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Abstract. Post-quantum cryptographic primitives have a range of trade-
offs compared to traditional public key algorithms, either having slower
computation or larger public keys and ciphertexts/signatures, or both.
While the performance of these algorithms in isolation is easy to mea-
sure and has been a focus of optimization techniques, performance in
realistic network conditions has been less studied. Google and Cloudflare
have reported results from running experiments with post-quantum key
exchange algorithms in the Transport Layer Security (TLS) protocol
with real users’ network traffic. Such experiments are highly realistic, but
cannot be replicated without access to Internet-scale infrastructure, and
do not allow for isolating the effect of individual network characteristics.

In this work, we develop and make use of a framework for running
such experiments in TLS cheaply by emulating network conditions us-
ing networking features of the Linux kernel. Our testbed allows us to
independently control variables such as link latency and packet loss rate,
and then examine the impact on TLS connection establishment perfor-
mance of various post-quantum primitives, specifically hybrid elliptic
curve/post-quantum key exchange and post-quantum digital signatures,
based on implementations from the Open Quantum Safe project. Among
our key results, we observe that packet loss rates above 3–5% start to have
a significant impact on post-quantum algorithms that fragment across
many packets, such as those based on unstructured lattices. The results
from this emulation framework are also complemented by results on the
latency of loading entire web pages over TLS in real network conditions,
which show that network latency hides most of impact from algorithms
with slower computations (such as supersingular isogenies).

Keywords: post-quantum key exchange · post-quantum authentication
· Transport Layer Security (TLS) · network performance · emulation

1 Introduction

Compared to traditional public key algorithms, post-quantum key encapsulation
mechanisms (KEMs) and digital signatures schemes have a range of trade-
offs, either having slower computation, or larger public keys and ciphertexts /
signatures, or both. Measuring the performance of these algorithms in isolation
is easy; doing so accurately in the broader context of Internet protocols such as
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the Transport Layer Security (TLS) protocol, and under realistic network traffic
conditions, is more difficult.

Alongside the development and standardization of post-quantum algorithms
in the NIST Post-Quantum Cryptography Standardization project, there have
been various efforts to begin preparing the TLS ecosystem for post-quantum
cryptography. We can see at least three major lines of work: (draft) specifications
of how post-quantum algorithms could be integrated into existing protocol formats
and message flows [9, 15, 29, 30, 32, 36]; prototype implementations demonstrating
such integrations can be done [6,7,8,13,16,17,26,27] and whether they would meet
existing constraints in protocols and software [10]; and performance evaluations
in either basic laboratory network settings [6,7] or more realistic network settings
[8,13,16,18,19]. This paper focuses on the last of these issues, trying to understand
how post-quantum cryptography’s slower computation and larger communication
sizes impact performance of TLS.

A line of work starting with initial experiments by Google [8, 18], with follow-
up collaborations between Google, Cloudflare, and others [16,19], has involved
Internet companies running experiments to measure the performance of real
connections using post-quantum key exchange (combined with traditional elliptic
curve Diffie–Hellman, resulting in so-called “hybrid” key exchange), by modifying
client browsers and edge servers to support select hybrid key exchange schemes in
TLS 1.3. Such experiments are highly realistic, but cannot be replicated without
access to commensurate infrastructure, and do not allow for isolating the effect of
individual network characteristics: it is neither possible to precisely quantify the
effect of just a change in (say) packet loss on a network route on the latency of
TLS connection establishment, nor is it possible to (say) increase just the packet
loss on a route and analyze the resulting effects.

Contributions. In this paper, we develop an experimental framework for mea-
suring the performance of the TLS protocol under a variety of network conditions.
Our framework is inspired by the NetMirage [35] and Mininet [20] network emu-
lation software, and uses the Linux kernel’s networking stack to precisely and
independently tune characteristics such as link latency and packet loss rate. This
allows for emulation of client–server network experiments on a single machine.

Using this framework, we analyze the impact that post-quantum cryptography
has on TLS 1.3 handshake completion time (i.e., until application data can be
sent), specifically in the context of hybrid post-quantum key exchange using struc-
tured and unstructured lattices and supersingular isogenies; and post-quantum
authentication using structured lattices and symmetric-based signatures. Our
emulated experiments are run at 4 different latencies (emulating round-trip times
between real-world data centres), and at packet loss rates ranging from 0–20%.

Some of our key observations from the network emulation experiments mea-
suring TLS handshake completion time are as follows. For the median connection,
handshake completion time is significantly impacted by substantially slower
algorithms (for example, supersingular isogenies (SIKE p434) has a significant
performance floor compared to the faster structured and unstructured lattice
algorithms), although this effect disappears at the 95th percentile. For algorithms
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with larger messages that result in fragmentation across multiple packets, perfor-
mance degrades as packet loss rate increases: for example, median connection time
for unstructured lattice key exchange (Frodo-640-AES) matches structured lattice
performance at 5–10% packet loss, then begins to degrade; at the 95th percentile,
this effect is less pronounced until around 15% packet loss. We see similar trends
for post-quantum digital signatures, although with degraded performance for
larger schemes starting around 3–5% packet loss since a TLS connection includes
multiple public keys and signatures in certificates.

We also carry out an experiment across real networks, measuring page load
time over TLS using geographically scattered virtual machines communication
over the Internet. From this experiment, we observe that, page size or network
latency increases, the overhead of slower TLS connection establishment diminishes
as a proportion of the overall page load time.

Our key exchange results complement those of Google, Cloudflare, and others
[16,19]: they provide a holistic look at how post-quantum key exchange algorithms
perform for users on real network connections of whatever characteristic the
users happened to have, whereas our results show the independent effect of each
network characteristic, and our techniques can be applied without access to
commensurate Internet-scale client and edge server infrastructure.

Closely related to our post-quantum signature experiments is the recent work
by Kampanakis and Sikeridis [13] on the performance of two structured lattice
signatures in TLS 1.3. They measure how handshake time varies with server
distance (measured in number of hops) and how handshake time and failure rate
varies with throughput. Our experiments complement theirs by measuring the
impact of other network characteristics: connection latency and packet loss rates.

Organization. In Section 2, we describe how we integrated post-quantum al-
gorithms into TLS. Section 3 describes the network emulation framework, and
Section 4 describes the setup for our two experiments (emulated; and over the
real Internet, data-centre-to-data-centre). Section 5 presents and discusses results
from the two experiments. Section 6 concludes. Additional data appears in the
appendix. Code and complete result data for all the experiments can be found at
our GitHub repository: https://github.com/xvzcf/pq-tls-benchmark.

2 Post-quantum Cryptography in TLS

There have been a variety of proposed specifications, implementations, and
experiments involving post-quantum cryptography in TLS 1.2 and TLS 1.3.

In the context of TLS 1.2, Schanck, Whyte, and Zhang [30] and Campagna
and Crockett [9] submitted Internet-Drafts to the Internet Engineering Task
Force (IETF) with proposals for adding post-quantum and hybrid key exchange
to TLS 1.2; implementations of these drafts (or ad hoc specifications) in TLS 1.2
include experiments by Google [8] and Amazon [1], in research papers [6, 7], as
well as the Open Quantum Safe project’s OQS-OpenSSL 1.0.2 [26,33].

For hybrid and post-quantum key exchange in TLS 1.3, there have been
Internet-Drafts by Kiefer and Kwiatowski [15], Whyte et al. [36], Schanck and
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Stebila [29], and Stebila et al. [32]. Experimental demonstrations include earlier
experiments by Google [17, 19], more recent experiments by a team involving
Cloudflare, Google, and others [16], as well as the Open Quantum Safe project’s
OQS-OpenSSL 1.1.1 [10, 27], a fork of OpenSSL 1.1.1. There has also been
some work on experiments involving post-quantum and hybrid authentication
in TLS 1.3, including OQS-OpenSSL 1.1.1 [27] and experiments based on it by
Kampanakis and Sikeridis [13].

The experiments in this paper are based on the implementation of hybrid
key exchange and post-quantum authentication in TLS 1.3 in OQS-OpenSSL
1.1.1. We now describe the mechanisms used in this particular instantiation of
post-quantum cryptography in TLS 1.3. For a broader discussion of design choices
and issues in engineering post-quantum cryptography in TLS 1.3, see [32].

2.1 Hybrid Key Exchange in TLS 1.3

Our experiments focused on hybrid key exchange, based on the perspective that
early adopters of post-quantum cryptography may want post-quantum long-term
forward secrecy while still using ECDH key exchange either because of a lack of
confidence in newer post-quantum assumptions, or due to regulatory compliance.

The primary way to negotiate an ephemeral key in TLS 1.3 [28] is to use
elliptic-curve Diffie-Hellman (ECDH). To do so, a client, in its ClientHello
message, can send a supported_groups extension that names its supported
elliptic curve groups; the client can then also provide corresponding keyshares,
which are the public cryptographic values used to initiate key exchange. By
defining new “groups” for each post-quantum and hybrid method, this framework
can also be used in a straightforward manner to support the use of post-quantum
key-exchange algorithms. Mapping these on to key encapsulation mechanisms,
the client uses a KEM ephemeral public key as its keyshare, and the server
encapsulates against the public key and sends the corresponding ciphertext
as its keyshare. Despite performing ephemeral key exchange, we only use the
IND-CCA versions of the post-quantum KEMs.

In the instantiation of hybrid methods in OQS-OpenSSL 1.1.1, the number
of algorithms combined are restricted to two at a time, and a “group” identifier
is assigned to each such pair; as a result, combinations are negotiated together,
rather than individually. Moreover, in such a hybrid method, the public keys
and ciphertexts for the hybrid scheme are simply concatenations of the elliptic
curve and post-quantum algorithms’ values in the keyshare provided by the
ClientHello and ServerHello messages. For computing the shared secret, indi-
vidual shared secrets are concatenated and used in place of the ECDH shared
secret in the TLS 1.3 key schedule. As OpenSSL does not have a generic KEM
or key exchange API in its libcrypto component, the modified OpenSSL imple-
mentation primarily involves changes in OpenSSL’s ssl directory, and calls into
OpenSSL’s libcrypto for the ECDH algorithms and into the Open Quantum
Safe project’s liboqs for the post-quantum KEMs.
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2.2 Post-quantum Authentication in TLS 1.3

Our experiments focused on post-quantum-only authentication, rather than hy-
brid authentication. We made this choice because, with respect to authenticating
connection establishment, the argument for a hybrid mode is less clear: authen-
tication only needs to be secure at the time a connection is established (rather
than for the lifetime of the data as with confidentiality). Moreover, in TLS 1.3
there is no need for a server to have a hybrid certificate that can be used with
both post-quantum-aware and non-post-quantum aware clients, as algorithm
negotiation will be complete before the server needs to send its certificate.

In TLS 1.3, public key authentication is done via signatures, and public keys
are usually conveyed via X.509 certificates. There are two relevant negotiation
mechanisms in TLS 1.3: the signature_algorithms_cert extension which is
used to negotiate which algorithms are supported for signatures in certificates;
and the signature_algorithms extension for which algorithms are supported in
the protocol itself. Both of these extensions are a list of algorithm identifiers [28].

In the instantiation in OQS-OpenSSL 1.1.1, new algorithm identifiers are
added for each post-quantum signature algorithm to be used, and the algo-
rithms themselves are added to OpenSSL’s generic “envelope public key” object
(EVP_PKEY) in libcrypto, which then percolate upwards to the X.509 certificate
generation and management and TLS authentication, with relatively few changes
required at these higher levels.

3 The Network Emulation Framework

To carry out experiments with full control over network characteristics, we rely
on features available in Linux to implement a network emulation framework.

The Linux kernel provides the ability to create network namespaces [3], which
are independent, isolated copies of the kernel’s network stack; each namespace
has its own routes, network addresses, firewall rules, ports, and network devices.
Network namespaces can thus emulate separate network participants on a single
system.

Two namespaces can be linked using pairs of virtual ethernet (veth) devices [4]:
veth devices are always created in interconnected pairs, and packets transmitted
on one device are immediately received on the other device in the pair. Outgoing
traffic on these virtual devices can be controlled by the network emulation (netem)
kernel module [21], which offers the ability to instruct the kernel to apply, among
other characteristics, a delay, an independent or correlated packet loss probability,
and a rate-limit to all outgoing packets from the device.

To give the link a minimum round trip time of xms, netem can be used
to instruct the kernel to apply on both veth devices a delay of x

2 ms to each
outgoing packet. Similarly, to give the link a desired packet loss rate y%, netem can
instruct the kernel to drop on both devices outgoing packets with (independent
or correlated) probability y%. While netem can be used to specify other traffic
characteristics, such as network jitter or packet duplication, we consider varying
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the round-trip time and packet loss probability to be sufficient to model a wide
variety of network conditions. If the round-trip time on a link connecting a server
and client conveys the geographical distance between them, then, for example,
a low packet loss can model a high-quality and/or wired ethernet connection.
Moderate to high packet losses can model low-quality connections or congested
networks, such as when the server experiences heavy traffic, or when a client
connects to a website using a heavily loaded WiFi network.

Tools such as NetMirage [35] and Mininet [20] offer the ability to emulate larger,
more sophisticated, and more realistic networks where, for example, namespaces
can serve as autonomous systems (AS) that group clients, and packets can be
routed within an AS or between two ASes. We carried out our experiments over a
single link (client–server topology) with direct control over network characteristics
using netem to enable us to isolate the effect of individual network characteristics
on the performance of post-quantum cryptography in TLS 1.3.

4 Experimental Setup

4.1 Cryptographic scenarios
We consider the two cryptographic scenarios in TLS 1.3: hybrid key exchange and
post-quantum authentication. Table 1 shows the four key exchange algorithms
and four signature algorithms used in our experiments.3 Their integration into
TLS 1.3 was as described in Section 2. We used liboqs for the implementations
of the post-quantum algorithms; liboqs takes its implementations directly from
teams’ submissions to NIST or via the PQClean project [14]. Tables 3 and 4 in
the appendixshow public key/ciphertext/signature size and raw performance on
the machine used in our network emulation experiments.

For the key exchange scenario, the rest of the algorithms in the TLS connection
were as follows: server-to-client authentication was performed using an ECDSA
certificate over the NIST P-256 curve using the SHA-384 hash function. For the
signature scenario, key exchange was using ecdh-p256-kyber512_90s; the hash
function used was SHA-384. In both cases, application data was protected using
AES-256 in Galois/counter mode, and the certificate chain was root → server,
all of which were using the same algorithms.

4.2 Emulated network experiment setup
The goal of the emulated network experiments was to measure the time elapsed
until completion of the TLS handshake under various network conditions.
3 Our Internet data-centre-to-data-centre experiment actually included all Level
1 algorithms supported by liboqs (additionally bike1l1cpa, newhope512cca,
ntru_hps2048509, and lightsaber; and picnic2l1fs) and additionally hybrid with
RSA-3072. The network emulation experiments take much longer to run than the
Internet experiments, so we did not have time to collect corresponding network
emulation results. For parity, in this paper we only present the results obtained using
the same algorithms as in the network emulation experiment. The additional data
collected can be found on our GitHub repository.
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Notation Hybrid Family Variant Implementation

Key exchange

ecdh-p256 × Elliptic-curve NIST P-256 OpenSSL optimized
ecdh-p256-sike-434 X Supersingular isogeny SIKE p434 [12] Assembly optimized
ecdh-p256-kyber512_90s X Module LWE Kyber 90s level 1 [31] Reference C
ecdh-p256-frodo640aes X Plain LWE Frodo-640-AES [23] C with AES-NI

Signatures

ecdsa-p256 × Elliptic curve NIST P-256 OpenSSL optimized
dilithium2 × Module LWE/SIS Dilithium2 [22] Reference C
qtesla-p-i × Ring LWE/SIS qTESLA provable 1 [5] AVX2 optimized
picnic-l1-fs × Symmetric Picnic-L1-FS [37] AVX2 optimized

Table 1. Key exchange and signature algorithms used in our experiments

Following the procedure in Section 3, we created two network namespaces
and connected them using a veth pair, one namespace representing a client,
and the other a server. In the client namespace, we ran a modified version of
OpenSSL’s s_time program, which measures TLS performance by making, in
a given time period, as many synchronous (TCP) connections as it could to a
remote host using TLS; our modified version (which we’ve called s_timer), for a
given number of repetitions, synchronously establishes a TLS connection using a
given post-quantum algorithm, closes the connection as soon as the handshake is
complete, and records only the time taken to complete the handshake. In the
server namespace, we ran the nginx [24] web server, built against OQS-OpenSSL
1.1.1 so that it is post-quantum aware.

We chose 4 round-trip times to model the geographical distance to servers at
different locations: the values were chosen to be similar to the round-trip times in
the Internet data-centre network experiment (see Section 4.3), but are not exactly
the same, partly because netem internally converts a given latency to an integral
number of kernel packet scheduler “ticks”, which results in a slight (and negligible)
accuracy loss. For each round-trip time, the packet loss probability was varied
from 0% to 20% (the probability applies to each packet independently). Finally,
for each such combination, for each algorithm under test, 40 independent s_timer
“client” processes were run, each making repeated synchronous connections to 21
nginx worker processes, each of which was instructed to handle 1024 connections.

The experiments were run on a Linux (Ubuntu 18.04) Azure D64a v4 virtual
machine, which has 64 vCPUs (2.35GHz AMD EPYCTM 7452 processor, bursting
to 3.35GHz) and 256GiB of RAM, in order to give each process its “own” core
so as to minimize noise from CPU process scheduling and make the client and
server processes as independent of each other as possible.

4.3 Internet data-centre-to-data-centre experiment setup

The emulated network experiment concerned itself only with handshake times. In
practice, the latency of establishing TLS might not be noticeable when compared
to the latency of retrieving application data over the connection. Accordingly, we
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Virtual machine Azure region Round-trip time

Client East US 2 (Virginia) –
Server – near East US (Virginia) 6.193ms
Server – medium Central US (Iowa) 30.906ms
Server – far North Europe (Ireland) 70.335ms
Server – worst-case Australia East (New South Wales) 198.707ms

Table 2. Client and server locations and network characteristics observed for Internet
data-centre-to-data-centre experiment; packet loss rates were observed to be 0%

conducted a set of experiments that involved a client cloud VM requesting web
pages of different sizes from various server VMs over the Internet, and measured
the total time to receive the complete file.

We set up one client VM and four server VMs in various cloud data centres
using Azure, ranging from the server being close to the client to the server being
on the other side of the planet. Table 2 shows the data centre locations and gives
the round-trip times between the client and server.

It should be noted that the RTT times between any two VMs depend on
the state of the network between them, which is highly variable; our values in
Table 2 are one snapshot. Given that these are data-centre-to-data-centre links,
the packet loss on these links is practically zero. The VMs were all Linux (Ubuntu
18.04) Azure D8s virtual machines, which each have 8 vCPUs (either 2.4GHz
Intel Xeon E5-2673 v3 (Haswell) or 2.3GHz Intel Xeon E5-2673 v4 (Broadwell),
depending on provisioning, bursting to 3.5GHz) and 32GiB of RAM. The Apache
Benchmark (ab) tool [2] was installed on the client VM to measure the connection
time; it was modified to use TLS 1.3 via OQS-OpenSSL 1.1.1, verify the server
certificate, and be post-quantum aware.

We installed nginx (compiled against OQS-OpenSSL 1.1.1) on all server VMs,
and we configured it to serve HTML pages of various sizes (1 kB, 10 kB, 100 kB,
1000 kB). (The http archive [11] reports that the median desktop and mobile
page weight is close to 1950 kB and 1750 kB respectively. Experiments with files
as large as 2000 kB took an inordinate amount of time, and all the relevant trends
can also be seen at the 1000 kB page size.)

5 Results and discussion

5.1 Emulated network experiment results

Key exchange. Figure 1 shows the results for round-trip times corresponding
to “near” and “medium” distance links; Figure 4 in the appendix shows results
for longer round-trip times. For each key exchange scenario, we collected between
1500 and 3000 samples (depending on volatility of the data). Even with this many
samples, some noise still appears in the results, especially at the 95th percentile,
due to high variability inherent in such a noisy process.
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Fig. 1. Network emulation experiment, key exchange scenario: handshake com-
pletion time (median & 95th percentile) vs. packet loss at shorter round-trip times

At the median, over high quality network links (packet loss rates ≤ 1%),
we observe that public key and ciphertext size have little impact on handshake
completion time, and the predominant factor is cryptographic computation time:
ECDH, Kyber512-90s, and Frodo-640-AES have raw cryptographic processing
times less than 2ms resulting in comparable handshake completion times; the
slower computation of SIKE p434, where the full cryptographic sequence takes
approximately 60ms, results in a higher latency floor.

As packet loss rates increase, especially above 5%, key exchange mechanisms
with larger public keys / ciphertexts, by inducing more packets, bring about longer
completion times. For example, at the 31.2ms RTT, we observe that median
Frodo-640-AES completion time starts falling behind. This is to be expected since
the maximum transmission unit (MTU) of an ethernet connection is 1500 bytes
whereas Frodo-640-AES public key and ciphertext sizes are 9616 bytes and 9720
bytes respectively, resulting in fragmentation across multiple packets. Using the
packet analyzer tcpdump, we determined that 16 IP packets must be sent by the
client to establish a TLS connection using ecdh-p256-frodo640aes. If the packet
loss loss probability is p = 5%, the probability of at least one packet getting
dropped is already 1− (1− p)16 ≈ 58%, so the median ecdh-p256-frodo640aes
has required a retransmission. In contrast, only 5 IP packets are required to
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Fig. 2. Network emulation experiment, signature scenario: Handshake comple-
tion time (median & 95th percentile) vs. packet loss at shorter round-trip times

establish a TLS connection with ecdh-p256 and ecdh-p256-sike-434, and 6
packets for ecdh-p256-kyber512_90s, which explains why SIKE p434’s small
public-key and ciphertext sizes do not offset its computational demand.

At the 95th percentile, we see the impact of raw cryptographic processing
times nearly eliminated. Up to 10% packet loss, the performance of the 4 key
exchange algorithms are quite close. Past 15% packet loss, the much larger number
of packets causes ecdh-p256-frodo640aes completion times to spike.

Digital signatures. Figure 2 shows the results for round-trip times correspond-
ing to “near” and “medium” distance links; Figure 5 in the appendix shows
results for longer round-trip times. For each point, we collected 2500 samples.

The trends here are similar to key exchange, with respect to impact of
computation costs and number of packets: at the median, dilithium2 imposes
the least slowdown of all post-quantum signature schemes, and is commensurate
with ecdsa-p256 at low latencies and packet loss rates. qtesla-p-i results in a
higher latency floor. picnic-l1-fs, which produces 34,036-byte signatures, also
degrades rapidly as the link latency and packet loss probability increases.
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5.2 Internet data-centre-to-data-centre experiment results

For each post-quantum scenario, we collected data points by running the ab tool
for 2 minutes, resulting in between 100 and 500 samples for each scenario.

Key exchange. Figure 3 (left) shows the results for median page download
times from our four data centres. Figure 6 in the appendix shows results for the
95th percentile; behaviour at the 95th percentile is not too different from median
behaviour, likely due to the extremely low packet loss rate on our connections.

For small-RTT connections and small web pages, the TLS handshake con-
stitutes a significant portion of the overall connection time; faster algorithms
perform better. As page size and RTT time increase, the handshake becomes
less significant. For example, for the near server (US East, 6.2ms RTT), in com-
paring ecdh-p256 with ecdh-p256-sikep434, we observe that, at the median,
ecdh-p256 is 3.42 times faster than ecdh-p256-sikep434 for 1 kB web pages.
However this ratio decreases as page sizes increase to 100 or 1000 kB, and as
round trip time increases; for example decreasing to 1.07× and 1.03× for the
worst-case server (Australia, 198.7ms RTT) at 1 and 1000KB.

We do observe some variability in the comparisons between algorithms in the
Internet experiment in Figure 3 (for example, ECDH and ECDSA in going from
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Fig. 3. Internet data-centre-to-data-centre experiment: median retrieval time
for various web page sizes from 4 data centres; key exchange (left), signatures (right)



12 C. Paquin, D. Stebila, G. Tamvada

being at least as fast as all the PQ hybrids to being slightly slower at 100 and
1000 kB) that we believe may be due to real-world network conditions changing
when running different batches sequentially. This effect might be reduced by
interweaving batches, which we would like to try in future experimental runs.

Digital signatures. Figure 3 (right) shows the results for median round-trip
times to the four data centres; Figure 6 in the appendix shows results for the 95th
percentile. Just like with the emulated experiment, we observe similar trends
between the signature and the key encapsulation mechanisms tests. While the
TLS handshake represents a significant portion of the connection establishment
time, over increasingly long distances or with increasingly larger payloads, the
proportion of time spent on handshake cryptographic processing diminishes.

6 Conclusion and Future Work

Our experimental results show under which conditions various characteristics of
post-quantum algorithms affect performance. In general, on fast, reliable network
links, TLS handshake completion time of the median connection is dominated by
the cost of public key cryptography, whereas the 95th percentile completion time
is not substantially affected. On unreliable network links with packet loss rates of
3–5% or higher, communication sizes come to govern handshake completion time.
As application data sizes grow, the relative cost of TLS handshake establishment
diminishes compared to application data transmission.

With respect to the effect of communication sizes, it is clear that the maximum
transmission unit (MTU) size imposed by the link layer significantly affects the
TLS establishment performance of a scheme. Large MTUs may be able to improve
TLS establishment performance for post-quantum primitives with large messages.
Some ethernet devices provide (non-standard) support for “jumbo frames”, which
are frames sized anywhere from 1500 to 9000 bytes [34]. Since the feature is non-
standard, it is not suitable for use in Internet-facing applications, which cannot
make assumptions about the link-layer MTUs of other servers/intermediaries,
but may help in local or private networks where every link can be accounted for.

Future work obviously includes extending these experiments to cover more
algorithms and more security levels; we intend to continue our experiments
and will post future results to our repository at https://github.com/xvzcf/
pq-tls-benchmark. It would be interesting to extend the emulation results to
bigger networks that aim to emulate multiple network conditions simultaneously
using NetMirage or Mininet. On the topic of post-quantum authentication, our
experiments focused on a certificate chain where the root CA and endpoint
used the same algorithms (resulting in transmission of one public key and two
signatures); it would be interesting to experiment with different chain sizes, and
with multi-algorithm chains, perhaps optimized for overall public key + signature
size. It would also be possible to measure throughput of a server under load from
many clients. Finally, our emulation framework could be applied to investigate
other protocols, such as SSH, IPsec, Wireguard, and others.

https://github.com/xvzcf/pq-tls-benchmark
https://github.com/xvzcf/pq-tls-benchmark
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A Additional Tables and Charts

Algorithm Public key Ciphertext Key gen. Encaps. Decaps.

ECDH NIST P-256 64 64 0.072 0.072 0.072
SIKE p434 330 346 13.763 22.120 23.734
Kyber512-90s 800 736 0.049 0.063 0.078
FrodoKEM-640-AES 9,616 9,720 1.929 1.048 1.064

Table 3. Key exchange algorithm communication size (in bytes) and runtime (in
milliseconds)

Algorithm Public key Signature Sign Verify

ECDSA NIST P-256 64 64 0.031 0.096
Dilithium2 1,184 2,044 0.670 0.121
qTESLA-P-I 14,880 2,592 1.055 0.312
Picnic-L1-FS 33 34,036 3.429 2.584

Table 4. Signature scheme communication size (in bytes) and runtime (in milliseconds)
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Fig. 4. Network emulation experiment, key exchange scenario: handshake com-
pletion time (median and 95th percentile) versus packet loss rate at longer round-trip
times
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Fig. 5. Network emulation experiment, signature scenario: Handshake comple-
tion time (median and 95th percentile) versus packet loss rate at longer round-trip
times
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Fig. 6. Internet data-centre-to-data-centre experiment: 95th percentile retrieval
time for various web page sizes from four data centres; key exchange scenario (left),
signature scenario (right)
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