
1

Tight bound on NewHope failure probability
Thomas Plantard ∗, Arnaud Sipasseuth †, Willy Susilo ‡ and Vincent Zucca §

Institute of Cybersecurity and Cryptology, University of Wollongong, Australia
Email: ∗thomaspl@uow.edu.au, †as447@uowmail.edu.au, ‡wsusilo@uow.edu.au, §vzucca@uow.edu.au

Abstract—NewHope Key Encapsulation Mechanism (KEM)
has been presented at USENIX 2016 by Alchim et al. and is one
of the remaining lattice-based candidates to the post-quantum
standardisation initiated by the NIST. However, despite the
relative simplicity of the protocol, the bound on the decapsulation
failure probability resulting from the original analysis is not tight.
In this work we refine this analysis to get a tight upper-bound
on this probability which happens to be much lower than what
was originally evaluated. As a consequence we propose a set of
alternative parameters, increasing the security and the compact-
ness of the scheme. However using a smaller modulus prevent
the use of a full NTT algorithm to perform multiplications of
elements in dimension 512 or 1024. Nonetheless, similarly to
previous works, we combine different multiplication algorithms
and show that our new parameters have competitive execution
times on a constant time vectorized implementation. Our most
compact parameters bring a speed-up of 9.5% (resp. an overcost
of 3.2%) in performance but allow to gain more than 19% over
the bandwidth requirements and to increase the security of 6%
(resp. 4%) in dimension 512 (resp. 1024).

Index Terms—Post-Quantum Cryptography, Karatsuba, Num-
ber Theoretic Transform, AVX implementation, Lattice Based
Cryptography, Ring-LWE

I. INTRODUCTION

The recent call of the National Institute of Standards and
Technology (NIST) for a post-quantum standardization aims at
selecting the best protocols resilient to the quantum computer
for encryption, key exchange and digital signature. The first
round of this process has been completed recently and only
26 candidates remain over the 69 initially proposed. The
algorithms chosen at the end of this process are supposed
to become cryptographic standards for the next decade(s).
Candidates whose security is based on lattice related problems
represent almost half of the remaining schemes and tend to
be among the most efficient. The majority of these lattice
candidates are based on the Learning With Errors (LWE)
([Reg05]) problem and its variants over rings: Ring-Learning
With Errors (Ring-LWE) ([LPR10]) and modules: Module-
LWE ([LS15]). Among them, NewHope protocol [ADPS16b]
is a KEM whose security is based on the Ring-LWE problem
and has been reported by the NIST as competitive in term of
bandwidth and clock-cycles despite quite conservative param-
eters1. It allows two users to exchange a common 256 bits
key in order to secure their future communications. However
the small errors ensuring the security of the protocol can
add together and make it fail, i.e. the two users will not
have the same key at the end. In order to ensure this only
happens with very low probability, the modulus q must be
chosen to be large enough in comparison to the size of

1https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf

the errors. In [ADPS16b] the authors have shown that the
modulus q = 12289 was large enough for this purpose. This
modulus has not been chosen randomly since it is the smallest
one allowing to use the Number Theoretic Transform (NTT)
algorithm in dimension n = 512 or n = 1024, which permits
to compute efficiently multiplications of elements. Considering
that the multiplication is the bottleneck of the arithmetic in this
scheme, and that vectorized implementations of NTT are the
most efficient way to perform this task on these dimensions
([Sei18]), it is crucial to ensure good performance.

In this work, we review the probability error analysis made
in [ADPS16b], also used in the slightly different version
[ADPS16a] submitted to the NIST, and show that the actual
bound is much lower than what was initially evaluated. This
allows to justify the use of a smaller modulus q while
maintaining a very low probability failure. Reducing the size
of the modulus benefits directly to the bandwidth requirements
since elements will be represented on less bits, and to the
security of the scheme which is increased. However, given
that the original modulus was the smallest one allowing the
use of the NTT in dimensions 512 and 1024, one needs
to find an alternative strategy to compute the product of
elements efficiently. We propose different alternative moduli
and, similarly to previous works ([Moe76], [ZXZ+18], [LS19],
[ZPL19],. . .), we show that by combining Karatsuba and
school-book multiplication with NTTs of smaller dimensions
we obtain competitive performance with the state-of-the-art.
More precisely, two of these moduli increase both the com-
pactness and the performance up to 15% without reducing
significantly the level of security (−1% in the worst-case).
The detailed parameters can be found in Table III. Note that
our vectorized implementation works in constant time and is
based on Seiler’s work ([Sei18]) which is, at the best of our
knowledge the current state-of-the-art.

II. RELATED ART

Optimising the efficiency of the submissions to the NIST is
a hot topic. In a certain sense, Kyber ([BDK+18]), which is
essentially the adaptation of NewHope to the Module-RLWE
setting, has been created to achieve the best possible perfor-
mance from NewHope. However the parameters of NewHope
remain, even now, very conservative. It has been mentionned
recently that one could reduce the modulus size of NewHope
to improve the compactness of the scheme ([ZXZ+18]) while
performing the arithmetic with a classical trick: combining a
naive multiplication algorithm with smaller NTTs ([Moe76]).
This work has been recently improved by using a Karatsuba
pattern instead of the naive algorithm ([ZPL19]). However

2

since the authors use the same failure probability analysis than
in [ADPS16b], the parameters they have derived are far from
optimal. Moreover the design of their arithmetic technics has
lead to slightly worst performance than in the original setting.

Using the idea of [ZXZ+18], Lyubaschevsky and Seiler
have proposed a different arithmetic design. The idea is to
perform an uncomplete – i.e. when the defining polynomial
does not factorize in linear terms, NTT first and then perform
the products modulo the small, not linear, factors ([LS19]).
This has lead to significantly better performance and has been
included in Kyber’s implementation since then ([RJL+19]).
NewHope implementation of the NTT ([ADPS16b]) which

smartly combines Montgomery reductions ([Mon85]) and
floating point operations, was considered, to the best of our
knowledge, as the reference implementation at the time and
was also used in Kyber. However in a remarkable work
([Sei18]), Seiler showed that by using a slightly different
Montgomery reduction algorithm, and vectorized integer in-
structions for the NTT, one could gain a factor 4 (resp. 6) over
the polynomial multiplication of NewHope (resp. Kyber).
His work has been included in Kyber’s implementation
recently ([RJL+19]).

III. BACKGROUND

Let m be a power of two, and let Φm(X) = Xn + 1 be the
cyclotomic polynomial of index m with n = ϕ(m) = m/2 with
ϕ the Euler’s totient function. The associated cyclotomic ring
will be denoted R = Z[X]/(Xn + 1) and for q ≥ 1 we will
denote the quotient ring Rq = R/qR � (Z/qZ)[X]/(Xn + 1).
Bold lower-case letters a will denote elements in R which
can be seen as polynomials of degree strictly smaller than n
with integer coefficients. For an element a ∈ R we denote,
the L∞ norm ‖a‖∞ = max{|ai |,0 ≤ i < n}, the L1 norm
‖a‖1 =

∑n−1
i=0 |ai | and the L2 norm ‖a‖2 =

√∑n−1
i=0 a2

i .
The ring of integers modulo q will be denoted Zq . The

notation [·]q will represent the centred reduction of an integer
modulo q in [−q/2,q/2) and can be extended to polynomials
by applying it coefficient-wise. The flooring (resp. the round-
ing to the nearest integer) of a rational number will be denoted
b·c (resp. b·e) and these notations will be used for polynomials
similarly.
ψk will denote a centered binomial distribution of parameter

k (elements sampled in [−k; k] ∩ Z). Sampling from ψk can
be done by computing

∑k
i=1(bi − b′i) where bi and b′i ∈ {0,1}

are independent uniformly sampled bits. ψn
k

will denote the
distribution over R where all the coefficients of a polynomial
are sampled independently from ψk . Finally, for a distribution
D (resp. a set I), a

$
←− D (resp. a

$
←− I) will mean that a is

sampled randomly from D (resp. uniformly in I).

A. NewHope

For the sake of completeness, NewHope protocol is recalled
in Figure 1. We also present and discuss the main points
of the protocol to ease our next analysis. For further details
concerning the protocol the interested reader can refer to
[ADPS16b].

Alice (server) Bob (client)
s

$
←− {0, . . . ,255}32

a
$
←− Parse(SHAKE128(s))

s1, e1
$
←− ψn

k

b ← [a · s1 + e1]q s2, e2, e3
$
←− ψn

k

ma ← encodeA(s, b)
ma
−−−−−−→ (s, b) ← decodeA(ma)

a
$
←− Parse(SHAKE128(s))

u ← [a · s2 + e2]q
ν ← {0,1}256

ν′ ← SHA3-256(ν)
κ ← NHSEncode(ν′)
c ← [b · s2 + e3 + κ]q

ĉ ← NHSCompress(c)

(u, ĉ) ← decodeB(mb)
mb

←−−−−−− mb ← encodeB(u, ĉ)
c′ ← NHSDecompress(ĉ) µ← SHA3-256(ν′)
κ ′ = [c′ − u · s1]q
ν′ ← NHSDecode(κ ′)
µ← SHA3-256(ν′)

Fig. 1. NewHope Protocol (without reconciliation) [ADPS16a]

1) Encoding and compression functions: As shown in Fig-
ure 1, the key ν′ ∈ {0,1}256 is encoded by Bob as an element
κ ∈ Rq through an encoding function NHSEncode and Alice
recovers it through NHSDecode. Additionally, a compression
function NHSCompress is used in order to reduce the size of
the elements sent by Bob to Alice. The way these functions
work is detailed below.

Let c ∈ Rq and t � q be the compression parameter, the
compression function consists in keeping only the log2 t most
significant bits of each coefficient, thus:

NHSCompress(c) = ĉ ∈ Rt

with ĉi = bci · t/qe mod t for i ∈ {0, . . . ,n − 1}.

The decompression function consists in applying the reverse
transformation:

NHSDecompress(ĉ) = c ′ ∈ Rq

with c′i = bĉi · q/te for i ∈ {0, . . . ,n − 1}

which allows to recover the original polynomial with an
error εcomp ∈ R, such that ‖εcomp ‖∞ < q/2t + 1/2, due to
the successive roundings.

The 256-bit key ν′ is encoded in Rq thanks to a repetition
code which encodes each bit of ν′ in n/256 coefficients of κ:

NHSEncode : {0; 1}256 → Rq

ν′ 7→ κ =
n−1∑
i=0

κi · X i

with κi = ν′i · bq/2c for 0 ≤ i ≤ 256 and κi+256· j = κi for
0 ≤ j < n/256.

Once the message decompressed, Alice has to extract the

3

key ν′ from κ ′ which is equal to the following modulo q:

κ ′ = c + εcomp − (a · s2 + e2) · s1

= (a · s1 + e1) · s2 + e3 + κ + εcomp − (a · s2 + e2) · s1

= NHSEncode(ν′) + e1 · s2 − e2 · s1 + e3 + εcomp

Thus κ ′ corresponds to the encoding of the original key
ν′ plus some error terms. Therefore, if the error term is not
too large, the key ν′ can be extracted from κ ′ through the
following decoding function:

NHSDecode : Rq → {0; 1}256

κ ′ 7→ ν′

where for each 0 ≤ i < 256, ν′i is recovered by checking
the size of the difference between the coefficients of κ ′ and
bq/2c, which is the value of the coefficients encoding ν′i = 1.
More precisely we check whether:

n/256−1∑
j=0

|[κ′i+256· j]q − bq/2c |

is smaller than (n/256 · bq/2c)/2 (ν′i = 1) or not (ν′i = 0).
Indeed without the error terms (i.e. if κ ′ = NHSEncode(ν′))
then when ν′i = 1 (resp. 0), the sum would be equal to 0
(resp. n/256 · bq/2c). Therefore to ensure the success of the
decoding we must ensure that the error remains smaller, in
absolute value, than the median value Bdec = (n/256 · bq/2c)/2
with very high probability. This comes to ensure that for any
0 ≤ i < 256:

n/256−1∑
j=0

|(e1 · s2 − e2 · s1 + e3 + εcomp)i+256· j | < Bdec (1)

2) A word about the parameters: In order to be able to
encode a 256 bits key, n must be at least 256. In their
submission package2, the authors propose two instantiations
with different dimensions: n = 512 and n = 1024 denoted
as NewHope512 and NewHope1024, respectively. Even
though they recommend to use NewHope1024 for security
reasons, they show that NewHope512 still ensure a descent
security while offering performance roughly twice faster.

Because the bottleneck of the arithmetic in Rq is by far
the multiplication of elements, the usage of the efficient NTT
is essential to ensure good performance. Hence, while the
protocol can be formally defined for any cyclotomic ring
R = Z[X]/(Φm(X)), taking m different from a power-of-two
would lead to a more complex NTT algorithm and would
significantly complicate the generation of the error ([LPR13]).
In order to ensure the existence of the roots of unity required
for the NTT, q must be congruent to 1 modulo 2n. Therefore
it was set to the smallest prime satisfying this condition which
is q = 12289 for both n = 512 and n = 1024.

Finally, for efficiency reasons, the error distribution has
been chosen as a centered binomial distribution, instead of
a discrete Gaussian as it is usually the case for the (Ring)-

2https://newhopecrypto.org/resources.shtml

LWE problem. Both NewHope512 and NewHope1024, use
k = 8 as parameter for the binomial distribution. Finally, the
compression parameter is chosen as t = 8 for both versions.

B. Number Theoretic Transform (NTT)

Choosing q prime and such that q ≡ 1 mod 2n ensures the
existence of a primitive 2n-th roots of unity modulo q that we
will denote ζ . Since the odd powers ζ , are also the roots of
Xn + 1 modulo q, the polynomial factors in linear terms over
Zq . Therefore the Chinese Remainder Theorem (CRT) gives
us the ring isomorphism:

Rq → Zq[X]/(X − ζ) × · · ·Zq[X]/(X − ζ2n−1)

a 7→ (a(ζ), a(ζ3), . . . , a(ζ2n−1))

The NTT (resp. inverse NTT) allows to compute this mor-
phism (resp. its inverse) in quasi-linear time, through an FFT
algorithm. Once in NTT form additions and multiplications
can be performed coefficient-wise, and thus in linear time.
Therefore the product of elements a, b ∈ Rq can be performed
by computing c = invNTT(NTT(a) � NTT(a)), where �
denotes the product coefficient-wise. Overall a product can
thus be computed in quasi-linear time (O(n log n)). Efficient
ways of implementating NTTs and its inverse on a vectorized
implementation can be found in [Sei18].

IV. ANALYSIS OF THE FAILURE PROBABILITY

In this section we review the failure probability made in
[ADPS16b] and refine it. In a nutshell, we will follow their
proof but instead of bounding the probability twice using the
Chernoff-Cramer inequality and a lemma about subgaussian
variables, we will bound it only once through Chernoff-Cramer
inequality and deduce the rest from numerical simulations.

A. About key-encoding and multiplication

We consider the cyclotomic polynomials r(X) = Xn+1 and
s(X) = Xn/256 + 1, in particular we have r(X) = s(X256). The
associated polynomial rings are denoted R = Z[X]/(r) and
S = Z[X]/(s).

For any a = a0+a1 ·X · · ·+an−1 ·Xn−1 ∈ R and 0 ≤ i ≤ 255,
a′i(X) ∈ S will denote:

ai + ai+256 · X if n = 512;
ai + ai+256 · X + ai+512 · X2 + ai+768 · X3 if n = 1024.

Hence, any a ∈ R can be decomposed in the following way:

a(X) =
255∑
i=0

a′i(X
256) · X i .

This decomposition is somehow preserved by the product
in R, since for any a, b in R and 0 ≤ i < 256 we have:

(a · b)′i =

i∑

j=0
(a′j · b

′
i−j) +

255∑
j=i+1

πS(a
′
j · b

′
256+i−j)

 ∈ S
where πS denotes the cyclic shift over S given by the

multiplication by X corresponding to:

4

πS(a
′) = −a′1 + a′0 · X if n = 512;

πS(a
′) = −a′3 + a′0 · X + a′1 · X

2 + a′2 · X
3 if n = 1024.

If we assume that the coefficients of a and b are sampled
independently then for each i, (a · b)′i is a sum of 256
independent polynomials of S:
• the i + 1 first polynomials follow the distribution of a

polynomial product in S;
• the 255 − i last follow the distribution of a shifted

polynomial product in S, through π(S).

B. Distribution of the key-encoding error

For any a′ and b′ in S we have:

if n = 512
(a′ · b′)(X) = (a′0b′0 − a′1b′1) + (a

′
0b′1 + a′1b′0) · X

if n = 1024
(a′ · b′)(X) = (a′0b′0 − a′1b′3 − a′2b′2 − a′3b′1)

+ (a′0b′1 + a′1b′0 − a′2b′3 − a′3b′2) · X
+ (a′0b′2 + a′1b′1 + a′2b′0 − a′3b′3) · X

2

+ (a′0b′3 + a′1b′2 + a′2b′1 + a′3b′0) · X
3

From now, we will denote χk the distribution of a′ · b′ ∈ S
where a′ and b′ are sampled from ψ

n/256
k

independently. From
the above expression it is straightforward to notice that χk
is symmetric because ψ

n/256
k

is. Moreover, since ψ
n/256
k

is
a centered distribution it is invariant under πS and because
πS(a

′ · b′) = a′ · πS(b
′), χk is also invariant under πS .

Therefore if a, b
$
←− ψn

k
then for any 0 ≤ i < 256 (a · b)′i

can be seen as a sum of 256 independent random variables
following the distribution χk .

C. Estimation of the probability failure

In order to estimate the probability than the decryption fails
we will need to have an estimation on the tail concentration
of a sum of independent identically distributed (i.i.d.) random
variables. Similarly to [ADPS16b] we use Chernoff bound for
this:

Theorem 1 (Chernoff bound): Let D be a distribution over
R and X be a sum of ` i.i.d. random variables X1, . . . ,X` of
law D, then for any t > 0 such that E[et(Xi)] < +∞ and for
any a ∈ R it holds that:

P(X ≥ a) ≤ exp(−ta + ` ln(E[etXi])).

Now, in order to ensure (1), and thus the success of the
decapsulation, with a certain probability we need to have:

‖(e1 · s2 − e2 · s1)
′
i + (e3)

′
i + (εcomp)

′
i ‖1 < Bdec

for all 0 ≤ i < 256. Since e3
$
←− ψn

k
and because each

coefficients of εcomp follows a law almost uniform over
[−q/2t,q/2t], the only difficulty comes from the the evaluation
of (e1 · s2 − e2 · s1)

′
i . Similarly to [ADPS16b], we use the fact

that for any real vector x ∈ Rd we have:

‖x‖1 = max
y∈{±1}d

〈x , y〉 .

As explained in Section IV-A, for any (a, b) ∈ R2 each
(a · b)′i is the sum of 256 products of elements a′j · b

′
j ∈ S

and thus (e1 · s2 − e2 · s1)
′
i = (e1 · s2)

′
i − (e2 · s1)

′
i is the sum

of 512 such products. Seeing an element of S as a vector of
Zn/256 it holds that:

‖(e1 · s2 − e2 · s1)
′
i ‖1 = max

y∈{±1}n/256

〈
(e1 · s2)

′
i − (e2 · s1)

′
i , y

〉
(2)

where (e1 · s2)
′
i and (e2 · s1)

′
i can both be seen as a sum of

256 independent random variables following the law χk (see
Section IV-A). As a consequence, (e1 · s2)

′
i − (e2 · s1)

′
i can

be seen as a sum of 512 i.i.d. random variables. Moreover,
remark that because of the different symmetries in χk , if
X is a random variable of law χk , and y ∈ {±1}n/256 then
the distribution of 〈X , y〉 is independent of the choice of
y. Therefore, because of the linearity of the scalar product〈
(e1 · s2)

′
i − (e2 · s1)

′
i , y

〉
can be seen as a sum of 512

independent random variables of the form: 〈X , y〉 where
X

$
←− χk .

We have simulated the law of such a scalar product in
rational arithmetic using the GMP3 library ([Gt15]) in a C++
script by computing every possible values of 〈a · b , y〉, for
a, b

$
←− Ψ

n/256
k

and y ∈ Zn/256 the vector containing only +1,
with their associated probabilities. Note that because of the
size of the support of the inputs ((2k + 1)n/128), this takes
quite a long time to simulate (around 70 min on a laptop
with an intel i7-4810MQ@2.80GHz for n = 1024 and k = 8).
This is not much of a problem since the law needs only to be
computed once and can then be saved.

Once this law and the law of εcomp simulated, we can use
Chernoff bound to get:

P
(〈
(e1 · s2 − e2 · s1)

′
i + (e3)

′
i + (εcomp)

′
i , y

〉
≥ Bdec

)
≤ exp

(
−tBdec + 512 lnE(etX) + n

256 lnE(et(Y+Z))
)

where X
$
←− 〈χk , y〉, Y

$
←− ψk and Z follow the law of εcomp .

From there, similarly to [ADPS16b], we have deduced
a bound on the probability that the decapsulation fails by
union-bounding over the 2n/256 choices of y and the 256
possible i. We have computed this bound on the probability
using the MPFR4 library ([FHL+07]) for the floating point
arithmetic with a precision set to 2048 bits. Our script for
computing the probability is available at: https://gitlab.com/
zuccav/alternative-parameters-for-new-hope.

Remark 1: As for NewHope, Kyber and other related
works such as [Saa18], our analysis makes implicitly the
assumption that each term are independents when union-
bounding over the 256 possibles i. This is clearly not true
since they all depend on all the coefficients of the eis and the
s js. Therefore, while the distribution of each of the terms is
the same and precisely analysable, they are not fully indepen-

3https://gmplib.org/
4https://www.mpfr.org

5

Decapsulation error probability
NewHope512 NewHope1024

Original analysis 2−213 2−216
([ERJ+18])

Our analysis 2−393 2−413
(using Chernoff bound)

TABLE I
DECRYPTION FAILURE PROBABILITY OF NEW HOPE WITH BINOMIAL

PARAMETER k = 8 AND q = 12289.

dents. In [DVV19], the authors show that this independency
hypothesis leads to underestimations of the failure probability
when using an error correcting code, but suits constructions
not using one. Althouh NewHope uses a repetition code, in our
case we have simulated exactly the law involving the n/256
coefficents correlated via the repetition code (law of 〈X , y〉

for X
$
←− χk), hence the hypothesis is only applied on the 256

polynomials of S which do not interfer with each other via
the code. Therefore, according to [DVV19], we can expect our
bounds not to be underestimated.

Table I summarizes the results we have obtained and
compare them to those of NewHope as they are given in
its specifications ([ERJ+18]). As one can see, the probability
we obtain is much smaller than the original evaluation which
means that one can decrease the size of the modulus while
keeping a very small probability of failure.

Remark 2: Note that instead of using Chernoff bound, one
could completely simulate the final law, as in Kyber, by
computing several convolutions instead. However this method
is not as efficient in our case. Indeed since Kyber has a
different reconciliation mechanism, they only need to compute
the convolutions of 256 random variables Xi = e · s, where
e, s

$
←− Ψk , whose law support is of size 7 (k = 2 in their

case). For NewHope we have to compute the convolutions
of 512 random variables following the law of 〈X , y〉 whose
support is of size 65 for k = 2 and n = 1024. This takes
around 1h20 in C++ on the aforementionned laptop against
0.5 seconds using Chernoff bound and against a few seconds
in python for Kyber. In our experiments we have only
observed a difference up to 5 bits between the two variants,
hence we rather used Chernoff bound when computing failure
probabilities for k ≥ 3.

V. MULTIPLICATION STRATEGIES FOR SMALLER MODULI

A. Choose the moduli

Using a smaller modulus than q = 12289 does not allow to
use a full NTT for the dimensions of NewHope. However one
can still use a modulus allowing to use NTTs of smaller sizes,
for instance the original Kyber modulus q = 7681 allows to
perform NTTs of size 256. Therefore the idea would be to mix
small NTT’s with other multiplication algorithms. Since NTT’s
are the most efficient way to perform polynomial products in
high dimensions, one needs to choose moduli with as many
NTT levels as possible – i.e. the largest power-of-two n such
that q ≡ 1 mod 2n. Table II presents possible moduli with the
number of NTT levels they allow to perform.

modulus q 12289 7681 3329 2017 1601 1409
NTT levels 10 8 7 4 5 6

TABLE II
POSSIBLE MODULI

A small modulus allows to increase the security of the
Ring-LWE instantiation and reduce the size of the elements
and thus the communication costs. On the other hand it
will increase the failure probability and the efficiency of the
implementation directly depends on the number of NTT levels
available. Therefore one might consider different moduli given
the considered trade-off.

Remark 3: In [ZXZ+18] and [ZPL19] the authors proposed
to use a modulus as small as 3329, however since they
relied on the original probability analysis they could hardly
justify to use smaller moduli. As a consequence the binomial
and compression parameters proposed in their work were not
optimal.

B. Mutiplication strategies

The idea of mixing classical multiplication algorithms with
FFT is well-known and was already studied in [Moe76]. The
idea is to split the polynomials a and b into smaller ones and
perform the product of the small polynomials with the small
NTTs before reconstructing the whole product. The splitting
is done between the even and the odd coefficients of our
polynomials. More precisely we decompose a as:

a(X) =
n−1∑
i=0

ai · X i =

n/2−1∑
i=0

a2i · X2i +

n/2−1∑
i=0

a2i+1 · X2i+1

=

n/2−1∑
i=0

a2i · Y i + X
n/2−1∑
i=0

a2i+1 · Y i

= a0(Y) + a1(Y) · X with Y = X2

with a0(Y) and a1(Y) ∈ Zq[Y]/(Yn/2 + 1), and b similarly.
Thus we can write:

c = a · b = a0 · b0︸ ︷︷ ︸
c0

+ (a0 · b1 + a1 · b0)︸ ︷︷ ︸
c1

X + a1 · b1︸ ︷︷ ︸
c2

X2.

where each product can be performed with NTTs of size
n/2. Thus one can just compute ãi = NTT(ai) and b̃i for
i = 0,1 requiring 4 NTTs of size n/2 (instead of 2 NTTs of
size n in the original case). Once in the NTT domain additions
and products can be computed coefficient-wise.

At this point we obtain 3 polynomials of degree n/2 in
the NTT domain: c̃0, c̃1 and c̃2. Note that since X2 = Y
one can precompute NTT(Y) (which corresponds to the n/2-
th primitive roots of unity) and multiply it to c̃2 and add the
result to c̃1. Like this one has only to compute two inverse
NTTs of size n/2 instead of 3 to recover the coefficients of c
(instead of 1 inverse NTT of size n in the original case).

c̃0 + c̃1 · X + c̃2 · X2 = [c̃0 + c̃2 � NTT(Y)]︸ ︷︷ ︸
NTT(c0)

+ c̃1︸︷︷︸
NTT(c1)

·X (3)

6

Note that this also allows to send a polynomial in NTT
representation, as done in NewHope, without increasing the
communication costs.

The complexity of this approach can be reduced in a
straightforward-way by using a subquadratic algorithm such as
Karatsuba to reduce the number of multiplications at the price
of a few extra-additions [ZPL19]. Of course one can iterate this
process on several levels in order to use even smaller NTTs.
Note that, although computing 2 NTTs of size n/2 is more
efficient than computing 1 NTT of size n, the extra operations
required to expand and reconstruct the Karatsuba pattern tend
to make this approach more costly. As a direct consequence,
the efficiency of the approach will decrease with the number
of Karatsuba levels used.

Overall this approach consists in using one or several levels
of classical multiplications algorithms on the top and perform
the small products with the NTTs ([ZXZ+18]). This can be
done the other way around by performing big, but uncomplete
NTTs on the top as in [LS19]:

Rq
�
−→ Zq[X]/(X2 − ζ) × · · ·Zq[X]/(X2 − ζ2n−1).

In this case, since Xn +1 does not factorize in linear terms,
the product cannot be performed coefficient wise but modulo
the X2−ζ is instead. Once again this can be iterated on ` levels
so that one would have to perform product modulo X2` − ζ i

on the bottom. It is shown in [RJL+19], that this approach can
be more efficient than a complete NTT for small values of `
(` = 1 or ` = 2) if correctly implemented. In particular the
product modulo the X2 − ζ is can be done very efficiently on
a vectorized implementation.

C. Mixing the strategies
As shown in Table II, we need to perform up to 6 levels

of multiplications without NTTs depending on the chosen
modulus. Performing the whole 6 levels of classical multipli-
cations on the top or the bottom would considerably increase
the computational cost. Therefore we are going to mix both
strategies with `1 levels of Karatsuba on the top and `2 levels
naive multiplication on the bottom.

Determining the optimal values of `1 and `2 is not straight-
forward. Indeed, the number of operations one can stack on
a 16-bit word without performing modular reduction depends
on the size of the modulus. Moreover the cost of the modular
reductions and their efficiency depend on the shape of the
modulus (see [Sei18]). Additionnally, on a vectorized imple-
mentation, the cost of an algorithm cannot be restricted only to
the number of operations to perform. One must rather consider
the number of registers available, of instructions and loadings
to perform, etc. . . . Therefore, the optimal values of `1 and
`2 has been determinated experimentally for every moduli, by
testing every possible combination.

Remark 4: One could think that performing a Karatsuba
product would be more efficient than a naive algorithm for
the product modulo X2`2

− ζ i on the bottom. However on
a vectorized implementation, for small values of `2 we have
noticed that the naive algorithm was more efficient since it
can be implemented very efficiently.

VI. GLOBAL PARAMETERS AND EXPERIMENTAL RESULTS

A. Security parameters

In practice, NewHope security is evaluated through the
difficulty to recover the secret s from a Ring-LWE sample
(a, b) = (a, a · s + e). The difficulty of this problem depends
on the ratio between the size of the modulus and the standard
deviation of the error distribution, in our case

√
k/2, the

smaller the ratio, the better the security. Therefore by using
a smaller modulus the difficulty of the problem is increased,
however not reducing the binomial parameter k would quickly
result in a failure probability too large which could lead to
serious attacks (see [DGJ+19]).

As a consequence, we have chosen a binomial parameter
k as large as possible for the security of the scheme while
keeping the failure probability of the protocol around 2−200

thus similar to the evaluation of [ERJ+18] over the original
parameters. In order to increase the gain over the bandwidth
requirement we have also reduced, when possible, the com-
pression parameter t.

Since the conservative analysis of NewHope ([ADPS16b]),
is currently used in most of the NIST submissions based on
lattices. We have computed the evaluated post-quantum bits
of security using the same python script5 than for the original
protocol. However the indicated failure probability has been
computed with our analysis (see Section IV).

B. The particular cases of q = 1601 and q = 1409
The modulus q = 2017 fits on 11-bits but only offers 4 levels

of NTT and has resulted in poor performance. Hence we have
instead selected two other moduli: q = 1601 and q = 1409
allowing to perform 1 or 2 extra levels of NTT respectively.
However choosing q = 1601 and k = 2 would result in a
probability of failure around 2−129, which is far too large and
choosing k = 1 would considerably reduce the entropy of the
samples and thus lower the security. Finally increasing the
compression parameter t would cancel the benefit over the
bandwidth requirement.

Since most of the error size comes from the products
s1 · e2 − s2 · e1 and because the Ring-LWE security depends
essentially on the size of the error rather than the size of the
secret. We have chosen to use different binomial parameters
ks and ke for the secrets and the errors respectively. As a
consequence, choosing a binary secret – i.e. ks = 1 – and
a larger error ke = 3 (resp. ke = 2) increases the security
of the scheme while reducing the error probability to 2−170

(resp. 2−197) for q = 1601 (resp. q = 1409). Although
for q = 1601 this failure probability is far above the 2−200

treshold, it is comparable to the failure probability of Kyber
[RJL+19]. Finally, note that when using a different size of
errors and secrets, and more particularly with sparse secrets,
one needs to adapt the security evaluation by including weights
on the lattice to reduce ([BG14], [Alb17]) as done in Round5
[HSS+19]. Hence this is what we have done for our security
evaluation of the moduli q = 1601 and q = 1409.

5available in the NIST submission package:
https://newhopecrypto.org/resources.shtml

7

Eventually note that there are two other smaller moduli
which could have been considered for efficient implementa-
tion: 1153 and 769 since they offer 6 and 7 levels of NTTs
respectively. Both moduli would increase the hardness of the
underlying lattice reduction, and q = 769 would also improve
further the compactness and the performance of the scheme.
However their associated failure probability for n = 1024 is
2−139 and 2−122 for ks = 1 and ke = 2, ke = 1 respectively.
Nonetheless such a high failure probability would expose the
protocol to attacks exploiting decapsulation failures [DVV19].
Therefore, we believe these parameters would weaken the
security of the whole protocol and we do not recommend them
for an implementation until a precise estimation of the amount
of computations required to break them is given.

C. Experimental results

Table III summarizes the different parameters and features
of the original version of NewHope512 and NewHope1024
together with those of the alternative versions we propose.

In order to estimate the efficiency of our multiplication
strategy we have measured the number of cycles required to
compute a full product: c = invNTT(NTT(a) � NTT(b)), and
compared it to the classical full NTT approach as proposed in
[Sei18]. Our vectorized implementation of NTT is based on
[Sei18]. The `1 levels of Karatsuba have been implemented
iteratively so that we could track the size of the coefficients
at any point and only perform the modular reductions when
needed using similar reductions than [Sei18].

The values presented in Table III were measured on an
average of 220 tests run using our vectorized implementation
on a laptop endowed with an Intel(R) Core(TM) i7-4810MQ
CPU @ 2.80GHz using AVX2 with Turbo Boost and Hyper-
Threading turned-off. Our code was compiled with gcc
version 7.3.0 using the flags: -O3 -funroll-loops
-fomit-frame-pointer -march=native.

Our experiments confirm the observations of [LS19]: using
smaller NTTs on the top with a naive product on the bottom
is more efficient than a full NTT with a gain up to 15% (resp.
(13%)) for n = 512 (resp. n = 1024). Because registers in
AVX2 are 256-bit long, they can only handle 16 coefficients on
16 bits words at a time. In particular, having `2 > 4 levels is not
interesting since one would have to multiply polynomials of
degree 22`2 > 16. Hence it would require two registers to store
the coefficients of only one polynomial degrading considerably
the performance.

They also highlight the fact that the modulus q = 2017
does not lead to good performance +38% (resp. +79%) for
n = 512 (resp. n = 1024), and that the additional level of NTT
available with q = 1601 and q = 1409 improves considerably
the performance +7.6% (resp. +35%) for n = 512 (resp.
n = 1024) for q = 1601 and −9.5% (resp. +3.2%) for n = 512
(resp. n = 1024) for q = 1409.

Nonetheless we have shown that those parameters allow
to obtain competitive performance while gaining around 19%
over the bandwidth requirements and up to 8% in security.
Moreoever the two moduli 7681 and 3329 do not have any

drawback, except a negligible 1% loss of security for 3329.
Furthermore the gain of more than 10% on performance comes
without having to implement any level of Karatsuba and thus
leads to a very simple implementation. If one desires to gain
a little bit more on the bandwidth requirements, one can use
the modulus q = 1409, which brings a speed-up of 9.5%
for n = 512 and a small overcost of 3.2% for dimensions
1024. On the other hand the modulus q = 2017 leads to very
poor performance and might not be interesting from a practical
point of view.

CONCLUSION

In this work we refine the probability analysis made in
[ADPS16b] and show that we can use tighter parameters in
order to increase the security, the compactness and sometimes
the performance of NewHope. We propose five alternative sets
of parameters using smaller moduli. However these moduli do
not allow to use the full efficient NTT algorithm in the protocol
dimensions. Nonetheless we show that by mixing smaller
NTTs with different multiplication algorithms we obtain very
competitive performance when compared to the state-of-the-
art approach (gain of 15% for some of them) on a vectorized,
constant time, implementation. While we are competitive
in term of performance our alternative parameters allow to
increase the security of the protocol up to 8% and reduce the
bandwidth requirement by more than 19%. Furthermore some
sets of parameters improved the three features of the scheme:
compactness, security, performance while the other improve
even more the compactness and security but lead to worse
performance. For all these sets of parameters we evaluate
the failure probability around 2−200 as originally evaluated
([ERJ+18]), except for q = 1601 where it is as big as 2−170,
similarly to Kyber, which should be enough to be protected
against attacks such as the one mentionned in [DGJ+19].

REFERENCES

[ADPS16a] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter
Schwabe. Newhope without reconciliation. Cryptology ePrint
Archive, Report 2016/1157, 2016. https://eprint.iacr.org/2016/
1157.

[ADPS16b] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter
Schwabe. Post-quantum Key Exchange—A New Hope. In 25th
USENIX Security Symposium (USENIX Security 16), pages 327–
343, Austin, TX, 2016. USENIX Association.

[Alb17] Martin R. Albrecht. On Dual Lattice Attacks Against Small-
Secret LWE and Parameter Choices in HElib and SEAL. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in
Cryptology – EUROCRYPT 2017, pages 103–129, Cham, 2017.
Springer International Publishing.

[BDK+18] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehle. CRYSTALS -
Kyber: A CCA-Secure Module-Lattice-Based KEM. In 2018
IEEE European Symposium on Security and Privacy (EuroS P),
pages 353–367, April 2018.

[BG14] Shi Bai and Steven D. Galbraith. Lattice Decoding Attacks on
Binary LWE. In Willy Susilo and Yi Mu, editors, Information
Security and Privacy, pages 322–337, Cham, 2014. Springer
International Publishing.

[DGJ+19] Jan-Pieter D’Anvers, Qian Guo, Thomas Johansson, Alexander
Nilsson, Frederik Vercauteren, and Ingrid Verbauwhede. De-
cryption Failure Attacks on IND-CCA Secure Lattice-Based
Schemes. In Dongdai Lin and Kazue Sako, editors, Public-
Key Cryptography – PKC 2019, pages 565–598, Cham, 2019.
Springer International Publishing.

8

n q k t
probability post-quantum bandwidth

`1 |`2
clock

of failure bits of security (Bytes) cycles

512

12289 8 8 2−393 (C) 101 2016 0|0 4253
7681 5 4 2−194 (C) 101 (+0%) 1824 (−9.5%) 0|1 3649 (−15%)
3329 2 4 2−239 (S) 100 (−1%) 1696 (−15.8%) 0|2 3640 (−15%)
2017 2 8 2−197 (S) 108 (+7%) 1632 (−19%) 2|3 5932 (+39%)
1601 1|3 8 2−170 (S) 109 (+8%) 1632 (−19%) 0|4 4578 (+7.6%)
1409 1|2 8 2−197 (S) 107 (+6%) 1632 (−19%) 0|3 3849 (−9.5%)

1024

12289 8 8 2−413 (C) 233 4000 0|0 9340
7681 5 4 2−208 (C) 233 (+0%) 3616 (−9.6%) 0|2 8157 (−13%)
3329 2 4 2−249 (S) 230 (−1%) 3360 (−16%) 0|3 8441 (−10%)
2017 2 8 2−204 (S) 245 (+5%) 3232 (−19.2%) 3|3 16656 (+78%)
1601 1|3 8 2−175 (S) 245 (+5%) 3232 (−19.2%) 2|3 12588 (+35%)
1409 1|2 8 2−202 (S) 242 (+4%) 3232 (−19.2%) 1|3 9641 (+3.2%)

TABLE III
PERFORMANCE OF NEWHOPE512 AND NEWHOPE1024 WITH OUR ALTERNATIVE PARAMETERS. (C) AND (S) DENOTE WHETHER THE PROBABILITY OF

FAILURE WAS COMPUTED USING CHERNOFF BOUND OR ONLY SIMULATIONS RESPECTIVELY.

[DVV19] Jan-Pieter D’Anvers, Frederik Vercauteren, and Ingrid Ver-
bauwhede. The Impact of Error Dependencies on Ring/Mod-
LWE/LWR Based Schemes. In Jintai Ding and Rainer Stein-
wandt, editors, Post-Quantum Cryptography, pages 103–115,
Cham, 2019. Springer International Publishing.

[ERJ+18] Alkim Erdem, Avenzi Roberto, Bos Joppe, Ducas Léo,
de la Piedra Antonio, Pöppelmann Thomas, Schwabe Pe-
ter, and Stebila Douglas. NewHope Algorithm Specifications
and Supporting Documentation, 1.0 edition, 2018. https://
newhopecrypto.org/data/NewHope 2018 06 14.pdf.

[FHL+07] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick
Pélissier, and Paul Zimmermann. MPFR: A Multiple-precision
Binary Floating-point Library with Correct Rounding. ACM
Trans. Math. Softw., 33(2), June 2007.

[Gt15] Torbjörn Granlund and the GMP development team. GNU MP:
The GNU Multiple Precision Arithmetic Library, 6.1.0 edition,
2015. http://gmplib.org/.

[HSS+19] Baan Hayo, Bhattacharya Sauvik, Fluhrer Scott, Garcia-Morchon
Oscar, Laarhoven Thijs, Player Rachel, Rietman Ronald, Saari-
nen Markku-Juhani O., Tolhuizen Ludo, Torre-Arce José Luis,
and Zhenfei Zhang. Round5: KEM and PKE based on (Ring)
Learning with Rounding, 2019. https://round5.org/Supporting
Documentation/Round5 Submission.pdf.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal
Lattices and Learning with Errors over Rings, pages 1–23.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A Toolkit
for Ring-LWE Cryptography, pages 35–54. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case
reductions for module lattices. Designs, Codes and Cryptogra-
phy, 75(3):565–599, Jun 2015.

[LS19] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly Fast
NTRU Using NTT. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2019(3):180–201, May 2019.

[Moe76] Robert T. Moenck. Practical Fast Polynomial Multiplication.
In Proceedings of the Third ACM Symposium on Symbolic and
Algebraic Computation, SYMSAC ’76, pages 136–148, New
York, NY, USA, 1976. ACM.

[Mon85] Peter L. Montgomery. Modular multiplication without trial
division. Mathematics of Computation, 44:519–521, 1985.

[Reg05] Oded Regev. On Lattices, Learning with Errors, Random Linear
Codes, and Cryptography. In Proceedings of the Thirty-seventh
Annual ACM Symposium on Theory of Computing, STOC ’05,
pages 84–93, New York, NY, USA, 2005. ACM.

[RJL+19] Avenzi Roberto, Bos Joppe, Ducas Léo, Klitz Eike, Lepoint
Tancréde, Lyubaschevsky Vadim, Schanck John M., Schwabe Pe-
ter, Seiler Gregor, and Stehlé Damien. CRYSTALS-Kyber (version
2.0) – Submission to round 2 of the NIST post-quantum project.,
2.0 edition, 2019. https://pq-crystals.org/kyber/resources.shtml.

[Saa18] Markku-Juhani O. Saarinen. HILA5: On Reliability, Recon-

ciliation, and Error Correction for Ring-LWE Encryption. In
Carlisle Adams and Jan Camenisch, editors, Selected Areas
in Cryptography – SAC 2017, pages 192–212, Cham, 2018.
Springer International Publishing.

[Sei18] Gregor Seiler. Faster AVX2 optimized NTT multiplication for
Ring-LWE lattice cryptography. Cryptology ePrint Archive,
Report 2018/039, 2018. https://eprint.iacr.org/2018/039.

[ZPL19] Yiming Zhu, Yanbin Pan, and Zhen Liu. When NTT Meets
Karatsuba: Preprocess-then-NTT Technique Revisited. Cryptol-
ogy ePrint Archive, Report 2019/1079, 2019. https://eprint.iacr.
org/2019/1079.

[ZXZ+18] Shuai Zhou, Haiyang Xue, Daode Zhang, Kunpeng Wang, Xian-
hui Lu, Bao Li, and Jingnan He. Preprocess-then-ntt technique
and its applications to kyber and newhope. In Fuchun Guo,
Xinyi Huang, and Moti Yung, editors, Inscrypt, volume 11449
of Lecture Notes in Computer Science, pages 117–137. Springer,
2018.

