
Benchmarking Post-Quantum Cryptography in TLS

Christian Paquin

Microsoft Research
cpaquin@microsoft.com

Douglas Stebila and Goutam Tamvada

University of Waterloo
dstebila@uwaterloo.ca, gtamvada@edu.uwaterloo.ca

December 12, 2019

Abstract
Post-quantum cryptographic primitives have a range of trade-offs compared to traditional

public key algorithms, either having slower computation or larger public keys and cipher-
texts/signatures, or both. While the performance of these algorithms in isolation is easy to
measure and has been a focus of optimization techniques, performance in realistic network
conditions has been less studied. Google and Cloudflare have reported results from running
experiments with post-quantum key exchange algorithms in the Transport Layer Security (TLS)
protocol with real users’ network traffic. Such experiments are highly realistic, but cannot be
replicated without access to Internet-scale infrastructure, and do not allow for isolating the effect
of individual network characteristics.

In this work, we develop and make use of a framework for running such experiments
in TLS cheaply by emulating network conditions using networking features of the Linux kernel.
Our testbed allows us to independently control variables such as link latency and packet loss
rate, and then examine the impact on TLS connection establishment performance of various
post-quantum primitives, specifically hybrid elliptic curve/post-quantum key exchange and
post-quantum digital signatures, based on implementations from the Open Quantum Safe project.
Among our key results, we observe that packet loss rates above 3–5% start to have a significant
impact on post-quantum algorithms that fragment across many packets, such as those based
on unstructured lattices. The results from this emulation framework are also complemented by
results on the latency of loading entire web pages over TLS in real network conditions, which
show that network latency hides most of impact from algorithms with slower computations (such
as supersingular isogenies).

1 Introduction
Compared to traditional public key algorithms, post-quantum key encapsulation mechanisms (KEMs)
and digital signatures schemes have a range of trade-offs, either having slower computation, or larger
public keys and ciphertexts / signatures, or both. Measuring the performance of these algorithms
in isolation is easy; doing so accurately in the broader context of Internet protocols such as the
Transport Layer Security (TLS) protocol, and under realistic network traffic conditions, is more
difficult.

1



Alongside the development and standardization of post-quantum algorithms in the NIST Post-
Quantum Cryptography Standardization project, there have been various efforts to begin preparing
the TLS ecosystem for post-quantum cryptography. We can see at least three major lines of
work: (draft) specifications of how post-quantum algorithms could be integrated into existing
protocol formats and message flows [SWZ16,CC19,KK18,WZFGM17, SS17, SFG19]; prototype
implementations demonstrating such integrations can be done [Bra16,Lan18a,BCNS15,BCD+16,
Ope19b,Ope19c,KS19,KLS+19] and whether they would meet existing constraints in protocols
and software [CPS19]; and performance evaluations in either basic laboratory network settings
[BCNS15,BCD+16] or more realistic network settings [Bra16,Lan18b,Lan19,KLS+19,KS19]. This
paper focuses on the last of these issues, trying to understand how post-quantum cryptography’s
slower computation and larger communication sizes impact performance of TLS.

A line of work starting with initial experiments by Google [Bra16, Lan18b], with follow-up
collaborations between Google, Cloudflare, and others [Lan19, KLS+19], has involved Internet
companies running experiments to measure the performance of real connections using post-quantum
key exchange (combined with traditional elliptic curve Diffie–Hellman, resulting in so-called “hybrid”
key exchange), by modifying client browsers and edge servers to support select hybrid key exchange
schemes in TLS 1.3. Such experiments are highly realistic, but cannot be replicated without access
to commensurate infrastructure, and do not allow for isolating the effect of individual network
characteristics: it is neither possible to precisely quantify the effect of just a change in (say) packet
loss on a network route on the latency of TLS connection establishment, nor is it possible to (say)
increase just the packet loss on a route and analyze the resulting effects.

Contributions. In this paper, we develop an experimental framework for measuring the perfor-
mance of the TLS protocol under a variety of network conditions. Our framework is inspired by
the NetMirage [UGQt19] and Mininet [LHH+19] network emulation software, and uses the Linux
kernel’s networking stack to precisely and independently tune characteristics such as link latency
and packet loss rate. This allows for emulation of client–server network experiments on a single
machine.

Using this framework, we analyze the impact that post-quantum cryptography has on TLS 1.3
handshake completion time (i.e., until application data can be sent), specifically in the context of
hybrid post-quantum key exchange using structured and unstructured lattices and supersingular
isogenies; and post-quantum authentication using structured lattices and symmetric-based signatures.
Our emulated experiments are run at 4 different latencies (emulating round-trip times between
real-world data centres), and at packet loss rates ranging from 0–20%.

Some of our key observations from the network emulation experiments measuring TLS handshake
completion time are as follows. For the median connection, handshake completion time is significantly
impacted by substantially slower algorithms (for example, supersingular isogenies (SIKE p434) has a
significant performance floor compared to the faster structured and unstructured lattice algorithms),
although this effect disappears at the 95th percentile. For algorithms with larger messages that result
in fragmentation across multiple packets, performance degrades as packet loss rate increases: for
example, median connection time for unstructured lattice key exchange (Frodo-640-AES) matches
structured lattice performance at 5–10% packet loss, then begins to degrade; at the 95th percentile,
this effect is less pronounced until around 15% packet loss. We see similar trends for post-quantum
digital signatures, although with degraded performance for larger schemes starting around 3–5%
packet loss since a TLS connection includes multiple public keys and signatures in certificates.

We also carry out an experiment across real networks, measuring page load time over TLS using
geographically scattered virtual machines communication over the Internet. From this experiment,
we observe that, page size or network latency increases, the overhead of slower TLS connection

2



establishment diminishes as a proportion of the overall page load time.
Our key exchange results complement those of Google, Cloudflare, and others [Lan19,KLS+19]:

they provide a holistic look at how post-quantum key exchange algorithms perform for users on real
network connections of whatever characteristic the users happened to have, whereas our results show
the independent effect of each network characteristic, and our techniques can be applied without
access to commensurate Internet-scale client and edge server infrastructure.

Closely related to our post-quantum signature experiments is the recent work by Kampanakis
and Sikeridis [KS19] on the performance of two structured lattice signatures in TLS 1.3. They
measure how handshake time varies with server distance (measured in number of hops) and how
handshake time and failure rate varies with throughput. Our experiments complement theirs by
measuring the impact of other network characteristics: connection latency and packet loss rates.

Organization. In Section 2, we describe how we integrated post-quantum algorithms into TLS.
Section 3 describes the network emulation framework, and Section 4 describes the setup for our two
experiments (emulated; and over the real Internet, data-centre-to-data-centre). Section 5 presents
and discusses results from the two experiments. Section 6 concludes. Additional data appears in
the appendix. Code and complete result data for all the experiments can be found at our GitHub
repository: https://github.com/xvzcf/pq-tls-benchmark.

2 Post-quantum Cryptography in TLS
There have been a variety of proposed specifications, implementations, and experiments involving
post-quantum cryptography in TLS 1.2 and TLS 1.3.

In the context of TLS 1.2, Schanck, Whyte, and Zhang [SWZ16] and Campagna and Crockett
[CC19] submitted Internet-Drafts to the Internet Engineering Task Force (IETF) with proposals
for adding post-quantum and hybrid key exchange to TLS 1.2; implementations of these drafts (or
ad hoc specifications) in TLS 1.2 include experiments by Google [Bra16] and Amazon [Ama14], in
research papers [BCNS15,BCD+16], as well as the Open Quantum Safe project’s OQS-OpenSSL
1.0.2 [SM16,Ope19b].

For hybrid and post-quantum key exchange in TLS 1.3, there have been Internet-Drafts by
Kiefer and Kwiatowski [KK18], Whyte et al. [WZFGM17], Schanck and Stebila [SS17], and Stebila
et al. [SFG19]. Experimental demonstrations include earlier experiments by Google [Lan18a,Lan19],
more recent experiments by a team involving Cloudflare, Google, and others [KLS+19], as well as
the Open Quantum Safe project’s OQS-OpenSSL 1.1.1 [Ope19c,CPS19], a fork of OpenSSL 1.1.1.
There has also been some work on experiments involving post-quantum and hybrid authentication
in TLS 1.3, including OQS-OpenSSL 1.1.1 [Ope19c] and experiments based on it by Kampanakis
and Sikeridis [KS19].

The experiments in this paper are based on the implementation of hybrid key exchange and
post-quantum authentication in TLS 1.3 in OQS-OpenSSL 1.1.1. We now describe the mechanisms
used in this particular instantiation of post-quantum cryptography in TLS 1.3. For a broader
discussion of design choices and issues in engineering post-quantum cryptography in TLS 1.3,
see [SFG19].

2.1 Hybrid Key Exchange in TLS 1.3

Our experiments focused on hybrid key exchange, based on the perspective that early adopters of
post-quantum cryptography may want post-quantum long-term forward secrecy while still using

3

https://github.com/xvzcf/pq-tls-benchmark


ECDH key exchange either because of a lack of confidence in newer post-quantum assumptions, or
due to regulatory compliance.

The primary way to negotiate an ephemeral key in TLS 1.3 [Res18] is to use elliptic-curve Diffie-
Hellman (ECDH). To do so, a client, in its ClientHello message, can send a supported_groups
extension that names its supported elliptic curve groups; the client can then also provide corre-
sponding keyshares, which are the public cryptographic values used to initiate key exchange. By
defining new “groups” for each post-quantum and hybrid method, this framework can also be
used in a straightforward manner to support the use of post-quantum key-exchange algorithms.
Mapping these on to key encapsulation mechanisms, the client uses a KEM ephemeral public key
as its keyshare, and the server encapsulates against the public key and sends the corresponding
ciphertext as its keyshare. Despite performing ephemeral key exchange, we only use the IND-CCA
versions of the post-quantum KEMs.1

In the instantiation of hybrid methods in OQS-OpenSSL 1.1.1, the number of algorithms combined
are restricted to two at a time, and a “group” identifier is assigned to each such pair; as a result,
combinations are negotiated together, rather than individually. Moreover, in such a hybrid method,
the public keys and ciphertexts for the hybrid scheme are simply concatenations of the elliptic
curve and post-quantum algorithms’ values in the keyshare provided by the ClientHello and
ServerHello messages. For computing the shared secret, individual shared secrets are concatenated
and used in place of the ECDH shared secret in the TLS 1.3 key schedule. As OpenSSL does not
have a generic KEM or key exchange API in its libcrypto component, the modified OpenSSL
implementation primarily involves changes in OpenSSL’s ssl directory, and calls into OpenSSL’s
libcrypto for the ECDH algorithms and into the Open Quantum Safe project’s liboqs for the
post-quantum KEMs.

2.2 Post-quantum Authentication in TLS 1.3

Our experiments focused on post-quantum-only authentication, rather than hybrid authentication.
We made this choice because, with respect to authenticating connection establishment, the argument
for a hybrid mode is less clear: authentication only needs to be secure at the time a connection is
established (rather than for the lifetime of the data as with confidentiality). Moreover, in TLS 1.3
there is no need for a server to have a hybrid certificate that can be used with both post-quantum-
aware and non-post-quantum aware clients, as algorithm negotiation will be complete before the
server needs to send its certificate.

In TLS 1.3, public key authentication is done via signatures, and public keys are usually
conveyed via X.509 certificates. There are two relevant negotiation mechanisms in TLS 1.3: the
signature_algorithms_cert extension which is used to negotiate which algorithms are supported
for signatures in certificates; and the signature_algorithms extension for which algorithms are
supported in the protocol itself. Both of these extensions are a list of algorithm identifiers [Res18].

In the instantiation in OQS-OpenSSL 1.1.1, new algorithm identifiers are added for each post-
quantum signature algorithm to be used, and the algorithms themselves are added to OpenSSL’s
generic “envelope public key” object (EVP_PKEY) in libcrypto, which then percolate upwards to the
X.509 certificate generation and management and TLS authentication, with relatively few changes
required at these higher levels.

1It may be possible that IND-CPA KEMs suffice for ephemeral key exchange, but this is an open question. Proofs
of Diffie–Hellman key exchange in TLS 1.2 [JKSS12,KPW13] showed that security against active attacks is required;
existing proofs of TLS 1.3 [DFGS15] also use an “active” Diffie–Hellman assumption, but whether an active assumption
is necessary has not been resolved.

4



Algorithm Public key Ciphertext Key gen. Encaps. Decaps.
ECDH NIST P-256 64 64 0.072 0.072 0.072
SIKE p434 330 346 13.763 22.120 23.734
Kyber512-90s 800 736 0.049 0.063 0.078
FrodoKEM-640-AES 9,616 9,720 1.929 1.048 1.064

Table 1: Key exchange algorithm communication size (in bytes) and runtime (in milliseconds)

3 The Network Emulation Framework
To carry out experiments with full control over network characteristics, we rely on features available
in Linux to implement a network emulation framework.

The Linux kernel provides the ability to create network namespaces [Bie13], which are indepen-
dent, isolated copies of the kernel’s network stack; each namespace has its own routes, network
addresses, firewall rules, ports, and network devices. Network namespaces can thus emulate separate
network participants on a single system.

Two namespaces can be linked using pairs of virtual ethernet (veth) devices [BP18]: veth devices
are always created in interconnected pairs, and packets transmitted on one device are immediately
received on the other device in the pair. Outgoing traffic on these virtual devices can be controlled
by the network emulation (netem) kernel module [LP11], which offers the ability to instruct the
kernel to apply, among other characteristics, a delay, an independent or correlated packet loss
probability, and a rate-limit to all outgoing packets from the device.

To give the link a minimum round trip time of xms, netem can be used to instruct the kernel to
apply on both veth devices a delay of x

2 ms to each outgoing packet. Similarly, to give the link a
desired packet loss rate y%, netem can instruct the kernel to drop on both devices outgoing packets
with (independent or correlated) probability y%. While netem can be used to specify other traffic
characteristics, such as network jitter or packet duplication, we consider varying the round-trip
time and packet loss probability to be sufficient to model a wide variety of network conditions.
If the round-trip time on a link connecting a server and client conveys the geographical distance
between them, then, for example, a low packet loss can model a high-quality and/or wired ethernet
connection. Moderate to high packet losses can model low-quality connections or congested networks,
such as when the server experiences heavy traffic, or when a client connects to a website using a
heavily loaded WiFi network.

Tools such as NetMirage [UGQt19] and Mininet [LHH+19] offer the ability to emulate larger,
more sophisticated, and more realistic networks where, for example, namespaces can serve as
autonomous systems (AS) that group clients, and packets can be routed within an AS or between
two ASes. We carried out our experiments over a single link (client–server topology) with direct
control over network characteristics using netem to enable us to isolate the effect of individual
network characteristics on the performance of post-quantum cryptography in TLS 1.3.

4 Experimental Setup
In this section we describe the two experimental setups employed – the emulated network experiment,
and the Internet data-centre-to-data-centre experiment.

5



Algorithm Public key Signature Sign Verify
ECDSA NIST P-256 64 64 0.031 0.096
Dilithium2 1,184 2,044 0.670 0.121
qTESLA-P-I 14,880 2,592 1.055 0.312
Picnic-L1-FS 33 34,036 3.429 2.584

Table 2: Signature scheme communication size (in bytes) and runtime (in milliseconds)

Notation Hybrid Family Variant Implementation
Key exchange

ecdh-p256 × Elliptic-curve NIST P-256 OpenSSL optimized
ecdh-p256-sike-434 X Supersingular isogeny SIKE p434 [JAC+19] Assembly optimized
ecdh-p256-kyber512_90s X Module LWE Kyber 90s level 1 [SAB+19] Reference C
ecdh-p256-frodo640aes X Plain LWE Frodo-640-AES [NAB+19] C with AES-NI

Signatures

ecdsa-p256 × Elliptic curve NIST P-256 OpenSSL optimized
dilithium2 × Module LWE/SIS Dilithium2 [LDK+19] Reference C
qtesla-p-i × Ring LWE/SIS qTESLA provable 1 [BAA+19] AVX2 optimized
picnic-l1-fs × Symmetric Picnic-L1-FS [ZCD+19] AVX2 optimized

Table 3: Key exchange and signature algorithms used in our experiments

4.1 Cryptographic scenarios

We consider the two cryptographic scenarios in TLS 1.3: hybrid key exchange and post-quantum
authentication. Table 3 shows the four key exchange algorithms and four signature algorithms used
in our experiments.2 Their integration into TLS 1.3 was as described in Section 2. We used liboqs
for the implementations of the post-quantum algorithms; liboqs takes its implementations directly
from teams’ submissions to NIST or via the PQClean project [KRS+19]. Tables 1 and 2 show public
key/ciphertext/signature size and raw performance on the machine used in our network emulation
experiments.

For the key exchange scenario, the rest of the algorithms in the TLS connection were as follows:
server-to-client authentication was performed using an ECDSA certificate over the NIST P-256
curve using the SHA-384 hash function. For the signature scenario, key exchange was using
ecdh-p256-kyber512_90s; the hash function used was SHA-384. In both cases, application data
was protected using AES-256 in Galois/counter mode, and the certificate chain was root → server,
all of which were using the same algorithms.

4.2 Emulated network experiment setup

The goal of the emulated network experiments was to measure the time elapsed until completion of
the TLS handshake under various network conditions.

2Our Internet data-centre-to-data-centre experiment actually included all Level 1 algorithms supported by liboqs
(additionally bike1l1cpa, newhope512cca, ntru_hps2048509, and lightsaber; and picnic2l1fs) and additionally hybrid
with RSA-3072. The network emulation experiments take much longer to run than the Internet experiments, so we
did not have time to collect corresponding network emulation results. For parity, in this paper we only present the
results obtained using the same algorithms as in the network emulation experiment. The additional data collected can
be found on our GitHub repository.

6



Virtual machine Azure region Round-trip time
Client East US 2 (Virginia) –
Server – near East US (Virginia) 6.193ms
Server – medium Central US (Iowa) 30.906ms
Server – far North Europe (Ireland) 70.335ms
Server – worst-case Australia East (New South Wales) 198.707ms

Table 4: Client and server locations and network characteristics observed for Internet data-centre-
to-data-centre experiment; packet loss rates were observed to be 0%

Following the procedure in Section 3, we created two network namespaces and connected
them using a veth pair, one namespace representing a client, and the other a server. In the
client namespace, we ran a modified version of OpenSSL’s s_time program, which measures TLS
performance by making, in a given time period, as many synchronous (TCP) connections as it could
to a remote host using TLS; our modified version (which we’ve called s_timer), for a given number
of repetitions, synchronously establishes a TLS connection using a given post-quantum algorithm,
closes the connection as soon as the handshake is complete, and records only the time taken to
complete the handshake. In the server namespace, we ran the nginx [NGI19] web server, built
against OQS-OpenSSL 1.1.1 so that it is post-quantum aware.

We chose 4 round-trip times to model the geographical distance to servers at different locations:
the values were chosen to be similar to the round-trip times in the Internet data-centre network
experiment (see Section 4.3), but are not exactly the same, partly because netem internally converts
a given latency to an integral number of kernel packet scheduler “ticks”, which results in a slight
(and negligible) accuracy loss. For each round-trip time, the packet loss probability was varied
from 0% to 20% (the probability applies to each packet independently). Finally, for each such
combination, for each algorithm under test, 40 independent s_timer “client” processes were run,
each making repeated synchronous connections to 21 nginx worker processes, each of which was
instructed to handle 1024 connections.3

The experiments were run on a Linux (Ubuntu 18.04) Azure D64a v4 virtual machine, which has
64 vCPUs (2.35GHz AMD EPYCTM 7452 processor, bursting to 3.35GHz) and 256GiB of RAM,
in order to give each process its “own” core so as to minimize noise from CPU process scheduling
and make the client and server processes as independent of each other as possible.

4.3 Internet data-centre-to-data-centre experiment setup

The emulated network experiment concerned itself only with handshake times. In practice, the
latency of establishing TLS might not be noticeable when compared to the latency of retrieving
application data over the connection. Accordingly, we conducted a set of experiments that involved
a client cloud VM requesting web pages of different sizes from various server VMs over the Internet,
and measured the total time to receive the complete file.

We set up one client VM and four server VMs in various cloud data centres using Azure, ranging
from the server being close to the client to the server being on the other side of the planet. Table 4
shows the data centre locations and gives the round-trip times between the client and server.

It should be noted that the RTT times between any two VMs depend on the state of the network
between them, which is highly variable; our values in Table 4 are one snapshot. Given that these
are data-centre-to-data-centre links, the packet loss on these links is practically zero. The VMs were

3nginx worker processes handle connections using an asynchronous, event-driven approach.

7



all Linux (Ubuntu 18.04) Azure D8s virtual machines, which each have 8 vCPUs (either 2.4GHz
Intel Xeon E5-2673 v3 (Haswell) or 2.3GHz Intel Xeon E5-2673 v4 (Broadwell), depending on
provisioning, bursting to 3.5GHz) and 32GiB of RAM. The Apache Benchmark (ab) tool [Apa19]
was installed on the client VM to measure the connection time; it was modified to use TLS 1.3 via
OQS-OpenSSL 1.1.1, verify the server certificate, and be post-quantum aware.

We installed nginx (compiled against OQS-OpenSSL 1.1.1) on all server VMs, and we configured
it to serve HTML pages of various sizes (1 kB, 10 kB, 100 kB, 1000 kB). (The http archive [htt19]
reports that the median desktop and mobile page weight is close to 1950 kB and 1750 kB respectively.
Experiments with files as large as 2000 kB took an inordinate amount of time, and all the relevant
trends can also be seen at the 1000 kB page size.)

5 Results and discussion

5.1 Emulated network experiment results

Key exchange. Figure 1 shows the results for round-trip times corresponding to “near” and
“medium” distance links; Figure 4 in the appendix shows results for longer round-trip times. For
each key exchange scenario, we collected between 1500 and 3000 samples (depending on volatility of
the data). Even with this many samples, some noise still appears in the results, especially at the
95th percentile, due to high variability inherent in such a noisy process.4

At the median, over high quality network links (packet loss rates ≤ 1%), we observe that public
key and ciphertext size have little impact on handshake completion time, and the predominant
factor is cryptographic computation time: ECDH, Kyber512-90s, and Frodo-640-AES have raw
cryptographic processing times less than 2ms resulting in comparable handshake completion times;
the slower computation of SIKE p434, where the full cryptographic sequence takes approximately
60ms, results in a higher latency floor.

As packet loss rates increase, especially above 5%, key exchange mechanisms with larger public
keys / ciphertexts, by inducing more packets, bring about longer completion times. For example, at
the 31.2ms RTT, we observe that median Frodo-640-AES completion time starts falling behind.
This is to be expected since the maximum transmission unit (MTU) of an ethernet connection is
1500 bytes whereas Frodo-640-AES public key and ciphertext sizes are 9616 bytes and 9720 bytes
respectively, resulting in fragmentation across multiple packets. Using the packet analyzer tcpdump,
we determined that 16 IP packets must be sent by the client to establish a TLS connection using
ecdh-p256-frodo640aes. If the packet loss loss probability is p = 5%, the probability of at least one
packet getting dropped is already 1− (1− p)16 ≈ 58%, so the median ecdh-p256-frodo640aes has
required a retransmission. In contrast, only 5 IP packets are required to establish a TLS connection
with ecdh-p256 and ecdh-p256-sike-434, and 6 packets for ecdh-p256-kyber512_90s, which
explains why SIKE p434’s small public-key and ciphertext sizes do not offset its computational
demand.

At the 95th percentile, we see the impact of raw cryptographic processing times nearly eliminated.
Up to 10% packet loss, the performance of the 4 key exchange algorithms are quite close. Past 15%
packet loss, the much larger number of packets causes ecdh-p256-frodo640aes completion times
to spike.

4The slight downward slope for the first few packet loss rates in the median results for ecdh-p256-sike-434 is an
artifact of the experiment setup used: at low packet loss rates, the setup results in many connection request arriving
simultaneously, causing a slight denial-of-service-like effect while the server queues some calculations.

8



0 5 10 15 20
0

200

400

600

800
Median

RTT = 5.6ms

ecdh-p256-frodo640aes
ecdh-p256-sike-434
ecdh-p256-kyber512_90s
ecdh-p256

0 5 10 15 20
0

200

400

600

800
Median

RTT = 31.2ms

0 5 10 15 20
0

2,000

4,000

6,000

8,000
95th percentile
RTT = 5.6ms

0 5 10 15 20
0

2,000

4,000

6,000

8,000
95th percentile
RTT = 31.2ms

H
an

ds
ha

ke
co
m
pl
et
io
n
tim

e
(m

s)

Packet loss rate (%)

Figure 1: Network emulation experiment, key exchange scenario: handshake completion
time (median & 95th percentile) vs. packet loss at shorter round-trip times

Digital signatures. Figure 2 shows the results for round-trip times corresponding to “near” and
“medium” distance links; Figure 5 in the appendix shows results for longer round-trip times. For
each point, we collected 2500 samples.

The trends here are similar to key exchange, with respect to impact of computation costs and
number of packets: at the median, dilithium2 imposes the least slowdown of all post-quantum
signature schemes, and is commensurate with ecdsa-p256 at low latencies and packet loss rates.
qtesla-p-i results in a higher latency floor. picnic-l1-fs, which produces 34,036-byte signatures,
also degrades rapidly as the link latency and packet loss probability increases.

5.2 Internet data-centre-to-data-centre experiment results

For each post-quantum scenario, we collected data points by running the ab tool for 2 minutes,
resulting in between 100 and 500 samples for each scenario.

Key exchange. Figure 3 (left) shows the results for median page download times from our four
data centres. Figure 6 in the appendix shows results for the 95th percentile; behaviour at the 95th
percentile is not too different from median behaviour, likely due to the extremely low packet loss
rate on our connections.

For small-RTT connections and small web pages, the TLS handshake constitutes a significant
portion of the overall connection time; faster algorithms perform better. As page size and RTT
time increase, the handshake becomes less significant. For example, for the near server (US East,
6.2ms RTT), in comparing ecdh-p256 with ecdh-p256-sikep434, we observe that, at the median,

9



0 5 10 15 20
0

200

400

600

800

1,000

1,200 Median
RTT = 5.6ms

picnic-l1-fs
qtesla-p-i
dilithium2
ecdsa-p256

0 5 10 15 20
0

200

400

600

800

1,000

1,200Median
RTT = 31.1ms

0 5 10 15 20
0

2,000

4,000

6,000

8,000

10,000
95th percentile
RTT = 5.6ms

0 5 10 15 20
0

2,000

4,000

6,000

8,000

10,000
95th percentile
RTT = 31.1ms

H
an

ds
ha

ke
co
m
pl
et
io
n
tim

e
(m

s)

Packet loss rate (%)

Figure 2: Network emulation experiment, signature scenario: Handshake completion time
(median & 95th percentile) vs. packet loss at shorter round-trip times

ecdh-p256 is 3.42 times faster than ecdh-p256-sikep434 for 1 kB web pages. However this ratio
decreases as page sizes increase to 100 or 1000 kB, and as round trip time increases; for example
decreasing to 1.07× and 1.03× for the worst-case server (Australia, 198.7ms RTT) at 1 and 1000KB.

We do observe some variability in the comparisons between algorithms in the Internet experiment
in Figure 3 (for example, ECDH and ECDSA in going from being at least as fast as all the PQ
hybrids to being slightly slower at 100 and 1000 kB) that we believe may be due to real-world
network conditions changing when running different batches sequentially. This effect might be
reduced by interweaving batches, which we would like to try in future experimental runs.

Digital signatures. Figure 3 (right) shows the results for median round-trip times to the four data
centres; Figure 6 in the appendix shows results for the 95th percentile. Just like with the emulated
experiment, we observe similar trends between the signature and the key encapsulation mechanisms
tests. While the TLS handshake represents a significant portion of the connection establishment
time, over increasingly long distances or with increasingly larger payloads, the proportion of time
spent on handshake cryptographic processing diminishes.

6 Conclusion and Future Work
Our experimental results show under which conditions various characteristics of post-quantum
algorithms affect performance. In general, on fast, reliable network links, TLS handshake completion
time of the median connection is dominated by the cost of public key cryptography, whereas the
95th percentile completion time is not substantially affected. On unreliable network links with

10



100 101 102 103
0

200

400

600

800
Key exchange – Median

RTT = 6.2ms ↓

RTT = 30.9ms ↘

ecdh-p256-frodo640aes
ecdh-p256-sike-434
ecdh-p256-kyber512_90s
ecdh-p256

100 101 102 103
0

200

400

600

800
Signatures – Median

RTT = 6.2ms ↓

RTT = 30.9ms ↘

picnic-l1-fs
qtesla-p-i
dilithium2
ecdsa-p256

100 101 102 103
0

500

1,000

1,500

2,000
Key exchange – Median

↑ RTT = 70.3ms

RTT = 198.7ms ↘

100 101 102 103
0

500

1,000

1,500

2,000
Signatures – Median

↑ RTT = 70.3ms

RTT = 198.7ms ↘

W
eb

pa
ge

re
tr
ie
va
lt
im

e
(m

s)

Web page size (kB, logarithmic scale)

Figure 3: Internet data-centre-to-data-centre experiment: median retrieval time for various
web page sizes from 4 data centres; key exchange (left), signatures (right)

packet loss rates of 3–5% or higher, communication sizes come to govern handshake completion
time. As application data sizes grow, the relative cost of TLS handshake establishment diminishes
compared to application data transmission.

With respect to the effect of communication sizes, it is clear that the maximum transmission
unit (MTU) size imposed by the link layer significantly affects the TLS establishment performance
of a scheme. Large MTUs may be able to improve TLS establishment performance for post-quantum
primitives with large messages. Some ethernet devices provide (non-standard) support for “jumbo
frames”, which are frames sized anywhere from 1500 to 9000 bytes [The09]. Since the feature is non-
standard, it is not suitable for use in Internet-facing applications, which cannot make assumptions
about the link-layer MTUs of other servers/intermediaries, but may help in local or private networks
where every link can be accounted for.

Future work obviously includes extending these experiments to cover more algorithms and more
security levels; we intend to continue our experiments and will post future results to our repository at
https://github.com/xvzcf/pq-tls-benchmark. It would be interesting to extend the emulation
results to bigger networks that aim to emulate multiple network conditions simultaneously using
NetMirage or Mininet. On the topic of post-quantum authentication, our experiments focused
on a certificate chain where the root CA and endpoint used the same algorithms (resulting in
transmission of one public key and two signatures); it would be interesting to experiment with
different chain sizes, and with multi-algorithm chains, perhaps optimized for overall public key +
signature size. It would also be possible to measure throughput of a server under load from many
clients. Finally, our emulation framework could be applied to investigate other protocols, such as

11

https://github.com/xvzcf/pq-tls-benchmark


SSH, IPsec, Wireguard, and others.

Acknowledgements

We would like to thank Eric Crockett for helpful discussions in the early parts of this work. We
are grateful to Geovandro C. C. F. Pereira, Justin Tracey, and Nik Unger for their help with the
network emulation experiments.

Contributors to the Open Quantum Safe project are listed on the project website [Ope19a]. The
Open Quantum Safe project has received funding from Amazon Web Services and the Tutte Institute
for Mathematics and Computing, and in-kind contributions of developer time from Amazon Web
Services, Cisco Systems, evolutionQ, IBM Research, and Microsoft Research. The post-quantum
algorithm implementations used in the experiments are directly or indirectly from the original NIST
submission teams. Some implementations have been provided by the PQClean project [KRS+19].

D.S. is supported in part by Natural Sciences and Engineering Research Council (NSERC)
of Canada Discovery grant RGPIN-2016-05146 and a NSERC Discovery Accelerator Supplement.
Computation time on Azure was donated by Microsoft Research.

References
[Ama14] Amazon Web Services. s2n. https://github.com/awslabs/s2n, 2014.

[Apa19] Apache Software Foundation. ab – Apache HTTP server benchmarking tool, 2019. URL:
https://httpd.apache.org/docs/current/programs/ab.html.

[BAA+19] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Johannes Buchmann, Ed-
ward Eaton, Gus Gutoski, Juliane Kramer, Patrick Longa, Harun Polat, Jefferson E. Ricardini,
and Gustavo Zanon. qTESLA. Technical report, National Institute of Standards and Tech-
nology, 2019. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions.

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko,
Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! Practical, quantum-secure
key exchange from LWE. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1006–1018. ACM Press,
October 2016. doi:10.1145/2976749.2978425.

[BCNS15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum key
exchange for the TLS protocol from the ring learning with errors problem. In 2015 IEEE
Symposium on Security and Privacy, pages 553–570. IEEE Computer Society Press, May 2015.
doi:10.1109/SP.2015.40.

[Bie13] Eric W. Biederman. IP-NETNS(8), January 2013. URL: http://man7.org/linux/man-pages/
man8/ip-netns.8.html.

[BP18] Eric W. Biederman and Tomáš Pospíšek. VETH(4), February 2018. URL: http://man7.org/
linux/man-pages/man4/veth.4.html.

[Bra16] Matt Braithwaite. Experimenting with post-quantum cryptography, July 2016. URL: https:
//security.googleblog.com/2016/07/experimenting-with-post-quantum.html.

[CC19] Matt Campagna and Eric Crockett. Hybrid Post-Quantum Key Encapsulation Methods (PQ
KEM) for Transport Layer Security 1.2 (TLS). Internet-Draft draft-campagna-tls-bike-sike-
hybrid-01, Internet Engineering Task Force, May 2019. Work in Progress. URL: https:
//datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-01.

12

https://github.com/awslabs/s2n
https://httpd.apache.org/docs/current/programs/ab.html
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1109/SP.2015.40
http://man7.org/linux/man-pages/man8/ip-netns.8.html
http://man7.org/linux/man-pages/man8/ip-netns.8.html
http://man7.org/linux/man-pages/man4/veth.4.html
http://man7.org/linux/man-pages/man4/veth.4.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-01
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-01


[CPS19] Eric Crockett, Christian Paquin, and Douglas Stebila. Prototyping post-quantum and hybrid
key exchange and authentication in TLS and SSH. In NIST 2nd Post-Quantum Cryptography
Standardization Conference 2019, August 2019.

[DFGS15] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic
analysis of the TLS 1.3 handshake protocol candidates. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, ACM CCS 2015, pages 1197–1210. ACM Press, October 2015.
doi:10.1145/2810103.2813653.

[htt19] http archive. Page weight, November 2019. URL: https://httparchive.org/reports/
page-weight.

[JAC+19] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess,
Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes,
Vladimir Soukharev, David Urbanik, and Geovandro Pereira. SIKE. Technical report, National
Institute of Standards and Technology, 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE
in the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 273–293. Springer, Heidelberg, August 2012. doi:10.1007/
978-3-642-32009-5_17.

[KK18] Franziskus Kiefer and Krzysztof Kwiatkowski. Hybrid ECDHE-SIDH key exchange
for TLS. Internet-Draft draft-kiefer-tls-ecdhe-sidh-00, Internet Engineering Task Force,
November 2018. Work in Progress. URL: https://datatracker.ietf.org/doc/html/
draft-kiefer-tls-ecdhe-sidh-00.

[KLS+19] Krzysztof Kwiatkowski, Adam Langley, Nick Sullivan, Dave Levin, Alan Mislove, and Luke
Valenta. Measuring TLS key exchange with post-quantum KEM. In NIST 2nd Post-Quantum
Cryptography Standardization Conference 2019, August 2019.

[KPW13] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the TLS protocol:
A systematic analysis. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 429–448. Springer, Heidelberg, August 2013. doi:10.1007/
978-3-642-40041-4_24.

[KRS+19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, Douglas Stebila, and Thom Wiggers.
The PQClean project, November 2019. URL: https://github.com/PQClean/PQClean.

[KS19] Panos Kampanakis and Dimitrios Sikeridis. Two post-quantum signature use-cases: Non-
issues, challenges and potential solutions. Cryptology ePrint Archive, Report 2019/1276, 2019.
https://eprint.iacr.org/2019/1276.

[Lan18a] Adam Langley. CECPQ2, December 2018. URL: https://www.imperialviolet.org/2018/
12/12/cecpq2.html.

[Lan18b] Adam Langley. Post-quantum confidentiality for TLS, April 2018. URL: https://www.
imperialviolet.org/2018/04/11/pqconftls.html.

[Lan19] Adam Langley. Real-world measurements of structured-lattices and supersingular isogenies in
TLS, October 2019. URL: https://www.imperialviolet.org/2019/10/30/pqsivssl.html.

[LDK+19] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS-DILITHIUM. Technical report, National Insti-
tute of Standards and Technology, 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[LHH+19] Bob Lantz, Brandon Heller, Nikhil Handigol, Vimal Jeyakumar, Brian O’Connor, and Cody
Burkard. Mininet, November 2019. URL: http://mininet.org/.

13

https://doi.org/10.1145/2810103.2813653
https://httparchive.org/reports/page-weight
https://httparchive.org/reports/page-weight
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://datatracker.ietf.org/doc/html/draft-kiefer-tls-ecdhe-sidh-00
https://datatracker.ietf.org/doc/html/draft-kiefer-tls-ecdhe-sidh-00
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://github.com/PQClean/PQClean
https://eprint.iacr.org/2019/1276
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://www.imperialviolet.org/2019/10/30/pqsivssl.html
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
http://mininet.org/


[LP11] Fabio Ludovici and Hagen Paul Pfeifer. NETEM(4), November 2011. URL: http://man7.org/
linux/man-pages/man8/tc-netem.8.html.

[NAB+19] Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook, Brian LaMacchia,
Patrick Longa, Ilya Mironov, Valeria Nikolaenko, Christopher Peikert, Ananth Raghunathan,
and Douglas Stebila. FrodoKEM. Technical report, National Institute of Standards and Tech-
nology, 2019. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions.

[NGI19] NGINX, Inc. NGINX | High Performance Load Balancer, Web Server, & Reverse Proxy, 2019.
URL: https://www.nginx.com/.

[Ope19a] Open Quantum Safe Project. Open Quantum Safe, November 2019. URL: https://
openquantumsafe.org/.

[Ope19b] Open Quantum Safe Project. OQS-OpenSSL_1_0_2-stable, November 2019. URL: https:
//github.com/open-quantum-safe/openssl/tree/OQS-OpenSSL_1_0_2-stable.

[Ope19c] Open Quantum Safe Project. OQS-OpenSSL_1_1_1-stable, November 2019. URL: https:
//github.com/open-quantum-safe/openssl/tree/OQS-OpenSSL_1_1_1-stable.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, August
2018. URL: https://rfc-editor.org/rfc/rfc8446.txt.

[SAB+19] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé. CRYSTALS-KYBER.
Technical report, National Institute of Standards and Technology, 2019. available at https:
//csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions.

[SFG19] Douglas Stebila, Scott Fluhrer, and Shay Gueron. Design issues for hybrid key exchange
in TLS 1.3. Internet-Draft draft-stebila-tls-hybrid-design-01, Internet Engineering Task
Force, July 2019. Work in Progress. URL: https://datatracker.ietf.org/doc/html/
draft-stebila-tls-hybrid-design-01.

[SM16] Douglas Stebila and Michele Mosca. Post-quantum key exchange for the internet and the open
quantum safe project. In Roberto Avanzi and Howard M. Heys, editors, SAC 2016, volume 10532
of LNCS, pages 14–37. Springer, Heidelberg, August 2016. doi:10.1007/978-3-319-69453-5_
2.

[SS17] John M. Schanck and Douglas Stebila. A Transport Layer Security (TLS) extension for
establishing an additional shared secret. Internet-Draft draft-schanck-tls-additional-keyshare-00,
Internet Engineering Task Force, April 2017. Work in Progress. URL: https://datatracker.
ietf.org/doc/html/draft-schanck-tls-additional-keyshare-00.

[SWZ16] John M. Schanck, William Whyte, and Zhenfei Zhang. Quantum-safe hybrid (QSH) ciphersuite
for Transport Layer Security (TLS) version 1.2. Internet-Draft draft-whyte-qsh-tls12-02, Internet
Engineering Task Force, July 2016. Work in Progress. URL: https://datatracker.ietf.
org/doc/html/draft-whyte-qsh-tls12-02.

[The09] The Ethernet Alliance. Ethernet jumbo frames, November 2009. URL: http://
ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.
pdf.

[UGQt19] Nik Unger, Ian Goldberg, Qatar University, and the Qatar Foundation for Education, Science
and Community Development. Netmirage, November 2019. URL: https://crysp.uwaterloo.
ca/software/netmirage/.

[WZFGM17] William Whyte, Zhenfei Zhang, Scott Fluhrer, and Oscar Garcia-Morchon. Quantum-safe
hybrid (QSH) key exchange for Transport Layer Security (TLS) version 1.3. Internet-Draft
draft-whyte-qsh-tls13-06, Internet Engineering Task Force, October 2017. Work in Progress.
URL: https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls13-06.

14

http://man7.org/linux/man-pages/man8/tc-netem.8.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://www.nginx.com/
https://openquantumsafe.org/
https://openquantumsafe.org/
https://github.com/open-quantum-safe/openssl/tree/OQS-OpenSSL_1_0_2-stable
https://github.com/open-quantum-safe/openssl/tree/OQS-OpenSSL_1_0_2-stable
https://github.com/open-quantum-safe/openssl/tree/OQS-OpenSSL_1_1_1-stable
https://github.com/open-quantum-safe/openssl/tree/OQS-OpenSSL_1_1_1-stable
https://rfc-editor.org/rfc/rfc8446.txt
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://datatracker.ietf.org/doc/html/draft-stebila-tls-hybrid-design-01
https://datatracker.ietf.org/doc/html/draft-stebila-tls-hybrid-design-01
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-319-69453-5_2
https://datatracker.ietf.org/doc/html/draft-schanck-tls-additional-keyshare-00
https://datatracker.ietf.org/doc/html/draft-schanck-tls-additional-keyshare-00
https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls12-02
https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls12-02
http://ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
https://crysp.uwaterloo.ca/software/netmirage/
https://crysp.uwaterloo.ca/software/netmirage/
https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls13-06


[ZCD+19] Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebas-
tian Ramacher, Christian Rechberger, Daniel Slamanig, Jonathan Katz, Xiao Wang, and
Vladmir Kolesnikov. Picnic. Technical report, National Institute of Standards and Technol-
ogy, 2019. available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions.

A Additional Tables and Charts

0 5 10 15 20
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000 Median
RTT = 78.6ms

ecdh-p256-frodo640aes
ecdh-p256-sike-434
ecdh-p256-kyber512_90s
ecdh-p256

0 5 10 15 20
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000Median
RTT = 195.7ms

0 5 10 15 20
0

2,000

4,000

6,000

8,000

10,000

12,000 95th percentile
RTT = 78.6ms

0 5 10 15 20
0

2,000

4,000

6,000

8,000

10,000

12,00095th percentile
RTT = 195.7ms

H
an

ds
ha

ke
co
m
pl
et
io
n
tim

e
(m

s)

Packet loss rate (%)

Figure 4: Network emulation experiment, key exchange scenario: handshake completion
time (median and 95th percentile) versus packet loss rate at longer round-trip times

15

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions


0 5 10 15 20
0

500

1,000

1,500

2,000

2,500

3,000

3,500

Median
RTT = 78.6ms

picnic-l1-fs
qtesla-p-i
dilithium2
ecdsa-p256

0 5 10 15 20
0

500

1,000

1,500

2,000

2,500

3,000

3,500

Median
RTT = 195.6ms

0 5 10 15 20
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000 95th percentile
RTT = 78.6ms

0 5 10 15 20
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,00095th percentile
RTT = 195.6ms

H
an

ds
ha

ke
co
m
pl
et
io
n
tim

e
(m

s)

Packet loss rate (%)

Figure 5: Network emulation experiment, signature scenario: Handshake completion time
(median and 95th percentile) versus packet loss rate at longer round-trip times

16



100 101 102 103
0

200

400

600

800

Key exchange – 95th percentile

RTT = 6.2ms ↓

RTT = 30.9ms ↘

ecdh-p256-frodo640aes
ecdh-p256-sike-434
ecdh-p256-kyber512_90s
ecdh-p256

100 101 102 103
0

200

400

600

800

Signatures – 95th percentile

RTT = 6.2ms ↓

RTT = 30.9ms ↘

picnic-l1-fs
qtesla-p-i
dilithium2
ecdsa-p256

100 101 102 103
0

500

1,000

1,500

2,000 Key exchange – 95th percentile

↑ RTT = 70.3ms

RTT = 198.7ms ↘

100 101 102 103
0

500

1,000

1,500

2,000Signatures – 95th percentile

↑ RTT = 70.3ms

RTT = 198.7ms ↘

W
eb

pa
ge

re
tr
ie
va
lt
im

e
(m

s)

Web page size (kB, logarithmic scale)

Figure 6: Internet data-centre-to-data-centre experiment: 95th percentile retrieval time for
various web page sizes from four data centres; key exchange scenario (left), signature scenario (right)

17


	Introduction
	Post-quantum Cryptography in TLS
	Hybrid Key Exchange in TLS 1.3
	Post-quantum Authentication in TLS 1.3

	The Network Emulation Framework
	Experimental Setup
	Cryptographic scenarios
	Emulated network experiment setup
	Internet data-centre-to-data-centre experiment setup

	Results and discussion
	Emulated network experiment results
	Internet data-centre-to-data-centre experiment results

	Conclusion and Future Work
	Additional Tables and Charts

