
A new method for Searching Optimal Differential and
Linear Trails in ARX Ciphers

Zhengbin Liu1,3, Yongqiang Li1,3?, Lin Jiao2, and Mingsheng Wang1,3

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

2 State Key Laboratory of Cryptology, Beijing, China
3 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

yongq.lee@gmail.com, jiaolin jl@126.com

Abstract. In this paper, we propose an automatic tool to search for optimal differential and
linear trails in ARX ciphers. It’s shown that a modulo addition can be divided into sequential
small modulo additions with carry bit, which turns an ARX cipher into an S-box-like cipher.
From this insight, we introduce the concepts of carry-bit-dependent difference distribution
table (CDDT) and carry-bit-dependent linear approximation table (CLAT). Based on them,
we give efficient methods to trace all possible output differences and linear masks of a
big modulo addition, with returning their differential probabilities and linear correlations
simultaneously. Then an adapted Matsui’s algorithm is introduced, which can find the optimal
differential and linear trails in ARX ciphers.
Besides, the superiority of our tool’s potency is also confirmed by experimental results
for round-reduced versions of HIGHT and SPECK. More specifically, we find the optimal
differential trails for up to 10 rounds of HIGHT, reported for the first time. We also find
the optimal differential trails for 10, 12, 16, 8 and 8 rounds of SPECK32/48/64/96/128, and
report the provably optimal differential trails for SPECK48 and SPECK64 for the first time.
The optimal linear trails for up to 9 rounds of HIGHT are reported for the first time, and the
optimal linear trails for 22, 13, 15, 9 and 9 rounds of SPECK32/48/64/96/128 are also found
respectively. These results evaluate the security of HIGHT and SPECK against differential
and linear cryptanalysis. Also, our tool is useful to estimate the security in the design of
ARX ciphers.

Keywords: automatic search, differential trail, linear trail, ARX, HIGHT, SPECK

1 Introduction

Many cryptographic primitives have employed a combination of modular addition, bit rotation and
XOR (ARX). The advantage of these designs is that they are very simple, efficient and easy to
implement in software and hardware. Modular addition is a nonlinear operation, and bit rotation
and XOR are linear. By combining these simple operations, lots of ARX algorithms have been
proposed since 1980s. Here are some notable examples: the block ciphers FEAL [38], TEA [42],
XTEA [32], RC5 [35], HIGHT [21], SPECK [5], LEA [20] and SPARX [15], the stream cipher
Salsa20 [6], the hash functions from MD and SHA families [34], Skein [17], BLAKE [2], and the
MAC algorithm Chaskey [29].

Differential cryptanalysis [7] and linear cryptanalysis [26] are the two most powerful techniques
in the cryptanalysis of symmetric cryptographic primitives. For modern ciphers, security against
differential and linear cryptanalysis is a major design criterion. As for S-box based ciphers, there
exist a variety of automatic search algorithms to evaluate their security against differential and
linear cryptanalysis, see [1,3,4,8,9,13,27,31,33,40] for details. This is because S-box based ciphers use
typical S-boxes operating on 8 or 4-bit words, and it is easy to evaluate the differential and linear
property of an S-box by computing its difference distribution table (DDT) and linear approximation
table (LAT). As for ARX ciphers, modular addition is the source of nonlinearity. Constructing a
DDT and LAT for addition of n-bit words requires 23n bytes of memory. This is infeasible for a
typical word size of 32 bits.

Although some automatic search algorithms have been proposed for differential trails in the
MD and SHA families of hash functions [14,16,18,22,23,28,36,39], none of them were applied to
ARX primitives except hash functions. To fill this gap, Biryukov et al. [11] proposed a threshold

? Corresponding Author.

search algorithm and introduced the concept of partial difference distribution table (pDDT), which
contains a collection of differences whose probabilities are beyond a fixed threshold. Although
it is impossible to compute a full DDT of addition modulo 2n, it is still possible to compute a
pDDT efficiently. Using the pDDT, they firstly extended Matsui’s algorithm to ARX ciphers and
proposed a threshold search algorithm. They applied their algorithm to the block ciphers TEA,
XTEA, SPECK and SIMON, and got some improved differential trails [10,11]. However, their
algorithm may not obtain the optimal differential trails, because they use heuristics in order to find
high-probability trails.

In [12], Biryukov et al. adapted Matsui’s algorithm and proposed an automatic search algorithm
for the best trails in ARX ciphers. They found some best differential trails for round-reduced
versions of SPECK. Since the complexity of linear search is much higher than differential search, it
is infeasible to search for the best linear trails for other versions of SPECK except SPECK32. As for
SPECK32, they only found the best linear trails up to 6 rounds. Yao et al. [43] also adapted Matsui’s
algorithm to search for the optimal linear trails for SPECK. They applied Wallén’s algorithm [41]
to Matsui’s branch-and-bound framework, and found the optimal linear trails for full rounds of
SPECK32, and short linear trails for other versions of SPECK.

Fu et al. [19] proposed a MILP-based automatic search algorithm, and got some improved
differential and linear trails for SPECK. Although MILP-based algorithm is able to find the optimal
trails, its running time is not well understood. Mouha et al. [30] translated the problem of finding
optimal differential trails into the Boolean satisfiability problem (SAT), and then used a SAT solver
to solve it. They applied the SAT solver approach to Salsa20 for the first time, and found a 3-round
optimal differential trail. Liu et al. [25] also applied the SAT solver approach to find the optimal
linear trails for SPECK and Chaskey.

Biryukov et al.’s algorithm, MILP-based algorithm and the SAT solver approach are all general
automatic search algorithms in ARX ciphers, and they can all find the optimal trails on round-
reduced variants of SPECK. However, the high time complexity makes Biryukov et al.’s algorithm
and MILP-based algorithm hard for other ARX ciphers except SPECK. As for the SAT solver
approach, it needs to write equations of addition, rotation and XOR in the cipher, and then solve
equations with the SAT solver. This method may encounter difficulties when applied to more rounds
of ARX ciphers or ARX ciphers with more logic operations, since more variables and equations
appear. Therefore, designing an automatic search algorithm in ARX ciphers that can give optimal
differential and linear trails of as many rounds as possible is an important problem that needs
further study.

Our Contributions. We investigate the above problem in the present paper, and our main
contributions are summarized as follows.

1. Addition modulo 2n can be divided into partial sums on small bit words such as 8 or 4-bit
words, and they are correlated by carry bits. The truth value tables of partial sum can be
constructed. Unlike the independence of S-boxes in S-box based ciphers, the truth value tables
of partial sum are correlated because of the impact of carry bits. The truth value tables of
partial sum are defined as carry-bit-dependent S-boxes.
Similarly, the carry-bit-dependent difference distribution table (CDDT) can be constructed,
which is the difference distribution table of partial sum and can be pre-constructed. The
relationship of differential probability of addition modulo 2n and CDDTs is characterized. With
this characterization, it is very efficient to get all possible output differences and corresponding
differential probabilities just by looking up CDDTs when given input differences. Also, the
carry-bit-dependent linear approximation table (CLAT) can be constructed, and the linear
correlation of addition modulo 2n can be computed by looking up the CLATs.

2. With CDDTs and CLATs, we propose a general automatic search algorithm for optimal
differential and linear trails in ARX ciphers. Our algorithm is based on Matsui’s branch-and-
bound algorithm [27], and it looks up CDDTs (resp. CLATs) to get all possible output differences
(resp. linear masks) and their probabilities (resp. absolute correlations) when computing the
differential probability (resp. absolute correlation) of addition modulo 2n. To improve the
efficiency of our algorithm, we give a new construction of CDDTs and CLATs with Lipmaa-
Moriai’s algorithm [24] and Schulte-Geers’s result [37].

3. Using our algorithm, it is able to find the optimal differential trails for round-reduced versions
of block ciphers HIGHT and SPECK. For HIGHT, a 10-round optimal differential trail with
probability 2−38 is found, which is reported for the first time. For SPECK with block size 32,
48, 64, 96 and 128 bits, we find the optimal differential trails on 10, 12, 16, 8 and 8 rounds with

probability 2−34, 2−49, 2−70, 2−30 and 2−30 respectively. Our results cover more rounds than
the results given by Biryukov et al. [12] for SPECK48, SPECK64, SPECK96 and SPECK128,
and the same as theirs for SPECK32. Meanwhile we report the provably optimal differential
trails for SPECK48 and SPECK64 for the first time.

4. Our algorithm can also find the optimal linear trails for round-reduced versions of HIGHT and
SPECK. For HIGHT, we find for the first time the optimal linear trail for reduced number of
rounds, that is a 9-round linear trail with correlation 2−15. As for SPECK with block size 32,
48, 64, 96 and 128 bits, we find the provably optimal linear trails on 22, 13, 15, 9 and 9 rounds
respectively, which confirm the optimal linear trails given by Liu et al. [25].

Table 1. The number of covered rounds of differential and linear trails for HIGHT and SPECK.

BA[12] MA[19] SA[25] our algorithm

Cipher DT LT DT LT DT LT DT LT

HIGHT − − − − − − 10 9

SPECK32 10 6 9 9 − 22 10 22

SPECK48 9 − 11 10 − 11 12 13

SPECK64 8 − 15 13 − 13 16 15

SPECK96 7 − 16 15 − 9 8 9

SPECK128 6 − 19 16 − 9 8 9

optimal heuristic optimal optimal

Fu et al. [19] use the MILP-based algorithm to search for differential and linear trails for
SPECK, and they apply a splicing heuristic to find better differential and linear trails than existing
ones. Although their results are the same as ours for SPECK32, SPECK48 and SPECK64, and
cover more rounds for SPECK96 and SPECK128, they can’t ensure their results are optimal. The
comparison of our identified differential and linear trails with those given by other algorithms
is list in Table 1. In this table, BA, MA and SA represent the abbreviation of Biryukov et al.’s
algorithm, MILP-based algorithm and SAT solver approach respectively. DT and LT represent the
abbreviation of differential trails and linear trails respectively.

Outline. The paper is organized as follows. In Section 2, we introduce the concept of carry-bit-
dependent S-box, carry-bit-dependent difference distribution table (CDDT) and carry-bit-dependent
linear approximation table (CLAT). A method for their computations is also given in this section.
In Section 3, an improved method for constructing CDDTs and CLATs is given. In Section 4, we
propose an automatic search algorithm for optimal differential and linear trails in ARX ciphers,
which is an extension of Matsui’s algorithm using CDDTs and CLATs. In Section 5,we apply the
proposed algorithm to block ciphers HIGHT and SPECK, and show the experimental results. A
short conclusion is given in Section 6.

Notations used in the present paper are defined in Table 2.

2 Carry-bit-dependent S-box, Difference Distribution Table and Linear
Approximation Table

Throughout this section, a n-bit vector x = (xn−1, . . . , x1, x0) ∈ Fn2 means a binary representation

of an integer
n−1∑
i=0

xi2
i in Z2n . First, we introduce the definition of addition modulo 2n, and then

give a method to compute the differential probability and linear correlation of addition.

2.1 Addition and Carry-bit-dependent S-box

Definition 1 (Addition modulo 2n [24]). Let x, y ∈ Fn2 . Then

x� y = x⊕ y ⊕ carry(x, y),

Table 2. Notations

Notation Description

x� y addition of x and y modulo 2n

x bitwise NOT of x
x[i : j] the sequence of bits xi, xi−1, . . . , xj
x⊕ y bitwise exclusive OR (XOR) of x and y
x ∧ y bitwise AND of x and y
x ∨ y bitwise OR of x and y
x� r shift of x to the left by r positions
x� r shift of x to the right by r positions
x≪ r rotation of x to the left by r positions
x≫ r rotation of x to the right by r positions
x‖y concatenation of bit strings x and y

wt(x) the hamming weight of x
∆x XOR difference of x and x′ : ∆x = x⊕ x′

eq(x, y, z) (x⊕ y) ∧ (x⊕ z)
mask(n) 2n − 1

x · y dot product of x and y : x · y =
⊕n−1

i=0 xiyi
x � y xi ≤ yi, ∀i ∈ {0, . . . , n− 1}

where carry(x, y) = (cn−1, . . . , c1, c0) ∈ Fn2 denotes the carry bit vector of x � y. It is defined
recursively as follows:

c0 = 0
ci+1 = (xi ∧ yi)⊕ (xi ∧ ci)⊕ (yi ∧ ci) for 0 ≤ i ≤ n− 2.

Next, we give another representation of vectors in Fn2 , which is helpful for charactering the
differential probability of addition modulo 2n from a new viewpoint.

Suppose n = mt. For a n-bit vector x ∈ Fn2 , we define Xk = x[(k + 1)t− 1 : kt]. Then it holds

x = (Xm−1, . . . , X0) =

m−1∑
k=0

Xk2kt.

For two t-bit vectors X,Y ∈ Ft2 and a bit e ∈ F2, X � Y � e denotes

X � Y � (0, . . . , 0, e),

which is equal to X ⊕ Y ⊕ carry∗(X,Y), and carry∗(X,Y) = (c∗t−1, . . . , c
∗
0) is computed as follows

c∗0 = e
c∗i+1 = (xi ∧ yi)⊕ (xi ∧ c∗i)⊕ (yi ∧ c∗i) for 0 ≤ i ≤ t− 1.

(1)

It should be noticed that c∗t can also be computed according to the above formula.
Therefore, it is easy to check that addition modulo 2n can be written as follows:

x� y = x⊕ y ⊕ carry(x, y)

=
m−1∑
k=0

(Xk ⊕ Yk ⊕ Ck)2kt

=
m−1∑
k=0

(Xk � Yk � ckt)2kt,

(2)

where Ck = carry(x, y)[(k + 1)t− 1 : kt], and ckt is the kt-th bit of carry(x, y), which is the carry
bit vector of x� y.

Note that c0 = 0 and for k ≥ 0, c(k+1)t can be computed from Xk � Yk � ckt by Formula (1).
Then the computation of mt-bit vectors addition modulo 2mt can be divided into m portions of
t-bit vectors addition modulo 2t, and the (k + 1)-th portion is correlated to the k-th portion by the
carry bit c(k+1)t.

We can build truth value tables of addition modulo 2t with different correlated values (carry
bits), and these truth value tables are called carry-bit-dependent S-boxes. We can also build
difference distribution tables of addition modulo 2t with different correlated values, and these

difference distribution tables are called carry-bit-dependent difference distribution tables
(CDDTs). Similarly, linear approximation tables of addition modulo 2t with different correlated
values can be built, and these linear approximation tables are called carry-bit-dependent linear
approximation tables (CLATs). The relationship of addition modulo 2mt and m carry-bit-
dependent S-boxes is depicted in Fig 1.

y

x

z

1mX � 1mY �

1mZ �

(1)m tc �

1X 1Y

1Z

2tc

0X 0Y

0Z

tc

1mS � 1S 0S

Fig. 1. The carry-bit-dependent S-boxes

The size of CDDTs (resp. CLATs) can be any integer only if it can divide n, that is, m and t
can be any integer only if mt = n. By experiment we find that the more bits it has, the faster the
search algorithm runs and the more memory it requires. Taking tradeoff of time and memory, we
use 8-bit CDDTs (resp. CLATs) in our applications.

Next, we introduce the idea of computing the differential probability of addition with CDDTs
and the linear correlation of addition with CLATs.

2.2 Computing Differential Probability of Addition with CDDTs

The differential probability of addition modulo 2n is defined as follows.

Definition 2 (Differential Probability of Addition [24]). A differential of addition modulo
2n is defined as a triplet of two input differences and one output difference, which is denoted as
(α, β 7→ γ), where α, β, γ ∈ Fn2 . The differential probability of addition modulo 2n is defined as

P (α, β 7→ γ) = Px,y[(x� y)⊕ ((x⊕ α)� (y ⊕ β)) = γ].

Hereafter this section, x, y, α, β, γ ∈ Fn2 always mean n-bit vectors. Let z = x� y, and α, β, γ
be the XOR difference of x, y, z respectively. This means

x′ = x⊕ α, y′ = y ⊕ β, z′ = x′ � y′ and z′ = z ⊕ γ.

The carry bit vectors of x� y and x′ � y′ are denoted simply by

c = (cn−1, . . . , c1, c0) and c′ = (c′n−1, . . . , c
′
1, c
′
0)

respectively. For 0 ≤ k ≤ m− 1, let

Ak = α[(k + 1)t− 1 : kt], Bk = β[(k + 1)t− 1 : kt], Γk = γ[(k + 1)t− 1 : kt].

Then it holds

α =

m−1∑
k=0

Ak2kt, β =

m−1∑
k=0

Bk2kt, and γ =

m−1∑
k=0

Γk2kt.

For g = (g1, g0), h = (h1, h0) ∈ F2
2, A,B, Γ ∈ Ft2, let

Sg(A,B 7→ Γ) = {(X,Y) | (X � Y � g1)⊕ (X ′ � Y ′ � g0) = Γ},

and

Shg (A,B 7→ Γ) = {(X,Y) | (X � Y � g1)⊕ (X ′ � Y ′ � g0) = Γ, c∗t = h1, c
′∗
t = h0},

where
X ′ = X ⊕A, Y ′ = Y ⊕B,

and c∗t , c
′∗
t are computed according to Formula (1). Furthermore, let

PSg(A,B 7→ Γ) = 2−2t|Sg(A,B 7→ Γ)|,

and
PShg (A,B 7→ Γ) = 2−2t|Shg (A,B 7→ Γ)|.

Then we have the following result to compute the differential probability of addition.

Theorem 1. Let n = mt, x, y, α, β, γ ∈ Fn2 , z = x � y, and α, β, γ are the XOR differences of
x, y, z respectively. Then

P (α, β 7→ γ) =

m−1∑
i=0,gi∈Ti

m−2∏
k=0

PSgk+1
gk

(Ak, Bk 7→ Γk)PSgm−1(Am−1, Bm−1 7→ Γm−1),

where T0 = {(0, 0)} and Ti = F2
2 for i = 1, . . . ,m− 1.

Proof. First, we have

{(x, y) | (x� y)⊕ ((x⊕ α)� (y ⊕ β)) = γ}

=

m−1⋃
i=1,gi∈F2

2

{(x, y) | (x� y)⊕ ((x⊕ α)� (y ⊕ β)) = γ, (cit, c
′
it) = gi for 1 ≤ i ≤ m− 1}

=

m−1⋃
i=0,gi∈Ti

{(x, y) | (x� y)⊕ ((x⊕ α)� (y ⊕ β)) = γ, (cit, c
′
it) = gi for 0 ≤ i ≤ m− 1},

where T0 = {(0, 0)} and Ti = F2
2 for 1 ≤ i ≤ m− 1. Furthermore, according to formula (2), we have

m−1∑
i=0

Γk2kt = γ = (x� y)⊕ ((x⊕ α)� (y ⊕ β))

=

m−1∑
k=0

((Xk � Yk � ckt)⊕ ((Xk ⊕Ak)� (Yk ⊕Bk)� c′kt))2
kt,

which is equivalent to that for k = 0, . . . ,m− 1, it holds

(Xk � Yk � ckt)⊕ (X ′k � Y
′
k � c

′
kt) = Γk,

where X ′k = Xk⊕Ak, Y ′k = Yk⊕Bk, c and c′ are the carry bit vectors of x� y and (x⊕α)� (y⊕β)
respectively. Therefore,

P (α, β 7→ γ)

= 2−2n|{(x, y) | (x� y)⊕ ((x⊕ α)� (y ⊕ β)) = γ}|

=

m−1∑
i=0,gi∈Ti

2−2n|{(x, y) | (x� y)⊕ ((x⊕ α)� (y ⊕ β)) = γ, (cit, c
′
it) = gi for 0 ≤ i ≤ m− 1}|

=

m−1∑
i=0,gi∈Ti

m−2∏
k=0

2−2t|{(Xk, Yk) | (Xk � Yk � gk[1])⊕ (X ′k � Y
′
k � gk[0]) = Γk, (c

∗
t , c
′∗
t) = gk+1}|

×2−2t|{(Xm−1, Ym−1) | (Xm−1 � Ym−1 � gm−1[1])⊕ (X ′m−1 � Y
′
m−1 � gm−1[0]) = Γm−1}|

=

m−1∑
i=0,gi∈Ti

m−2∏
k=0

2−2t|Sgk+1
gk

(Ak, Bk 7→ Γk)| × 2−2t|Sgm−1
(Am−1, Bm−1 7→ Γm−1)|

=

m−1∑
i=0,gi∈Ti

m−2∏
k=0

PSgk+1
gk

(Ak, Bk 7→ Γk)PSgm−1(Am−1, Bm−1 7→ Γm−1),

where c∗t , c
′∗
t are computed according to Formula (1). Then we complete the proof.

As for computing the differential probability of addition modulo 2n, it only needs to build 16
tables of PShg (A,B 7→ Γ) for g, h ∈ F2

2, and 4 tables of PSg(A,B 7→ Γ) for g ∈ F2
2. Then the

differential probability P (α, β 7→ γ), where α, β, γ ∈ Fn2 , can be computed by looking up the above
tables according to Theorem 1.

We give a toy example to illustrate how to compute the differential probability of addition with
Theorem 1 in Appendix A.

2.3 Computing Linear Correlation of Addition with CLATs

The linear correlation of addition modulo 2n is defined as follows.

Definition 3 (Linear Correlation of Addition [37]). Let x, y, z ∈ Fn2 , and z = x � y. The
linear correlation of addition modulo 2n is defined as the correlation of the linear approximation
ν · x⊕ ω · y = µ · z, where µ, ν and ω are n-bit linear masks. It is computed as follows:

C(µ, ν, ω) = 2−2n
∑

x∈Fn
2 ,y∈Fn

2

(−1)µ·z⊕ν·x⊕ω·y.

For g, h ∈ F2, let
Shg = {(X,Y) ∈ (Ft2)2 | c∗t [X � Y � g] = h},

where c∗t [X � Y � g] means the t-th carry bit of X � Y � g computed according to Formula (1).
For U, V,W ∈ Ft2, let

Chg (U, V,W) = 2−t
∑

X,Y ∈Sh
g

(−1)U ·(X�Y�g)⊕V ·X⊕W ·Y .

Let Sg = S0
g ∪ S1

g , and

Cg(U, V,W) = 2−t
∑

X,Y ∈Sg

(−1)U ·(X�Y�g)⊕V ·X⊕W ·Y .

Then we have the following result.

Theorem 2. Let n = mt, x, y, µ, ν, ω ∈ Fn2 , z = x� y, and µ, ν, ω are the linear masks of z, x, y
respectively. Then

C(µ, ν, ω) =

m−1∑
i=0,gi∈Ti

m−2∏
k=0

Cgk+1
gk

(Uk, Vk,Wk)Cgm−1(Um−1, Vm−1,Wm−1),

where T0 = {0}, and Ti = F2 for 1 ≤ i ≤ m− 1.

Proof. Note that

{(x, y) | x, y ∈ Fn2} =

m−1⋃
i=1,gi∈F2

{(x, y) | x, y ∈ Fn2 , cit = gi for 1 ≤ i ≤ m− 1} =

m−1⋃
i=0,gi∈Ti

Sg0,...,gm−1
,

where Sg0,...,gm−1
= {(x, y) | x, y ∈ Fn2 , cit = gi for 0 ≤ i ≤ m− 1}. Therefore,

C(µ, ν, ω) = 2−2n
∑

x∈Fn
2 ,y∈Fn

2

(−1)µ·(x�y)⊕ν·x⊕ω·y

= 2−2n
m−1∑

i=0,gi∈Ti

 ∑
x,y∈Sg0,...,gm−1

(−1)µ·(x�y)⊕ν·x⊕ω·y

=

m−1∑
i=0,gi∈Ti

m−2∏
k=0

2−2t

 ∑
Xk,Yk∈S

gk+1
gk

(−1)Uk·(Xk�Yk�gk)⊕Vk·Xk⊕Wk·Yk

×2−2t

∑
Xm−1,Ym−1∈Sgm−1

(−1)Um−1·(Xm−1�Ym−1�gm−1)⊕Vm−1·Xm−1⊕Wm−1·Ym−1

=

m−1∑
i=0,gi∈Ti

m−2∏
k=0

Cgk+1
gk

(Uk, Vk,Wk) · Cgm−1
(Um−1, Vm−1,Wm−1).

Then we complete the proof.

When computing the linear correlation of addition modulo 2n, it only needs to build 4 tables
of Chg (U, V,W) for g, h ∈ F2, and 2 tables of Cg(U, V,W) for g ∈ F2. Then the linear correlation
C(µ, ν, ω), where µ, ν, ω ∈ Fn2 , can be computed by looking up these tables according to Theorem 2.

Theorem 1 is an illustration of the idea of using CDDTs to compute the differential probability
of addition. However, it is still not efficient enough to compute the differential probability in
search algorithm, since it needs to traverse all 4m−1 carry bit flags and sum the multiplications of
corresponding probabilities together. This is still complicated when we want to search all possible
differential trails to get the optimal differential trail. It is the same case for computing the linear
correlation of addition according to Theorem 2.

Next, we give an improved method to construct CDDTs and CLATS, which can be used in the
search algorithm efficiently.

3 Improved Method for Constructing CDDTs and CLATS

3.1 Constructing CDDTs with Lipmaa-Moriai’s Algorithm

In this section, we give a new construction of CDDTs with Lipmaa-Moriai’s algorithm [24], which
is a log-time algorithm for computing the differential probability of addition. By looking up these
CDDTs, it is easy to get all possible output differences and their differential probabilities when
given input differences.

A pseudo-code of Lipmaa-Moriai’s algorithm is listed in Algorithm 1. For an integer j, 0j denotes
a j-bit vector with all entries equal 0 throughout this section.

Algorithm 1 Log-time algorithm for P (α, β 7→ γ)

Input: (α, β, γ)
Output: P (α, β 7→ γ)
1: if eq(α� 1, β � 1, γ � 1) ∧ (α⊕ β ⊕ γ ⊕ (β � 1)) 6= 0n then
2: return 0;
3: else
4: return 2−wt(eq(α,β,γ)∧mask(n−1));
5: end if

For a t-bit vector X = (xt−1, . . . , x0), we define h(X) = xt−1. For A,B, Γ ∈ Ft2 and a, b, c ∈ F2,
let

fa,b,c(A,B, Γ) = eq((A� 1)⊕ a, (B � 1)⊕ b, (Γ � 1)⊕ c)
∧(A⊕B ⊕ Γ ⊕ ((B � 1)⊕ b)),

where
(X � 1)⊕ e = (xt−2, . . . , x0, e)

for X = (xt−1, xt−2, . . . , x0) ∈ Ft2 and e ∈ F2.
First, we have the following result.

Lemma 1. Let n = mt, α, β, γ ∈ Fn2 , Ak = α[(k + 1)t − 1 : kt], Bk = β[(k + 1)t − 1 : kt], and
Γk = γ[(k + 1)t− 1 : kt], 0 ≤ k ≤ m− 1. Then the following statements hold.

1. Define A−1, B−1, Γ−1 as 0t. Then

eq(α� 1, β � 1, γ � 1) ∧ (α⊕ β ⊕ γ ⊕ (β � 1))) = 0n

if and only if
fh(Ak−1),h(Bk−1),h(Γk−1)(Ak, Bk, Γk) = 0t

for 0 ≤ k ≤ m− 1.
2. Let tk = t for 0 ≤ k ≤ m− 2 and tm−1 = t− 1. Then

wt(eq(α, β, γ) ∧mask(n− 1)) =

m−1∑
k=0

wt(eq(Ak, Bk, Γk) ∧mask(tk)).

Proof. Note that α = (Am−1, Am−2, . . . , A0) =
m−1∑
k=0

Ak2kt, then

α� 1 = (αn−2, . . . , α0, 0) =

m−1∑
k=0

(α(k+1)t−2, . . . , αkt, αkt−1)2kt =

m−1∑
k=0

((Ak � 1)⊕ h(Ak−1))2kt,

where (X � 1)⊕ e = (xt−2, . . . , x0, e) for X = (xt−1, xt−2, . . . , x0) ∈ Ft2, e ∈ F2, and A−1 is defined
as 0t, and this implies

α−1 = h(A−1) = 0.

Similarly, we have

β � 1 =

m−1∑
k=0

((Bk � 1)⊕ h(Bk−1))2kt, γ � 1 =

m−1∑
k=0

((Γk � 1)⊕ h(Γk−1))2kt.

Then it holds

eq(α� 1, β � 1, γ � 1) ∧ (α⊕ β ⊕ γ ⊕ (β � 1))) =

m−1∑
k=0

fh(Ak−1),h(Bk−1),h(Γk−1)(Ak, Bk, Γk)2kt.

Therefore, the first item holds. The last item is easy to prove, since that

mask(n− 1) =

n−2∑
k=0

2k =

m−2∑
k=0

(2t − 1)2kt + (2t−1 − 1)2(m−1)t =

m−1∑
k=0

(2tk − 1)2kt =

m−1∑
k=0

mask(tk)2kt,

where tk = t for 0 ≤ k ≤ m− 2 and tm−1 = t− 1. Then we complete the proof.

Based on Lemma 1 and Algorithm 1, it is easy to prove the following result, which plays an
important role in our search algorithm.

Theorem 3. Let n = mt, α, β, γ ∈ Fn2 , Ak = α[(k + 1)t − 1 : kt], Bk = β[(k + 1)t − 1 : kt], and
Γk = γ[(k + 1)t− 1 : kt], 0 ≤ k ≤ m− 1. For A,B, Γ ∈ Ft2, a, b, c, d ∈ F2, let

PSa,b,cd (A,B 7→ Γ) =

{
2−wt(eq(A,B,Γ)∧mask(td)), fa,b,c(A,B, Γ) = 0t;
0, else,

where t0 = t and t1 = t− 1. Then

P (α, β 7→ γ) =

m−1∏
k=0

PS
h(Ak−1),h(Bk−1),h(Γk−1)
dk

(Ak, Bk 7→ Γk),

where dk = 0 for 0 ≤ k ≤ m− 2, dm−1 = 1, and A−1, B−1, Γ−1 are defined as 0t.

Due to the two different values of td, there are two types of CDDTs in the above theorem, which
are

PSa,b,c0 (A,B 7→ Γ)

and
PSa,b,c1 (A,B 7→ Γ)

respectively. Note that a, b, c ∈ F2, then each of them contains 23 tables. These tables can be
constructed with Algorithm 2, where a, b, c are represented by an integer N = a||b||c. Then all
differential probability of addition modulo 2n can be computed by looking up these 16 tables
according to Theorem 3.

Similar as the search algorithms for S-box based ciphers, it is very efficient to search for differential
trails in ARX ciphers using CDDTs constructed with Theorem 3. In our search algorithm, the
CDDTs PSa,b,c0 and PSa,b,c1 are pre-constructed. Given two input differences α and β of addition
modulo 2n, we can compute all possible output differences γ and their probabilities as follows:
Firstly, we divide the n-bit input differences α and β into m portions Ak and Bk (0 ≤ k ≤ m− 1),

and each portion contains t bits (assume n = mt). Then, we look up the CDDTs PSa,b,c0 to get all

possible output differences Γk for k = 0 to m− 2, and PSa,b,c1 to get all possible output differences

Algorithm 2 Constructing CDDT with Lipmaa-Moriai’s algorithm

1: //N = a||b||c
2: for N = 0 to 23 − 1 do
3: for A,B, Γ = 0 to 2t − 1 do
4: flag := eq((A� 1)⊕ a, (B � 1)⊕ b, (Γ � 1)⊕ c) ∧ (A⊕B ⊕ Γ ⊕ ((B � 1)⊕ b));
5: if flag = 0t then

6: PSN0 (A,B 7→ Γ) = 2−wt(eq(A,B,Γ)∧mask(t));

7: PSN1 (A,B 7→ Γ) = 2−wt(eq(A,B,Γ)∧mask(t−1));
8: else
9: PSN0 (A,B 7→ Γ) = 0;

10: PSN1 (A,B 7→ Γ) = 0;
11: end if
12: end for
13: end for

Γm−1. When looking up the CDDTs for Ak and Bk, we can get all possible output differences Γk and
their probabilities PSa,b,cdk

(Ak, Bk 7→ Γk) simultaneously. Meanwhile, we can compute h(Ak), h(Bk)
and h(Γk) which are used to look up the next CDDT. Lastly, after looking up the m CDDTs, we
get all possible output differences γ by concatenating Γk (0 ≤ k ≤ m− 1), and the corresponding

differential probabilities P (α, β 7→ γ) by multiplying PSa,b,cdk
(Ak, Bk 7→ Γk).

Remark 1. When searching for differential trails in ARX ciphers, it needs to compute all possible
output differences and their differential probabilities given input differences of addition. There are
two ways doing this with Lipmaa-Moriai’s algorithm directly. The first way is to exhaustively search
all output differences and check whether they are possible or not. This is very time-consuming.
Another way is that given input difference α and β, one can build a system of equations from the
condition

eq(α� 1, β � 1, γ � 1) ∧ (α⊕ β ⊕ γ ⊕ (β � 1)) = 0n,

and then get all possible output differences γ by solving the system of equations. This is equivalent
to the case of t = 1 of our method in this section. Furthermore, solving equations is less efficient than
looking up tables directly in search algorithm. This is the reason that we do not use Lipmaa-Moriai’s
algorithm directly in our search algorithm.

3.2 Constructing CLATs with Schulte-Geers’s algorithm

In [41], Wallén presented an algorithm to compute linear approximation of addition modulo 2n.
Schulte-Geers [37] also gave a simple explicit formula for the correlation of addition modulo 2n with
CCZ-equivalence.

In this section, we give a new construction of CLATs with Schulte-Geers’s algorithm. By looking
up these CLATs, it is easy to get all possible output masks and their correlations when given input
masks. We list Schulte-Geers’s theorem as follows.

Theorem 4 (Walsh transform of addition modulo 2n [37]). Let µ, ν, ω ∈ Fn2 , Mn : Fn2 7→ Fn2
denotes the left shifted “partial sums mapping”

x = (xn−1, . . . , x0) 7→Mn(x) = (xn−2 ⊕ . . .⊕ x0, . . . , x1 ⊕ x0, x0, 0).

Let z := MT
n (µ⊕ ν ⊕ ω), then

C(µ, ν, ω) = 1{µ⊕ν�z}1{µ⊕ω�z}(−1)(µ⊕ν)·(µ⊕ω)2−wt(z),

where 1Gf
is the indicator function of the graph Gf := {(x, f(x)) | x ∈ Fn2}, and MT

n (xn−1, . . . , x0) =
(0, xn−1, xn−1 ⊕ xn−2, . . . , xn−1 ⊕ · · · ⊕ x1).

According to Theorem 4, it is easy to compute the correlation C(µ, ν, ω) given the input mask
ν, ω and the output mask µ. However, when searching for linear trails in ARX ciphers, only input
masks are given, and it needs to compute all possible output masks and their correlations. So it is
not a very good choice to use Schulte-Geers’s algorithm directly in the search algorithm.

Similar to the construction of CDDTs with Lipmaa-Moriai’s algorithm, we can build CLATs
with Schulte-Geers’s algorithm. Then in the search algorithm, it can compute the correlation of
addition by looking up CLATs efficiently, just as the case in S-box based ciphers.

In the following, we give the construction of CLATs with Schulte-Geers’s algorithm. Suppose
n = mt. For U = (ut−1, . . . , u0) ∈ Ft2 and e ∈ F2, let U ⊕ et = (e ⊕ ut−1, . . . , e ⊕ u0). For

X = (xn−1, . . . , x0) ∈ Fn2 , let Xk = (x(k+1)t−1, . . . , xkt) ∈ Ft2, 0 ≤ k ≤ m − 1, and ek =
⊕n−1

i=kt xi.
Then it holds

MT
n (xn−1, . . . , x0) = (0, xn−1, xn−1 ⊕ xn−2, . . . , xn−1 ⊕ · · · ⊕ x1)

= (MT
t (Xm−1),MT

t (Xm−2)⊕ etm−1, . . . ,MT
t (X0)⊕ et1).

For µ, ν, ω ∈ Fn2 , let x = µ⊕ ν ⊕ ω, z = MT
n (x), ek = ⊕n−1i=ktxi, 0 ≤ k ≤ m− 1, and em = 0. Then

we have
1{µ⊕ν�z}1{µ⊕ω�z} = 1

if and only if
1{Uk⊕Vk�Zk}1{Uk⊕Wk�Zk} = 1

for 0 ≤ k ≤ m− 1, where Zk = MT
t (Uk ⊕ Vk ⊕Wk)⊕ etk+1. Furthermore, it also holds

wt(z) =

m−1∑
k=0

wt(Zk).

Then according to Theorem 4, we have the following result.

Theorem 5. Let n = mt, µ, ν, ω ∈ Fn2 , Uk = µ[(k + 1)t − 1 : kt], Vk = ν[(k + 1)t − 1 : kt], and
Wk = ω[(k + 1)t− 1 : kt], 0 ≤ k ≤ m− 1. For U, V,W ∈ Ft2, e ∈ F2, let

CLe(U, V,W) = 1{U⊕V�Z}1{U⊕W�Z}2
−wt(Z),

where Z = MT
t (U ⊕ V ⊕W)⊕ et. Let σ = (µ⊕ ν ⊕ ω), em = 0, and ek = (

⊕(k+1)t−1
i=kt σi)⊕ ek+1

for k = m− 1,m− 2, . . . , 0. Then

|C(µ, ν, ω)| =
m−1∏
k=0

CLek+1
(Uk, Vk,Wk).

The carry-bit-dependent linear approximation table can be constructed with Algorithm 3, where
Mt is the left shifted “partial sums mapping”. Then all linear correlation of addition modulo 2n

can be computed by looking up CLATs according to Theorem 5. The computation is very similar
to the case of computing differential probability with CDDTs.

Algorithm 3 Constructing CLAT with Schulte-Geers’s algorithm

1: //Mt is the left shifted “partial sums mapping”
2: for e = 0 to 1 do
3: for U, V,W = 0 to 2t − 1 do
4: Z = MT

t (U ⊕ V ⊕W)⊕ et;
5: if U ⊕ V � Z and U ⊕W � Z then
6: CLe(U, V,W) = 2−wt(Z);
7: else
8: CLe(U, V,W) = 0;
9: end if

10: end for
11: end for

In the search algorithm, the CLATs CLe are pre-constructed. Given two input masks ν and ω of
addition modulo 2n, we can compute all possible output masks µ and their correlations as follows:
Firstly, we divide the n-bit input masks ν and ω into m portions Vk and Wk (0 ≤ k ≤ m− 1), and
each portion contains t bits (assume n = mt). Then, we look up the CLATs CLe to get all possible
output masks Uk for k = m− 1 to 0. When looking up the CLATs for Vk and Wk, we can get all
possible output masks Uk and their correlations CLek+1

(Uk, Vk,Wk) simultaneously. Meanwhile,

we can compute ek =
⊕t−1

i=0(Uk ⊕ Vk ⊕Wk)[i] ⊕ ek+1 which is used to look up the next CLAT.
Lastly, after looking up the m CLATs, we get all possible output masks µ by concatenating Uk
(0 ≤ k ≤ m− 1), and the corresponding correlations C(µ, ν, ω) by multiplying CLek+1

(Uk, Vk,Wk).

4 Automatic Search Algorithm for Optimal Differential and Linear
Trails with CDDTs and CLATs

In 1994, Matsui [27] proposed a practical algorithm to search for the best differential trails (resp.
linear trails) of DES. The algorithm performs a recursive search for differential trails (resp. linear
trails) over a given number of rounds n (n ≥ 1). It derives the best n-round differential probability
Bn (resp. absolute correlation) from the knowledge of the best i-round probability Bi (1 ≤ i ≤ n−1)
and the initial estimate Bn for Bn. However, Matsui’s algorithm is only applicable to block ciphers
that have S-boxes. Recently, Biryukov et al. [12] firstly adapted Matsui’s algorithm for finding the
best differential and linear trails in ARX ciphers. Their algorithm found some best differential
trails on round-reduced variants of SPECK. However, it is very time-consuming to find these best
differential and linear trails. It only reported the best linear trails for SPECK32 reduced up to 6
rounds, and it is hard to find the best linear trails for other versions of SPECK.

In this section, we also extend Matsui’s algorithm to ARX ciphers by introducing CDDTs and
CLATs. Since “XOR branch” and “three-forked branch” are mutually dual operations in regard
to differentials and linear masks, the search for optimal differential trails is essentially the same
as that for optimal linear trails, and we focus on searching for optimal differential trails in the
following. We assume the cipher has a Feistel structure and its round function is depicted in Fig 2.
In Fig 2, F stands for the linear layer including rotation, shift and XOR.

F

1iX �' iX'

iY'

iZ'

1iX �'

iK

iX'

iX'

Fig. 2. The spread of differential values

Our algorithm is similar to Matsui’s algorithm except that it looks up the CDDTs to get all
possible output differences and their probabilities when computing the differential probability of
addition modulo 2n. Besides, we make Bn equal to Bn−1, so our algorithm starts with a high
probability and searches for a differential trail with this probability. If such a differential trail
doesn’t exist, we lower the probability. Because our algorithm is capable of searching for all possible
differential trails, we can get the best differential trail. The pseudo-code of our algorithm for
differential trails is listed in Algorithm 4. The search algorithm for optimal linear trails is analogous
to that for differential trails, and it only needs to look up the CLATs to compute the possible
output masks and their correlations.

To improve the efficiency of our search algorithm, we introduce some optimizing strategies
including what Matsui’s algorithm did. Besides, we sort the CDDTs (resp. CLATs) according to
the differential probability (resp. absolute correlation). So we can always get the output difference
(reps. output mask) with highest differential probability (resp. absolute correlation), and once we
find some difference (resp. mask) whose probability (resp. absolute correlation) doesn’t satisfy the
search condition, we can break the unnecessary branches as soon as possible.

In the following, we give a rough estimation of the complexity of the differential search algorithm.
Let m1 be the number of differences α1, β1 and γ1 in the first round, where m1 = #{(α1, β1 7→
γ1) | P (α1, β1 7→ γ1) ≥ Bn/Bn−1}. As the complexity of the search is dominated by the number
of differences in the first round, the complexity of Algorithm 4 has the form O(m1), which is
significantly lower than the complexity of full search 22n according to our experiments, where 2n is

Algorithm 4 Matsui Search for Differential Trails Using CDDTs

1: Procedure Main:
2: Begin the program
3: Let Bn = 2×Bn−1, and Bn = 1.
4: Do
5: Let Bn = 2−1 ×Bn;
6: Call Procedure Round-1;
7: while Bn 6= Bn.
8: Exit the program

9: Procedure Round-1:
10: For each candidate for ∆X0,∆X1, do the following:
11: ∆Y1 = F (∆X1);
12: Let p1 = P (∆X0,∆Y1 7→ ∆Z1);
13: If p1 ×Bn−1 ≥ Bn, then Call Procedure Round-2;

14: Procedure Round-i (2 ≤ i ≤ n− 1):
15: For each candidate for ∆Zi, do the following:
16: Let ∆Xi = ∆Zi−1 and ∆Yi = F (∆Xi);
17: Let pi = P (∆Xi−1,∆Yi 7→ ∆Zi);
18: If p1 × p2 × · · · × pi ×Bn−i ≥ Bn, then Call Procedure Round-(i+ 1);
19: Return to the upper procedure;

20: Procedure Round-n:
21: Let ∆Xn = ∆Zn−1 and ∆Yn = F (∆Xn);
22: Let pn = max∆Zn P (∆Xn−1,∆Yn 7→ ∆Zn);
23: If p1 × p2 × · · · × pn = Bn, then Bn = Bn;
24: Return to the upper procedure;

Note: When computing P (∆Xi−1,∆Yi 7→ ∆Zi), it only needs to look up the CDDTs to get the
probability. When searching for linear trails, it needs to look up the CLATs to compute the absolute
correlation.

the block size. However, it is difficult to get the precise value of m1, since it changes dynamically in
the search. As for the linear search, it has a similar estimation of the complexity.

5 Differential and Linear Trails for HIGHT and SPECK

In this section, we apply Algorithm 4 to block ciphers HIGHT and SPECK 4. The differential and
linear trails found by our algorithm are optimal. As for differential trails, we focus on the XOR
difference of HIGHT and SPECK.

5.1 Description of HIGHT and SPECK

At CHES 2006, Hong et al. [21] presented a lightweight block cipher HIGHT with 64-bit block
size and 128-bit key. It is a 8-branch generalized Feistel block cipher and consists of 32 rounds. Its
round function is composed of addition modulo 28, rotation and XOR. The round function uses
two auxiliary functions F0 and F1 defined as:

F0(x) = (x≪ 1)⊕ (x≪ 2)⊕ (x≪ 7),

F1(x) = (x≪ 3)⊕ (x≪ 4)⊕ (x≪ 6).

The round function of HIGHT is shown in Fig 3.
The SPECK family of lightweight block cipher was designed by NSA in 2013 [5]. It consists of

five instances SPECK32, SPECK48, SPECK64, SPECK96 and SPECK128 with block sizes 32, 48,
64, 96 and 128 bits respectively. The instance with block size 2n (n ∈ {16, 24, 32, 48, 64}) and key
size mn (m ∈ {2, 3, 4} depending on n) is denoted by SPECK2n/mn.

4 All experiments are performed on a PC with a single core (Intelr CoreTM i5− 4570 CPU 3.2GHz). We
implicitly assume the independence of inputs when computing the differential probability and correlation
of addition.

0F

4 1rSK �

1F

4 2rSK �

0F

4 3rSK �

1F

4 4rSK �

Fig. 3. The round function of HIGHT

SPECK has a structure similar to Threefish and utilizes a simple round function consisting of
three operations: addition (�) , XOR (⊕) and rotation (≪). Its round function is defined as:

F (x, y) = (x≫ α)� y.

Let (Li−1, Ri−1) be the input of the i-th round, and the output of the i-th round (Li, Ri) is
computed as follows:

Li = F (Li−1, Ri−1)⊕Ki, Ri = (Ri−1≪ β)⊕ Li,

where the rotation amounts are α = 7 and β = 2 if the block size is 32-bit and α = 8 and β = 3
otherwise. The round function of SPECK is shown in Fig 4.

>>> 7/8

<<< 2/3
iK

Fig. 4. The round function of SPECK

5.2 Differential Trails for HIGHT and SPECK

The optimal differential trail found for HIGHT covers 10 rounds and has probability 2−38, which is
the first public result of optimal differential trail for HIGHT. We also find an 11-round differential
trail for HIGHT with probability 2−48, but we can’t ensure it is the optimal differential trail, because
we limit the Hamming weight of the input differences and don’t traverse the input differences. The
probabilities of the optimal differential trails for HIGHT are shown in Table 3. And the differential
trail found for HIGHT is shown in Table 9 in Appendix B. In this table,

∑
r log2pr represents the

logarithm of the probability of a differential trail obtained as the sum of the probabilities of its
transitions.

The optimal differential trails found for SPECK32, SPECK48, SPECK64, SPECK96 and
SPECK128 covers 10, 12, 16, 8 and 8 rounds with probability 2−34, 2−49, 2−70, 2−30 and 2−30

respectively. For SPECK48, SPECK64, SPECK96 and SPECK128, the optimal differential trails
found by our algorithm cover more rounds than that given by Biryukov et al. [12]. Meanwhile
we give the provably optimal differential trails for SPECK48 and SPECK64 for the first time. As
for SPECK32, our result is the same as that of Biryukov et al.. The probabilities of the optimal
differential trails for SPECK are shown in Table 4. And the differential trails found for SPECK are
shown in Table 10 in Appendix B.

Table 3. Probabilities of the optimal differential trails for HIGHT. The probabilities are given as log2p
(“≥” indicates a lower bound).

Rounds 1 2 3 4 5 6 7 8 9 10 11

HIGHT 0 0 −3 −8 −11 −15 −19 −26 −30 −38 ≥ −48

Table 4. Probabilities of the optimal differential trails for SPECK. The probabilities are given as log2p
(“≥” indicates a lower bound).

Rounds 1 2 3 4 5 6 7 8

SPECK32 0 −1 −3 −5 −9 −13 −18 −24

SPECK48 0 −1 −3 −6 −10 −14 −19 −26

SPECK64 0 −1 −3 −6 −10 −15 −21 −29

SPECK96 0 −1 −3 −6 −10 −15 −21 −30

SPECK128 0 −1 −3 −6 −10 −15 −21 −30

Rounds 9 10 11 12 13 14 15 16

SPECK32 −30 −34

SPECK48 −33 −40 −45 −49

SPECK64 −34 −38 −42 −46 −50 −56 −62 −70

SPECK96 ≥ −39 ≥ −49

SPECK128 ≥ −39 ≥ −49

5.3 Linear Trails for HIGHT and SPECK

As for linear trails, we report for the first time the optimal linear trail for up to 9 rounds of HIGHT
with correlation 2−15. We also find a 10-round linear trail for HIGHT with correlation 2−20, but we
can’t ensure it is the optimal linear trail, because we limit the Hamming weight of the input masks
and don’t traverse the input masks. The correlations of the optimal linear trails for HIGHT are
shown in Table 5. And the linear trail found for HIGHT is shown in Table 11 in Appendix C. In
this table,

∑
r log2cr represents the logarithm of the absolute correlation of a linear trail obtained

as the sum of the correlations of its transitions.

Table 5. Correlations of the optimal linear trails for HIGHT. The correlations are given as log2c (“≥”
indicates a lower bound).

Rounds 1 2 3 4 5 6 7 8 9 10

HIGHT 0 0 0 −2 −4 −6 −8 −12 −15 ≥ −20

For SPECK with block size 32, 48, 64, 96 and 128 bits, we find the optimal linear trails for up
to 22, 13, 15, 9 and 9 rounds. We give the provably optimal linear trails for SPECK32, SPECK48
and SPECK64, which confirm the optimal linear trails given by Liu et al. [25]. The correlations of
the optimal linear trails for SPECK are shown in Table 6. And the optimal linear trails found for
SPECK are shown in Table 12 in Appendix C.

6 Conclusion

In this paper, we adapt Matsui’s algorithm and propose an automatic search algorithm for optimal
differential and linear trails in ARX ciphers. We use the block ciphers HIGHT and SPECK as a
test platform for demonstrating the practical application of our algorithm. Using the proposed
algorithm, we find a 10-round optimal differential trail for HIGHT, which is reported for the first
time. Optimal differential trails for 10, 12, 16, 8 and 8 rounds of SPECK32, SPECK48, SPECK64,
SPECK96 and SPECK128 are found, where the provably optimal differential trails for SPECK48

Table 6. Correlations of the optimal linear trails for SPECK. The correlations are given as log2c.

Rounds 1 2 3 4 5 6 7 8 9 10 11

SPECK32 0 0 −1 −3 −5 −7 −9 −12 −14 −17 −19

SPECK48 0 0 −1 −3 −6 −8 −12 −15 −19 −22 −25

SPECK64 0 0 −1 −3 −6 −9 −13 −17 −19 −21 −24

SPECK96 0 0 −1 −3 −6 −9 −13 −18 −22

SPECK128 0 0 −1 −3 −6 −9 −13 −18 −22

Rounds 12 13 14 15 16 17 18 19 20 21 22

SPECK32 −20 −22 −24 −26 −28 −30 −34 −36 −38 −40 −42

SPECK48 −28 −30

SPECK64 −27 −30 −33 −37

and SPECK64 are presented for the first time so far. The provably optimal linear trail for 9-round
HIGHT is also reported for the first time. As for SPECK with block size 32, 48, 64, 96 and 128
bits, the provably optimal linear trails on 22, 13, 15, 9 and 9 rounds are found. We hope that
the algorithm proposed in this paper is helpful for evaluating the security of ARX ciphers against
differential and linear cryptanalysis, and also useful in the design of ARX ciphers.

Acknowledgements. This work was supported by National Natural Science Foundation of China
(Grant Nos. 61772517, 61902030, 61772516), Youth Innovation Promotion Association CAS.

References

1. K. Aoki, K. Kobayashi, and S. Moriai. Best differential characteristic search of FEAL. In Fast Software
Encryption, 4th International Workshop, FSE ’97, Haifa, Israel, January 20-22, 1997, Proceedings,
pages 41–53, 1997.

2. J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan. SHA-3 proposal BLAKE. Submission to
NIST (Round 3), 2010.

3. A. Bannier, N. Bodin, and E. Filiol. Automatic search for a maximum probability differential charac-
teristic in a substitution-permutation network. In 48th Hawaii International Conference on System
Sciences, HICSS 2015, Kauai, Hawaii, USA, January 5-8, 2015, pages 5165–5174, 2015.

4. Z. Bao, W. Zhang, and D. Lin. Speeding up the search algorithm for the best differential and best
linear trails. In Information Security and Cryptology - 10th International Conference, Inscrypt 2014,
Beijing, China, December 13-15, 2014, Revised Selected Papers, pages 259–285, 2014.

5. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. The SIMON and
SPECK families of lightweight block ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013.

6. D. J. Bernstein. The salsa20 family of stream ciphers. In New Stream Cipher Designs - The eSTREAM
Finalists, pages 84–97. 2008.

7. E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. J. Cryptology, 4(1):3–72,
1991.

8. A. Biryukov and I. Nikolic. Automatic search for related-key differential characteristics in byte-
oriented block ciphers: Application to AES, camellia, khazad and others. In Advances in Cryptology
- EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings, pages 322–344, 2010.

9. A. Biryukov and I. Nikolic. Search for related-key differential characteristics in DES-like ciphers. In
Fast Software Encryption - 18th International Workshop, FSE 2011, Lyngby, Denmark, February 13-16,
2011, Revised Selected Papers, pages 18–34, 2011.

10. A. Biryukov, A. Roy, and V. Velichkov. Differential analysis of block ciphers SIMON and SPECK. In
Fast Software Encryption - 21st International Workshop, FSE 2014, London, UK, March 3-5, 2014.
Revised Selected Papers, pages 546–570, 2014.

11. A. Biryukov and V. Velichkov. Automatic search for differential trails in ARX ciphers. In Topics in
Cryptology - CT-RSA 2014 - The Cryptographer’s Track at the RSA Conference 2014, San Francisco,
CA, USA, February 25-28, 2014. Proceedings, pages 227–250, 2014.

12. A. Biryukov, V. Velichkov, and Y. L. Corre. Automatic search for the best trails in ARX: application
to block cipher SPECK. In Fast Software Encryption - 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers, pages 289–310, 2016.

13. C. Bouillaguet, P. Derbez, and P. Fouque. Automatic search of attacks on round-reduced AES and
applications. In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, pages 169–187, 2011.

14. C. D. Cannière and C. Rechberger. Finding SHA-1 characteristics: General results and applications.
In Advances in Cryptology - ASIACRYPT 2006, 12th International Conference on the Theory and
Application of Cryptology and Information Security, Shanghai, China, December 3-7, 2006, Proceedings,
pages 1–20, 2006.

15. D. Dinu, L. Perrin, A. Udovenko, V. Velichkov, J. Großschädl, and A. Biryukov. Design strategies
for ARX with provable bounds: Sparx and LAX. In Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, pages 484–513, 2016.

16. C. Dobraunig, M. Eichlseder, and F. Mendel. Heuristic tool for linear cryptanalysis with applications to
CAESAR candidates. In Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland, New Zealand, November
29 - December 3, 2015, Proceedings, Part II, pages 490–509, 2015.

17. N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas, and J. Walker. The
skein hash function family. Submission to NIST (Round 3), 2010.

18. P. Fouque, G. Leurent, and P. Q. Nguyen. Automatic search of differential path in MD4. IACR
Cryptology ePrint Archive, 2007:206, 2007.

19. K. Fu, M. Wang, Y. Guo, S. Sun, and L. Hu. MILP-Based automatic search algorithms for differential
and linear trails for SPECK. In Fast Software Encryption - 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers, pages 268–288, 2016.

20. D. Hong, J. Lee, D. Kim, D. Kwon, K. H. Ryu, and D. Lee. LEA: A 128-bit block cipher for fast
encryption on common processors. In Information Security Applications - 14th International Workshop,
WISA 2013, Jeju Island, Korea, August 19-21, 2013, Revised Selected Papers, pages 3–27, 2013.

21. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee, K. Jeong, H. Kim, J. Kim,
and S. Chee. HIGHT: A new block cipher suitable for low-resource device. In Cryptographic Hardware
and Embedded Systems - CHES 2006, 8th International Workshop, Yokohama, Japan, October 10-13,
2006, Proceedings, pages 46–59, 2006.

22. G. Leurent. Analysis of differential attacks in ARX constructions. In Advances in Cryptology -
ASIACRYPT 2012 - 18th International Conference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012. Proceedings, pages 226–243, 2012.

23. G. Leurent. Construction of differential characteristics in ARX designs application to skein. In Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2013. Proceedings, Part I, pages 241–258, 2013.

24. H. Lipmaa and S. Moriai. Efficient algorithms for computing differential properties of addition. In
Fast Software Encryption, 8th International Workshop, FSE 2001 Yokohama, Japan, April 2-4, 2001,
Revised Papers, pages 336–350, 2001.

25. Y. Liu, Q. Wang, and V. Rijmen. Automatic search of linear trails in ARX with applications to SPECK
and Chaskey. In Applied Cryptography and Network Security - 14th International Conference, ACNS
2016, Guildford, UK, June 19-22, 2016. Proceedings, pages 485–499, 2016.

26. M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology - EUROCRYPT
’93, Workshop on the Theory and Application of of Cryptographic Techniques, Lofthus, Norway, May
23-27, 1993, Proceedings, pages 386–397, 1993.

27. M. Matsui. On correlation between the order of s-boxes and the strength of DES. In Advances in
Cryptology - EUROCRYPT ’94, Workshop on the Theory and Application of Cryptographic Techniques,
Perugia, Italy, May 9-12, 1994, Proceedings, pages 366–375, 1994.

28. F. Mendel, T. Nad, and M. Schläffer. Finding SHA-2 characteristics: Searching through a minefield of
contradictions. In Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the
Theory and Application of Cryptology and Information Security, Seoul, South Korea, December 4-8,
2011. Proceedings, pages 288–307, 2011.

29. N. Mouha, B. Mennink, A. V. Herrewege, D. Watanabe, B. Preneel, and I. Verbauwhede. Chaskey: An
efficient MAC algorithm for 32-bit microcontrollers. In Selected Areas in Cryptography - SAC 2014 -
21st International Conference, Montreal, QC, Canada, August 14-15, 2014, Revised Selected Papers,
pages 306–323, 2014.

30. N. Mouha and B. Preneel. Towards finding optimal differential characteristics for ARX: Application to
salsa20. Cryptology ePrint Archive, Report 2013/328, 2013.

31. N. Mouha, Q. Wang, D. Gu, and B. Preneel. Differential and linear cryptanalysis using mixed-integer
linear programming. In Information Security and Cryptology - 7th International Conference, Inscrypt
2011, Beijing, China, November 30 - December 3, 2011. Revised Selected Papers, pages 57–76, 2011.

32. R. M. Needham and D. J. Wheeler. TEA extensions. Computer Laboratory, Cambridge University,
England, 1997. http://www.movable-type.co.uk/scripts/xtea.pdf.

33. K. Ohta, S. Moriai, and K. Aoki. Improving the search algorithm for the best linear expression. In
Advances in Cryptology - CRYPTO ’95, 15th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 27-31, 1995, Proceedings, pages 157–170, 1995.

http://www.movable-type.co.uk/scripts/xtea.pdf.

34. R. L. Rivest. The MD4 message digest algorithm. In Advances in Cryptology - CRYPTO ’90, 10th
Annual International Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1990,
Proceedings, pages 303–311, 1990.

35. R. L. Rivest. The RC5 encryption algorithm. In Fast Software Encryption: Second International
Workshop. Leuven, Belgium, 14-16 December 1994, Proceedings, pages 86–96, 1994.

36. M. Schläffer and E. Oswald. Searching for differential paths in MD4. In Fast Software Encryption,
13th International Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected Papers,
pages 242–261, 2006.

37. E. Schulte-Geers. On ccz-equivalence of addition mod 2n. Des. Codes Cryptography, 66(1-3):111–127,
2013.

38. A. Shimizu and S. Miyaguchi. Fast data encipherment algorithm FEAL. In Advances in Cryptol-
ogy - EUROCRYPT ’87, Workshop on the Theory and Application of of Cryptographic Techniques,
Amsterdam, The Netherlands, April 13-15, 1987, Proceedings, pages 267–278, 1987.

39. M. Stevens, A. K. Lenstra, and B. de Weger. Chosen-prefix collisions for MD5 and colliding X.509
certificates for different identities. In Advances in Cryptology - EUROCRYPT 2007, 26th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Barcelona,
Spain, May 20-24, 2007, Proceedings, pages 1–22, 2007.

40. S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song. Automatic security evaluation and (related-key)
differential characteristic search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-
oriented block ciphers. In Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference
on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014. Proceedings, Part I, pages 158–178, 2014.

41. J. Wallén. Linear approximations of addition modulo 2n. In Fast Software Encryption, 10th International
Workshop, FSE 2003, Lund, Sweden, February 24-26, 2003, Revised Papers, pages 261–273, 2003.

42. D. J. Wheeler and R. M. Needham. TEA, a tiny encryption algorithm. In Fast Software Encryption:
Second International Workshop. Leuven, Belgium, 14-16 December 1994, Proceedings, pages 363–366,
1994.

43. Y. Yao, B. Zhang, and W. Wu. Automatic search for linear trails of the SPECK family. In Information
Security - 18th International Conference, ISC 2015, Trondheim, Norway, September 9-11, 2015,
Proceedings, pages 158–176, 2015.

A Example of Computing Differential Probability of Addition with
CDDTs

In the following, we take 4-bit modulo addition and 2-bit CDDTs to illustrate how to compute
the differential probability of addition with Theorem 1, which can be generalized to n-bit modulo
addition easily. As for the generalized case, it needs to list 20 CDDT tables. Due to the space
limitation, we take a particular case in the example, which only needs to list 8 tables.

Example 1. Let x, y, α, β, γ ∈ F4
2, z = x�y, and α, β, γ be the XOR difference of x, y, z respectively.

Let α = (1010)2, β = (1101)2 and γ = (0101)2. Then according to the definition of differential
probability, it can be computed that

P (α, β 7→ γ) = 1/8.

Next we use Theorem 1 to compute the differential probability P (α, β 7→ γ). Let c and c′ be the
carry vector of x� y and (x⊕ α)� (y⊕ β) respectively. Since x, y are 4-bit vectors, then we choose
m = t = 2. Note that T0 = {(0, 0)}, then according to Theorem 1, we only need to build two types
of 2-bit CDDTs PSd0 and PSd for d ∈ F2

2. Both PSd0 and PSd contains 4 tables and these tables
are also denoted by PSd0 and PSd.

Let
x = x3x2x1x0, X1 = x3x2, X0 = x1x0,
y = y3y2y1y0, Y1 = y3y2, Y0 = y1y0,
z = z3z2z1z0, Z1 = z3z2, Z0 = z1z0,
α = α3α2α1α0, A1 = α3α2, A0 = α1α0,
β = β3β2β1β0, B1 = β3β2, B0 = β1β0,
γ = γ3γ2γ1γ0, Γ1 = γ3γ2, Γ0 = γ1γ0.

Then (A0, B0, Γ0) are the input and output difference of the CDDT PSd0 , and (A1, B1, Γ1) are the
input and output difference of the CDDT PSd. The input difference (A0, B0) and (A1, B1) are
stored as (A0||B0) and (A1||B1) respectively in the corresponding tables. The CDDTs PSd0 and

PSd can be constructed with Algorithm 5 and Algorithm 6, and the tables are listed in Table 7
and Table 8.

As for the example,
A1 = α3α2 = (10)2, A0 = α1α0 = (10)2,
B1 = β3β2 = (11)2, B0 = β1β0 = (01)2,
Γ1 = γ3γ2 = (01)2, Γ0 = γ1γ0 = (01)2.

Then according to Theorem 1 and by looking up the CDDTs, we have

P (α, β 7→ γ) =
∑
d∈F2

2

PSd0 (A0, B0 7→ Γ0)PSd(A1, B1 7→ Γ1)

= PS0
0(1001 7→ 01)PS0(1011 7→ 01) + PS1

0(1001 7→ 01)PS1(1011 7→ 01)
+PS2

0(1001 7→ 01)PS2(1011 7→ 01) + PS3
0(1001 7→ 01)PS3(1011 7→ 01)

= 1/8× 1/2 + 1/8× 0 + 1/8× 0 + 1/8× 1/2
= 1/8.

Algorithm 5 Constructing CDDT PSd0
1: for A0, B0, Γ0 = 0 to 3 do
2: for X0, Y0 = 0 to 3 do
3: Z0 = X0 � Y0;
4: Z′0 = (X0 ⊕A0)� (Y0 ⊕B0);
5: c2 = b(X0 + Y0)/4c;
6: c′2 = b((X0 ⊕A0) + (Y0 ⊕B0))/4c;
7: d = c2||c′2;
8: if Z0 ⊕ Z′0 = Γ0 then
9: Sd0 (A0, B0 7→ Γ0) = Sd0 (A0, B0 7→ Γ0) + 1;

10: end if
11: end for
12: PSd0 (A0, B0 7→ Γ0) = 2−4 × Sd0 (A0, B0 7→ Γ0);
13: end for

Algorithm 6 Constructing CDDT PSd
1: for A1, B1, Γ1 = 0 to 3 do
2: for X1, Y1 = 0 to 3 do
3: for c2, c

′
2 = 0 to 1 do

4: Z1 = X1 � Y1 � c2;
5: Z′1 = (Z1 ⊕A1)� (Y1 ⊕B1)� c′2;
6: d = c2||c′2;
7: if Z1 ⊕ Z′1 = Γ1 then
8: Sd(A1, B1 7→ Γ1) = Sd(A1, B1 7→ Γ1) + 1;
9: end if

10: end for
11: end for
12: PSd(A1, B1 7→ Γ1) = 2−4 × Sd(A1, B1 7→ Γ1);
13: end for

Table 7. The CDDT PSd0

PS0
0 PS1

0 PS2
0 PS3

0

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 5/8 0 0 0 0 0 0 0 0 0 0 0 3/8 0 0 0

1 0 3/8 0 1/8 0 0 0 1/8 0 0 0 1/8 0 1/8 0 1/8

2 0 0 3/8 0 0 0 1/4 0 0 0 1/4 0 0 0 1/8 0

3 0 1/8 0 1/4 0 1/8 0 1/8 0 1/8 0 1/8 0 1/8 0 0

4 0 3/8 0 1/8 0 0 0 1/8 0 0 0 1/8 0 1/8 0 1/8

5 3/8 0 1/8 0 0 0 1/8 0 0 0 1/8 0 1/8 0 1/8 0

6 0 1/8 0 1/4 0 1/8 0 1/8 0 1/8 0 1/8 0 1/8 0 0

7 1/8 0 1/4 0 1/8 0 1/8 0 1/8 0 1/8 0 1/8 0 0 0

8 0 0 3/8 0 0 0 1/4 0 0 0 1/4 0 0 0 1/8 0

9 0 1/8 0 1/4 0 1/8 0 1/8 0 1/8 0 1/8 0 1/8 0 0

10 3/8 0 0 0 1/4 0 0 0 1/4 0 0 0 1/8 0 0 0

11 0 1/4 0 0 0 1/8 0 1/4 0 1/8 0 1/4 0 0 0 0

12 0 1/8 0 1/4 0 1/8 0 1/8 0 1/8 0 1/8 0 1/8 0 0

13 1/8 0 1/4 0 1/8 0 1/8 0 1/8 0 1/8 0 1/8 0 0 0

14 0 1/4 0 0 0 1/8 0 1/4 0 1/8 0 1/4 0 0 0 0

15 1/4 0 0 0 1/8 0 1/4 0 1/8 0 1/4 0 0 0 0 0

Table 8. The CDDT PSd

PS0 PS1 PS2 PS3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 0 0 0 0 1/2 0 1/2 0 1/2 0 1/2 1 0 0 0

1 0 1/2 0 1/2 1/2 0 1/2 0 1/2 0 1/2 0 0 1/2 0 1/2

2 0 0 1 0 0 1/2 0 1/2 0 1/2 0 1/2 0 0 1 0

3 0 1/2 0 1/2 1/2 0 1/2 0 1/2 0 1/2 0 0 1/2 0 1/2

4 0 1/2 0 1/2 1/2 0 1/2 0 1/2 0 1/2 0 0 1/2 0 1/2

5 1/2 0 1/2 0 0 0 0 1 0 0 0 1 1/2 0 1/2 0

6 0 1/2 0 1/2 1/2 0 1/2 0 1/2 0 1/2 0 0 1/2 0 1/2

7 1/2 0 1/2 0 0 1 0 0 0 1 0 0 1/2 0 1/2 0

8 0 0 1 0 0 1/2 0 1/2 0 1/2 0 1/2 0 0 1 0

9 0 1/2 0 1/2 1/2 0 1/2 0 1/2 0 1/2 0 0 1/2 0 1/2

10 1 0 0 0 0 1/2 0 1/2 0 1/2 0 1/2 1 0 0 0

11 0 1/2 0 1/2 1/2 0 1/2 0 1/2 0 1/2 0 0 1/2 0 1/2

12 0 1/2 0 1/2 1/2 0 1/2 0 1/2 0 1/2 0 0 1/2 0 1/2

13 1/2 0 1/2 0 0 1 0 0 0 1 0 0 1/2 0 1/2 0

14 0 1/2 0 1/2 1/2 0 1/2 0 1/2 0 1/2 0 0 1/2 0 1/2

15 1/2 0 1/2 0 0 0 0 1 0 0 0 1 1/2 0 1/2 0

B Differential Trails for HIGHT and SPECK

Table 9. Differential Trail for HIGHT

HIGHT

r ∆X7 ∆X6 ∆X5 ∆X4 ∆X3 ∆X2 ∆X1 ∆X0 log2pr

0 0 4a 1 0 0 0 9 20 −0
1 4a 1 0 0 0 0 20 b8 −7
2 1 0 0 0 0 0 b8 c8 −4
3 0 0 0 0 0 0 c8 1 −4
4 0 0 0 0 0 0 1 0 −3
5 0 0 0 0 0 1 0 0 −1
6 0 0 0 82 1 0 0 0 −2
7 0 9c 82 1 0 0 0 0 −3
8 9c 7a 1 0 0 0 0 3 −8
9 7a 1 0 0 0 e8 3 bc −5
10 1 0 0 2 e8 0 bc f8 −6
11 0 90 2 e8 0 b6 f8 1 −5∑

r log2pr −48

Table 10. Differential Trails for SPECK

SPECK32 SPECK48 SPECK64

r ∆L ∆R log2pr ∆L ∆R log2pr ∆L ∆R log2pr

0 50 8402 −0 1202 20002 −0 40004092 10420040 −0
1 2402 3408 −3 10 100000 −3 82020000 120200 −5
2 50c0 80e0 −7 0 800000 −1 900000 1000 −4
3 181 203 −4 800000 800004 −0 8000 0 −2
4 c 800 −5 808004 808020 −2 80 80 −1
5 2000 0 −3 8400a0 8001a4 −4 80000080 80000480 −1
6 40 40 −1 608da4 608080 −9 800480 802084 −3
7 8040 8140 −1 42003 2400 −11 80806080 848164a0 −6
8 40 542 −2 12020 20 −5 40f2400 20040104 −13
9 8542 904a −4 200100 200000 −3 20000820 20200001 −8
10 202001 202000 −3 9 1000000 −4
11 210020 200021 −4 8000000 0 −2
12 80000 80000 −1
13 80800 480800 −2
14 480008 2084008 −4
15 a080808 1a4a0848 −6∑

r log2pr −30 −45 −62

SPECK96 SPECK128

r ∆L ∆R log2pr ∆L ∆R log2pr

0 92400040 400000104200 −0 92400040 4000000000104200 −0
1 820200 1202 −6 820200 1202 −6
2 9000 10 −4 9000 10 −4
3 80 0 −2 80 0 −2
4 800000000000 800000000000 −0 8000000000000000 8000000000000000 −0
5 808000000000 808000000004 −1 8080000000000000 8080000000000004 −1
6 800080000004 840080000020 −3 8000800000000004 8400800000000020 −3
7 808080800020 a08480800124 −5 8080808000000020 a084808000000124 −5
8 800400008124 842004008801 −9 8004000080000124 8420040080000801 −9∑

r log2pr −30 −30

C Linear Trails for HIGHT and SPECK

Table 11. Linear trail for HIGHT

HIGHT

r ΓX7 ΓX6 ΓX5 ΓX4 ΓX3 ΓX2 ΓX1 ΓX0 log2cr

0 0 1 0 61 0 80 61 bf −0
1 1 0 61 0 80 61 0 0 −1
2 c2 41 39 80 0 0 0 1 −2
3 67 21 0 0 0 0 1 c2 −5
4 0 0 0 0 0 1 f6 67 −2
5 0 0 0 0 1 c2 0 0 −6
6 0 0 0 1 0 0 0 0 −0
7 0 0 1 0 0 0 0 0 −0
8 0 1 34 0 0 0 0 0 −0
9 1 36 15 0 0 0 0 0 −2
10 f4 15 6e 0 0 0 0 1 −2∑

r log2cr −20

Table 12. Linear Trails for SPECK

SPECK32 SPECK48 SPECK64

r ΓL ΓR log2cr ΓL ΓR log2cr ΓL ΓR log2cr

0 280 5226 −0 900 20018c −0 101000 1013 −0
1 4880 4885 −1 c00 c09 −1 1800 18 −2
2 20a0 2071 −2 6000 6008 −1 18 0 −1
3 40a0 c1 −2 30200 30240 −1 d8000000 c0000000 −1
4 80 4001 −3 180012 180210 −2 4100006 4800006 −2
5 0 1 −0 20080 109080 −4 34d030 430c030 −3
6 4 4 −0 49e06 849c06 −2 1870101 21872781 −6
7 3810 3010 −1 c000 4c694 −5 1300100 310601 −5
8 2180 1c0 −3 263020 2630a0 −1 1800001 181b000 −2
9 6cf 68c −2 20 302400 −4 1000000 18000 −2
10 212000 12000 −1 10000 0 −1
11 d00 c00 −1
12 6041 6048 −1
13 4d030123 c030143 −3∑

r log2cr −14 −22 −30

SPECK96 SPECK128

r ΓL ΓR log2cr ΓL ΓR log2cr

0 1800130 40000018021 −0 1800130 400000000018021 −0
1 18100 200000000101 −2 18100 2000000000000101 −2
2 100 1 −1 100 1 −1
3 1 0 −0 1 0 −0
4 d0000000000 c0000000000 −1 d00000000000000 c00000000000000 −1
5 604000000000 604c00000000 −4 6040000000000000 604c000000000000 −4
6 3 6000000003 −8 3 60000000000003 −8
7 180000000018 1b0000000018 −1 1800000000000018 1b00000000000018 −1
8 90000000c0 1880000000c0 −2 900000000000c0 18800000000000c0 −2
9 40650000606 c406c0000606 −3 406500000000606 c406c00000000606 −3∑

r log2cr −22 −22

	A new method for Searching Optimal Differential and Linear Trails in ARX Ciphers
	1 Introduction
	2 Carry-bit-dependent S-box, Difference Distribution Table and Linear Approximation Table
	2.1 Addition and Carry-bit-dependent S-box
	2.2 Computing Differential Probability of Addition with CDDTs
	2.3 Computing Linear Correlation of Addition with CLATs

	3 Improved Method for Constructing CDDTs and CLATS
	3.1 Constructing CDDTs with Lipmaa-Moriai's Algorithm
	3.2 Constructing CLATs with Schulte-Geers's algorithm

	4 Automatic Search Algorithm for Optimal Differential and Linear Trails with CDDTs and CLATs
	5 Differential and Linear Trails for HIGHT and SPECK
	5.1 Description of HIGHT and SPECK
	5.2 Differential Trails for HIGHT and SPECK
	5.3 Linear Trails for HIGHT and SPECK

	6 Conclusion
	Acknowledgements.

	A Example of Computing Differential Probability of Addition with CDDTs
	B Differential Trails for HIGHT and SPECK
	C Linear Trails for HIGHT and SPECK

