
Investigating Profiled Side-Channel Attacks
Against the DES Key Schedule

Johann Heyszl1[0000−0002−8425−3114], Katja Miller1, Florian
Unterstein1[0000−0002−8384−2021], Marc Schink1, Alexander Wagner1, Horst

Gieser2, Sven Freud3, Tobias Damm3[0000−0003−3221−7207], Dominik
Klein3[0000−0001−8174−7445] and Dennis Kügler3

1 Fraunhofer Institute for Applied and Integrated Security (AISEC), Germany,
firstname.lastname@aisec.fraunhofer.de

2 Fraunhofer Research Institution for Microsystems and Solid State Technologies (EMFT),
Germany, horst.gieser@emft.fraunhofer.de

3 Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany,
firstname.lastname@bsi.bund.de

Abstract. Recent publications describe profiled side-channel attacks (SCAs) against
the DES key-schedule of a “commercially available security controller”. They report
a significant reduction of the average remaining entropy of cryptographic keys after
the attack, with large, key-dependent variations and results as low as a few bits
using only a single attack trace. Unfortunately, they leave important questions
unanswered: Is the reported wide distribution of results plausible? Are the results
device-specific or more general? What is the impact on the security of 3-key triple
DES? In this contribution, we systematically answer those and several other questions.
We also analyze two commercial security controllers reproducing reported results,
while explaining details of algorithmic choices. We verified the overall reduction and
large variations in single DES key security levels (49.4 bit mean and 0.9 % of keys < 40
bit) and observe a fraction of keys with exceptionally low security levels, called weak
keys. A simplified simulation of device leakage shows that the distribution of security
levels is predictable to some extend given a leakage model. We generalize results to
other leakage models by attacking the hardware DES accelerator of a general purpose
microcontroller. We conclude that weaker keys are mainly caused by switching noise,
which is always present in template attacks on any key-schedule, regardless of the
algorithm and implementation. Further, we describe a sound approach to estimate
3-key triple-DES security levels from empirical single DES results and find that the
impact on the security of 3-key triple-DES is limited (96.1 bit mean and 0.24 % of
key-triples < 80 bit).
Keywords: No keywords given.

1 Introduction
Most side-channel attacks (SCAs) target the main data-path of cryptographic engines,
where input data and round keys are processed. Differential attacks can generally be
considered as most powerful because they use side-channel observations with different input
data to recover keys using statistical tools. The matter becomes significantly more difficult
for attackers when implementation parts should be targeted where no such differential
analysis is possible. The transfer of constant secret keys over internal buses and its handling
during the key schedule are examples for this. Attacks in such cases are usually profiled and
performed by comparing previously acquired templates to new side-channel observations.

mailto:firstname.lastname@aisec.fraunhofer.de
mailto:horst.gieser@emft.fraunhofer.de
mailto:firstname.lastname@bsi.bund.de

2

They usually require a higher measurement precision. This can e.g. be achieved using
high-precision EM measurements [HMH+12].

Wagner et al. [WH17, WHG17, WH18] published results of mounting a profiled side-
channel attack against the key schedule of a ‘DES hardware accelerator” in a ‘security
controller” product. The SCA attack provides partial information about the key and the
key must be recovered through a subsequent brute-force search. The effort required by
the brute-force search is represented by the remaining security level or guessing entropy
of a key in bit (cf. definition in Section 5.4). The authors find a significant reduction of
security levels, but they appear highly dependent on the key. This leads to a distribution
of results and implies the existence of particularly weak keys. Their results raise interesting
questions, both for the specific case of their device, and in general. Most of these questions
are left unanswered in the original series of papers. Several of their choices during analysis
seem heuristic or ad-hoc, calling for a re-assessment through a second investigation.

In this work, we independently perform an investigation on a comparable device and
provide carefully reasoned and fully documented results including new insights and answers
to the following important questions:

1. Can the results from Wagner et al. on single DES be reproduced independently and
what are the actual results for a commercial security controller? Are there really
weak keys?

We perform an analysis of a comparable device and carefully argue every choice
of algorithm. We systematically attest that the device exclusively leaks the XOR
difference between key bits during the DES key schedule which helps to make the
correct algorithm choices. The results confirm several findings of Wagner et al.
Specifically, a reduction of security levels to a similar extent is achieved for single
DES, i.e. the average remaining security level is reduced to 48.2 bit (from 56 bit)
after a comparable amount of traces per key (3 in our case). Also, some keys are
significantly weaker than others with 1.8 % of keys < 40 bit (when using 3 traces
per key). In terms of worst case, tested with key bits being either all ones or all
zeros (note that those keys are also cryptographically weak and thus an unrealistic
choice), we found security levels as low as only 2 bit for those two particular keys.
Contrarily, the resulting security level of DPA attacks against AES implementations
is largely independent of the key’s value. However, the results still show a variation,
which is mainly caused by noise from an insufficient number of traces, as discussed
for example in Martin et al. [MMOS16].

2. If weaker individual keys exist for single DES, what is the impact on 3-key triple-DES
implementations?

Three-key triple-DES is the last remaining ’acceptable’ use of the DES algorithm.
Note, however, that the German BSI does generally not recommend using DES [Bun19].
The impact on three-key triple-DES was left unanswered by Wagner et al. We de-
scribe a sound approach to derive security levels for 3-key triple-DES based on single
DES security levels. This is done by generalizing a meet-in-the-middle attack for
side-channel results which is not straight-forward. Single trace attacks against single
DES resulted in distribution of security levels with 49.4 bit mean and 0.9 % of keys
< 40 bit. The derived distribution of security levels for 3-key triple-DES (112 bit
security originally) has a mean of 96.1 bit while only 0.24 % of key-triples lead to
a security level < 80 bit. Although this reduction of security level is significant on
average, the number of key-triples < 80 bit is still comparably low. If an attacker uses
≈ 900 measurements per key (no improvement after ≈ 400 traces), the percentage of
key-triples < 80 bit increases to 6.3 %. However, a security level of < 70 bits is still
rare and achieved in only 0.32 % of cases. This means that an attacker faced with

Heyszl et al. 3

actual devices will only reach a brute-force effort < 70 bit for every 300-th device,
given he performs a > 400-trace attack on every device.

3. Are there SCA-weak DES keys? What is the reason and is it device-specific?
Our investigations confirm the widely distributed security levels and dependence on
the key value, including significantly weak keys.1 An important question to ask is
whether the widely distributed security levels and occurrence of weak keys are due to
properties of the device, noise, or of algorithmic origin. How are they influenced by
the key-schedule algorithm and exhibited leakage model? This was left unanswered
by Wagner et al., as they are e.g. missing repeated measurements of the same keys
(for more than one example) to isolate the influence of noise. Through investigations
of different devices (two security controllers and another general purpose controller)
including many measurements per key to investigate the noise influence, and a
simulation, we show that the reason for different security levels and weak keys is in
fact not specific to a single type of device but the combination of the DES key-schedule
algorithm and the presence of at least either one of two frequently encountered leakage
models. The investigated devices, a commercial smart card controller and a general
purpose microcontroller, exhibit completely different leakage models, but show similar
results. Hence, in case of the DES, a SCA on the key-schedule leads to weak keys
under different possible implementation circumstances.

4. Can the weakness of individual keys after SCA be predicted through simulation?
We use a simplified model of the DES key schedule with perfect and equally weighted
Hamming distance leakage (XOR leakage) of round keys to perform simulated attacks.
This is extremely fast compared to performing actual measurements and significantly
more general in the sense that apart from the simplified leakage model, no other
properties of the device are used. Interestingly, this simulation reproduces distributed
security levels and weak keys. The simulation even allows for a rough prediction
of security levels for individual keys for the actual device, which also emphasizes
the generality of the issue. However, the simplifications seem to prevent precise
predictions for a specific device. Additional device-specific parameters to weight XOR
transitions could be derived from actual measurements and would likely improve
results. This could, in theory, allow to dismiss weak keys before using them based
on simulation to improve the worst-case security bound after side-channel analysis.
On the other hand this would hypothetically allow to deliberately generate and
distribute weak keys for malicious purposes.
Interestingly, for keys with significantly uneven distributed ones/zeros, the simplified
simulation provides a very accurate prediction of measurement results. Keys with low
security levels according to this simplified model will likely be weak on all hardware
implementations exhibiting XOR leakage. This emphasizes the prediction capability
of the model in general. Such particular keys with a Hamming weight close to either
the minimum or maximum are, however, statistically rare in case of random number
generators for cryptographic key generation, which are usually required to produce
uniformly distributed ones and zeros (e.g. through post-processing using AES).

5. How likely is it that other implementations or devices are affected by weak keys?
Our investigations show that different leakage models together with the DES key
schedule properties lead to widely distributed results and weak keys. Hence, every

1 In theoretical cryptanalysis, cipher-specific weak keys lead to undesirable behavior, e.g. that encryption
and decryption are equivalent (i.e. enck(enck(x)) = x) because all subkeys are equal (and the cipher is a
Feistel cipher). The term weak key in the context of this work describes a key with a low security level
after a side-channel attack.

4

device which shows any subkey-dependent leakage (of at least the two confirmed forms,
i.e. value and XOR leakage) is likely affected.

Section 2 recaps on the works of Wagner et al., comments important aspects, and
differentiates to our work. We systematically explain all crucial choices when attacking key
schedules using profiled template attacks in Section 3. The following Section 4 provides
necessary information about the DES key schedule and answers the remaining questions
regarding template attacks given XOR leakage specifically. Section 5 provides the results
and insights of an extensive empirical study of a security controller product and includes
the results regarding simulations. Section 6 contains the discussion about what single
DES results mean for the use as 3-key triple DES. Section 7 contains the results of an
empirical study on a general purpose microcontroller which allows further generalization.
Section 8 presents the results achieved after analyzing a second security controller. To aid
reproducibility and interpretation of our results, all algorithms and tools used in this work
are described in Section A in the Appendix.

2 Related work
Wagner and multiple co-authors focused on a “commercially available smartcard” including
a DES co-processor in the following contributions published on the IACR’s eprint server.
To the best of our knowledge, none of the following contributions have been published in a
peer-reviewed conference or journal.

2.1 Hu et al., Ciphertext and Plaintext Leakage Reveals the Entire
TDES Key, 2016

In 2016, Hu, Zhang, Zheng and Wagner [HZZW16] investigate the DES co-processor
of a commercially available smartcard running unidentified software. They use an EM
measurement setup without stating details on the probe, sampling rate, measurement
position, or alignment. Four DES operations within a short frame instead of the expected
single one are observed. They assume a forward-backward-forward-backward computing
DFA countermeasure. They report statistically significant correlations between measure-
ments and Hamming distances between consecutive 32 bit words of the key, plaintext, and
ciphertext within few cycles before/after an identified DES operations. They assume an
internal 32-bit bus as cause of this leakage. Based on these findings, Hu et al. describe
that keys can be tested using a known plaintext and performing ciphertext correlations for
candidates. This would help to verify triple-DES part-keys in case their respective key
space is already reduced significantly which is addressed in later contributions. However,
for the testing of every candidate, a correlation-based side-channel attack is performed.
This is only realistic for very short lists of candidates. In summary, it seems difficult to
construct an actual attack based on their findings.

2.2 Wagner et al., Comparative Study of Various Approximations to
the Covariance Matrix in Template Attacks, 2016

In 2016, Wagner, Hu, Zhang and Zheng [WHZZ16] describe further results from a side-
channel analysis of the same DES implementation. In this contribution, they perform
multivariate profiled template attacks to exploit the distance-based leakage of ciphertext,
plaintext and key bytes, which they describe in their previous publication [HZZW16]. They
find that the XOR distances between round keys can be recovered with a low number
of traces (e.g. range of 500). Based on this, they describe a possible attack similar to as
their previous publications and estimate that 6 to 10 bits per DES key could be recovered.

Heyszl et al. 5

Additionally, they evaluate different statistical models and parameter estimation techniques
by choosing different types of covariance matrices and methods to estimate the coefficients.
They find that some strategies lead to better results than others. However, in their later
attacks on the DES key schedule [WH17, WHG17] they report best results with averaged
covariance matrices, which is state of the art and usually referred to as pooled covariance
matrices.

Here, a Langer EM probe with unknown specifications is placed ’on top of a DES
hard-macro’, identified in an unknown manner, and a sampling rate of 5 GS/s is used.
Pattern matching is used to extract the four DES operations, and an elastic alignment
filter to cope with the internal and unsynchronized clock. They record 7 million traces,
and use 5 million for profiling after dismissing untypical ones.

2.3 Wagner and Heyse, Single-Trace Template Attack on the DES
Round Keys of a Recent Smart Card, 2017.

In 2017, Wagner and Heyse [WH17] describe a ’single-trace’ attack, claiming to exploit a
newly uncovered distance leakage between DES key bits during the DES key schedule of
the same commercial smart card. They assume that round keys are masked with a number
that is constant for each computation to explain their observation that bits leak their
XOR distance. The repetitive handling of bits which is imminent of the DES key schedule,
together with this property leads to exploitable distance leakage between key bits, which
is described in [WH17, Equation (3)]. [WH17, Table 5] lists all distances between key bits
and the rounds they occur in. Four successive DES operations are exploited in each ’single
trace’. As an attack result, they report a remaining entropy of 48.5 bit on average [WH17,
Table 6] and few cases with significantly lower remaining entropies. They do not answer
the question, whether the large difference in attack outcome is due to key values and the
algorithm, or stems from e.g. electric noise.

During the profiling phase, templates are created for subkeys (i.e. their values), which
are obtained by grouping key bits into subkeys according to occurring transitions in the key
schedule. The template size, which is the number of bits profiled together, is 7 bit. (They
also try different template sizes; see the subsequent contribution [WHG17].) For each
possible bit-value of each subkey, a profile is created using ≈ 4.7million traces with random
keys. Since the actual leakage stems not directly from the bit-values of subkeys, but
rather their Hamming distances, they are forced to choose their subkeys with overlapping
bits. See Section 3 for a detailed discussion about this and Section 4.1 explaining why
profiling bit-values is not the best approach (instead, XORs should be profiled). It further
creates a problem, when combining ranked lists of bit-values from the template matching
for the overlapping subkeys. Their proprietary key enumeration and rank estimation is
suboptimal, since they are disregarding probabilities from SCA and ignoring dependencies
between overlapping subkeys. Any optimal key rank or enumeration algorithm estimates
the combined probabilities for key candidates based on the subkey probabilities [VCGRS12].
The issues are partly addressed in a subsequent contribution [WHG17], where probabilities
are used instead of subkey ranks. Alternative algorithmic approaches using established
methods are discussed in Section 3. The authors then argue how additional sources of
leakage, e.g. the Hamming weight of the full key, could be used to improve the attack.

2.4 Wagner et al., Brute-Force Search Strategies for Single-Trace and
Few-Traces Template Attacks on the DES Round Keys of a Recent
Smart Card, 2017

As a follow-up to their previous contribution, Wagner, Heyse and Guillemet [WHG17]
describe improved ’brute-force’ strategies of enumerating keys based on the results from

6

the template matching described in their previous contribution. The improved strategies
are based on lists of ranked candidates. It can be seen as an attempt to key enumeration
while disregarding probability information or likelihoods from the template matching of
subkeys, which is unreasonable. In more detail, from the template attack, they derive lists
of value-candidates for overlapping templates of subkey parts (e.g. 14 lists of 7 bit templates
with 5 bit overlap for one 28 bit register; they call these ’C’-rings). Then, as a first step, an
unordered list of all possible combinations is created while discarding combinations which are
impossible due to not-matching values in the overlapping bits (e.g. 227 candidates remain,
one bit indistinguishable due to the distance model). Subsequently, and disregarding all
derived likelihoods or probabilities from the template attack, they sort this list of keys.
For this, they use the average or maximum ranking of all subkey parts for every item on
the list. From the two registers, a heuristic brute-force mechanism is used to enumerate
entire keys.

Results for DES. In a test with ≈ 297k single trace attacks (four DES executions per
trace) on individual keys, they report an average remaining entropy of 45.65 bit out of 56
bit [WHG17, Fig. 12]. While this is a significant reduction, it is not critical on average.
The results for different keys show a distribution with a large variance, however. The
1 × σ interval roughly extends down to 40 bits. They try different template sizes and
report best results with 9-bit templates (with 7 bit overlap of adjacent templates), while
all choices lead to similar results. Note that through the overlap, the attack essentially
extracts the same information from the trace repeatedly at an increased computational
cost. In [WHG17, Section 3], they attempt to use ’additional’ leakage by first adding
up trace parts corresponding to the 16 rounds from the four DES executions. Then, the
sum of Hamming distance of all bits of a round is used for a profiled template attack.
This requires ≈ 600 templates to model all possible summed Hamming distances which
may obviously only convey limited information. Instead of estimating the probability for
groups of bits and derive the joint probabilities through a rank estimation algorithm, their
strategy is to heuristically modify their ’brute-force search algorithm’ by removing all
candidates which do not match with the observed Hamming distance with a deliberately
chosen error-margin of ±7 bits. Authors report an average improvement of ≈ 2.5 bit.

Impact on 2-key triple-DES. Wagner et al. estimate 2-key triple-DES results based
on their single DES attack results. They take single DES results, and for all possible
combinations of individual results, they square2 the higher remaining entropy to derive a
2-key triple-DES result. Doing this, they implicitly dismiss a possible meet-in-the-middle
improvement. See Section 6 in this work about how to derive distributions for multi-key
encryption from single-key measurements and how to benefit from the meet-in-the-middle
approach using side-channel attack results on the example of 3-key triple-DES. They report
a mean remaining entropy of 96.47 bits [WHG17, Fig. 17]. The occurrence of low entropy
2-key combinations is extremely rare. In [WHG17, Table 2] the 2-key triple DES results
are reported (for different template sizes). According to this table (template size 9 bit),
0.068 % are < 70 bit, 0.0011 % are < 60 bit, 0.0000088 % are < 50 bit. The decline is
exponential. The authors convert this probability of occurrence into an ’effort’ measured
in bit to achieve a combined attacker effort in bits. However, given each device uses one
specific key, attackers need to actually change devices for this. The required efforts for
changing devices are significantly higher than brute-forcing key candidates offline. Hence,
a combination of the two complexities seems misleading. They report results indicating a
combined security level exceeding 70 bits for all cases, even for cases where the estimated
remaining entropies are lower than 50 bit, because the probability of occurrence is low.
Based on the fact that one key is used twice in a 2-key triple-DES and using what they call

2Note that authors state ’double’ and most probably mean doubling the bit-representation

Heyszl et al. 7

total Hamming distance leakage, they claim that results could be improved by several bits.
The presented estimates for these improvements are not convincing, as they are partly
based on a very low number of observations; e.g. three observations in [WHG17, Table 4].
security level of < 70 bits.

Bounds for Security Levels through Simulation. Wagner et al. investigate the reason
for weak keys using a simulation [WHG17, Section 5]. While their argumentation is
disregarding several important aspects (e.g. influence of noise is not investigated thoroughly
to rule it out as cause for the distribution), their main claims, i.e. that some keys are
weaker than others and that this depends on the key bit values, is in line with our findings.
Wagner et al. determine the remaining entropy of keys after a simulated side-channel
observation without electrical noise. They assume that the observable leakage is the
Hamming distance between successive round-keys and that the attacker is able to exploit
this perfectly. Keys with equal traces, i.e. summed Hamming distances per time-point,
are obviously not distinguishable by the attacker. By counting the number of keys with
identical leakage they try to estimate a theoretical lower bound for the security level. This
seems reasonable. However note that this also assumes attackers capable of profiling and
attacking large parts of the key at once. Each side-channel observation in this simulation is
fully characterized by 15 values of Hamming distances (HD) between successive round-keys.
It is represented by a function dist15(k) = {HD(subkey(i), subkey(i+ 1))}15

i=1 ∈ [0, 48]15,
which maps each key to its leakage. Wagner et al. rightly claim that the leakage is the
sum of contributions from both registers, dist15(k) = dist15C(k) + dist15D(k) for each
key k. However, in order to make counting of collisions feasible, they employ a two-stage
matching. In the first stage, they find all keys k′, such that ||dist15C(k)||1 = ||dist15C(k′)||1
and ||dist15D(k)||1 = ||dist15D(k′)||1. Here ||v||1 =

∑
|vi| denotes the L1-norm of a

vector v. They then count the true collisions in the remaining set. Unfortunately,
their first stage already discards possible matches. Take as an example the two keys
k1 = 0x01E001E001F101F1 and k2 = 0x011F011F010E010E. Both lead to identical leakage,
but the roles of the two registers are swapped such that

dist15C(k1) = dist15D(k2) = [24, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 24] and
dist15D(k1) = dist15C(k2) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

This key-pair (along with many others) would thus be missed by the simulation of Wagner
et al. This means that they significantly underestimate the security levels. As a conclusion,
this means that their given results cannot be used as a reference for the theoretical attack
potential and lower bound for the security level of the DES key-schedule. According to
their simulation, a random selection of 8k keys results in an average remaining entropy
of only 15.0 bits [WHG17, Fig. 42]. The 10 weakest keys (0.135 % of 8k) from their
simulation resulted in an average security level of 41.6 bit during an actual attack. This
is lower than the overall average of 46.16 bit [WHG17, Fig. 11], but does not allow the
conclusion that the simulation results represent achievable lower bounds.

Influence of independent noise on key weakness. Wagner et al. perform 32 k repeated
attacks for only one fixed key [WHG17, Section 6]. They find that even for this fixed key,
the results exhibit a near-Gaussian distribution with a large variance. While not noted by
the authors, this is interesting because it could indicate that attack results are in fact very
dependent on the trace-specific random noise in addition to key properties. Their results
also show that the remaining entropy of this single key converges to a certain level while
increasing the number of traces used for the attack. An analysis of more keys is missing.

8

2.5 Wagner and Heyse, Improved Brute-Force Search Strategies for
Single-Trace and Few-Traces Template Attacks on the DES Round
Keys, 2018

As an improvement to their previous work, Wagner and Heyse [WH18] describe modifica-
tions to their enumeration of key candidates. Their setting is equivalent to previous papers
(measurement setup, 11-bit templates, high overlap, pooled covariance matrices). Authors
report that a template size of 11 bit has been used, however, also report that smaller sizes
did not lead to worse results. In this work, they only use previously identified 378 ’weak
keys’ (0.135 % of total keys) which led to the best results in their previous work. Wagner
et al. only record single measurements per key (note that their single trace attack actually
contains four DES executions, however).

For the improved search strategy, they create a list of all possible combinations of
value-candidates for subkeys after template matching as done in their previous work. Also,
they remove candidates where the overlapping bits do not match. As a novelty, they then
sort the remaining candidates according to the product of matching probabilities of key
parts (precisely through summing after taking the logarithm) using Quicksort. They do
so for both registers (e.g. half keys) separately. They disregard dependencies which are
inherent due to the overlap. (Note that both state of the art key enumeration algorithms
mentioned in Section A.5 as well as their approach require independence between the
key parts for optimal results.) They then use an incrementally increased threshold to
repeatedly test combinations of subkeys with probabilities below that threshold. In this
search, they weight the probabilities in the two separate lists slightly differently to represent
alleged differences in leakage between the two registers. In addition, they also incorporate
’total Hamming distance leakage’ as described in a previous contribution which accounts
for roughly 1 bit of the reduction. As a result, they claim that the average remaining
entropy (it remains unclear, however, how this is determined precisely) is lowered from
≈ 41.7 to ≈ 38.8 bits for this set of 378 weakest keys with values ranging from ≈ 16 to
≈ 52 bit. They explicitly claim achievable security levels as low as 2 bit, based on the
flawed simulation described in their preceding paper.

2.6 Summary
Many described assumptions, decisions, steps, and algorithms by the authors are either not
respecting the state of the art, or argued in a manner which is unclear or not satisfying.
This makes it impossible to assess the impact of the attack on the security of DES
implementations. Nonetheless, their attack reduces the key entropy and demonstrates that
there is exploitable leakage. The generality of the threat to other implementations, devices
and cryptographic algorithms is left open by this series of papers.

3 Profiled attacks to recover key bit values - Leakage mod-
els, classification, enumeration

The aim of profiled side-channel attacks is the classification of values from (few) noisy
observations using statistical methods after a preliminary profiling. One often targets
intermediate values during a cryptographic computation which are key-dependent. In
the context of attacks on a key schedule, a likely target are key bits. A leakage model
specifies the recoverable values as variables and their functional dependencies. For the
observable variables, the statistical parameters are then estimated during profiling and used
for classification. It is important to derive a solid understanding about the leakage model
of the attacked secret to determine the best or even optimal algorithms for classification. In
most cases only parts of the key (here called subkeys, usually bytes or groups of key bits) can

Heyszl et al. 9

be classified at once due to resource constraints. The result is a list of candidates including
probabilities. The leakage model and derived classification approach also influence how
the enumeration of candidates for the entire key based on subkey classification results can
be performed.

Given the context of an attack against the DES key schedule and considering general
implementation choices (see Section 4), a small set of leakage models is reasonable and
should be considered. First, bits may leak their value directly. In case of a hardware
implementation, a transition between successive values in a register may also be a valid
model of the leakage. Best or even optimal classification and enumeration results can
only be achieved if the actual leakage model of a device is investigated thoroughly and
choices made accordingly. In the following, we discuss relevant leakage models and their
implications on the choice of suitable algorithms.

3.1 Different possible leakage models of key bits

The following four subsections describe different possible leakage models of key bit variables
ki which are targeted, e.g. during an attack on the key schedule. Since key bits are generally
chosen randomly from a uniform distribution, there is no a priori dependency between
them. Therefore, they are drawn as independent variables in the following figures.

3.1.1 Independent value leakage

The simplest form of side-channel leakage is when the value of each bit is leaked directly
(i.e. single bit Hamming weight, or bit-weight) and independently, which we refer to as value
leakage. Figure 1 depicts such a case where every bit leaks its value on a side-channel trace
in a way so that by looking at a part of the trace (i.e. a number of time-samples denoted
by L0) the different bits can be observed independent from each other. If value leakage

Figure 1: Leakage model with every bit leaking its value independently

of individual key bits is present exclusively, it is reasonable to classify them separately.
The observed probabilities of the key bits are, thus, independent and key enumeration
can be performed in a straight-forward manner. Note that this means that there would
be no overlap between the leakage Lj of individual bits. However, due to the nature of
high-frequency sampling of a physical dimension in side-channel analysis, an imminent
low-pass behavior, thus, temporal overlap, should be expected for adjacent time-samples
in many cases.

3.1.2 Overlapping value leakage

Figure 2 depicts a more realistic case, where the leakage signals of multiple key bits overlap
temporarily. Hence, the leakage of individual key bits is observed at the same time and an
attacker may only observe the distribution of a function of these bits. Signals from one
variable do appear as switching noise in regard to the other variables (see Mangard et
al. [MOP08] for a definition).

10

Figure 2: Leakage model with the leakage of bits overlapping in the observation

Joint modeling of bits with multi-bit templates. In this case of overlapping leakage, it
is reasonable to model those bits with overlapping signals jointly to reduce switching noise
and increase the signal-to-noise ratio (SNR). Practically, this means that those multiple
bits are ’put into the same template’. A difficulty arises when too many bits overlap
so that they cannot feasibly be modeled jointly. One should then aim for a reasonable
trade-off between the maximal number of values that can be profiled together, limited by
computational and storage capabilities, the number of available traces for profiling of each
class, as well as the SNR gain from reducing switching noise (see Section 4.2.1) and choose
a suitable partitioning. Importantly, in this leakage model, the observed variables (bit
values) are independent. Hence, key enumeration can be performed in a straight-forward
manner using the derived probabilities for key bit values.

3.1.3 XOR leakage

Based on the DES key scheduling algorithm and general hardware design knowledge, one
can assume that the transition between bits, whenever they are consecutively written into
storage cells, could lead to observable leakage. For instance, based on the assumption that
consecutive round keys are written into a round key register, specific key bits follow each
other on the respective storage cells. (Section 4 describes this in the context of the DES
key schedule.) This XOR leakage implies that an attacker may observe the XOR difference
between consecutive bits. Additional information about key bit values, i.e. value leakage,
may also be observable. Masking of successive subkeys with the same mask throughout
the key-schedule would result in pure XOR leakage. Wagner et al. [WHG17] assume that
this is the case in their investigations. We actually prove this assumption to be true for
the device under test described in Section 5.3. The case of XOR leakage is depicted in
Figure 3. Importantly, if XOR leakage between bits is observed, any derived (posterior

Figure 3: Leakage model with transition / XOR leakage of two bits

or conditional) probabilities (i.e. classification results) for the key bit values are mutually
dependent. Consequently, if an attempt is made to derive information about actual bit
values (i.e. calculate marginal distributions for the key bits), information is lost due to this
dependency. Described in simple terms, due to the observed XOR relations, the value of
one bit depends on the other which does not allow to use most established key enumeration
algorithms (instead Li et al.’s proposal [LWWW17] must be considered; see Section A.5).

Classifying XOR transitions instead of bit values. However, a different approach can be
used. The observable variables, which are XORs of successive bits, are in fact independent.

Heyszl et al. 11

This follows from the fact that we can observe them directly and, a priori, the XORs of
successive key-bits are uniformly distributed. Given the value of the first bit, there is a
bijection between the other 27 key bits per register and the succession of XORs (using the
recurrence relation ki = (ki ⊕ ki−1)⊕ ki−1 for successive key bits {ki}). Since the key bits
are independent, this implies the uniform distribution of the observed variables. Hence,
successive XORs of key bits are mutually independent.

For the case of exclusive XOR leakage, the enumeration algorithm should be applied
directly to the leaking XOR variables instead of the key bit values. This leads to a list
of candidates for the transition sequence, where each entry represents four possible key
candidates (two for each register). We use this approach in our empirical study in Section 5
because the leakage model is confirmed to apply.

The discussion regarding temporal overlap of leakage from the previous Section 3.1.2
also applies here.

3.1.4 Mixed leakage

Finally, Figure 4 depicts a case, where both previously described forms of leakage appear
in a device. Additionally, the depicted leakages Lj may also overlap. In this case the
difficulty is that information about the bits are derived from two mutually dependent
sources (value leakage and XOR leakage). Hence, a suitable algorithm is required to
resolve this situation. Current literature [VCGS14, GS14] suggests that belief propagation
on a factor graph similar to Figure 4 is the best choice for dependent variables.

Figure 4: Leakage model with distance and value leakage

Multi-bit templates. In the case of multiple kinds of leakage with possible temporal
overlap, a careful grouping of variables into templates may increase SNR. Then, the
marginalization to recover probabilities for subkeys would be done in either of the two
directions; key bits, or observable XOR transitions. In this situation any marginalization
leads to loss of information (e.g. for the XOR leakage part), since (a posteriori) there
are no entirely independent variables. In practice, one needs to group variables with the
strongest dependencies into the same templates and maximize the number of variables in
each template, thus minimizing (but not preventing) information loss.

Does it make sense to use overlapping templates? Overlap means that the same
variables are profiled in more than one template in order to capture all available leakage
during profiling. This could apply to pure XOR or mixed leakage. The downside of
such an approach are resulting dependencies between subkeys, which prevent the use of
classical key-enumeration algorithms. However, belief propagation based on the functional
dependencies between the observed variables seems to be the reasonable approach to
resolve dependencies stemming from overlaps. In practice, one has to carefully weigh the
possible gain of information against the increased computational cost.

12

3.2 Distinguishing XOR and value leakage
For actual implementations, it is reasonable to assume key bits leaking their values directly,
and to assume leakage of XOR transitions between key bits. Which leakage model applies
can be tested by calculating exclusive SNRs for those leakage models.

Value leakage in every time-sample can be determined easily by computing SNR traces
for individual key bits. If significant SNR is detected, the value leakage can be exploited
directly in a multivariate template attack. XOR leakage is more difficult to assess. The
following description focuses on two bits a and b where the value and XOR leakage is
determined for the four different classes of the tuple (a, b). For two bits a and b, we first
model leakage traces Xa,b as univariate Gaussian distributions for all values of the tuple
(a, b) ∈ {0, 1}2 at time-samples t ≥ 0 as

Xa,b(t) ∼ N (µa,b(t), σ2
a,b(t)) for all a, b ∈ {0, 1}. (1)

The number of traces in every class is Na,b. The distributions of the traces Xa and Xb of
individual bits a and b are again profiled as Gaussian and characterized through means
and variances µa, σa and µb, σb respectively (formula for a = 0, other cases analogous;
valid if Na,b ' N/4, where N is the total number of traces.). The distributions are an
approximation of the mixture of two Gaussians, which has moments

µa=0(t) = 1
2 (µa=0,b=0(t) + µa=0,b=1(t)) and (2)

σ2
a=0(t) = 1

2
(
σ2

a=0,b=0(t) + σ2
a=0,b=1(t)

)
+ 1

4 (µa=0,b=0(t)− µa=0,b=1(t))2
. (3)

The SNR of variable a can be computed as

SNRvalue
a (t) = Var[µa(t)]

E[σ2
a(t)] . (4)

The XOR leakage can be determined by comparison of joint and single-bit SNR traces.
First, the SNR trace for two joint key bits SNRtotal(t) is computed. This contains all
leakage from bit values and their XOR transitions combined.

SNRtotal(t) = Var[µa,b(t)]
E[σ2

a,b(t)] . (5)

Then, the SNR of pure value leakage is calculated from a combination of SNRs of the
individual bits, while assuming their mutual independence and independent noise. Based
on the above described value SNR, the combined value leakage can be computed as

SNRvalue
a,b combined(t) = Var[µa(t)] + Var[µb(t)]

σ2
pooled(t) , (6)

with

σ2
pooled(t) = 1

2
(
E[σ2

a(t)] + E[σ2
b (t)]

)
. (7)

If both, SNRtotal(t) and SNRvalue
a,b combined(t) are equal, no additional information from

the XOR is available that exceeds the information derived from the individual bits. Hence,
for a model to have additional XOR leakage (or any other leakage that is caused by
variables that depend on multiple bits), SNRtotal(t) must be higher than SNRvalue

a,b combined(t).
For instance if masking is implemented and both successive values are masked using
the same bit-mask, the attacker is indeed unable to distinguish the values of single bits
(SNRvalue

a,b combined(t) = 0), but could still observe XOR leakage.

Heyszl et al. 13

4 DES key schedule and templates for implementations
with exclusive XOR leakage

The DES algorithm has a comparably simple key scheduling algorithm. After removing
the parity bits from the original 64 bit DES key, 56 effective key bits remain. Those are
divided into two halves of 28 bit each, handled in registers C and D (notation according
to specification). Round keys are generated through rotating those halves by one or two
bits to the left (depending on the round), and using a so-called permuted choice to select
24 bits out of each 28 bit register. All round keys are, hence, a permuted selection of
bits from the original key. An initial permuted choice 1 leads to a first round key already
permuted from the original one. Figures 5a and 5b depict the selection of bits for the 16
round keys. Indices applied after removing parity bits. Each key bit is used approximately
in 14 out of 16 rounds. Whenever a key bit is handled, exploitable side-channel leakage
might occur, i.e. bit values or the XOR between bits depending on the implementations
countermeasures. Two bit pairs are highlighted in red and blue to illustrate that due to
the schedule, XOR transitions between specific bits re-occur which increases exploitable
leakage of the respective transitions.

Round key # Indices refer to the input key excluding parity bits
0 8 44 29 52 42 14 28 49 1 7 16 36 2 30 22 21 38 50 51 0 31 23 15 35
1 1 37 22 45 35 7 21 42 51 0 9 29 52 23 15 14 31 43 44 50 49 16 8 28
2 44 23 8 31 21 50 7 28 37 43 52 15 38 9 1 0 42 29 30 36 35 2 51 14
3 30 9 51 42 7 36 50 14 23 29 38 1 49 52 44 43 28 15 16 22 21 45 37 0
4 16 52 37 28 50 22 36 0 9 15 49 44 35 38 30 29 14 1 2 8 7 31 23 43
5 2 38 23 14 36 8 22 43 52 1 35 30 21 49 16 15 0 44 45 51 50 42 9 29
6 45 49 9 0 22 51 8 29 38 44 21 16 7 35 2 1 43 30 31 37 36 28 52 15
7 31 35 52 43 8 37 51 15 49 30 7 2 50 21 45 44 29 16 42 23 22 14 38 1
8 49 28 45 36 1 30 44 8 42 23 0 52 43 14 38 37 22 9 35 16 15 7 31 51
9 35 14 31 22 44 16 30 51 28 9 43 38 29 0 49 23 8 52 21 2 1 50 42 37
10 21 0 42 8 30 2 16 37 14 52 29 49 15 43 35 9 51 38 7 45 44 36 28 23
11 7 43 28 51 16 45 2 23 0 38 15 35 1 29 21 52 37 49 50 31 30 22 14 9
12 50 29 14 37 2 31 45 9 43 49 1 21 44 15 7 38 23 35 36 42 16 8 0 52
13 36 15 0 23 45 42 31 52 29 35 44 7 30 1 50 49 9 21 22 28 2 51 43 38
14 22 1 43 9 31 28 42 38 15 21 30 50 16 44 36 35 52 7 8 14 45 37 29 49
15 15 51 36 2 49 21 35 31 8 14 23 43 9 37 29 28 45 0 1 7 38 30 22 42

(a) Round keys: Register C
Round key # Indices refer to the input key excluding parity bits

0 19 24 34 47 32 3 41 26 4 46 20 25 53 18 33 55 13 17 39 12 11 54 48 27
1 12 17 27 40 25 55 34 19 24 39 13 18 46 11 26 48 6 10 32 5 4 47 41 20
2 53 3 13 26 11 41 20 5 10 25 54 4 32 24 12 34 47 55 18 46 17 33 27 6
3 39 48 54 12 24 27 6 46 55 11 40 17 18 10 53 20 33 41 4 32 3 19 13 47
4 25 34 40 53 10 13 47 32 41 24 26 3 4 55 39 6 19 27 17 18 48 5 54 33
5 11 20 26 39 55 54 33 18 27 10 12 48 17 41 25 47 5 13 3 4 34 46 40 19
6 24 6 12 25 41 40 19 4 13 55 53 34 3 27 11 33 46 54 48 17 20 32 26 5
7 10 47 53 11 27 26 5 17 54 41 39 20 48 13 24 19 32 40 34 3 6 18 12 46
8 3 40 46 4 20 19 53 10 47 34 32 13 41 6 17 12 25 33 27 55 54 11 5 39
9 48 26 32 17 6 5 39 55 33 20 18 54 27 47 3 53 11 19 13 41 40 24 46 25
10 34 12 18 3 47 46 25 41 19 6 4 40 13 33 48 39 24 5 54 27 26 10 32 11
11 20 53 4 48 33 32 11 27 5 47 17 26 54 19 34 25 10 46 40 13 12 55 18 24
12 6 39 17 34 19 18 24 13 46 33 3 12 40 5 20 11 55 32 26 54 53 41 4 10
13 47 25 3 20 5 4 10 54 32 19 48 53 26 46 6 24 41 18 12 40 39 27 17 55
14 33 11 48 6 46 17 55 40 18 5 34 39 12 32 47 10 27 4 53 26 25 13 3 41
15 26 4 41 54 39 10 48 33 11 53 27 32 5 25 40 3 20 24 46 19 18 6 55 34

(b) Round keys: Register D

Figure 5: DES round keys in parts C and D. Two bit pairs are highlighted in red and blue
to illustrate the reoccurrence of transitions.

4.1 Leakage of the DES key schedule
It depends on the implementation, which kind of leakage is observable. Wagner et al. (see
Section 2) assume that their attacked implementation stores successive round keys in
dedicated round key registers. Hence, in these registers, successive round keys generate

14

leakage related to the transition between bits. Further, Wagner et al. observe, that their
implementation seems to leak the XOR of those transitions which could be explained by a
constant masking. (Note that they did not actually confirm this assumption.)

Figure 6: Observable transitions for key bits in register C (top) and D (bottom).

When looking at successive round keys in Figures 5a and 5b, one finds that certain
bits always follow on certain other bits. For example, at a certain position in the registers,
the bit with index 0 is always preceded either by bit 7 or by bit 14. The mentioned bits
are marked in Figure 5a. Figure 6 depicts these relations as two groups of bits from the
two registers C and D. The figure describes all possible transitions between key bits, that
could lead to exploitable leakage, given the assumption that the round key register is
implemented as described. The number of actually observed transitions is small compared
to the theoretical maximum of key bit combinations which stems from the DES algorithm.
It can be observed that some transitions re-occur more frequent than others. The transition
between bits 0 and 7 is marked in blue in Figure 5a and occurs three times, while the
transition between bits 0 and 14 is marked in red and occurs 10 times.

Figure 7: Matrix showing the re-occurrence frequency of transitions between successive
round key bits. Strong transitions in red, weak transitions in blue.

Figure 7 depicts a matrix of transitions between bits. Bit numbers on both axis
represent bits before (x-axis), and after (y-axis) round-key updates. The color represents
the number of rounds that each transition is part of. Rare transitions occur 3 times at
maximum, others occur 12 times at minimum. Every key bit is involved in a higher-frequent
and a lower-frequent transition, which we call strong and weak transitions. For side-channel
analysis, this means that most transitions are observable in multiple rounds for exploitation.
The amount of leaking information in each measurement is different, depending on the
number of re-occurrence. When grouping all bits and transitions which are connected, one
obtains the relations shown in Figure 6.

Heyszl et al. 15

Figure 8: Transitions for key bits in C register. Coloring depicts occurrence frequency.
The dashed boxes mark the XORs used to build unique labels for the four subkeys.

Figure 8 depicts half of the transitions from Fig. 6, with a coloring depicting the
frequency of occurrence similar to as in Figure 7.

4.2 Templates for exclusive XOR leakage
If an implementation leaks only the XOR between bits, it makes sense to profile and target
this XOR leakage directly. This is argued in Section 3.1.3. Figure 8 depicts all transitions
for half of the key. Since register updates of round keys happen simultaneously, the leakages
of all individual transitions overlap. The question now is, which XORs should be profiled
together to create multi-bit (or rather a multi-XOR) templates. The discussion in Section
3.1.3 is applicable here. It makes sense to combine XOR transitions which share bits into
the same template. Figure 8 depicts black boxes around 4 groups of 7 XOR transitions.
This is an example for choosing a template size of 7 bit. It means that as template labels,
not the bits themselves are used, but the XOR between the bits. This creates unique
labels for all observable classes. At first glance it seems, that such templates would only
cover the less occurring transitions marked in blue (as included by the black dashed boxes
in Figure 8). However, the other ones are implicitly included as well. For example, the
values of k0 ⊕ k7 and k7 ⊕ k14 determines k0 ⊕ k14 = (k0 ⊕ k7)⊕ (k7 ⊕ k14). Hence, the
transitions marked in red are covered since there is only ever one possible red transition
for the included blue transitions. The blue transitions can be used to uniquely label all
classes of XOR leakage.

We chose a template size of 7 XOR transitions in the practical investigation in Section 5.
Note that in order to derive the value/label of the XOR during profiling for 7 XOR
transitions, 8 key bits are involved. For such 7 bit XOR templates, 4 templates cover
one of the two registers C, or D. Hence, a total number of 8 templates covers all key
bits, respectively XOR transitions. To be precise, of the 28 successive XORs, only 27
are independent. The last XOR can be recovered from the first 27.3 Therefore the last
template for each register effectively only has six bit, totaling 54 recoverable bits. After
recovering all XORs there is one bit of choice left in both registers to choose an actual
value based on the XORs. Thus, two more bits need to be added to the final security level
after applying the key rank algorithm. These two bits are inherently undetermined due
to the XOR leakage and, thus, the minimal possible remaining entropy for this leakage
model is always two bit.

Strictly speaking, not 100% of the red transitions are covered. Few transitions between
adjacent bits from different templates are disregarded, specifically, one red transition at
every template boundary. For the case of 7 bit templates, there are 4 boundaries for
every 28 bit register, thus, there are 4 disregarded red transitions. As a rough estimation,
this omission of 4 out of 56 observable transitions per register equals disregarding 7% of
the available leakage. This could be prevented by overlapping templates covering one
more blue transition to also cover the previously disregarded red one. After classification,
this overlapping bit could be omitted again to go into key enumeration with independent
XOR classifications. Larger templates, i.e. 9 or 10 bit templates, lead to less template
boundaries. However, the relative improvement is small compared to the computational
overhead and increased measurement complexity. Given all facts, we decided not to use

3For each 28 bit register, we choose the value of one ’first’ bit along the chain, e.g. b0 (see Fig. 8). Then
the values of all 27 other bits bi are determined by 27 XORs. The last XOR only completes the cycle.

16

overlapping templates, to avoid complexity while accepting this limited information loss.
Note that Wagner et al. use overlapping templates for a different reason, because they

(unfortunately) model bit values in their templates and want to connect adjacent templates
given the XOR leakage. As described in Section 3.1, this approach of modeling bit values
is not suitable for XOR leakage.

4.2.1 On the size of templates

Technically, larger templates allow a reduction in encountered switching noise from the
remaining key bits. This effect is shown on the correlations calculated using CPOI [DS16]
(see Section A.2.3) on measured traces from the empirical evaluation in Section 5 for
different templates bit lengths b in Figure 9. On the left, the correlations are shown for the
first 60 POIs of the traces. On the right, the maximal correlation is plotted over the bit
length of the templates. The fit (orange) shows the theoretical dependence of correlations
on b, if each bit has independent and identically distributed Gaussian leakage. It can be
noted that for higher numbers of bits the gain is limited. The penalty in computation
and required traces, however, is significant, as the matrix inversion alone scales at least
as O(2b·2,373), depending on the algorithm. Furthermore, the profiling set of a template
attack has to double in size for each extra bit to achieve a similar estimation error.

0 10 20 30 40 50 60
POIs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

co
rre

la
tio

n

1
2
3

4
5
6

7
8

9
10

(a) Correlations for b ∈ {1, . . . , 10} over POIs

2 4 6 8 10
bitlength

0.10

0.15

0.20

0.25

0.30

m
ax

im
um

 c
or

re
la

tio
n

(b) Maximal correlations

Figure 9: CPOI results on measured traces. Template bit lengths b between 1 and 10.

4.3 Comparison to AES
AES uses a more elaborate key scheduling algorithm with a non-linear substitution function.
This means that specific parts/bits of the original key appear only in the side-channel of the
first one/two round keys for exploitation through templates. Full diffusion is reached after
two rounds. Intermediate values of the key schedule which are connected in the algorithm,
but in a non-linear way, are classified independently and more complex strategies for
exploitation of many values need to be used.

5 Empirical study: Security controller
We performed a profiled template attack against the DES key-schedule executed by a
security controller. Although we were not able to perform measurements on the very
same device as the one user by Wagner et al. due to availability issues, we have very
carefully chosen our DUT to be as closely matched as possible. In particular we have
strong evidence that the underlying hardware architecture is identical.

Heyszl et al. 17

5.1 Chip preparation, measurement setup, and alignment
The DUT was decapsulated to perform measurements from the backside of the chip and
thinned. After a first test using the 500 µm diameter EM probe, we proceeded to use a
150 µm diameter probe for the main measurements. This choice is backed by previous
experience and led to useful results in this study. The sampling rate was 5 GS/s.

5.1.1 Identifying the DES execution

The DES operation was called using different lengths for the plaintext as multiples of the
block size. A current measurement and an EM measurement were used to visually inspect
the operation of the controller. The 500 µm EM probe was positioned in a region, where
varying patterns were visible during the whole time of operation. The time of the DES
execution could be narrowed down to ≈ 100 µs because traces show a distinct and different
pattern during this frame. The length of the pattern multiplies according to the number
of input blocks, i.e. DES encryptions. A DES operation is expected to take ≈ 1 µs for
roughly 16 cycles at an internal clock frequency, which should be around 30 MHz, as most
internal clocks of current devices operate in this range. This means that the timing of the
DES execution has to be further narrowed down.

Figure 10: Three EM traces showing DES executions at a manually selected position
measured with a 500 µm probe.

Using the 500 µm diameter probe, we manually selected different positions while
inspecting the EM traces. In one specific area, we observed a general low activity with the
exception of a short time of high activity and large peaks within the previously identified
time frame. This section is depicted in Figure 10 and fits the assumption of a hardware
core, which is mostly inactive, and activates only during DES executions. The execution
spans ≈ 0.9µs (4400 samples at 5 GS/S) as expected. The clock cycles are visible as peaks
and indicate a clock frequency of ≈ 32.5 MHz.

5.1.2 Alignment

We use a two-stage triggering in the oscilloscope with a first and second trigger on the
communication line monitoring the commands sent to and from the smartcard. No trigger
on the measured current is required, since the smartcard software execution is largely
deterministic and nearly constant in time. Three executions recorded in this manner are
shown in Figure 10. It is evident that the triggering leads to a good initial alignment.

18

The device likely uses an internal clock source, which is not synchronized to the
oscilloscope clock. Hence, some local misalignment through drift and jitter is expected
which needs to be removed during post-processing. For the main analysis, we use only static
alignment to achieve the best possible local alignment. First, we use a short trace sample
for least square error matching. Then, we cut the trace into segments, each containing one
clock cycle. Given the large peaks in the measurements, we can align each segment using
the edge of the peak.

Elastic alignment based on dynamic time warping was used only during initial tests to
quickly identify or rule out leakage in a new set of traces. It was not used on trace sets
prepared for template attacks, because it led to slightly worse local alignment and lower
correlation coefficients in the leakage test.

5.1.3 Comparing the number of DES executions to other implementations

Figure 11 shows a zoomed view of a DES execution including leakage test results as
described in the following Section 5.2. The DES engine performs 16 single-cycle rounds of
the key-schedule followed by eight rounds of backward computation, most likely for the
purpose of protection against fault attacks. This assumption is confirmed by the peaks in
the correlation trace of the CPOI leakage test. Thus, each trace contains a single DES
execution and eight rounds of backward computation.

Wagner et al. observe four DES executions with 16 peaks in a each single trace of
their single trace attacks. We attribute this deviation to a different software stack on their
device. Note that although the attack is mounted solely on leakage of the (presumable
identical) hardware crypto engine, this might influence the exploitability due to differing
numbers of available hardware executions per recordable trace. Wagner et al. assume that
the four DES executions are due to a countermeasure against differential fault analysis
(DFA). We suggest that its purpose is to ensure the upward compatibility of a triple-DES
implementation with single DES [MH81]. In this way, a triple-DES implementation (i.e.
software interface) would use the same key for subsequent encryption, decryption and
encryption. Only the fourth DES execution would be a DFA countermeasure. Importantly,
this would mean that Wagner’s results would not scale to triple-DES in the way described.
Instead the attacks on the individual DES keys of a triple-DES would have less exploitable
leakage (e.g. only one DES execution instead of four). We will show that the difference
between one and slightly more DES executions per key results in a non-neglegible difference
in the security level.

5.2 Leakage test, measurement position, and POIs
We first performed a CPOI leakage test on the Hamming distance of successive round keys.
For that purpose, we assumed XOR leakage as described in Section 3.1.3. Note that an
attacker would likely test value first, however, from Wagner’s results we already know to
look for XOR leakage. Traces were prepared as described in Section 5.1.

5.2.1 Initial leakage test

The key was split into eight subkeys, each covering seven XORs between successive key
bits, as described in Section 4.2. The CPOI leakage test was performed on these 7 bit XOR
templates. We used 200k traces acquired with a 500 µm diameter probe at a measurement
position, which was selected manually as described above. The test produced positive
results with correlation coefficients in the range of 0.1 to 0.2. For comparison, Wagner et
al. report higher correlation coefficients up to 0.4 with an unknown probe (see Fig. 6 in
[WH17]). Figure 11 shows the leakage trace of one subkey in blue (scaled up by a factor
of 1000) together with an exemplary measurement trace in pink. As expected, we observe

Heyszl et al. 19

Figure 11: Zoom into EM measurement of one DES execution at a manually selected
position measured with a 500 µm diameter probe is shown in pink. The correlation
coefficient of a CPOI leakage test for 7 bit XOR templates is shown in blue, scaled up by
a factor of 1000 (values ranging up to ≈ 0.15). The DES rounds are marked.

leakage at peaks where round keys are overwritten. No leakage is detected at the time
of the first, last, and last backward computation peak. During the actual DES execution
excluding the backward computation, 15 leakage peaks are observed as expected.

5.2.2 Determining a measurement position using the t-test

The 150 µm diameter probe is usually expected to give better results than the larger 500 µm
diameter probe, but needs to be positioned more accurately. We performed measurements
at many positions in a grid to find the optimal position. Every position was tested for
leakage using a fixed vs. random t-test on the key. The use of the a t-test instead of a
CPOI leakage test and the relatively high leakage allowed us to use very few traces for
this purpose. Initial tests using the 150 µm probe at a manually selected position close to
the previous one revealed that relatively few traces are sufficient to detect leakage with
a good margin of error. We scanned a part of the backside surface of the die centered
around the manually identified position. We used a high resolution for the grid with 15
times 12 positions and steps of roughly 50 µm. This large number of positions is possible
due to the low measurement and memory complexity of the t-test.

Figure 12 depicts the resulting maximum t-value at all measurement positions. We
chose the position with the highest value for all further analysis. Note that the selection
of a measurement position based on the univariate maximum value does not guarantee the
best results, since template attacks exploit multivariate leakage. However, the univariate
t-test is computationally fast and represents the leakage of the whole key at once. The
CPOI leakage tests for subkeys could indicate different optimal measurement positions
for different subkeys. For practicality, we use only one position during all following
measurements.

The alignment of traces at different positions requires an alignment strategy which is
robust to expected differences between traces at different positions, in particular in the
signal amplitude. Fortunately, static alignment could be achieved with low manual tuning
efforts by a least squares matching using a pattern from a single trace and one position.

20

Figure 12: Maximum of t-value trace per position on a 50 µm grid using a 150 µm diameter
probe.

5.2.3 Determining POIs using a CPOI leakage test

We used the previously described segment-wise edge-alignment before performing a CPOI
leakage test. Using the smaller probe at the new measurement position led to improved
correlation coefficients in the range of 0.15 to 0.25. For further analysis we chose the
300 time-samples with the highest correlation coefficients in the CPOI leakage test as
points-of-interest (POIs).

5.3 Leakage model
At the selected position and using 300 POIs we investigated the leakage model of the
device in more detail. Even though the assumed XOR leakage led to positive results, this
step is required to make the necessary decisions for the template attack (see descriptions
in Section A.4 and Section 3).

We selected three exemplary bits from the key which share two transitions according
to the DES Key schedule, i.e. they follow each other at the same bit position in two
subsequent round keys. Hence, there could be observable XOR leakage from the transitions
of each bit pair. The question is, whether the observable leakage is determined by the
value of the individual bits, or by the XORs between them. Figure 13 shows the computed
SNR for key bits 0 and 7 and bits 0 and 14. Note that the strong transition between the
two bits 0 and 14 occurs in ten out of 15 round key updates. The analyzed trace contains
a total of 15 round key updates plus eight updates from the backwards computation. The
weak transition between bits 0 and 7 occurs only in three round-key updates per DES
execution. The figure shows the SNR of the joint leakage for both bit pairs in the upper
graphs. There is no value leakage from individual bits when profiled separately, as shown
in the lower graphs in blue. The presence of value leakage would indicate an additional
source of leakage, for example from an unmasked bus. The entire leakage is caused by the
transition between the two bits. The corresponding XOR leakage is shown in the lower
graph in red. We conclude that the device exhibits XOR leakage and no value leakage.

Additionally, we found that the XOR leakage for different bit-pairs has different SNRs,
which is not entirely explained by the number of rounds they appear in. This could be
caused by properties of the hardware-implementation and possibly depends on the chosen

Heyszl et al. 21

(a) Joint leakage of bits 0 and 7 (b) Joint leakage of bits 0 and 14

(c) XOR-leakage (red), value leakage (blue) (d) XOR-leakage (red), value leakage (blue)

Figure 13: SNR (y-axis) for the transition between key bits 0 and 7 on the left, and 0
and 14 on the right over 300 POIs (x-axis). The joint leakage is entirely caused by XOR
transitions (red) while no value leakage (blue) is detectable.

measurement position and is expected.

5.4 Evaluating attack success
Profiled template attacks and successive key enumeration yield a list of key candidates
in order of likelihood. The position of the unknown secret key k in the list is called the
key rank R(k). In our situation the attacker is unlikely to retrieve the correct key as the
first entry in the list and the key rank should be treated as a random variable dependent
on input data and noise. The remaining brute-force effort to find the secret key after
a template attack can be expressed through the expected key rank E[R(k)], which is
called guessing entropy in the literature. We find that our results are best represented
by the logarithm of the key rank, which we call the security level S(k) = log2 R(k). The
expected security level E[S(k)] is a good measure to compare outcomes of different attacks,
although it does not directly correspond to the brute-force complexity, since expectation
and logarithm do not commute. It was introduced under the name ranking entropy in
Martin et al. [PMMOS16]. They also have an in depth discussion on the presentation and
comparison of their side-channel results, which resemble ours. Similar to their findings,
we chose to state attack outcomes more precisely in terms of percentiles of the empirical
distributions for the security levels.

Several other metrics designed for security evaluation can be found in literature. A
security graph [VCGS13] is a popular tool to assess the security of implementations or
devices after SCA. It relates the number of traces available for the attack (x-axis) to the
achieved reduction of security described by the minimum, maximum and average rank of
the entire key. It displays the distributions of key ranks and thus brute-force complexity
for each possible number of traces. The security graph is well suited for DPA, where the
attacker has to manage this trade-off in his favor. In case of DPA, the attacker usually
has the necessary choices regardless of the actual device or key. The graph allows an
attacker to record the optimal number of traces such that the required brute-force effort
matches the computational capabilities. In our case, however, the success rate of an attack
does not strictly increase with more traces. After a relatively small amount of traces
(e.g. ≈ 400) further improvement is hindered by noise factors that do not average-out.
Hence, it seems most reasonable to assess the security based on this limit-distribution,

22

which we approximate using 900 traces. For each device the achievable security reduction
is predetermined by the key and unknown to the attacker. The attacker can improve the
achievable security level only by changing the device after each unsuccessful attack, not by
increasing the number of traces.

Two other measures for the security of a device have been used in related work. The
n-th order success rate [SMY09] is defined as the percentage of cases where all subkeys
are ranked among the first n ones over the number of used traces. In its original form,
the guessing entropy [KB07] describes the average rank of subkeys over the number of
used attack traces. Applied to the entire key, it is equivalent to the average key rank.
Any metric that is purely based on the ranks of subkeys is outdated and not suitable to
describe the effort of enumerating candidates for an entire key.

5.5 Profiled template attack
The template attacks are performed as described in Section 4.1. Additional details can
be found in Section A.4. At the selected measurement position, we recorded 2.5 million
profiling traces with random keys and inputs. For the attack, we used 1k random keys
and record 1000 measurements with random inputs for every key, from which we use
900 to allow for dismissal of traces which cannot be aligned properly. We present results
for template attacks with 1, 3, and 900 traces per key. The attack results are mainly
affected by electrical noise and switching noise from unprofiled parts of the key and varying
plaintexts. By using more traces the influence of electrical noise and switching noise from
varying plaintexts is averaged out, which improves results. However, switching noise from
unprofiled parts of the key cannot be removed since the leakage of the key-schedule does
not depend on any variable inputs.

For the profiling phase of the template attack, we profiled the XOR distances of
the subkeys instead of the bit values, as described in Section 3.1.3. Each attack on a
subkey results in a list of candidates with corresponding a-posteriori probabilities. Key
enumeration was performed directly on XOR candidates. The fact that the classified
variables are independent allowed us to employ optimal key enumeration algorithms. Hence,
there is no information loss from making compromises regarding the chosen algorithms and
their requirements. The only information loss stems from dividing the key into subkeys,
which is necessary as the full 28 bit per register cannot be profiled at once. By profiling
subkeys independently of each other, the remaining key parts appear as switching noise.
Further, a total of three transitions are missing in the templates as described in Section 4.2.
We did not observe any clear improvement of results from using overlapping templates
that cover the missing transitions, as discussed briefly in Section 5.6.1. The entire key is
determined by the sequence of XOR values and the remaining choice of the first bit for
each register respectively. Hence, to obtain the final security level, two bits are added to
the output of the key rank algorithm to account for the remaining possible choices when
recovering a key from the XOR transitions.

5.5.1 Security levels exhibit wide distribution

For most symmetric ciphers, for example when performing DPA attacks, the achieved
security level is largely independent of the actual key value. The following results show
that the security levels vary, even when attacking keys with a high number of traces to
minimize the influence of electrical noise. We estimate security levels for each attacked
key for three different cases, using 1, 3 and 900 traces.

Figures 14a, 14b, 14c depict histograms of the resulting security levels. The DES
executions include eight additional and redundant rounds of backward computation. Our
case of three attacked traces, hence, roughly corresponds to the case described by Wagner
et al., where a single measurement includes four DES executions.

Heyszl et al. 23

25 30 35 40 45 50 55
0

50

100

150

200

(a) 1 trace per key

25 30 35 40 45 50 55
0

50

100

150

200

(b) 3 traces per key

25 30 35 40 45 50 55
0

50

100

150

200

(c) 900 traces per key

Figure 14: Histograms of security levels after template attacks on 1000 keys. Security
levels are plotted on the x-axis, number of keys per bin on the y-axis. Results are shown
for 300 POIs and three different numbers of attack traces (1,3 and 900) per key. The mean
security level is marked by an orange line.

The security levels for different keys vary and include results as low as 25 bit (out
of 1k keys). Testing more random keys will most likely reveal additional keys with very
low security levels in the tail of the distribution. As expected, the average security levels
decreases when more traces are used for the attack, since the influence of noise is reduced.
Hence, results after 900 attack traces exhibit lower security levels than after one or three
traces. Apart from electrical noise, also switching noise caused by changing plaintexts
averages out.

Table 1: Average security levels after attacking a varying numbers of traces per key.
This work Wagner et al.

1k keys, 300 POIs 297k keys, 352 POIs
1 trace 3 traces 900 traces 1 trace

1.5×DES per trace 4×DES per trace
Mean [bit] 49.4 48.2 45.7 46.16 [WHG17, Fig. 11]

Table 1 lists the mean security level for the three cases after an attack with 300 POIs.
The number of DES executions per trace is an important factor in the achievable entropy
reduction. The average security level after a three trace attack on our DUT is 48.2 bit,
which is higher than the results of Wagner et al. at 46.16 bit (cf. Fig. 11, [WHG17]).

24

We also performed the attacks using 900 instead of 300 POIs, which increases runtime
significantly. Average security levels are approximately 2 bit lower.

In addition, we tested two keys with key bits all zeros or all ones, which represent the
worst case as their traces have a unique profile (assuming perfect XOR leakage). Note that
those keys are also cryptographically weak and unrealistic in practice. Cryptographically
weak keys measured on the device with 900 traces per key have security levels of 2 bit.
Increasing the number of tested random keys will increase the number of observations with
exceptionally low security levels.

5.5.2 Convergence of security levels in the low noise limit

What remains is to find the reason for the distribution of security levels. In this part we
show that noise from insufficient samples sizes cannot explain the observations.

0 200 400 600 800
number of traces

25

30

35

40

45

50

55

se
cu

rit
y

le
ve

l

(a) random keys

0 200 400 600 800
number of traces

25

30

35

40

45

50

55

se
cu

rit
y

le
ve

l

(b) selected weak keys

Figure 15: Dependence of the security levels of chosen keys on the number of used attack
traces. Left: Ten randomly selected keys. Right: Ten selected keys with low security levels.

Figure 15 shows the security levels of selected keys over an increasing number of traces.
The left part of Figure 15 depicts randomly chosen keys, the right side shows keys that
were selected for their low security levels. The security levels of keys converge to different
limits as the number of attack traces increases. The limit is reached (up to a small error)
after roughly 200-400 traces. The histogram in Figure 14c for an attack with 900 traces is
therefore close to the limiting distribution. The spread of the security levels is not caused
by an insufficient number of attack traces. This rules out electrical and switching noise of
varying plaintexts on the attack traces as reason for the variation. Note that attacks with
few traces can lead to security levels below the low noise limit, which is due to beneficial
noise circumstances. An attacker is, however, of course unable to deliberately select such
measurements. Hence, the low noise limits of the security levels best describe what an
attacker can expect.

We ruled out two other possible influences as reason for the observations. First, we
tested for statistical artifacts caused by too low numbers of traces in the profiling set,
which could lead to a bias. We repeated the profiling measurement (using the same amount
of measurements) and achieved identical attack results with the new profiling set. Second,
we studied the influence of the measurement position by repeating all measurements at a
different position. All results are comparable to those presented in this paper.

We conclude that keys have inherent security levels which are distributed and include
cases of very low security levels.

Heyszl et al. 25

5.5.3 Influence of noise on single trace attacks is high

38

40

42

44

46

48

50

52

54

56

se
cu

rit
y

le
ve

l

(a) random keys
38

40

42

44

46

48

50

52

54

56

se
cu

rit
y

le
ve

l
(b) selected weak keys

Figure 16: Box plot of resulting security levels from 900 single trace attacks for ten
randomly selected keys on the left and ten weak keys on the right. The interquartile range
(IQR) is shown as solid blue boxes, the 1.5-times IQR range in dashed lines and the outliers
are marked as a +. The median is marked in orange.

Even though keys possess inherently different security levels, noise has a high influence
on individual attack results. In the following, we demonstrate this by performing a large
number of single trace attacks against the same selection of keys, shown in Figure 15.
Instead of computing security levels after attacking multiple traces and combining results,
we compute security levels for 900 individual single trace attacks. Figure 16 shows a
box plot of ten random keys on the left and the ten weak keys on the right. Somewhat
surprisingly, given the results after 900 traces in Figure 15, every weak key exhibits a broad
range of single trace attack results, most of which are close to chance level (55 bit). The
weak keys on the right part of Figure 16 only lead to lower security levels more frequently
and there are more outliers. This confirms that the success of a single trace attack (or an
attack with few traces) depends highly on noise.

Attackers which are allowed only one measurement per key may repeat the attack on
different keys or different devices. Every attack will lead to an expected security level
result characterized by the distribution in Figure 14a. The consequences on practical
attacks, in particular for triple-DES, are discussed in Section 6.

5.6 Generalization through simulation
The previous investigations confirm that different keys can inherently be attributed to
different security levels. In this Section, we use a simplified simulation model to study the
generality of this observation. The question is, whether weak keys are caused by the DES
key-schedule or the hardware implementation. The simulation assumes perfect Hamming
distance leakage of successive round keys, where the contribution of each bit in the registers
is equal. The simulation takes DES keys as input, computes the 16 successive round keys
and creates simulated side-channel traces by counting the sum of XOR differences between
successive round keys at 15 updates. The artificial traces can be seen as abstract current
consumption values.

The model deliberately disregards certain noise factors, like different kinds of electrical
noise and switching noise from other sources than the key-schedule. For instance, the
simulation does not consider the main data path of the DES computation, which would

26

introduce uncorrelated noise from independently processed values. This leads to results
which are systematically better than attacks on measured traces. The simulation is,
however, realistic regarding the constant switching noise which is created by all parts of
the key except for the respectively currently profiled subkey. This switching noise is due to
the fact that a profiling of the entire key at once is impossible, and always present, even for
repeated measurements and under perfect conditions since the key remains constant and
the leakage of the key-schedule depends only on the key itself. Compared to real devices,
the model is simplified such that every bit position in the register leaks the same amount
of information. This implies that any lower bounds for the security levels derived from
simulations need to be applied with caution.

We also added Gaussian noise with different variance (and mean value zero) to observe
the dependence of results on the SNR. Note that compared to the actual device, the model
does not include the backward computation of eight rounds. The eight backward rounds
do not introduce new information compared to the forward rounds, at least in the setting
without additive noise

Even for simulated traces without additive noise, the profiling set needs to have a
sufficient size. Profiles for each subkey are created from traces with different keys but
equal subkey value, such that the switching noise from the other key parts is averaged. As
an example, simulating 1 million traces means that every class of the 7 bit XOR templates
can be profiled using 106/27 ≈ 78k traces. On the other hand, if the attacker is confronted
with only measurements for a fixed key he cannot eliminate switching noise from other
subkeys. Hence, without further additive Gaussian noise, one simulated trace per key
already corresponds to the best case for an attacker in this scenario.

5.6.1 Distribution of security levels for random keys

We simulated a profiling set and an attack set and performed an attack identically to
the attacks on measured traces. We used 1 million random keys for profiling and an
additional set of 10k random keys for single trace attacks. Figure 17a depicts the results
without additive noise. The mean security level is 42.3 bit, while the minimum among
the 10k randomly selected keys is 20.1 bit. As expected, this is much lower than the
49.4 bit average security level obtained for single trace attacks on measured traces in
Table 1. Importantly, the security levels of the 10k different keys are widely distributed,
similar to what is observed in the measurements. This confirms that keys have inherently
different security levels in a simple model, which leaks the Hamming distances of subsequent
DES round keys. These results are independent of other implementation and side-channel
measurement details or any particular device.

A lower SNR naturally leads to higher average security levels. Figure 17b depicts the
case of additive Gaussian noise with variance 1, the distribution has a mean of 47.1 bit.
Shown in Figure 17c is the case of additive Gaussian noise with variance 10, where the
average security level is 53.8 bit. The distributions observed in simulations with additive
noise are similar to the results of actual attacks. So far, these results do not tell us how
well the simulated security levels predict results obtained from measurements and more
specifically, if weak keys in the simulation are weak on the device.

5.6.2 On different template lengths

To put our choice of templates in context, we tested different template lengths and various
amounts of overlap between subkeys. In Table 2, we present results for two additional
cases. First, we used 8 bit instead of 7 bit templates for profiling, which results in 1
bit overlap between templates in order to fit four templates into the 28 bit of a register.
Marginalization before the key rank estimation leads to the same subkeys as for 7 bit
templates. Thus, the difference between the two is only the exploitation of 4 additional

Heyszl et al. 27

20 25 30 35 40 45 50 55
0

500

1000

1500

(a) No additive noise

20 25 30 35 40 45 50 55
0

500

1000

1500

2000

(b) Additive Gaussian noise with variance 1

20 25 30 35 40 45 50 55
0

1000

2000

3000

4000

(c) Additive Gaussian noise with variance 10

Figure 17: Histograms for security levels of 10k simulated traces, one attack trace per key.
Security levels are plotted on the x-axis, number of keys per bin on the y-axis. The mean
security level is marked by an orange line.

strong transitions during the attack phase. The benefit is small, as expected. Secondly,
we investigated 9 bit templates, which perfectly cover the 27 independent XORs of each
register with three subkeys and without overlapping bits. Therefore, the total number
of subkeys is reduced to only 6 instead of 8 and the main benefit should be through a
reduction in switching noise. Indeed, we gain roughly 1 bit in the average security level
compared to 7 bit templates. As a downside, we need two and four times as many traces
for the profiling of measured traces into 8 and 9 bit templates, respectively.

Table 2: Average security levels after attacking with different templates for 10k keys each.
XOR templates

subkey length for profiling [bit] 7 8 9
subkey overlap [bit] 0 1 0
subkey length for key rank [bit] 7 7 9
Mean [bit] 42.3 42.1 41.5

5.6.3 Predicting security levels

Based on the previous results, we assumed that there is a correlation between security
levels of keys after measurement on a DUT and results from simulations. In this section
we show the accuracy and limitations of predicting security levels through simulations.

28

We used the same set of keys for simulations and measurements and compared the results.
We investigated two groups of keys:

1. 200 keys with key bits Bernoulli(p)-distributed, where the probability of a key bit
being zero is either p = 0.1 or p = 0.9. The bits of these keys are therefore almost
all ones or all zeros.

2. 350 keys selected evenly from the range of security levels out of 10k uniformly random
keys. Thus key bits are distributed as Bernoulli(1/2).

While keys from the second group were generated from a uniform distribution as
recommended for maximum security, the keys in the first group are unlikely to appear in
practice. The skewed ratio of zeros and ones (p ∈ {0.1, 0.9}) for key bits in the first group
leads to fewer XOR-transitions during the key-schedule. These keys are expected to have
lower than average security levels and simpler leakage behavior.

For both classes, we performed attacks on noiseless simulated traces as well as on real
measurements. In the latter case, we used 1000 measurements for each key to reduce
noise factors to a minimum and make both attacks more comparable. Figure 18 depicts

Figure 18: Two groups of random keys, one from a uniform distribution (blue) and one with
skewed ratio of zeros and ones (red, either 90% zeros or 90% ones). Security levels after
attacking simulated and measured traces are shown on the x-axis and y-axis, respectively.
Linear approximations are plotted for both groups.

the results for both classes as scatter plots on a x-y diagram with the simulation results
on the x-axis, and the measurement results on the y-axis. Security levels for the first
group (p ∈ {0.1, 0.9}) are shown in red, for the second group (p = 1/2) in blue. Linear
approximations for both groups highlight the relation between measurement and simulation.
The slope of the regression line for the first group is 1.03, for the second 0.28. Both groups
show a dependence between simulation and measurements on the actual device. This
means that not only are the distributions of security levels similar, but that the simulated
leakage actually allows some predictions for attacks on real devices. Both groups also show
significant variation of security levels around their linear approximation, which cannot be

Heyszl et al. 29

attributed to noise in the measurements since 1000 traces per key were used in the attacks
(cf. Sec. 5.5.2). The variations must be caused by simplifications of the simulation.

However, the quality of the predictions is very different for the two groups of keys. The
first group (red, p ∈ {0.1, 0.9}) shows a close to perfect match between simulation-based
prediction and results achieved from actual measurements. A perfect match would be
represented by a 45° line through the origin. In this group, weak keys seem to be weak
independent of the device. On the other hand, the second group (blue, p = 1/2) shows
a significantly lower prediction capability of the simulation. For keys in this group, the
results may depend strongly on the device, although this was not tested.

A possible explanation for the difference of results between the two groups of keys is
that the simulation model weights the leakage from every bit in the two registers equally.
Keys in the first group (red, p ∈ {0.1, 0.9}) have fewer bit transitions in the registers during
the key schedule, which limits the impact of the differences of contribution of register
bits. Furthermore, the impact of switching noise is reduced as well, since most subkeys
contribute little to none to the leakage. This could explain why the prediction is relatively
accurate for those keys. Even within these keys, results range from security levels of ≈ 4
to ≈ 45 bit. This shows that constructing weak keys is in fact more complex than simply
aiming for skewed ratio of zeros and ones in the key bits.

The prediction for the second group of keys (blue, p = 1/2) would suffer more from the
simplification of the simulation, since more transitions and all subkeys are contributing to
leakage. It would be possible to parameterize the simulation model and extract weight
parameters for the register bits. This would likely allow an improved prediction also for
uniformly random keys for this specific device and measurement setup. However, the
model would lose generality at the same time.

5.6.4 Security levels significantly depend on switching noise

We have already seen that keys with a skewed ratio of ones and zeros in their key bits
are weaker than average. This section further investigates why subkey values are easier
to classify than others by examining templates of subkeys based on simulated traces.
The success of a template attack depends on the ability to classify subkey values given
the templates. Each template is determined by its mean trace and a pooled covariance
matrix. If the mean traces of two classes are very similar, an attacker has a low chance of
distinguishing them. If they are far apart relative to the respective covariances they can
be distinguished easier. The chance of a correct classification may already be limited by
the similarity of different profiles.

Figure 19: Simulated trace means for all 128 classes of one subkey using 1 million traces.
The mean trace of the class with index 0 is highlighted in black.

Figure 19 depicts the trace means of the 128 classes of one subkey (number 1, chosen as

30

example out of the 8 subkeys) for 7 bit XOR templates. The x-axis shows 15 time points
where round-key transitions occur. The means are generated using 1 million simulated
traces with random keys. The y-axis depicts the mean traces of all 128 classes computed
from ≈ 106/128 simulated traces each. For every specific subkey value, different random
keys are averaged. The values of each trace are calculated by summing the XOR transitions
in the two 24 bit round key registers for 15 time points, which means the values before
averaging range between 0 and 48. In the figure we see the effect of templates averaging-
out the switching noise from all keys parts other than the profiled subkey, such that the
profiles only range between 20.5 and 27.5. Thus, there is significant variance in the traces
(represented in the covariance matrix of the templates) caused by variations of these other
key parts (and electrical noise, if present). Note that some classes stand out by attaining
minimal or maximal values in some rounds. The class with index zero (highlighted in black
in Figure 19) attains the minimum in all 15 rounds, representing the cases in which all
subkeys are the same. The observable difference of rounds 1,8 and 15 to all other rounds
stems from the fact that at these rounds the shift operation of the key-schedule shifts by
one bit rather than two. As described in Section 4.1 and depicted in Figure 6, some XORs
occur often (e.g. transitions 2 to 7 and 9 to 14), others less frequently (transitions 1, 8,
and 15). The existence of the two groups explains that the simulated data is also different
for those two groups.

Figure 20: Number of differences between pairs of Simulated trace means for all 128 classes
of one subkey using 1 million traces. Pairs of identical profiles appear as white pixels.

Figure 20 is used to visualize the differences between the profiles. For every pair of
profiles from the set of 128 subkey values, we calculate the number of rounds in which
they are different, using the fact that the remaining noise on the profiles is much smaller
than 1. Any pair of profiles that are identical in every round appears as white pixel in the
plot. Apart from the diagonal, there are no other pairs of identical profiles. This holds
true for all other subkeys of 7 bit XOR templates and for 10 bit XOR templates (data
not shown). We conclude that for XOR templates every subkey profile is unique. Thus,
any misclassification during the matching phase of a template attack must be caused by
switching noise.

This does not fully answer the question, whether the variation of security levels is
caused by leakage or switching noise. One would have to either profile the entire key or try
to estimate the entropy in the leakage. The first approach is clearly made impossible by
computational limitations. The second approach is computationally more feasible and was
attempted by Wagner et al. [WHG17]. However, as discussed in Section 2.4, they made an
incorrect simplification to speed up calculation time. Still, their results seem to suggest

Heyszl et al. 31

that for the entire key the profiles are not unique, which is in contrast to our results on
subkeys of XOR templates. Note that the difference between profiling bit values and
XORs only leads to a constant offset of results by 2 bit and cannot explain the variation
of security levels.

Although we cannot fully answer the question as to how the variation of security levels
arises, we can make a clear statement for any practical attacks. In practice, the key needs
to be profiled in parts of less than ≈ 12 bit at once and in this case, the spread of the
distribution is caused by switching noise alone. All methods discussed in this paper can
still be applied in more general scenarios, irrespective of the exact cause of the distribution
in subkey rankings or security levels.

5.6.5 Lower bounds on the security level

It is not helpful to use the minimal security level of all keys as a general lower bound or
to assess security of an implementation. Keys with key bits all zeros or all ones in each
register are the weakest, as their profiles are the most extreme. However, those exact
keys are also cryptographically weak and using them is not recommended. The simulation
shows a security level of 2 bits for those keys, which is the minimum possible value given
XOR leakage. Actual measurements on the device with 900 measurements per key lead to
results of 2 bits for those keys as well. Hence, the lower bound of security levels (including
cryptographically weak keys) for attacks against single DES in this device is 2 bit. This
does not provide much insight into the security of a device.

In general, the distribution of security levels obtained through simulations could be
considered a worst case scenario. Although, some caution needs to be applied, since choices
in the model do not necessarily lead to minimal possible security levels. The leakage from
each register bit is treated equally, while in reality their contribution to overall leakage
varies. Also, the choice of bit length for the templates is arbitrary. By doubling the effort
one can always use one bit more per template and thus reduce switching noise. However,
we perform all simulations and practical attacks using 7 bit templates, which makes a
comparison easier. A worst case for security levels independent of the actual attack could
only be achieved by analyzing the entropy of traces directly, which is computationally
difficult and has little practical relevance.

Finally, it is not even clear how to compare two distributions of security levels, as
already discussed in Section 5.4. Therefore, simulations primarily provide lower bounds on
the mean or different percentiles of the distribution.

6 Impact on triple-DES
So far, this contribution has described results of side-channel attacks against single DES.
Today, the last application of DES that provides reasonable security guarantees is in
the form of triple-DES. The impact of this attack should therefore be measured by its
implications for triple-DES implementations. Note that the use of any form of DES is
generally not recommended by the German BSI [Bun19].

We first need to adapt the meet-in-the-middle attacks [DH77], which are the best
known attacks against triple-DES, to deal with varying security levels as they are output
from the side-channel attack. The output of a key rank algorithm, i.e. enumerated lists of
key candidates including associated probabilities, must be used in an optimal way. In the
following, we present a meet-in-the-middle attack on SCA results with a wide distribution
of security levels. We calculate the distribution of security levels for a 3-key triple-DES
under such attacks. This will allow us to give estimates on the percentage of key-triples
that are threatened by brute-force attacks. For example, this will allow to estimate the
percentage of keys going below 80 bit brute-force effort after a side-channel attack.

32

6.1 Recap on the cryptanalytic security of triple-DES
The U.S. NIST seems to still accept the use of 3-key triple-DES [Nat16]. The cryptanalytic
security level of a 3-key triple-DES is equal to twice the key length due to meet-in-the-
middle attacks given three known-plaintext and ciphertext pairs [DH77, MH81] (one pair
for the main attack algorithm, two more to rule out wrong candidates).4

A meet-in-the-middle attack on 3-key triple-DES, which encrypts a plaintext P as
C = DESk3(DES−1

k2
(DESk1(P))), works as follows [vOW90]. First, a known plaintext is

used to exhaustively create and store a list of the first intermediate value ai = DESk1(i)(P)
for all 256 possible candidates of k1(i). This requires O(256) computations and O(256)
storage. Then, the ciphertext C is used to exhaustively test (k2, k3) by backwards-
computing a′ = DESk2(DES−1

k3
(C)). This requires O(2112) computation. Every result a′

is compared to the list ai. If a match a′ = ai is found, the respective keys k1, k2, k3 are
candidates for the correct keys. Two more plain- ciphertext pairs are used to eliminate false
positives. In summary, this algorithm requires a maximum O(2112) +O(256) = O(2112)
computation and O(256) storage. Note that the expected security level of a meet-in-the-
middle attack with no further knowledge about the keys has an expected, or average
complexity of O(2111).

6.1.1 Two key triple-DES

Although neither the NIST nor the BSI approve it, 2-key triple-DES is still in use in some
applications. The van Oorschot-Wiener attack [vOW90] is an effective known-plaintext
attack against 2-key triple-DES, with a complexity of O(2121−n) for N = 2n plain- and
ciphertext pairs. It reduces the security to ≈ 80 bit, given 232 plain- and ciphertext pairs.
Here, we are mainly interested in single-trace attacks, which makes this attack less relevant.
The van Oorschot-Wiener attack is more efficient than the meet-in-the-middle attack only,
if a sufficient number of plain-/ ciphertexts is available. Further, side-channel information
of the key-schedule has little use for the van Oorschot-Wiener attack, as two tables of
size O(256) must be created and only one of them would benefit from key rankings. The
complexity of creating tables reduces at best from O(257) to O(256) and overall would still
be at least O(2120−n).

When using the meet-in-the-middle attack on 2-key triple-DES, one saves the effort
of creating the list {ai}, removing all memory requirements from the algorithm. Further,
SCA gives slightly better estimates for the key part k1 = k3, whose leakage appears twice
in each trace. Apart from this, the following discussion generalizes to 2-key triple-DES, if
few plain-/ ciphertext pairs are available.

6.2 Side-channel security of 3-key triple-DES allowing a meet-in-the-
middle advantage

In the following, we discuss the overall security of 3-key triple-DES based on the side-
channel security of a single DES by using a modification of the regular meet-in-the-middle
attack. The side-channel security of a 3-key triple-DES depends on the results of three
simultaneous attacks on three different keys. While the maximal complexity of a meet-in-
the-middle attack is still O(2112), we should expect a significant reduction of the expected
security level by using information from the attack.

The side-channel attack leads to a different entropy reduction for every one of the three
keys ki, i ∈ {1, 2, 3}. However, the attacker can a-priori not know, which of the three
keys is better than the others, since the security levels of the keys are independent and
identically distributed random variables. Consequently, it does not matter whether we
choose to match the lists after the first encryption (and treat k2 and k3 together as one

4Access to three pairs of plain- and ciphertext seems reasonable for many applications.

Heyszl et al. 33

112-bit key) or before the last encryption. Both options are equally likely to succeed faster
than the other and we may therefore pick one without loss of generality.

First, we need to combine our key rank results for two of our keys, say k2 and k3, to
obtain a key ranking for the combined key-pair (k2, k3). This can be done by applying
a key enumeration algorithm to the candidate lists of both keys (including associated
probabilities), or by treating the pair (k2, k3) as one 112-bit key already during the attack.
Both options are equivalent.

For the actual side-channel meet-in-the-middle attack, we want to process the key
candidates of k1 and k2,3 = (k2, k3) in order of their likelihoods. That is, we want to
successively check all candidates up to ranks r1 and r2,3 in both lists such that we maximize
the probability

P (R(k1) ≤ r1 and R(k2,3) ≤ r2,3) = P (R(k1) ≤ r1) · P (R(k2,3) ≤ r2,3) (8)

in each step, where R(k) denotes the rank of a key. The cumulative probabilities on the
right-hand-side of the equation are a direct output of the key enumeration algorithm applied
to the two key parts k1 and k2,3. We then create two lists, {ai} = {DESk1(i)(P)} and
{a′i} = {DESk2(DES−1

k3
(C))}, up to indices r1 and r2,3 respectively. In practice, we would

start at the top of both lists (assuming candidate lists are obtained by key enumeration
and thus ordered by likelihood) with r1 = 1 and r2,3 = 1. We then add a candidate to
one of the lists r1 = r1 + 1 or r2,3 = r2,3 + 1, according to which new candidate has the
higher likelihood by Equation (8). Each time, we add a candidate to one of the lists, we
check for a new match ai = a′j for some i ∈ [1, r1] and j ∈ [1, r2,3]. Any match can either
be confirmed or disregarded by testing with the two additional plain- and ciphertexts until
we succeed to find the correct key-triple (k1, k2, k3). This algorithm does require the same
amount of storage as number of DES computations (which is more storage than required
by the original algorithm for levels > 56). If storage is an issue and in particular if one
is not interested in very low security levels, i.e. < 56 bit, it is more practical to use the
following simplified algorithm instead.

Simplifying the algorithm for security levels > 56 bit. The above described algorithm
is relatively complex and requires more storage than the original meet-in-the-middle
algorithm. Fortunately, we may simplify the side-channel meet-in-the-middle algorithm for
cases > 56 bit expected security level by using the fact that one of the lists, {ai} ∈ O(256),
is much shorter than the other, i.e. {a′i} ∈ O(2112). This helps because it is acceptable to
loose the ability to precisely determine the security level ≤ 56 nowadays where security
levels of > 80 are especially relevant. For the simplified algorithm, we first calculate the
complete list {ai} = {DESk1(i)(P)}, which has memory and computational complexity of
O(256). We then iterate over the second list {a′i} = {DESk2(DES−1

k3
(C))} in order of their

probabilities and check each candidate for a match with {ai}, which has no additional
cost on memory. The overall expected computational complexity of the algorithm is
O
(
max

{
256,E[R(k2,3)]

})
.

Use cases of the simplified versus exact algorithm. Since in all cases studied by us the
probability P

(
R(k2,3) ≤ 256) is very small, the attacker is almost always at an advantage

when picking the simplified algorithm. There is no penalty in computational cost and
the memory requirements are fixed and almost certainly below those used in the exact
algorithm. This advice might be specific to our case and depends very much on the
observed distributions. Even when using the exact algorithm, the following estimates on
computational complexity based on the simplified algorithm still provide an upper bound.

Extrapolating triple-DES estimates from single DES results. Under the assumption
that all three DES-executions in a triple-DES lead to identical distributions F single

S of

34

security levels, we may use the corresponding density f single
S obtained from attacks on

single DES to extrapolate to triple-DES. Unfortunately, we do not have a closed form
expression for the density of the rank or security level, so they have to be estimated directly
through histograms from empirical results. Any numerical calculations on distributions
should be done for security levels instead of key ranks, to make them numerically stable
and benefit from better density estimates on security levels. We first need the distribution
of the combined security level of two keys F 2−key

S , which is

F 2−key
S (s) = P(S(k2) + S(k3) ≤ s)

=
∫ 56

0
P (S(k2) ≤ s− x|S(k3) = x) P (S(k3) = x) dx

=
∫ 56

0
F single

S (s− x)f single
S (x) dx

For the density we get

f2−key
S (s) =

∫ 56

0
f single

S (s− x)f single
S (x) dx (9)

accordingly, which is the convolution of the two single-key densities. Note that f single
S (x) = 0

for any x < 0 or x > 56.
Further, since P (S(k2,3) ≤ 56) is very small in practice, we also get a direct approxi-

mation of the distribution and expectation of security levels for three keys. We can express
the expected security level for triple-DES after a meet-in-the-middle attack using the
empirical density estimate in Equation (9) as

E [S(k1, k2, k3)] ≈ E [S(k2,3)] =
∫ 112

0
sf2−key

S (s) ds,

while the expected computational complexity of the simplified algorithm follows from

E[R(k2,3)] =
∫ 112

0
2sf2−key

S (s) ds.

6.3 Triple-DES estimates based on measurement data
For the estimation of triple-DES security levels of an actual device, the distribution of a
single DES is required. It can be obtained from actual measurements, in our case after
attacking 1, or 3, or 900 traces per key. Every case represents how many measurements
the attacker would be able to perform. We computed results for those three cases of 1, 3,
and 900 traces per key using the results presented in Figure 14 and Table 1.

Figure 21a depicts the empirical densities of the security level distributions after 1
(blue), 3 (orange), and 900 (green) traces per key when attacking 3-key triple-DES. It also
includes results obtained from a noise-free simulation (black, dashed). This, as described
above, precisely represents the security level of the 3-key triple-DES for all cases with
a security level > 56 bit. Figure 21b depicts the corresponding empirical cumulative
distributions.

Table 3 summarizes the concrete values for some exemplary cases. First, the mean
security level for 3-key triple-DES for the analyzed device for actual single trace attacks is
96.1 bits. As most important observation, from all possible key-triples, only a fraction of
0.24 % will lead to a 3-key triple DES security level of < 80 bits in a single trace attack. An
attacker can increase this percentage to 0.43 % if he is allowed to perform 3 measurements,
and to 6.3 % if he is able to increase the number of measurements to a large number of

Heyszl et al. 35

60 70 80 90 100 110
0.00

0.02

0.04

0.06

0.08

0.10

(a) empirical density

60 70 80 90 100 110
0.0

0.2

0.4

0.6

0.8

1.0

(b) empirical distribution

Figure 21: Empirical density and distribution of security levels for a combined attack on
two DES keys. Results are shown for attacks on 1 trace (blue), 3 traces (orange) and 900
traces (green). Results obtained from a noise-free simulation are shown (black, dashed).

Table 3: Security levels for 3-key triple-DES based on measured single DES results, and
simulation without additive noise.

1 trace 3 traces 900 traces sim.
Mean sec. level 1-key 1-DES [bit] 49.4 48.2 45.7 42.3
Mean sec. level 3-key 3-DES [bit] 96.1 93.8 88.7 82.1
Fraction of 3-key 3-DES cases < 80 bit 0.24 % 0.43 % 6.3 % 37.4 %
Fraction of 3-key 3-DES cases < 70 bit 0.0015 % n.a. 0.32 % 4.0 %

traces, e.g. 900. Note, that no further improvement can be expected since security levels
reach their minimums already at about 200-400 traces. However, even with 900 traces
per key, the attacker can achieve a security level of < 70 bits only for 0.32 % cases. This
means that only every 300-th device will exhibit a security level < 70 bits when a large
number of measurements per key is allowed.

The results for a noiseless simulation are given as a reference. They cannot be regarded
as a true lower bound, however, since the model is simplified. This simplification may in
part be detrimental for the attacker (e.g. differently weighted transitions may be easier to
distinguish from each other).

7 Empirical study: General purpose microcontroller
We repeated the described attack on the DES hardware accelerator of an STM32F4 general
purpose microcontroller. The device is studied after decapsulation from the top side of the
die using a 250 µm diameter EM probe and a sampling rate of 2.5 GS/s. The measurement

36

(a) Joint leakage of bits 0, 14 does not disclose leakage type.

(b) Individual value leakage of bits 0, 14 is significant.

(c) No XOR leakage (red), only independent leakage of bits (blue)

Figure 22: SNR (y-axis) for the bit pair 0,14 during the time period, where key-dependent
leakage was observed (x-axis, samples recorded at 2.5 GS/s). The joint leakage can be
explained entirely by the value leakage of the bits. There is no XOR leakage.

35 40 45 50 55
security level

0

500

1000

1500

nu
m

be
r o

f k
ey

s

Figure 23: Histogram of security levels after template attacks on 10k keys using 100 traces
per key on STM32 hardware DES accelerator. The average security level, marked by an
orange line, is at 48.4 bit.

position and 600 POIs for the template attack were chosen based on a CPOI leakage test.
As emphasized before, it is crucial to understand the exhibited leakage of the device to

make the right choices for the model in the template attack (see descriptions in Section A.4

Heyszl et al. 37

and Section 3). We performed a test to determine the leakage type similar to Section 5. The
results are discussed here for key bits 0 and 14. Figure 22 shows the computed SNR values,
starting with the joint SNR of both bits in black in the upper graph. There is exploitable
leakage, which could be caused by any leakage model. From the middle graph, it can be
seen that significant value leakage of the bits is present and exploitable as well. The lower
graph shows that the entire joint leakage can be explained by the sum of independent
value leakages of the two bits, depicted in blue. There is virtually zero additional XOR
leakage, which is shown in red. Identical results were observed for other tested bit pairs
(data not shown). We conclude that the device exhibits value leakage from individual key
bits, but no XOR leakage. Consequently, this device has a completely different leakage
model than the one investigated in Section 5, which has pure XOR leakage.

According to Section 3.1.1, this means that key bit values (not their XORs) should
be targeted directly during profiling, and that key enumeration can be performed in a
straight-forward manner (not on XORs) due to the independence of individual bits. We
chose 7 bit templates for classifying key bit values during the attack. Therefore, the model
used for the template attack is also different to the case described in Section 5 where XOR
leakage is targeted, and enumeration performed on XOR values.

Figure 23 shows the resulting security levels after attacking 10k keys using 100 traces
per key. We can observe a wide distribution of security levels again, with a mean security
level of 48.4 bit. This is similar to the empirical study in Section 5, although device,
implementation (different manufacturer) and leakage model differ between the two empirical
cases. Specifically, the previously observed XOR leakage between round key bits is missing
here. Nonetheless, the distribution of security levels is similar, including the observation of
weak keys. These results support the conclusion that any key-schedule implementation
with non-uniform distribution of leakage may have varying security levels after a template
attack. In particular, this case study proves the point for Hamming weight leakage of a
DES key-schedule.

8 Empirical study: Second Security Controller
We repeated the described attack against a device of another family of security controllers.
The measurement setup and processing steps are very similar to Section 5. A number of
460 POIs was chosen for the template attack. Figure 24 shows the resulting security levels
after attacking 1k keys using 900 traces per key. We can observe a wide distribution of
security levels again, with a mean security level of 48.7 bit.

25 30 35 40 45 50 55
0

50

100

150

200

Figure 24: Histogram of security levels after template attacks on 1k keys using 900 traces
per key. The average security level, marked by an orange line, is at 48.7 bit.

The results are comparable to the empirical study in Section 5 where the average
security after using 900 traces is at 45.7 bit. The security level distribution is shifted to
the right by ≈ 3 bit which means that the percentage of keys with lower security levels is
lower. Consequently the number of keys with low security levels (e.g. below 80 bits) in
a T-DES use will also be lower while the general observation of keys with low security

38

remains.

Figure 25: Two groups of random keys, one from a uniform distribution (blue) and one with
skewed ratio of zeros and ones (red, either 90% zeros or 90% ones). Security levels after
attacking simulated and measured traces are shown on the x-axis and y-axis, respectively.
Linear approximations are plotted for both groups.

Additionally and similar to Section 5.6.3, we tested two different classes of keys in regard
to their relation between simulated security levels and outcome of actual attacks. One
class containing 288 random keys, the other containing 212 keys with key bits Bernoulli(p)-
distributed, where the probability of a key bit being zero is either p = 0.1 or p = 0.9.
The bits of these keys are therefore almost all ones or all zeros. For both classes, we
performed attacks on noiseless simulated traces as well as on real measurements using 700
measurements. Figure 25 depicts the results for both classes in a similar manner as in
Section 5.6.3. The slope of the red regression line is 1.15, for the blue one 0.27. The results
are comparable. The same strong dependency between simulation and actual attacks is
detectable for keys with extreme Hamming weights.

9 Conclusion
The investigation answered many important questions regarding profiled side-channel
attacks against the DES key schedule in general and two commercial security controller
products in specific. The main insight is that weak keys (as a part of widely distributed
results) exist for implementations of the DES key schedule when faced with profiled
side-channel attacks. This is independent of a specific device in the sense that (1) at least
two frequently encountered leakage models of round keys are permitted, and (2) that even
a very simplified simulation model yields comparable results. We find that weak keys
are partly device-agnostic and partly device-specific. From this, it seems reasonable to
assume that many more implementations may be affected if their DES key schedule is not
adequately protected. Properties of the DES key schedule, i.e. mainly its linearity, seem
to reinforce the issue which may be yet another indication that DES is outdated.

Heyszl et al. 39

Based on our results and given a specific device and measurements setup, the key-
dependent distribution of 3-key triple-DES security levels can be estimated based on a
reasonable amount of tested single DES keys (e.g. 1000 keys in this work) to derive
their single DES distribution. A reasonable number of traces per each key (e.g ≈ 400 in
this work) allows to accurately determine each keys convergence level in the noise limit.
The important question is: How should the security level after side-channel analysis be
assessed when results are widely distributed and weak keys are existent? The results in
this work show key-value-dependent distributions of security levels with tails reaching
down to almost zero (worst case of 2 bit remaining security level for two specific DES
keys, i.e. all zeros/ones, which are also cryptographically weak). Basing the security
estimates for a device solely on such rare worst cases seems unreasonable. We report the
following numbers for the first investigated commercial security controller (results for the
second security controller lead to slightly higher security levels). The mean security level
for 3-key triple-DES on this device after single trace attacks is 96.06 bit. A fraction of
0.24 % key-triples will lead to a security level of < 80 bits after a single trace attack. By
increasing the number of traces to 900 traces per key the attacker gains an advantage and
the fraction of key-triples < 80 bits increases to 6.3 %, while the mean is still at 88.7 bit.
The fraction of key-triples < 70 bits is still only 0.32 %.

Another question is, whether such wide distributions of results and the existence of
weak keys are also observed in profiled side-channel attacks against the AES key schedule.
While the AES key schedule includes non-linearity, a profiled attack against intermediate
variables of the key schedule should likely lead to observations that some values are
classified better than others. The AES key-schedule non-linearity only means that such
observations will likely only be true for few or single round keys at once. In our opinion,
it seems likely that all profiled attacks against key schedules, which do naturally not
include a differential approach and high number of different inputs5 are affected by this
value-dependent difference in attack outcome. The DES key schedule only seems especially
prone to such weakness because of its linearity

References
[BGH+15] Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Damien Marion, and

Olivier Rioul. Less is more. In Tim Güneysu and Helena Handschuh, editors,
Cryptographic Hardware and Embedded Systems – CHES 2015, pages 22–41,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[Bun19] Bundesamt für Sicherheit in der Informationstechnik. BSI - Technische
Richtlinie. Kryptographische Verfahren: Empfehlungen und Schlüssellängen.
TR-02102-1, 2019.

[CK13] Omar Choudary and Markus G Kuhn. Efficient template attacks. In In-
ternational Conference on Smart Card Research and Advanced Applications,
pages 253–270. Springer, 2013.

[DH77] Whitfield Diffie and Martin E. Hellman. Special feature exhaustive crypt-
analysis of the NBS data encryption standard. IEEE Computer, 10(6):74–84,
1977.

[DS16] François Durvaux and François-Xavier Standaert. From improved leakage
detection to the detection of points of interests in leakage traces. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 240–262. Springer, 2016.

5During DPA, e.g. in its profiled version which shares similarities to other profiled attacks, multiple
different intermediate values are matched for each key value. This makes value-dependence unlikely.

40

[GGJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A testing
methodology for side-channel resistance validation. In NIST non-invasive
attack testing workshop, 2011.

[GGP+15] Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schüth, and
François-Xavier Standaert. Simpler and more efficient rank estimation for
side-channel security assessment. In Fast Software Encryption, pages 117–129.
Springer Berlin Heidelberg, 2015.

[GS14] Vincent Grosso and François-Xavier Standaert. ASCA, SASCA and DPA
with enumeration: Which one beats the other and when? In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 291–312. Springer, 2014.

[HMH+12] Johann Heyszl, Dominik Merli, Benedikt Heinz, Fabrizio De Santis, and
Georg Sigl. Strengths and limitations of high-resolution electromagnetic
field measurements for side-channel analysis. In Stefan Mangard, editor,
Smart Card Research and Advanced Applications, Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2012.

[HZZW16] Yongbo Hu, Chen Zhang, Yeyang Zheng, and Mathias Wagner. Ciphertext
and plaintext leakage reveals the entire TDES key. Cryptology ePrint Archive,
Report 2016/1143, 2016. https://eprint.iacr.org/2016/1143.

[KB07] Boris Köpf and David A. Basin. An information-theoretic model for adap-
tive side-channel attacks. In Proceedings of the 2007 ACM Conference on
Computer and Communications Security, CCS 2007, Alexandria, Virginia,
USA, October 28-31, 2007, pages 286–296, 2007.

[LWWW17] Yang Li, Shuang Wang, Zhibin Wang, and Jian Wang. A strict key enu-
meration algorithm for dependent score lists of side-channel attacks. In
International Conference on Smart Card Research and Advanced Applica-
tions, pages 51–69. Springer, 2017.

[MH81] Ralph C. Merkle and Martin E. Hellman. On the security of multiple
encryption. Commun. ACM, 24(7):465–467, July 1981.

[MM18] Daniel P. Martin and Marco Martinoli. A note on key rank. IACR Cryptology
ePrint Archive, 2018:614, 2018.

[MMO18] Daniel P. Martin, Luke Mather, and Elisabeth Oswald. Two sides of the same
coin: Counting and enumerating keys post side-channel attacks revisited.
IACR Cryptology ePrint Archive, 2018:19, 2018.

[MMOS16] Daniel P. Martin, Luke Mather, Elisabeth Oswald, and Martijn Stam. Char-
acterisation and estimation of the key rank distribution in the context of
side channel evaluations. In Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryptology
and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings,
Part I, pages 548–572, 2016.

[MOOS15] Daniel P. Martin, Jonathan F. O’Connell, Elisabeth Oswald, and Martijn
Stam. Counting keys in parallel after a side channel attack. In Proceedings,
Part II, of the 21st International Conference on Advances in Cryptology —
ASIACRYPT 2015 - Volume 9453, pages 313–337, Berlin, Heidelberg, 2015.
Springer-Verlag.

https://eprint.iacr.org/2016/1143

Heyszl et al. 41

[MOP08] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks: Revealing the secrets of smart cards, volume 31. Springer Science &
Business Media, 2008.

[Nat16] National Institute of Standards and Technology. NIST special publication
800-57 Part 1 Revision 4. Recommendation for key management. Part 1:
General, 2016.

[PMMOS16] Daniel P. Martin, Luke Mather, Elisabeth Oswald, and Martijn Stam. Char-
acterisation and estimation of the key rank distribution in the context of
side channel evaluations. pages 548–572, 12 2016.

[SC04] S. Salvadore and P. Chan. FastDTW: Toward accurate dynamic time warping
in linear time and space. In 3rd Workshop on Mining Temporal and Sequential
Data, 2004.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology - A
clear roadmap for side-channel evaluations. In Cryptographic Hardware and
Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo,
France, September 13-16, 2015, Proceedings, pages 495–513, 2015.

[SMY09] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified frame-
work for the analysis of side-channel key recovery attacks. In Annual interna-
tional conference on the theory and applications of cryptographic techniques,
pages 443–461. Springer, 2009.

[UHDS+18] Florian Unterstein, Johann Heyszl, Fabrizio De Santis, Robert Specht, and
Georg Sigl. High-resolution EM attacks against leakage-resilient PRFs
explained. In Cryptographers’ Track at the RSA Conference, pages 413–434.
Springer, 2018.

[UHDSS17] Florian Unterstein, Johann Heyszl, Fabrizio De Santis, and Robert Specht.
Dissecting leakage resilient PRFs with multivariate localized EM attacks. In
International Workshop on Constructive Side-Channel Analysis and Secure
Design, pages 34–49. Springer, 2017.

[UKM+18] Thomas Unterluggauer, Thomas Korak, Stefan Mangard, Robert Schilling,
Luca Benini, Frank K. Gürkaynak, and Michael Muehlberghuber. Leakage
Bounds for Gaussian Side Channels. Springer, 2018.

[VCGRS12] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-
Xavier Standaert. An optimal key enumeration algorithm and its application
to side-channel attacks. In International Conference on Selected Areas in
Cryptography, pages 390–406. Springer, 2012.

[VCGS13] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert.
Security evaluations beyond computing power. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 126–141. Springer, 2013.

[VCGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert.
Soft analytical side-channel attacks. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 282–
296. Springer, 2014.

42

[vOW90] Paul C. van Oorschot and Michael J. Wiener. A known plaintext attack on
two-key triple encryption. In Advances in Cryptology - EUROCRYPT ’90,
Workshop on the Theory and Application of of Cryptographic Techniques,
Aarhus, Denmark, May 21-24, 1990, Proceedings, pages 318–325, 1990.

[WH17] Mathias Wagner and Stefan Heyse. Single-trace template attack on the DES
round keys of a recent smart card. IACR Cryptology ePrint Archive, 2017:57,
2017.

[WH18] Mathias Wagner and Stefan Heyse. Improved brute-force search strategies
for single-trace and few-traces template attacks on the DES round keys.
Cryptology ePrint Archive, Report 2018/937, 2018. https://eprint.iacr.
org/2018/937.

[WHG17] Mathias Wagner, Stefan Heyse, and Charles Guillemet. Brute-force search
strategies for single-trace and few - traces template attacks on the DES round
keys of a recent smart card. IACR Cryptology ePrint Archive, 2017:614, 2017.

[WHZZ16] Mathias Wagner, Yongbo Hu, Chen Zhang, and Yeyang Zheng. Comparative
study of various approximations to the covariance matrix in template attacks.
IACR Cryptology ePrint Archive, 2016:1155, 2016.

A Background on tools, analysis, and measurements
In this Section, we describe all employed trace processing and analysis methods which
are taken from the well-established state of the art. Where necessary, we describe our
implementation choices on top of the respective publications. We also describe our
high-precision EM measurement setup.

A.1 Alignment
Alignment refers to a post-processing step on recorded traces. Most side-channel analyses
require alignment of traces in order to remove the effects of deliberate and uncontrollable
misalignment sources (e.g. internal oscillators, random dummy cycles, random delays,
unsynchronized operating system tasks). Misalignment cannot be prevented completely
during oscilloscope recordings, even by using multi-stage triggers and triggering on IO and
power trace patterns.

Static alignment methods align a trace at one particular time sample or during a
short time-span. It then depends on the reasons for misalignment and the amount of
decorrelation, how many samples before and after this point are aligned correctly. This
may be sufficient if only a short time period needs to be analyzed. For example, if the
pattern or timing of the targeted algorithm execution has been identified beforehand, then
fewer samples need to be aligned correctly. In many cases, multiple alignment methods are
cascaded. Significant peaks in EM traces or edges in power traces can often be used for a
first step of alignment. Sometimes, if a significant pattern has been identified, a simple
pattern matching (least square matching) using a cut example trace can be employed. If
static alignment methods are not sufficient to align the required time-span due to strong
jitter or random delays, dynamic alignment methods can be used. The disadvantage of
dynamic alignment methods are increased runtime and reduced quality of local alignment.

The most popular form of dynamic alignment is dynamic time warping. It is used
to align all traces to a chosen reference trace, by locally minimizing a suitable distance
measure, for example the mean absolute error or mean square error. A fast algorithm for

https://eprint.iacr.org/2018/937
https://eprint.iacr.org/2018/937

Heyszl et al. 43

dynamic time warping has been described by Salvadore and Chan [SC04] and is available
as a module for python6.

The FastDTW algorithm requires a radius parameter. A larger radius parameter forces
the algorithm to search a larger range for the best fit. It can be difficult to visually
determine the quality of this form of alignment. A sure sign that the radius parameter
is too small is a large number of jumps in the time-warping function, which appear as
constant parts in the aligned traces. The runtime increases significantly with larger radius
parameters. From our experience with side-channel traces, we know that the required
radius parameter scales mainly with the length of the traces and less with the amount of
jitter. In order to work with small radius parameter (r <= 20), we therefore split our
traces in short sections (each ∼5000 samples long) and align these against sections of the
reference trace. The trace sections are chosen such that they are overlapping by at least
twice the maximal jitter. The overlap can then be discarded after aligning the pieces to the
reference trace. The aligned sections (without the overlapping parts) can be concatenated
to recover a complete aligned trace. Due to this piecewise alignment, small errors can
appear at the edges of the sections, especially if the overlap is not large enough. In our
experience, this disadvantage is greatly outweighed by the speed-up compared to larger
radius parameters required otherwise.

A.2 Assessing the amount of side-channel leakage
In side-channel analysis, a selection of relevant time-samples in a trace, called points
of interest (POIs) has to be performed as a first step. When using a high-precision
EM measurement setup, the position of the probe has to be optimized simultaneously.
Therefore, it is crucial to assess the amount of side-channel leakage that can be exploited
for each targeted variable. This variable usually depends on a part of the secret key.

In most cases there are several different variables to be targeted for different parts
of the key, which we refer to as subkeys. The optimal measurement position could be
different for every part. Nevertheless, the measurement position is usually determined for
one exemplary subkey or using a leakage test which targets the entire key. Unterstein et
al. [UHDSS17, UHDS+18] determine multiple measurement positions for different subkeys.
They are in a setting, where an attacker is allowed unlimited measurements of the attacked
key. Hence, they look for different measurement positions to target different subkeys
optimally.

In contrast, in our contribution the focus is on attacks with a limited number of
observations per key. Hence, an attacker is unable to repeat the observation at different
measurement positions, even if different positions would be better to attack different key
parts. However, profiling of leakage using an open device with an unlimited number of
measurements is allowed. Some of the following methods also apply to settings where
the key is inaccessible and unknown to the attacker (e.g. correlation-based leakage test).
Measurements are always multivariate with many time-samples. A leakage assessment
is usually performed for every measurement position, and for every time-sample in an
univariate manner when searching for optimal measurement positions and exploitable
time-samples. Established univariate methods compute signal-to-noise ratios (SNRs) or
correlation coefficients to measure and compare exploitable leakage. Sections A.2.2 and
A.2.3 describe the most established approaches based on t-test statistics and the Pearson
correlation coefficient respectively. Actual SNR-computations are generally more expensive.
Hence SNR-based leakage tests are used less.

In general, a leakage test is performed early during an analysis when only little
information about the implementation is available. Still, such methods already make some
assumptions about the leakage behavior of the implementation. They assume that variables

6https://pypi.org/project/fastdtw/

https://pypi.org/project/fastdtw/

44

can be described sufficiently by multivariate Gaussian distributions, and it is assumed that
variables leak information in some specific form, for instance as their Hamming weight.
Based on these assumptions, one performs a leakage test on the chosen variables. If
no leakage is detected in this manner, other models can be tested. As an example, the
transition between two consecutive values in a storage cell would leak their Hamming
distance (see Section 3.1). Such choices depend on the assumptions about the targeted
algorithm and implementation.

A.2.1 Univariate SNR-based leakage test

One straightforward approach to leakage assessment is to compute a univariate SNR for
the variables to be classified through their statistical moments. This is usually achieved
by assuming the signal can be characterized through the mean value of traces in a class
exhibiting the same value and weighing the distance between class means by their inter-
class variance. The SNR of the exploitable signal of a variable in side-channel data was
established by Mangard et al. [MOP08] as

SNR = Var(Signal)
Var(Noise) = Var(µ0, . . . , µi−1)

E[σ2
0 , . . . , σ

2
i−1] , (10)

with the class means µi and variances σ2
i for all possible values of the variable, where i is

the class label. This method only works in the profiled setting. The advantage of the SNR
is that leakage from independent variables is additive. Therefore, it allows to determine
the contribution of different variables to the overall leakage. Typically the number of
classes is high, e.g. 256 if the target is a byte value, so a large number of traces is required
to calculate a sufficient estimate of the means and variances.

Instead of SNRs, we mainly use two leakage tests with a direct statistical interpretation.
During the initial search for leakage in the full side-channel traces or when the measurement
position is to be determined by evaluating many possible positions, we prefer to use the
t-test. For a more precise investigation to assess the amount of exploitable leakage and in
order to determine POIs we use the so-called ’correlation-based leakage test’ described
by Durveaux and Standaert [DS16]. It has the advantage over different forms of t-tests
(e.g. CRI’s non-specific fixed vs. random t-test [GGJR+11]) that the metric and, thus the
POIs identified with it, translate directly to the success rate of the attack. We refer to
this correlation based leakage test as CPOI.

A.2.2 Leakage assessment based on the t-test

The t-test can be easily adapted to test for all kinds of leakage, like plain- or ciphertext,
key and subkeys, and any intermediate values. For example, to test for plaintext leakage
using a t-test, a set of measurements with fixed plaintext and key is compared to a set
with random plaintexts and fixed key using their respective mean values or other statistical
moments. The t-test outputs so-called t-values which indicate statistically significant
differences in the statistical moments. The significance threshold is usually set to the
value 4.5 [SM15], which corresponds to a confidence level greater 0.99999. The absolute
t-values can be compared and used directly as scores to determine good measurement
positions. However, they cannot be used to gain insights into the success probability of
attacks. T-tests are especially useful if the number of available measurements is low, since
statistical moments need to be estimated only for two classes. This is most interesting in
cases where the measurement position is unclear. Then, compared to the CPOI leakage
test, a smaller, more feasible number of traces needs to be recorded at every position.

We use the t-test to search for key leakage and identify possible executions of the
key schedule. To test for key leakage, a set of measurements with fixed key and random
plaintexts is compared to a set with random keys and random plaintexts.

Heyszl et al. 45

A.2.3 Univariate correlation-based leakage test (CPOI)

The correlation-based leakage test was initially proposed as a leakage test which does not
require key knowledge. It uses plaintext bytes as a base to separate all measurements
into different classes for the generation of univariate profiles (mean traces). These profiles
are then correlated (Pearson correlation) in an univariate manner with the attack set to
generate a correlation trace. The test detects the leakage of the plaintext byte itself as well
as the leakage of all intermediate byte values which have a bijective relation to this plaintext
byte (e.g. values after key addition or s-box substitution). The result of a correlation-based
leakage test is a correlation coefficient and directly implies the success-rate of an actual
univariate profiled DPA attack.

The correlation-based leakage test as described by Durveaux and Standeart includes
statistical cross-validation through repeatedly segmenting all available measurements into
a larger profiling and smaller disjunct attack set (with all attack sets being disjunct) to
minimize statistical estimation errors of the Pearson correlation coefficient. The profiling
set is then used to estimate the leakage for a DPA attack based on the Pearson correlation
coefficient. The results from multiple repetitions are averaged to complete the cross-
validation. The leakage test effectively equals a profiled univariate CPA attack with
cross-validation.

This leakage test can also be targeted at other variables like transitions between
intermediate values in storage registers (i.e. Hamming distances) to focus on the leakage
of only these intermediate values. In this case, there is no possible bijective relation to
other values, and consequently no false positives.

A.2.4 Use cases and limitations

Both, t-tests and correlation-based leakage tests can generally be performed in a setting
with either an unknown, or known key. A setting with unknown but fixed keys allows to
find plaintext and ciphertext leakage and dependent leakages. A setting with known and
changeable keys also allows to identify key schedule leakage.

Considering AES as an example, we observe that a known plaintext byte and an
intermediate value after key byte addition and the substitution-box layer (sub-Bytes)
have a bijective relation. The bijective property means that they represent a permutation
(or ’relabeling’) of the input which has no effect on the test. Therefore, both tests may
identify leakage due to the plaintexts as well as key-dependent intermediate values. Thus,
intermediate values, for example after key addition and after byte substitution, cannot be
distinguished from direct leakage of the plaintext. This non-distinguishability continues
until after the first mix-columns, where three other (not regarded) bytes mix into the
intermediate values and the bijection no longer exists. Hence, one usually has to sort
out POIs where only plaintext leakage is present. This is done by using a more specific
leakage model (as for example the Hamming weight) that deliberately breaks the bijection.
Another option is to take measurements where both key and plaintext vary, if the device
allows this. However, the specific leakage model may not be accurate. In such a case it is
preferable to perform a test based on original values. When targeting leakage from the
key schedule, no false positives are expected.

A.2.5 Multivariate leakage assessment

Leakage is generally multivariate and attacks based on multivariate leakage (e.g. profiled
multivariate DPA) are superior to univariate approaches like correlation-based DPA, which
has been popular for a long time.

Bruneau et al. [BGH+15] as well as Unterluggauer et al. [UKM+18] describe how to
compute multivariate SNRs. Both provide a formula to estimate multivariate SNR from
signal and noise covariance matrices. Bruneau et al. derive an approximation in the limit

46

of many POIs through the calculation of a LDA, while Unterluggauer et al. present an
approximation in the limit of many traces using a mutual information estimate. In addition,
Bruneau et al. show the effect of autoregressive noise on the SNR. Autoregressive noise
means that adjacent time-samples are affected by correlated noise, which is realistic for
high-frequency sampling of physical dimensions where a certain low-pass behavior always
has to be assumed.

Importantly, multivariate leakage assessment is not necessary to select POIs from a
trace for the obvious reason that every time-sample is assessed independently. However,
strictly speaking, one should aim at determining measurement positions, which maximize
multivariate leakage. But in many cases, it may be sufficient to select measurement
positions based on univariate leakage assessments. For this, it is helpful to choose a
suitable measure to combine results from univariate leakage tests into a single score. This
can for instance be done by using the maximum or the averaged/summed univariate
correlations. This simplification may be useful, even though it is obviously inaccurate since
the assumption behind a summation of SNRs is that the noise in all univariate samples is
independent/uncorrelated (see Bruneau et al. [BGH+15]). The assumption behind taking
the maximum univariate SNR would be that the signal and noise are strongly correlated
over all POIs (i.e. approximately equal), and there is little gain in the multivariate
evaluation over the univariate one. The reality lies somewhere in-between, since noise is
usually slightly correlated.

A.3 Dimensionality reduction
Bruneau et al. [BGH+15] confirm the common belief from experts in the field of pattern
classification that in a profiled setting, linear discriminant analysis (LDA) is the optimal
method for dimensionality reduction. Hence, principal component analysis (PCA) can be
disregarded in this profiled setting. They also confirm that the success rate of optimal
attacks is ultimately equal before and after LDA. This means that LDA can be used if
the number of dimensions impairs computation speed of attacks. However, LDA as well
as estimating profiles for template matching require the computation of class covariance
matrices. Hence, if the number of POIs (n) to be processed becomes ’too large’ (matrices
n× n), LDA does not help because the same covariance matrix has to be computed. A
preliminary selection of POIs based on a univariate leakage test is usually performed for
this reason.

The use of trace compression by other means such as e.g. averaging n consecutive
time-samples depends on the specifics of the device and recording setup. Oversampling
could reduce noise components with higher frequencies than the actual signal but is not
usually employed according to the current state-of-the-art.

A.4 Template attacks
The goal of template attacks is the classification of key-dependent intermediate variables
or subkeys during a cryptographic computation. As a preliminary step, in many cases,
POIs are selected from the measurement or a dimensionality reduction is performed as
described above. This section describes the approach based on state-of-the-art algorithms
to classify individual values during profiling and the computation of probabilities for subkey
candidates during the attack.

A.4.1 Recovering individual subkeys and computing discriminant scores

It is usually assumed that an exploitable signal from a variable v in a device has a
multivariate Gaussian distribution with signal means µ and additive Gaussian noise with
covariance matrix Σ. The observed noise is combined from electrical and switching noise.

Heyszl et al. 47

Switching noise commonly refers to the side-channel signal of other processed values in
a digital device. The various sources of noise and their characteristics are discussed at
length in the book of Mangard et al. [MOP08]. During a profiling phase the distribution
parameters of the multivariate Gaussian distributions are estimated for every possible
value of v using many side-channel observations t. This allows to compute the probability
density function for observing a certain measurement t given the respective value v based
on the estimated parameters µv,Σv as

p(t|v) = 1√
(2π)n · det(Σv)

· exp
(
−1

2 · (t− µv)′ ·Σ−1
v · (t− µv)

)
. (11)

The variable v cannot be observed directly and is used only to identify different classes.
Therefore, it may be replaced by any unique choice of class labels.

During the evaluation of a trace in the attack phase the observation is compared to the
parameterized distributions of different values v. Given the probability density function
above and applying Bayes’ theorem, the likelihood L(v|t) = p(v|t) can be computed. By
finding the argument v that maximizes the likelihood, we obtain the most likely candidate

v∗ = argmax
v

L(v|t).

Choudary and Kuhn [CK13] describe several simplifications for the computation of this
maximum likelihood by dropping the normalization. The result of applying Bayes’ theorem
is first simplified by removing the denominator which is equal for all values and by removing
the a priori probabilities of values v since they are assumed to be equally likely, such that
the likelihood is proportional to the profiled distribution function

L(v|t) ∝ p(t|v).

By calculating the logarithm of the likelihood, numerical stability is improved. Since
these operations are monotone functions, the order of the log-likelihood scores dlog(v, t) =
logL(v|t) and in particular its maximum is unchanged.

Usually, it suffices to assume that the noise is not correlated with the value of the
variable v and we can replace Σv by the pooled covariance matrix Σpooled, which is the
average of covariance matrices over all classes. According to Choudary and Kuhn [CK13]
it is always recommended to try pooled covariances first. Pooling improves the estimate
of the covariance matrix, which helps numerical stability during the required inversion.
This leads to the simplified expression for the discriminant score dlog of an observation t
belonging to a certain value v

dlog(v, t) = −1
2 · (t− µv)′ ·Σ−1

pooled · (t− µv) (12)

and

v∗ = argmax
v

dlog(v, t). (13)

The factor − 1
2 is kept to ensure that later, probabilities can be computed from the results

(see Section A.4.3). Equation (12) is equal to Equation (23) in [CK13].
Choudary and Kuhn [CK13] also describe further simplifications by expanding Equation

(12) and omitting the quadratic term in t, which is constant for all values v due to the
pooled covariance. They achieve significantly faster computation and more robust results
in their empirical evaluation.

48

A.4.2 Combining multiple traces

Typically an attack includes the evaluation of multiple traces T = {ti}. Choudary and
Kuhn [CK13] describe how likelihoods can be estimated from multiple traces. We use
Equation (28) in [CK13], which calculates the joint likelihood as the product over all
traces, which leads to summation in the logarithmic discriminant score,

djoint
log (v,T) = −1

2
∑
ti∈T

(ti − µv)′ ·Σ−1
pooled · (ti − µv). (14)

Choudary and Kuhn [CK13] also describe the alternative option of computing the joint
likelihood by first averaging the traces and then computing the discriminant score from
the averaged traces. Although this is computationally much faster, in general it leads
to too low estimates of the covariances. However, with pooled covariance matrices the
averaging of traces leads to exact scores, which they confirm through empirical results.
The linearized score for multiple traces then becomes

djoint
linear(v,T) = |T |

(
µ′v ·Σ−1

pooled · t̄−
1
2µ
′
v ·Σ−1

pooled · µv

)
, (15)

where the average over all traces is

t̄ = 1
|T |

∑
ti∈T

ti

and |T | denotes the number of traces.

A.4.3 Retrieving probabilities from discriminant scores

Rank estimation and enumeration algorithms require probability estimates for each hy-
pothesis as input. Since the computed discriminant is not a probability, we need to derive
a probability from it to be able to use the key rank estimation algorithm. This is done by
inverting the logarithm through exponentiation and normalizing the scores to sum to one,
which recovers the probability densities p(v|t).

A.4.4 Choosing subkeys

Usually, a complete secret is recovered through repeating a template attack on different
parts of a key-dependent intermediate values. This segmentation into parts of certain
bit-lengths which are modeled and classified at once (e.g. 8 bit) is frequent and often
lacking reasoning. For example in the case of AES, due to the algorithmic structure, 8
bits are the obvious choice because all operations are byte-wise. The upper limit for the
bit-length of the attacked subkeys is given through computational and memory constraints
as well as through the number of traces available for estimating the statistical moments of
the templates.

In some cases, one set of templates can be used to attack all parts of the secret since
their leakage behavior is identical. In other cases, different sets of templates are built for
different parts of the secret.

Divide and conquer assuming independent variables and leakage. Most commonly, a
simple divide and conquer approach is employed to recover all parts of the key. This
approach is the least complex to implement. Parts of the secret are classified through
independent template attacks on key-dependent intermediate values, and subsequently
combined through key enumeration or rank estimation algorithms. One main assumption
for attacking parts of the key independently is that the noise and signal of different parts

Heyszl et al. 49

are not correlated. This may be the case if a software implementation handles individual
values sequentially and with significant time gaps between them. Also, current key rank
estimation and enumeration algorithms assume independence of the variables, which is
true under the above assumptions.

Hence, if there is no other relation between key parts (i.e. they are chosen independently
at random) and their leakage is not dependent, the current algorithms may be used without
further consideration (see Section A.5 about key rank estimation). See Section 3.1 for
more discussion in this direction. As always, if assumptions are not met precisely, it may
still be reasonable to proceed if satisfying results are achieved.

If divide and conquer does not apply - dependent variables. In case that the leaking
variables are dependent due to their algorithmic relations or specifics of the implementation,
it is more difficult to derive marginal probabilities. In Section 3.1 we describe solutions for
the different cases of variable and leakage dependencies.

In case dependencies cannot be resolved otherwise, classified variables and their depen-
dencies can be modeled as graphs. Then, probabilities of observations can be propagated
through the graph according to their mutual dependencies using dedicated belief propaga-
tion algorithms.

Such approaches also help to exploit the leakage of many intermediate values with known
functional dependencies. Veyrat-Charvillon et al. [VCGS14] describe this as Soft-Analytical
SCA (SASCA) and presented it as an improvement over previous so-called algebraic side-
channel attacks which use solvers (e.g. SAT solvers). Many intermediate values including
their algorithmic dependencies are modeled through a factor graph. Algorithms from
information theory, like belief propagation algorithms, are used to combine the probability
information from different values to derive better probabilities on key parts. Grosso
and Standaert [GS14] compare SASCA to algebraic attacks and to the straightforward
divide and conquer approach. They conclude that SASCA requires less traces if the
implementation leaks additional intermediate values with known functional dependencies.

However, even after propagating beliefs, the correct key may not be the most likely.
Hence, an attacker needs key enumeration to find the correct combination of parts based
on the updated probabilities. Belief Propagation can therefore be used to recover marginal
probabilities of variables that are independent but not directly observable through leakage.
Usually for any encryption scheme the secret is chosen uniformly at random and it should
be possible to achieve a suitable representation. Since currently published (optimal) key
enumeration algorithms assume independent variables as input, they can be applied directly.
However, information loss must be expected for cases where the secret is not represented
by independent variables and consequently the marginals remain dependent.

Simultaneous leakage. Another reason to look into more complex algorithms for the
classification of individual parts and the combination to derive a final secret could be if
parts of the secret leak simultaneously. Then, the leakage of different parts cannot be
observed independently because the template attack is affected by switching noise from
the unprofiled parts of the key, i.e. the unprofiled key values generate signals which act
as noise. If the number of bits with overlapping signals in the side-channel observation is
small enough, they can be classified at once. In this manner, the leakage signal of all bits
is exploited together and the effect of switching noise prevented.

If it is not possible to profile the entire secret at once, a selection of bits should be
made by trying to maximize SNR or correlations of subkeys. How parts of a secret can be
classified properly and combined to an entire secret, including a possibility for enumeration,
highly depends on the kind of leakage of the individual parts. See Section 3.1 for more
discussion on how the kind of leakage affects the approach to achieve key enumeration.

50

A.5 Key rank estimation
The previously described template attacks provide classification probabilities for candidates
of subkeys to match the observed traces. All popular and recent contributions assume
independence of subkey probabilities. From lists of probabilities for subkey candidates,
they allow to enumerate the key candidates in an optimal order based on the combined
classification probability for the entire key. The number of trials to find the correct key is
called the key rank. The logarithm of the key rank is the security level in bit and describes
the remaining entropy of the key after the attack. For security evaluations it is usually
good enough to estimate the security level directly without enumerating the keys. There
is a big family of algorithms based on estimating the joint probabilities of the subkeys
using histograms, starting with the work of Veyrat-Charvillon et al. [VCGRS12]. We use a
convolution based variation of the algorithm by Glowacz et al. [GGP+15]. An alternative
approach is based on path counting and was proposed by Martin et al. [MOOS15]. In their
follow-up papers [MMO18], [MM18], they argue that both approaches are mathematically
similar and optimal. Clearly, due to the algorithmic differences, they still differ in
computational and numerical performance. Martin and Martinoli [MM18] also show how
path counting and convolution algorithms can be parallelized.

Li et al. [LWWW17] describe a key enumeration (not rank estimation) algorithm which
handles multiple resulting score lists from different side-channel attacks for the same key
bits. For example they combine recovered key byte probabilities from a regular CPA
with recovered byte XOR-difference probabilities from a correlation-enhanced collision
attack. Those two are obviously dependent and common enumeration algorithms are
unable to exploit both results jointly. An alternative approach in such situations is to
propagate probabilities (beliefs) for the same subkeys within a factor graph to derive
marginal probabilities for variables, which are independent.

A.6 High-precision EM measurement setup
We use a Langer ICR HH high-precision EM probes with diameters 500 µm, 250 µm, 150 µm,
and 100 µm. In addition to the built-in 30 dB amplifier of the probe, another Langer PA303
30 dB pre-amplifier is employed. We use a LeCroy WavePro 725Zi oscilloscope with 2.5 GHz
bandwidth and a sampling rate of 5 GS/s, 2.5 GS/s, or 1 GS/s. We take measurements in
a grid, with step sizes of 50 µm to 200 µm.

	Introduction
	Related work
	Hu et al., Ciphertext and Plaintext Leakage Reveals the Entire TDES Key, 2016
	Wagner et al., Comparative Study of Various Approximations to the Covariance Matrix in Template Attacks, 2016
	Wagner and Heyse, Single-Trace Template Attack on the DES Round Keys of a Recent Smart Card, 2017.
	Wagner et al., Brute-Force Search Strategies for Single-Trace and Few-Traces Template Attacks on the DES Round Keys of a Recent Smart Card, 2017
	Wagner and Heyse, Improved Brute-Force Search Strategies for Single-Trace and Few-Traces Template Attacks on the DES Round Keys, 2018
	Summary

	Profiled attacks to recover key bit values - Leakage models, classification, enumeration
	Different possible leakage models of key bits
	Distinguishing XOR and value leakage

	DES key schedule and templates for implementations with exclusive XOR leakage
	Leakage of the DES key schedule
	Templates for exclusive XOR leakage
	Comparison to AES

	Empirical study: Security controller
	Chip preparation, measurement setup, and alignment
	Leakage test, measurement position, and POIs
	Leakage model
	Evaluating attack success
	Profiled template attack
	Generalization through simulation

	Impact on triple-DES
	Recap on the cryptanalytic security of triple-DES
	Side-channel security of 3-key triple-DES allowing a meet-in-the-middle advantage
	Triple-DES estimates based on measurement data

	Empirical study: General purpose microcontroller
	Empirical study: Second Security Controller
	Conclusion
	Background on tools, analysis, and measurements
	Alignment
	Assessing the amount of side-channel leakage
	Dimensionality reduction
	Template attacks
	Key rank estimation
	High-precision EM measurement setup

