a
different shift to the selected blocks. This way, we can ensure that for each block
the O(logn) blocks are randomly selected and thus the union bound still holds.
Furthermore the randomness used here is also stored in every block in the second
level, so that we can take the majority to reconstruct it correctly. We need to
take majority for n inputs, which is not computable in AC0. However, we note
that by adjusting parameters we can ensure that at least say 2/3 fraction of the
inputs are the same, and in this case it suffices to take approximate majority,
which can be computed in AC0.

Overview of our method : Robustness against AC0 adversary Suppose
the adversary is AC0 powerful. Since we know that parity is not in AC0, we
compute the parity of the bits in each of the smaller blocks and store them at
the end of the respective block. Since the blocks have size O(logn), the parity of
the blocks can be computed by AC0 circuits. Now we take O(logn) many of the
parity bits computed before and compute their parity. So we have computed
the parity of the all the elements of the larger block. Now replace each of the
parities stored at the end of each of the smaller blocks with the parity of all the
elements of the larger block. Repeat the steps for each of the larger block. Lastly,
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change the positions of each of the computed parity bits to any random position
inside the block. Clearly the whole operation can be done by AC0 circuits.

The adversary sees (queries) a constant fraction of the string. Let us suppose,
without loss of generality, that a complete large block is included in the fraction
observed. We have stored the parity bits in random locations of the blocks, Since
the adversary is AC0-powerful and hence cannot compute parity, it cannot find
out which bit is the parity bit. Since the parity bits go into the computation for
the error correcting codes, they form a part of the secret. So we can conclude that
the adversary cannot get any information about the secret. To safeguard against
the adversary modifying some of the indices, we store the random location of
the bits multiple times.

1. The advantage of this operation is that we no longer need the random per-
mutations to fool the adversary. This means that we no longer need to store
all the original indices multiple times in the string. We need to store the lo-
cations of only the parity bits multiple times in the block. This step reduces
the size of the share string.

2. If the adversary only observes the fraction, then the previous argument goes
through. On the other hand if the adversary modifies some of the shares, we
can use asymptotically good error correcting codes to ensure robustness.

3. Contrary to [11], where robustness is information theoretic, the robustness
in our case comes from the inability of the adversary to compute parity.
Hence in a sense it is computational.

Proceeding similarly as before our strategy for adversaries with bounded
power (in higher complexity classes) is to find a function which is not computable
by the adversary. Then we compute the function by breaking it in small blocks
and embed them in the secret string. Since the adversary cannot compute the
function, it cannot derive any information of the secret by observing and/or
modifying a constant fraction of the secrets.

Construction 1: Embedding PARITY in the share string We shall as-
sume previous constructions using k-wise independent generators and the ones
using asymptotically good error correcting codes. We construct the secret shar-
ing scheme (Share1, Rec1) as follows. For the sake of completeness we recall
some notations adopted from Cheng et al. [11] which we use frequently in the
paper. .

For any n, k,m ∈ N with k,m ≤ n, alphabets Σ0, Σ, let (Share,Rec) be
an (n, k) secret sharing scheme with share alphabet Σ, message alphabet Σ,
message length m.

Let (ShareC , RecC) be an (nC , kC) secret sharing scheme from Lemma 3.13
of [11] with alphabet Σ, message length mC , where mC = δ0nC , kC = δ1nC ,
nC = O(logn) for some constants δ0 and δ1.
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For any constant a ≥ 1, γ ∈ (0, 1], the paper by Cheng et al. [11] constructs
the following (n1 = O(na), k1 = Ω(n1) secret sharing scheme (Share1, Rec1)
with share alphabet Σ× [n1], message alphabet Σ, message length m1 = Ω(n1).
For clarity we include the algorithm as in [11]. .

Algorithm : Construction 1

– The Share1 function is as follows :- Share1 : Σm1 → (Σ × [n1])n1 .

1. Let n̄ = Θ(na−1) with large enough constant factor.
2. (Independent generator step) :- Let gτ : Σmn̄

0 → Σm1 be the l-wise

independent generator where l = Ω(mn̄log|Σ0|
log|Σ| )1−γ .

3. For a secret x ∈ Σm1 , we draw a string r = (r1, ..., rn̄) uniformly from
Σmn̄

0 .
4. Let y = (ys, yg), where ys = (Share(r1), ..., Share(rn)) ∈ (Σn)n̄ and
yg = gτ (r)⊕ x ∈ Σm1 .

5. Get ŷs ∈ (ΣmC )ns from ys by parsing ys,i to be blocks each having length
mC for every i ∈ [n̄], where ns = d n

mC
en̄.

6. Get ŷg ∈ (ΣmC )ng from yg by parsing yg to be blocks each having length
mC , where ng = dm1

mC
e.

7. Compute

(ShareC(ŷs,1), ..., ShareC(ŷs,ns), ShareC(ŷg,1), ..., ShareC(ŷg,ng ))

and parse it to be y1 = (y11, ..., y1n1
), where n1 = (ns + ng)nC .

8. (Generate a random permutation) π : [n1]→ [n1] apply it on y1 and this
is the output.

– We modify the steps 7 and 8 of Construction 1. The first six steps stay the
same. For brevity we denote Share by Sh.

Algorithm 1a : Embedding parity

1. Do steps 1 to 6 of Construction 1.
2. Compute parity(ŷs,i) and parity(ŷg,j) for all i and j .
3. We get the string

(ŷs,1, parity(ŷs,1)..., ŷg,1, parity((ŷg,1), ...).

4. Change the location of the computed parities to any random position
inside each block of the string in 3.

5. On the string obtained in 4 compute

(ShC(ŷs,1), . . . , ShC(ŷs,ns), ShC(ŷg,1), ..., ShC(ŷg,ng ))

and parse it to be y1 = (y11, ..., y1n1
), where n1 = (ns + ng)nC .

6. y1 is the output.
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– The reconstruction function Rec1 is as follows :

Algorithm 1a : Reconstruction

1. Compute RecC on all the elements of y1 to get y1.
2. Retrieve all the parities from y1.
3. Delete all the parities from y1. to get ys and yg.
4. Apply Rec on every entry of ys to get r.
5. Output gτ (r)⊕ yg.

– Parity can also be computed at the end. But it results in increased compu-
tation. We include the algorithm for completeness.

Algorithm 1b : Embedding parity at the end

1. Do steps 1 to 7 Construction 1.
2. Compute parity((ShC(ŷs,i)) and parity((ShC(ŷg,j)) for all i and j .
3. We get the string

(ShC(ŷs,1), parity((ShC(ŷs,1)).., ShC(ŷg,1), parity((ShC(ŷg,1)), ..)

Parse it to be y1 = (y11, ..., y1n1
).

4. Compute parity(parity((ShC(ŷs,1)), ..., parity((ShC(ŷg,1)), ...) = p.
5. Replace each of parity((ShC(ŷs,i)) and parity((ShC(ŷg,j)) for all i and
j in y1 with p.

6. Change the location of p to any random position inside each of y1i for
each i.

7. y1 is the output.

– The reconstruction function Rec1 in this case is :

Algorithm 1a : Reconstruction :

1. Retrieve all the p’s from y1.
2. Delete all the p’s from y1. Call the resulting string y1.
3. Compute RecC on all the elements of y1 to get ys and yg.
4. Apply Rec on every entry of ys to get r.
5. Output gτ (r)⊕ yg.

Theorem 4. Share1 and Rec1 can be computed by AC0 circuits.

Proof. As Share can be computed by an AC0 circuit, y can be computed in AC0.
Since we are breaking the string in small blocks, ShareC can also be computed
in AC0. The extra function which we are computing is the parity function.
To keep the whole computation in AC0, again we compute parity repeatedly
in small blocks of size O(logn) each and store the results. This extra storage
assumption is necessary for our purpose. The reconstruction function can also
be computed in AC0. In our case the additional computations are retrieving the
p’s and deleting them from the strings. Both these can be computed in AC0.
Hence, both Share1 and Rec1 can be computed by AC0 circuits.
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Remark Irrespective of where parity is computed before computing ShareC
or after computing ShareC , the parity bits are embedded in random positions
in each of the blocks. Since the adversary sees only a constant fraction of the
string and it is AC0 powerful, it cannot compute and find the parity bit. We
can thereby conclude that the adversary cannot learn any information about
the secret. Computing parity before ShareC results in computing lesser number
of parity bits but computing parity after ShareC increases robustness while
requiring to compute more number of parity bits.

Theorem 5. If the reconstruction error of (Share; Rec) is η , then the recon-
struction error of (Share1, Rec1) is n′ = n̄η.

Proof. The reconstruction is done by first retrieving the parity bits. These parity
are then deleted. Reconstruction then proceeds by computing the RecC , Rec and
the XOR functions as in [11]. We have, as ∀i ∈ [n̄]; Pr[Rec(Share(xi)) = xi] ≥
1− η, by the union bound, Pr[Rec1(Share1(x)) = x] ≥ 1− n̄η.

Adversaries in higher complexity classes We now look at the cases where
the adversary is more powerful. In the previous case we were able to use parity
as XOR was associative. Hence we could compute parity in small blocks.

1. AC0[p]-adversary :- Since it is known that AC0[p] ⊂ TC0 and the inclusion
is proper we choose a problem in TC0 that is not in AC0[p], namely the
majority function and proceed as before. But majority not associative and
we cannot compute it recursively as before. In this case we use a theorem by
Cohen et.al. in [13].

Theorem 6. [13] There exists an algorithm A that given an integer n as

input, runs in poly(n)-time and computes a circuit C on m = 2
√
logn inputs,

with the following properties:
– C consists only of Maj3 gates and no constants.
– size(C) = poly(n).
– depth(C) = O(logn).
– ∀x ∈ {0, 1}m it holds that C(x) = Maj(x).

Here Maj3 denotes the majority of 3 inputs.

Unlike the case of parity, we only compute majority beforehand as in Al-
gorithm 1a.

Algorithm 1c : Embedding majority

(a) Do steps 1 to 6 of Construction 1.
(b) Compute majority(ŷs,i) and majority(ŷg,j) for all i and j .
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(c) Change the location of the computed majorities to any random position
inside each block of the string in (b).

(d) On the string obtained in (c) compute

(ShC(ŷs,1), . . . , ShC(ŷs,ns), ShC(ŷg,1), ..., ShC(ŷg,ng ))

and parse it to be y1 = (y11, ..., y1n1
), where n1 = (ns + ng)nC .

(e) y1 is the output.

Theorem 7. Share1 in Algorithm 1c can be computed by AC0 circuits.

Proof. In this case the number of inputs is O(logn). So, denoting the variable
in the size and depth in Theorem 6 as z, we have

z = 2(log(logn))2 .

This function grows very slowly with n for sufficiently large n and z � n. By
replacing each of the Maj3 gate in C with the equivalent circuit comprising
of only AND, OR gates, we get a circuit C with size(C) � poly(n) and
depth(C)� O(logn) which computes the majority of the block. Hence using
sufficiently extra storage and a large constant depth, we can implement the
whole computation in the required complexity class AC0.

– This construction helps us in getting a secret sharing scheme which is
robust against an AC0[p] adversary.

– Comparing against an AC0 adversary, we see that for robustness against
an AC0[p] adversary we need sufficiently more storage and hence an
increase in the length of the share string.

– The reconstruction algorithm is same as the reconstruction of Algorithm
1a.

– Continuing this trend, one would require increased share sizes and stor-
age as we go higher in the complexity ladder.

2. ACC0- adversary : If we assume the conjecture that ACC0 circuits cannot
compute majority, we can proceed as in the previous case. Otherwise we
choose the problem for the next step.

3. TC0-adversary :- Since it is known that TC0 ⊂ PP and the inclusion is
proper we choose a problem in PP that is not in TC0. For this we refer the
reader to section 6.2 of [36].

.
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3.2 Secret sharing & Randomized decision tree complexity

We want to embed an evasive Boolean function in the secret string in the
scheme of Cheng et al. [11]. By the property of evasive Boolean functions, ev-
ery deterministic decision tree algorithm has to query all the n variables of
the function. Any adversary that observes/queries less than n variables of the
function inputs cannot infer any information of the output. The difficulty of this
method is that deterministic decision tree complexity is a worst case measure.
To avoid this situation we use the randomized decision tree complexity of a
Boolean function. This measure considers the expected number of queries a ran-
domized decision tree makes on an input to decide the output of the function.
The randomization is a distribution on all the decision trees that compute the
function under consideration. The difficulty of using randomized decision tree
complexity is that while the randomized complexity of a large class of Boolean
functions with NAND gates is known , we know the exact randomized deci-
sion tree complexity of very few Boolean functions. In this context we use two
functions for which bounds on the randomized complexity is known, namely
the NANDh-function and the recursive − majority function. As it is noted
in [11], if the adversary observes a constant fraction of the string, then on an
average it observes a constant fraction of the blocks. By ensuring the constant
fraction to be not too large, we can ensure that in some blocks the adversary
sees less the number of expected bits required to compute/decide the output
of the embedded function. Hence it cannot decide which bit is the output bit.
Since the bits go into the ShareC computation, it forms a part of the share.
We can thereby conclude that the adversary cannot learn any information about
the secret. While the NANDh function can be computed by AC0 circuits, with
an extra storage assumption and by computing in small blocks, we can compute
the recursive−majority function and the whole computation by AC0 circuits.
Using these functions removes the necessity to compute the random permuta-
tions which in turn reduces the size of the share string as we no longer have to
store all the indices multiple times. Just like the case for parity, only storing the
random locations of the function output is enough for our purpose. To maintain
robustness against the adversary modifying the bits, we continue to use asymp-
totically good error correcting codes. We recall the definitions and the properties
of the NANDh and the recursive majority 3MAJ function.

– Let NANDh denote the complete binary tree of height h with NAND gates,
where the inputs are at the n = 2h leaves.

– Let MAJ(x) denote the Boolean majority function of its input bits. The
ternary majority function denoted by 3MAJh is defined recursively on n =
3h variables, for every h ≥ 0. We omit the height h when it is obvious from
context. For h = 0 it is the identity function. For h ≥ 0, let x be an input of
length n and let x(1), x(2), x(3) be the first, second, and third n/3 variables
of x. Then

3MAJh(x) = MAJ(3MAJh−1(x(1)), 3MAJh−1(x(2)), 3MAJh−1(x(3))).
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The randomized complexity of these functions are:

1. [34] R(NANDh) ∈ O(nc) where c = log2( 1+
√

33
4 ) ≈ 0.753.

2. [25] For all δ ∈ [0, 1/2], we have

(1/2− δ) · 2.57143h ≤ Rδ(3MAJh) ≤ (1.007) · 2.64944h.

Algorithm 2a: Embedding NANDh

1. Do steps 1 to 6 of Construction 1.
2. Compute the greatest integers hi and hjsuch that 2hi ≤ |ŷs,i| and 2hj ≤ |ŷs,j |

for all i, j.
3. Truncate the strings ŷs,i and ŷs,j to lengths 2hi and 2hj respectively.
4. On the truncated strings compute NANDhi(ŷs,i) and NANDhj (ŷg,j) for all
i and j .

5. Embed the computed NANDh’s to any random position inside each block of
the string obtained after step 1.

6. On the string obtained in 5 compute

(ShC(ŷs,1), . . . , ShC(ŷs,ns), ShC(ŷg,1), ..., ShC(ŷg,ng ))

and parse it to be y1 = (y11, ..., y1n1
), where n1 = (ns + ng)nC .

7. y1 is the output.

Algorithm 2b : Embedding 3MAJh

1. Do steps 1 to 6 of Construction 1.
2. Compute the greatest integers hi and hjsuch that 3hi ≤ |ŷs,i| and 3hj ≤ |ŷs,j |

for all i, j.
3. Truncate the strings ŷs,i and ŷs,j to lengths 3hi and 3hj respectively.
4. On the truncated strings compute 3MAJhi(ŷs,i) and 3MAJhj (ŷg,j) for all i

and j by recursively computing

3MAJh(x) = MAJ(3MAJh−1(x(1)), 3MAJh−1(x(2)), 3MAJh−1(x(3)))

and storing the intermediate results.
5. Embed the computed 3MAJh’s to any random position inside each block of

the string obtained after step 1.
6. On the string obtained in 5 compute

(ShC(ŷs,1), . . . , ShC(ŷs,ns), ShC(ŷg,1), ..., ShC(ŷg,ng ))

and parse it to be y1 = (y11, ..., y1n1
), where n1 = (ns + ng)nC .

7. y1 is the output.
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Reconstruction : The reconstruction function Rec1 is as follows (it is same
for both 3MAJ and NANDh functions) :

Algorithm

1. Compute RecC .
2. Retrieve all the functional values from y1.
3. Delete all the functional values from y1. Call the resulting string y1.
4. to get ys and yg.
5. Apply Rec on every entry of ys to get r.
6. Output gτ (r)⊕ yg.

Theorem 8. Share1 and Rec1 can also be computed by AC0 circuits.

Proof. Since both the NANDh and the 3MAJh can be computed by AC0 cir-
cuits, both the share and the reconstruction function can be computed in AC0.
Also embedding a bit at a random position in a string is equivalent to a random
permutation and hence can also be computed by AC0 circuits.

Theorem 9. Robustness:- An adversary which sees half of the string cannot
compute the NANDh and the 3MAJh bits in the string.

Proof. From the above discussion we know that :- R(NANDh) ∈ O(n0.75) and
R(3MAJh) ≥ (1/2)2.57h. We prove the result for the NANDh function. The
proof for the 3MAJ function is similar. Let us suppose that the adversary sees
half of the string. This means that on an average the number queries that the
adversary makes in each block is less than the expected number of bits needed to
be queried to compute the NANDh function. Since the function output bits are
embedded in random positions inside the block, the adversary cannot compute
the function bits and hence cannot get any information about the secret.

4 Application: Redistributing secret shares

In this section we construct a scheme for redistribution of secret shares. Our
construction is computationally robust while it modifies the shares of some of
the old participants. We use the scheme of Cheng et.al. [11] as a building block
and thus to keep the computations in AC0 we can accommodate only a bounded
number of new participants.

Let us suppose that at a certain point the share string has been generated
by embedding the function output of a function with known (or bounded) ran-
domized decision tree complexity as in the previous section. At this stage a new
participant arrives. We add this participant to the larger block. This keeps the
size of the larger block O(log2n). Store the additional information like the gen-
eration of the new participant and to which block it is added multiples times.
Then the share of this participant is computed as follows :

Algorithm 3 : Share of a new participant
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1. Select a random participant from the old set of participants, say A
2. Compute a random partition of the share of A into two equal halves. Since a

random parition can be obtained by taking a random permutation and divid-
ing the string into two halves, we can conclude that a random partition can
be computed in AC0.

3. Divide the share of A as {p(A1), p(A2)}. Here p(A1) denotes the first half
of the partitioned string of A and p(A2) denotes the second half of the par-
titioned string of A.

4. Take p(A1), and copy it as the first half of the share of t.
5. Choose another old participant from the remaining participants, say B.
6. Compute p(B1) and p(B2) as before.
7. The new share of A is {p(B1), p(A2)}.
8. The share of t is {p(A1), p(B1)}.

As noted in [11], increasing the number of repeated characters does not affect
security. Also in this case the adversary (seeing a constant fraction of the string)
sees less than the expected number of bits to compute the output of the embed-
ded function. Hence it cannot learn any information about the secret. In each
of the random partitions the function output embedded before is also present.
We repeat the above process when a group of participants arrive. In this case
we might choose different pairs of participants for different newcomers. To reuse
shares of older participants we can also divide the shares of old participants into
smaller (not arbitrarily) groups.

4.1 Remark

We could have just divided the the share of A into two equal halves {A1, A2}. But
since we have not used any random permutation, we cannot ensure if there are
the function outputs embedded in the share of the new participant which hinders
robustness. Also from the share of the new participant and B, the adversary can
recover completely the share of A which cannot be allowed.

Algorithm: Reconstruction

1. Restore the original shares of the corresponding old participants.
2. Delete the new participants.
3. Retrieve the function output bits and delete them y1.
4. Compute RecC on all the elements of y1 to get ys and yg.
5. Apply Rec on every entry of ys to get r.
6. Output gτ (r)⊕ yg.

– Here we note that to keep the computations in AC0, we cannot accommodate
an arbitrary number of new participants. We have to ensure that the block
sizes remain O(log2n) and O(logn) respectively.
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4.2 Discussions

In this section we see that going to the complexity class NC1 and using the
ideas of Krawczyk [23] it is possible to reduce the share size of the robust secret
sharing schemes. In [23] an m-threshold scheme is presented , where m shares
recover the secret but m− 1 shares give no (computational) information on the

secret, in which shares corresponding to a secret S are of size |S|m plus a short
piece of information whose length does not depend on the secret size but just
in the security parameter. This paper uses the idea of information dispersal
introduced by Rabin [30]. In this scheme information is distributed among n
active processors, in such a way that the recovery of the information is possible
in the presence of m active processors (i.e. out of m fragments), where m and n
are parameters satisfying 1 ≤ m ≤ n. The scheme assumes that active processors
behave honestly, i.e. returned fragments are unmodified. The basic idea is to add
to the information, say a file F , some amount of redundancy and then to partition
it into n fragments, each transmitted to one of the parties. Reconstruction of
F is possible out of m (legitimate) fragments. Each distributed fragment is of

length |F |m which is clearly space optimal.
The distribution scheme of Krawczyk [23] proceeds by choosing a random

encryption key K. The secret S is encrypted using the encryption key K. Using
the Information Dispersal Algorithm the encrypted file E is partitioned into n
fragments, E1, E2, ..., En. Using a perfect secret sharing scheme n shares for the
key K are generated, denoted by K1,K2, ..,Kn. Each participant Pi, i = 1, ..., n
gets the share Si = (Ei,Ki). The portion Ki is privately transmitted to Pi (e.g.
using encryption or any other secure way).

To reconstruct, collect from m participants Pij , j = 1, ...,m their shares
Sij ,= (Eij ,Kij ). Using IDA reconstruct E out of the collected values Eij , j =
1, ...,m. Using the perfect secret scheme recover the key K out of Kij , j =
1, ...,m. Finally decrypt E using K to recover the secret S.

The above scheme constitutes a computationally secure (n,m)- secret sharing

scheme. Each share Si is of length |S|m + |K|. We note that this scheme can be
constructed in the complexity class NC1.

Recently Degwekar et.al [15] showed the existence of secure encryption in
NC1. With this assumption we see that in the class NC1, it is possible to
construct a robust secret sharing scheme which secure against any adversary
and the share sizes substantially reduced.

5 Conclusion

In this paper we study robustness of a low complexity secret sharing scheme
against bounded adversary. By connecting secret sharing with the randomized
decision tree of a Boolean function we construct a scheme which is computa-
tionally robust against an infinitely powerful adversary (not resource bounded)
while keeping the constructions in a very low complexity class, AC0. As an ap-
plication of the above we construct a robust secret sharing scheme in AC0 that
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can accommodate new participants (dynamically) over time. We do not consider
deletion of parties but only the case when new parties join (sequentially) the
scheme in absence of dealer. Our construction requires a new redistribution of
secret shares and can only accommodate a bounded number of new participants.
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