
Saber on ESP32

Bin Wang, Xiaozhuo Gu?, and Yingshan Yang

SKLOIS, Institute of Information Engineering, CAS, Beijing, China
School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

wangbin171@mails.ucas.edu.cn, {guxiaozhuo, yangyingshan}@iie.ac.cn

Abstract. Saber, a CCA-secure lattice-based post-quantum key encap-
sulation scheme, is one of the second round candidate algorithms in the
post-quantum cryptography standardization process of the US National
Institute of Standards and Technology (NIST) in 2019. In this work, we
provide an efficient implementation of Saber on ESP32, an embedded
microcontroller designed for IoT environment with WiFi and Bluetooth
support. RSA coprocessor was used to speed up the polynomial multipli-
cations for Kyber variant in a CHES 2019 paper. We propose an improved
implementation utilizing the big integer coprocessor for the polynomial
multiplications in Saber, which contains significant lower software over-
head and takes a better advantage of the big integer coprocessor on
ESP32. By using the fast implementation of polynomial multiplications,
our single-core version implementation of Saber takes 1639K, 2123K,
2193K clock cycles on ESP32 for key generation, encapsulation and de-
capsulation respectively. Benefiting from the dual core feature on ESP32,
we speed up the implementation of Saber by rearranging the computing
steps and assigning proper tasks to two cores executing in parallel. Our
dual-core version implementation takes 1176K, 1625K, 1514K clock cy-
cles for key generation, encapsulation and decapsulation respectively.

Keywords: Post-quantum cryptography · Efficient implementation ·
Saber · ESP32.

1 Introduction

Post-quantum cryptography has been widely developed in recent years since the
public key cryptographic primitives based on traditional hard problems such
as factoring or discrete logarithms are under the threat of quantum computers
[28] [25]. With the goal of accelerating the research and standardization of post-
quantum cryptography algorithms, the US National Institute of Standards and
Technology (NIST) has initiated a process to solicit, evaluate, and standardize
one or more quantum-resistant public-key cryptographic algorithms [1].

In the NIST standardization process [2], a large number of encryption sche-
mes against quantum attacks have been proposed, most of which are based on

? Corresponding author: guxiaozhuo@iie.ac.cn. This work has been supported by Na-
tional Natural Science Foundation of China (Grant No.61602475, No.61802395) and
by National Cryptographic Foundation of China (Grant No. MMJJ20170212).

2 Bin Wang, Xiaozhuo Gu, and Yingshan Yang

the hard problems over lattices. Frodo [13], NewHope [11], Kyber [14] and Saber
[16] have entered the second round of candidate processes of NIST.

ESP32, belongs to ESP series, is an embedded microcontroller, which sup-
ports WiFi and Bluetooth. And it is widely used in IoT devices. As of 2017,
the shipments of ESP have reached 100-Million [4]. The report from TSR in
2018 showed ESP became a leader in the MCU Embedded WiFi chip mar-
ket sector [3]. In this work, we choose ESP32 chip to implement the chosen
ciphertext attack (CCA) resistant lattice-based key encapsulation mechanism
(KEM) Saber [16] which has entered the second round of NIST’s standardiza-
tion process [9]. We make full use of the advantages of the big integer copro-
cessor and dual core features on ESP32 to provide efficient implementation of
Saber. Our implementation mainly focuses on high performance. To the best
of our knowledge, this is the first published optimized implementation of post-
quantum KEM on ESP32. The source code in this paper is available in https:

//github.com/SABERONESP32/SABERONESP32.

Contribution

1 Polynomial multiplication is a very time-consuming operation in Saber. The
parameters of Saber with modulus 8192 and 1024 prevent the use of the
most efficient polynomial multiplication method Number Theoretic Trans-
form (NTT) with O(nlogn) complexity. RSA coprocessor was used to speed
up the polynomial multiplication for Kyber[14] variant in [10]. In this work,
we exploit the ability of the big integer coprocessor on ESP32 to speed up
the polynomial multiplication based on the Kronecker substitution [18] which
was used in [10]. We adapt the Kronecker substitution to the feature of our
coprocessor and provide efficient implementations for polynomial multiplica-
tions with 13-bit and 10-bit coefficients respectively in Saber, which contains
a significant lower software overhead and takes a better advantage of the big
integer coprocessor on ESP32. We lower the polynomial degree by using the
Karatsuba[21] and Toom-Cook[12] algorithms before Kronecker substitution
to overcome the limitation of the supported bit length of our big integer
coprocessor. Also we rearrange the steps of Karatsuba and Toom-Cook algo-
rithm and assign software computing operations to CPU during its idle time
using several reasonable strategies. Our fast implementation for 256 degree
polynomial multiplication takes 97K, 85K clock cycles for moduli 8192 and
1024 respectively, and competes with the NTT-based polynomial multipli-
cations which takes 244K clock cycles for the same degree with modulus
7681 on our platform. Based on the efficient implementation of polynomial
multiplication, our optimized implementation of Saber takes 1639K, 2123K,
2193K clock cycles on ESP32 for key generation, encapsulation and decap-
sulation respectively.

2 ESP32 is an embedded microcontroller with two Harvard Architecture Xtensa
LX6 CPUs. The built-in FreeRTOS[8] on ESP32 is designed for multiple
tasks parallel execution and can be used to exploit the good performance
provided by two cores. As ESP32 is not able to execute single task on two

https://github.com/SABERONESP32/SABERONESP32
https://github.com/SABERONESP32/SABERONESP32

Saber on ESP32 3

cores based on hardware level instructions rearrangement, we hand-partition
the CCA secure functions into small steps and rearrange them. We start the
execution in main core and assign proper computing task to another core
based on the computing tasks assigning api provided by FreeRTOS. More-
over, since the computing inputs of a step on one core may depend on the
results of step execution on another core, we use the semaphore mechanism
provided by FreeRTOS to make two cores execute steps of Saber algorithm
in our expected order. As a result of executing Saber on two cores in pa-
rallel, we can reduce the 462K, 498K, 679K clock cycles for key generation,
encapsulation and decapsulation respectively.

Organization. In Section 2, we briefly describe the Saber KEM scheme, the al-
gorithms for polynomial multiplication, and our target platform. In Section 3, we
introduce the Kronecker substitution algorithm and provide the implementation
for it utilizing big integer coprocessor. Next, we provide our optimized imple-
mentations for polynomial multiplications and Saber in detail. Performance of
our implementations and the comparisons are provided in Section 5. And the
conclusion is described in final section.

2 Background

2.1 Notation

Let Zq be the ring of integers with a modulus of q. Rq = Zq[x]/(xn + 1) denotes
the ring of integer polynomials modulo (xn + 1) , where n is a power of 2 and
each coefficient of the ring is in [0, q). The ring of m × n-matrices over R is
referred as Rm×n.

The floor function bxc represents the largest integer that is not greater than
x, and the ceiling function dxe represents the smallest integer that is not less
than x. Moreover, bxe represents the nearest integer to x.

We use upper case letters to represent big integer (or “large number”), use
bold lower case letters to represent vectors, and use bold upper case letters to
represent matrices. For a polynomial f , we write fi for the ith coefficient of xi.

2.2 Saber

In this section, we briefly introduce Saber, a lattice-based post-quantum key
encapsulation scheme that has entered the second round of post-quantum cryp-
tography standardization process of the NIST [9]. Its security is based on the
Module-Learning-with-Rounding (Module-LWR) problem and contains an IND-
CPA encryption scheme and an IND-CCA secure key encapsulation mechanism
by applying a post-quantum variant of the Fujisaki-Okamoto transform [19].

4 Bin Wang, Xiaozhuo Gu, and Yingshan Yang

Parameters. The standard version of Saber KEM which achieves around 180-
bit of quantum-security uses matrix or vector dimension l = 3 and ring-dimension
n = 256. The two moduli p and q of multiplications are 210 and 213 respectively.
The binomial error distribution uses the parameter of µ = 8.

CPA secure Saber KEM. The Algorithm 5, Algorithm 6 and Algorithm 7
in the appendix demonstrate the CPA secure key generation, encryption and
decryption algorithms used in Saber, respectively. The KeyGen function expands
the random seed into the pseudorandom matrix A and is instantiated by using
the extendable output function SHAKE-128.

CCA secure Saber KEM. The Algorithm 8 and Algorithm 9 in the appendix
demonstrate the encapsulation and decapsulation operations used in the Saber
KEM, respectively. The hash functions G andH are implemented using SHA3-512

and SHA3-256 respectively. In the following, we write Gen, Enc and Dec for CCA
secure key generation, encapsulation and decapsulation respectively.

The performance of implementing Saber depends highly on the speed of the
polynomial multiplication and the generation of A and s. Here, the degree of the
polynomials in Saber is 256 and the polynomial multiplication has two forms.
One is matrix-vector multiplication. The matrix is composed of 3 by 3 polynomi-
als, each having 256 13-bit coefficients. Another is vector-vector multiplication,
where the coefficients are 10 bits.

2.3 Polynomial multiplication

Polynomial multiplication is a very time-consuming operation. In many imple-
mentations of post-quantum cryptographic schemes involving polynomial multi-
plication, number theoretic transform (NTT) is used for acceleration. However,
NTT has certain limitations on the modulus. In Saber, the chosen modulus is
not a prime number, so NTT-based polynomial multiplication cannot be used.
The following multiplication algorithms are used in our implementation.

Karatsuba. In 1960, Karatsuba [21] proposed a fast multiplication algorithm,
namely Karatsuba algorithm, which can achieve O(nlg3) time complexity. It
consists of three main phases: splitting, evaluation and interpolation. In the
splitting phase, it splits the input polynomials A(x) and B(x) into A(y) = A1 ·
y + A0 and B(y) = B1 · y + B0, where y = xn/2. In the evaluation phase, it
evaluates w1 to w3 by multiplying these polynomials at the points y = {∞, 1, 0}
respectively. In the interpolation phase, recombine these polynomials to get the
final result. Through the divide-and-conquer approach, the algorithm is called
recursively to get the final result. The detailed algorithm steps are shown in
Algorithm 11 in the appendix.

Saber on ESP32 5

Toom-Cook. The Toom-Cook algorithm is a generalization of Karatsuba al-
gorithm. The implementation described by Knuth achieves the time complexity
O(n · 2

√
2lgn · lgn)[23]. It splits each polynomial into w parts, each of which has

n/w coefficients, so it is called w-way Toom-Cook multiplication. Following the
implementations in [16] and [22], we mainly use four-way Toom-Cook multipli-
cation shown in Algorithm 12 in the appendix, referred to as Toom-Cook4. It
also contains three phases: splitting, evaluation and interpolation. The process
is similar to Karatsuba. For Toom-Cook4, it splits the polynomial A(x) into four
parts, i.e. A(y) = A3 · y3 + A2 · y2 + A1 · y + A0 where y = xn/4, and compu-
tes its results at points y = {0,±1,± 1

2 , 2,∞} as recommended in [12]. At last,
combining these intermediate results yields the final polynomials.

2.4 Platform

ESP32 is an embedded microcontroller belongs to ESP Series by espressif [6].
Low price, low power consumption and built-in WiFi features (and Bluetooth
on some chips) of this series of chips make it is widely used in commercial
smart home products. The shipments of ESP have reached 100-Million[4] as of
2017. And the report from TSR in 2018 showed ESP became a leader in the
MCU Embedded WiFi chip market sector [3]. ESP32 is based on two Harvard
Architecture Xtensa LX6 CPUs running at 240MHz. There are 448 KB internal
ROM and 520 KB internal SRAM on the chip. Also ESP32 has built-in both
WiFi and Bluetooth support. There are development kits for audio recognition,
face recognition, and applications that support Apple HomeKit provided for
ESP32. In addition, ESP32 is equipped with several encryption coprocessors
such as a True Random Number Generator (TRNG), a big integer coprocessor
(for RSA and ECC acceleration), a SHA-2 coprocessor and an AES coprocessor.
ESP32 also includes security features of secure boot and flash encryption.

As an embedded microcontroller designed for IoT environment, these copro-
cessors and security features built in ESP32 make it a good choice to implement
post-quantum cryptographic schemes which will give it a wider prospect for
security applications. In this work, we provide an efficient implementation of
Saber which is a lattice-based post-quantum KEM on this device. And our main
target is high speed. We consider reusing the big integer coprocessor (for RSA
and ECC) to accelerate the polynomial multiplications in Saber, and schedu-
ling the coprocessor and two CPU cores running in parallel to achieve a better
performance.

3 Kronecker substitution

3.1 KS1 and KS2

The Kronecker substitution is an algorithm for computing the product of two
polynomials. Since the univariate polynomial and integer arithmetic are almost
identical, the Kronecker substitution converts the polynomial arithmetic to the

6 Bin Wang, Xiaozhuo Gu, and Yingshan Yang

big integer arithmetic by packing a coefficient into an integer. For example,
when multiplying two polynomials f(x) = 2x + 1 with g(x) = 3x + 2 in Z[x],
we compute the polynomials at point x = 100, i.e. f(100) = 200 + 1 = 201 and
g(100) = 300 + 2 = 302, then multiply 201 · 302 = 60702. Corresponding to
the polynomial coefficients, we can get the final polynomial multiplication result
as 6x2 + 7x + 2. The process of converting a polynomial to an integer is called
“packing”. Conversely, the process of converting an integer to a polynomial is
called “unpacking”.

We call the standard Kronecker substitution as KS1. For two polynomials f
and g of degrees m and n respectively, where 0 ≤ fi, gi < 2c for all i, the bit
length of the big integers converted by KS1 needs to be b = 2c+dlg(min(m,n))e.

In [18], David Harvey presented negated Kronecker substitution algorithm
called KS2 which halves the bit length of the big integer at the cost of increasing
the number of multiplications. For two polynomials f and g of degrees m and
n, respectively, where 0 ≤ fi, gi < 2c for all i, the bit length of the big integers
converted by KS2 needs to be b = c+ 1

2dlg(min(m,n))e.
Different from KS1, KS2 needs to select two negated evaluation points (2b,−2b)

for multiplication, that is, perform two integer multiplications to obtain two re-
sults. The results are added to obtain the even coefficients of the final polynomial,
and the results are subtracted to obtain odd coefficients.

KS1 and KS2 contain two versions of unsigned version as described above
and signed version. The signed version is used for polynomial multiplications
with signed coefficients. In Saber we need to perform 256 degree polynomial
multiplication in Zq, hence in this work, we only focus on the unsigned version
of Kronecker substitution for performing two polynomials with the same degree.

For KS3 and KS4 which were also presented in [18], implementing these two
algorithms can further shorten the bit length of multiplications required at the
cost of more complicated packing and unpacking operations. However, based
on our implementation results of KS2 algorithm, the packing and unpacking
routines already take time comparable to the multiplications by hardware big
integer coprocessor. Hence we did not consider using KS3 and KS4 algorithms
in this work.

We regard a polynomial f ∈ Z[x] with degree n, and f =
∑n−1

i=0 fix
i. We

define KSPACK shown in Algorithm 1 and KSUNPACK shown in Algorithm 2 for
packing and unpacking operations in Kronecker substitution.

We define KS1MUL shown in Algorithm 3 and KS2MUL shown in Algorithm 4
to compute the product of two polynomials with the same degree using KS1 and
KS2 algorithm respectively. In the following description, we write KS1MUL(n,b)
and KS2MUL(n,b) simply for KS1MUL(f,g,n,b) and KS2MUL(f,g,n,b) respectively,
since the n and b are the primary parameters. And we write KSMUL as a general
name for KS1MUL and KS2MUL when we does not specify which algorithm to use.

3.2 Utilizing the big integer coprocessor

On ESP32, there is a big integer coprocessor with capabilities of multiplication,
modular multiplication and modular exponentiation. The coprocessor contains

Saber on ESP32 7

Algorithm 1: KSPACK(f, n, b, sign)

Input: polynomials f ∈ Z[x]
Input: degree n of f
Input: bit length b of evaluate point
Input: sign sign ∈ {+1,−1} of evaluate point
Output: big integer X

1 X ← 0
2 for i = 0, 1, . . . , n− 1 do

3 X ← X + fi × (sign× 2b)i

4 return X;

Algorithm 2: KSUNPACK(X,n, b)

Input: big integer X
Input: degree n of output polynomial
Input: bit length b of output polynomial coefficients
Output: polynomial f

1 for i = 0, 1, . . . , n− 1 do

2 fi ← X mod 2b

3 X ← X / 2b

4 return f

Algorithm 3: KS1MUL(f, g, n, b)

Input: polynomials f, g ∈ Z[x]with same degree
Input: degree n of f, g and degree(f) = degree(g)= n
Input: bit length b of evaluate point (bit length of packing one coefficient)
Output: the product h = fg

1 X ← KSPACK(f, n, b,+1)
2 Y ← KSPACK(g, n, b,+1)
3 Z ← X × Y // big integer multiplication

4 h← KSUNPCK(Z,2n-1,b)

5 return h

three sets of 128 registers in 32 bits for storing two inputs and one output and
supports fixed bit length operations. For modular multiplication and modular
exponentiation, it supports operand bit length of N ∈ { 512; 1024; 1536; 2048;
2560; 3072; 3584; 4096 }; and for multiplication, the supported bit length is N ∈
{ 512; 1024; 1536; 2048 } since the bit length of output is twice of the inputs.

The bit length of packing is crucial for implementing polynomial multipli-
cation using KS1MUL and KS2MUL. For two polynomials f and g of the same
degree n, with fi, gi ∈ [0, 2c), the minimum bit length b to pack one coefficient is
2c+dlg(n)e for KS1MUL, and c+d 12× lg(n)e for KS2MUL. It is suitable for our cop-
rocessor to compute 64 degree 13-bit coefficients polynomial multiplication using
the KS1MUL algorithm (where c = 13, b = 2c + lg(64) = 32 and 32 ∗ 64 = 2048).

8 Bin Wang, Xiaozhuo Gu, and Yingshan Yang

Algorithm 4: KS2MUL(f,g,n,b)

Input: polynomials f, g ∈ Z[x]with same degree
Input: degree n of f, g and degree(f) = degree(g)= n
Input: bit length b of evaluate point (bit length of packing one coefficient)
Output: the product h = fg

1 X+ ← KSPACK(f, n, b,+1)
2 X− ← KSPACK(f, n, b,−1)
3 Y+ ← KSPACK(g, n, b,+1)
4 Y− ← KSPACK(g, n, b,−1)
5 Z+ ← X+ × Y+ // big integer multiplication

6 Z− ← X− × Y− // big integer multiplication

7 Z0 ← 1
2
× (Z+ + Z−)

8 Z1 ← 1
2
× 1

2b
(Z+ − Z−)

9 h0 ← KSUNPACK(Z0, d 2n−1
2
e, 2b)

10 h1 ← KSUNPACK(Z1, b 2n−1
2
c, 2b)

11 h← h0(x2) + xh1(x2)
12 return h

We pack one 13-bit coefficient into 32 bits and pack 64-degree polynomial into
64*32=2048 bits big integer and utilize the big integer coprocessor for computa-
tion. Also, the packing and unpacking are efficient since the registers of the cop-
rocessor is exactly of 32 bits where no shifting operations required. For KS2MUL,
since the KS2 algorithm can halve the number of bits that need to be packed, two
times of 2048 bits big integer multiplication can be used to compute 64-degree
29-bit coefficients polynomial multiplication (where c = 29, b = c+ 1

2 lg(64) = 32
and 32 ∗ 64 = 2048) and 1536 bits to compute 64 degree 21-bit coefficients poly-
nomial multiplication (where c = 21, b = c+ 1

2 lg(64) = 24 and 24 ∗ 64 = 1536).

4 Implementation

4.1 Polynomial multiplication using Kronecker substitution

In Saber, we need to compute 256-degree polynomial multiplications with 13-bit
and 10-bit coefficients. We consider utilizing the big integer coprocessor based
on Kronecker substitution for speeding up these operations.

The straightforward idea is as follows. We pack the two entire polynomials
into big integers based on Kronecker substitution and then multiply the two big
integers utilizing the coprocessor. Taking a 256 degree 13-bit coefficients poly-
nomial multiplication as an example, for KS1MUL algorithm, one coefficient is
required to be packed into 13 ∗ 2 + lg256 = 34 bits and the 256-degree poly-
nomial into a big integer of 34 ∗ 256 = 8704 bits. The bit length is too large
for direct computing by our coprocessor. The Karatsuba is an algorithm can be
used for both polynomial multiplication and number multiplication with an easy
implementation. We use the Karatsuba to split the big integers into small bit
length which our coprocessor is able to compute. After recursive call 3 times, the

Saber on ESP32 9

bit length is 8704/2/2/2=1088. Considering the coprocessor is capable of mul-
tiplication of {512; 1024; 1536; 2048} bits, here 1536 is suitable. To reduce the
overhead caused by a large amount of unaligned shifting operations for packing
34 bits, we consider packing the coefficients into 40 bits (byte aligned). And
multiplying the 1536 bits is still sufficient as 40*256/2/2/2=1280. We use the
mbedtls library [5] which is built in ESP32 software development kit (SDK) to
perform big integer addition and shifting operations by CPU, and perform big
integer multiplication by coprocessor. As a result, the software-based big integer
addition and shifting operations are much less efficient than the hardware-based
multiplication, and the entire process requires a total of 1180K clock cycles.

Table 1: Performance of KS1MUL and KS2MUL

Implementationa Degree Coefficient(bits) Packing(bits) Cycles

KS1MULb 64 13 32 10,310
KS2MULc 64 16 32 30,555

a The source code is available in our github link.
b Packed one 13-bit coefficient into 32 bits and required one 2048 bits big integer mul-

tiplication by the coprocessor.
c Packed one 16-bit coefficient into 24 bits and required two 1536 bits big integer

multiplications by the coprocessor.

In the following, we consider first splitting the polynomial into low degree
and then converting the low degree polynomial multiplication into big inte-
ger multiplication based on Kronecker substitution. This leads to some cheap
coefficient-level operations as a trade-off for the complex software-based big in-
teger addition and shifting operations. We discuss the polynomial multiplication
with 13-bit and 10-bit coefficients respectively as follows.

256-degree 13-bit coefficients polynomial multiplication. It is suitable
for our coprocessor to compute 64 degree 13-bit coefficients polynomial mul-
tiplication using the KS1MUL as described in Section 3.2, where c = 13, b =
2c + lg(64) = 32 and 32 ∗ 64 = 2048. For splitting 256-degree polynomial mul-
tiplication into 64 degree polynomial multiplication, we can use the Karatsuba
algorithm of 2 recursive calls or the Toom-Cook4 algorithm once. It requires
3*3=9 64-degree polynomial multiplications using Karatsuba, and 7 using Toom-
Cook4. There are 3 feasible methods using different operations shown in Table 2,
and then we compare them to find the most efficient one.

MethodA We use Karatsuba algorithm of 2 recursive calls to split 256-degree
polynomial into 64-degree, and then convert the low degree polynomials into big
integers. We end up with 9 big integer multiplications. For the evaluation points
of w1, w2, w3, the inputs of w1 and w3 are the original 13-bit coefficients, but the

10 Bin Wang, Xiaozhuo Gu, and Yingshan Yang

Table 2: Feasible methods of splitting 256 degree 13-bit coefficients polynomial
multiplication

Karatsuba a Toom-Cook4b

Evaluations 3 × {w1, w2, w3} {w1 and w7} {w2 to w6}
Inputs 13-bit 13-bit 16-bit

Operations KS1MUL KS1MUL Karatsuba with KS1MUL KS2MUL

Multiplications
9 2 5 × 3 5 × 2

2048 bits 2048 bits 1536 bits 1536 bits
a We define the method described in this column as MethodA using Karatsuba

algorithm of 2 recursive calls.
b We define MethodB and MethodC for the two types of operations for w2 to
w6 respectively using Toom-Cook4.

inputs of w2 are 14-bit (the sum of two 13-bit coefficients). We can compute w1

and w3 using KS1MUL(64,32) directly.
As the implementation result shown in Table 1, KS1MUL is faster than KS2MUL,

but KS2MUL can allow longer bit length input. Since we compute the polynomial
multiplication with the coefficients in Zq(q = 213) and there are only addition
operations (no division) in the interpolation phase of Karatsuba, we can reduce
all inputs to Zq(q = 213) before multiplication. For w2, we can first reduce
the inputs into 13 bits then also use KS1MUL(64,32). So using the Karatsuba
algorithm for computing, a total of 9 KS1MUL(64,32) are required.

MethodB Toom-Cook4 can split 256-degree polynomial multiplication into 7
64-degree, which is 2 low degree polynomial multiplications less than two re-
cursive calls of Karatsuba, at the cost of more complicated computing in the
interpolation phase. We use the 7 evaluation points of {0,±1,± 1

2 , 2,∞} as same
as the implementation of Saber in [16]. And following the Toom-Cook4 imple-
mentation in [16], in the interpolation phase, divisions by odd scalars are per-
formed by computing multiplications by their respective inverses, and divisions
by even scalars are performed in two steps: first multiply by the inverse of the
odd factor, then compute a true division by the power-of-two factor. Hence, we
need to add extra 3-bit precision for coefficients such that the extra bits can be
used to calculate the divisions by 2, 4 and 8.

For the evaluation points w1 and w7, the inputs are the original 13-bit coef-
ficients, so we use the efficient KS1MUL(64, 32). For the evaluation points w2 to
w6, the inputs are the weighted sums of coefficients with bit length longer than
13-bit (i.e. w2 = (A0 + 2A1 + 4A2 + 8A3) ∗ (B0 + 2B1 + 4B2 + 8B3)). We must
keep 13+3=16 bits of precision for their inputs, that is, we can only reduce the
coefficients of inputs to 216 before multiplication. We need to choose one more
Karatsuba or KS2MUL for computing 16-bit coefficients inputs of w2 to w6, since
KS1MUL only supports 13-bit coefficients.

In this method, we choose one more Karatsuba algorithm to compute w2

to w6. We split the 64-degree 16-bit coefficients polynomial multiplication into

Saber on ESP32 11

3 32-degree, and pack one 16-bit coefficient into 16+16+log(32)=37 bits. We
need to choose the 1536 bits multiplication as each polynomial is packed into
a big integer of 37*32=1184 bits. To compute the entire 256-degree polynomial
multiplication, the coprocessor is required to do 2 2048 bits multiplications (for
computing w1 and w7 using KS1MUL) and 5*3=15 1536 bits multiplications (for
computing w2 to w6 using one more Karatsuba and 3 KS1MUL each), for a total of
2*8.6K+5*3*5.0K=92.2K clock cycles. In MethodA, the coprocessor needs to do
9 2048 bits multiplication, a total of only 9 * 8.6K = 77.4K clock cycle. Moreover,
the Toom-Cook4 of this method requires more complicated computation than
the Karatsuba used in MethodA in the interpolation phase, so this method is
less efficient than MethodA.

MethodC In this method, we use Toom-Cook4 and compute w1 and w7 as
same as MethodB . Here we use KS2MUL to compute w2 to w6. We pack one 16-
bit coefficient into (16+(1/2)*lg64)=19 bits and one 64 degree polynomial can
be packed into 19*64=1216 bits. We still need to choose the 1536 bits multiplica-
tion of the coprocessor. Furthermore, we pack each coefficient into 24 bits (byte
aligned) for more convenient packing operation, which can still be computed of
24*64=1536 bits multiplication.

To compute the entire 256-degree polynomial multiplication, the coprocessor
is required to do 2 2048 bits multiplications (for computing w1 and w7 using
KS1MUL) and 5*2=10 1536 bits multiplications (for computing w2 to w6 using
KS2MUL including 2 1536 bits multiplications each), for a total of 2*8.6k+5*2*5.0k
=67.2k clock cycles. This method is more efficient than MethodA in terms of
the cycles it takes for the coprocessor to perform the multiplications. Howe-
ver, the software-based functions, such as computing the value of the polyno-
mial at positive and negative points, the addition and the division of big in-
tegers, lead to a large overhead in KS2MUL. To compute the entire 256 degree
polynomial multiplication, it is required 2 KS1MUL and 5 KS2MUL, for a total of
2*10K+5*31K=175K clock cycles. However, in MethodA, 9 KS1MUL are requi-
red, for a total of 9*10k=90k clock cycles. Furthermore, Toom-Cook4 requires
more computation than Karatsuba used in MethodA in the interpolation phase,
so this method is still less efficient than MethodA.

As a result, MethodA is the most efficient one for 256-degree 13-bit coeffi-
cients polynomial multiplication.

256-degree 10-bit coefficients polynomial multiplication. For the 256-
degree 10-bit coefficients polynomial multiplication, we consider using the Toom-
Cook4 algorithm to split it into 7 64-degree. As mentioned earlier, we need to
retain an additional 3 bits of precision in the Toom-Cook4 computation pro-
cess. That is, we need to perform the polynomial multiplication of the 13-bit
coefficients in the process. Here we can reduce all coefficients to 13 bits before
multiplication then directly use the efficient algorithm KS1MUL(64, 32) for compu-
tation. Acually this is the most efficient method for 256-degree 10-bit coefficients
polynomial multiplication.

12 Bin Wang, Xiaozhuo Gu, and Yingshan Yang

Table 3: The most efficient methods to perform 256 degree polynomial multipli-
cations in Saber
Coefficients Modulus Algorithm Precision in progress Kronecker Multiplications

13-bit 8192 Karatsubaa 13 bits KS1MUL nine 2048 bits
10-bit 1024 Toom-Cook4 10+3=13 bits KS1MUL seven 2048 bits

a Two recursive calls.

4.2 Random generation

There is a true random number generator (TRNG) on ESP32. The true random
numbers are generated based on the noise in the Wi-Fi/BT RF system, and can
be read from the TRNG register of 32 bits. The TRNG is fed two bits of entropy
every APB clock cycle of 80MHz. However the CPU is clocked at 240MHz, we
are able to read the TRNG register at a maximum rate of 5 MHz for maximum
amount of entropy. Hence at least 48 cycles should be waited between every two
32-bit random numbers read from the register. In our C implementation, when
we read a 32-bit random number from the TRNG register, we need to unpack
the 32-bit random number into 4 bytes and copy it to the target byte buffer.
This unpacking operation requires 49 cycles, which is long enough for the TRNG
to generate the next new 32-bit random number.

4.3 Using CPU idle time

In general, the Karatsuba and the Toom-Cook4 algorithms are composed of
following phases: splitting, evaluation and interpolation. In the evaluation phase,
we use the KS1MUL utilizing the big integer coprocessor to execute. We notice
that the CPU is idle during the coprocessor execution. We propose the following
strategies to make reasonable use of CPU idle time to improve the performance.

Pre-compute weighted sum of polynomials inputs. We choose to pre-
compute weighted sum of polynomials inputs (i.e. A(2) = (A0 + 2 ·A1 + 4 ·A2 +
8 ·A3) for w2 in Toom-Cook4) of the next KSMUL during the CPU idle time. For
Karatsuba, we abandon the way of recursive calls to the Karatsuba algorithm
and fully unrolled the recursively calls of Karatsuba algorithm. We can use this
strategy for computing w2 in Karatsuba and w2 to w6 in Toom-Cook4.

Rearrange interpolation steps into evaluation phase. We carefully rear-
range the interpolation steps and maintain the correct execution order of the
steps that have dependencies, such as the input of a step is the output of the
previous step to ensure the correct result. For example, in the Toom-Cook4, we
choose to compute w1 to w7 in the order of {w1, w3, w4, w5, w2, w7, w6}. After w3

and w4 are completed, we compute the interpolation step of w4 = (w4 − w3)/2
and w3 = w3 + w4 during the CPU idle time while computing w5 by the copro-
cessor. We note that we choose to compute w1 first for the reason that, for w1

there is no weighted sum of polynomials inputs are required to pre-compute.

Saber on ESP32 13

Pre-algin inputs for writing to coprocessor registers. The process of
performing big integer multiplication is as follows. To compute Z=X*Y, where
X, Y, Z are big integers, CPU writes X and Y into the coprocessor’s input data
registers. When the execution of the coprocessor completes, CPU reads the value
of Z from the output registers. The data registers of our coprocessor consist of
several consecutive 32-bit registers. We first align the 64 16-bit elements to 64 32-
bit consecutive data array, then use the memcpy function in standard C language
for fast memory copying. We per-align the inputs for the coprocessor of the next
KSMUL during the CPU idle time. This also avoids the overhead caused by the
alignment of the data. In the first KSMUL, we use a loop function to write 16-bit
elements into 32-bit registers one by one, since there is no CPU idle time to
per-align. It takes 1207 clock cycles to write 256 data in a loop, but only 802
clock cycles to copy 64 consecutive 32-bit data using the memcpy function.

Post-reduce outputs read from coprocessor registers. We use the memcpy
function to read the output from the coprocessor into a full buffer data array
and choose to preform the reduction operation in the CPU idle time of the
next KSMUL. It takes 1288 clock cycles to read 127 data one by one using a
loop function, and it takes only 523 clock cycles to use the memcpy function for
efficient memory copying.

We describe our implementations using these strategies in Algorithm 13 and
Algorithm 14 in the appendix. As a result, for the entire polynomial multiplica-
tion, a large amount of software operations performed by CPU are arranged in
its idle time during the co-processor computation, that is, the period between
writing data (write regs) to and reading data (read regs) from the coproces-
sor registers. Since we ensure the CPU’s executions can be completed before the
coprocessor complete, the whole execution time mainly consists of the writing,
computing, and reading time of the coprocessor, except for several remaining
operations to process the final product.

4.4 Dual core acceleration

There are two CPU cores on ESP32 chip. The two cores are identical in function
and share the same memory space. The address mappings of the two cores are
symmetric, that is, accessing the same data variables using the same address.

We use FreeRTOS library [8] built in ESP32 for development work. FreeRTOS
is a real-time operating system which provides APIs to execute computing task
(code blocks) in a specified CPU core, as well as a semaphore mechanism that
serves multi-core parallel computing. Here, the two cores are defined as “main
core” and “secondary core”. We control the entire algorithm flow in the main
core while assigning some computing tasks to the secondary core. We execute
the algorithm from the main core and initialize the variables. The two cores
can access these variables with the same address and communicate based on the
semaphore mechanism.

We hand-partition the task of Saber in order to achieve dual core parallel
execution, since ESP32 does not have the ability to execute the single task on two

14 Bin Wang, Xiaozhuo Gu, and Yingshan Yang

cores based on hardware level instructions rearrangement. For the correctness
and efficiency of the progress, we rearrange the small steps of Saber as following
rules: if the input of a step does not depend on the output of the previous
step, the two steps can be executed in parallel; otherwise we should execute this
step after the previous step is completed. Figure explaining of dual-core task
partitioning is described in Appendix J in the appendix.

The performance of dual core is twice that of a single core in the ideal state.
However, the dual-core parallel execution of the Saber algorithm has two main
limitations. First, Saber itself is a sequential execution algorithm, and the input
to many steps depends on the results of the previous step, so we can’t parallel all
the steps. Also, ESP32 has only one big integer coprocessor and one TRNG, and
we can only perform polynomial multiplication and random number generation
operations in one core.

We note that our dual-core acceleration is valuable for decreasing latency
of the common applications running on ESP32 as IoT clients to communicate
with remote server via “PQC-TLS” based network connection. Also there are
few requirements for network throughput on these IoT clients.

4.5 Generation of the matrix A

In the GEN algorithm, we choose to generate the vector s in the main core,
generate the matrix A in the secondary core, and then compute the product of
the two in the main core. It takes 117K clock cycles to generate s and 477K to
generate A. Hence the main core needs to wait for the secondary core to complete
before performing the next multiplication of A and s. To reduce the wait time,
the main core can begin to perform the multiplication when the secondary core
generates a row of elements (or even an element) in A. In original implementation
of Saber, A was generated in two steps: using the shake128 algorithm to stretch
a 32-byte seed into a full buffer of bytes sufficient to generate 9 polynomials
at a time, and then convert the bytes into 9 polynomials. The shake128 takes
up 89% in the process of generating A, so we need to “split” the shake128

function to output bytes segment by segment and convert the byte segments
to polynomials one by one. We use the idea of the justintime strategy [22],
which was originally used to save memory in implementing Saber on ARM, to
generate 9 polynomials in matrix A one by one, and use semaphores to inform
the main core when a polynomial in matrix A is generated in the secondary
core. In our implementation, we remove the global variables of the polynomial
and byte count information in the original implementation of justintime, and
add the appropriate semaphore mechanism for parallelization.

Compared to the original implementation, there is some additional overhead
in justintime, since it needs to handle the “leftover” bits and count the bytes
length. In our implementation, the modified justintime is only used in the GEN

algorithm to reduce the wait time before the multiplication of A and s. The
original version is used in ENC and DEC since we have sufficient time in the
secondary core to pre-generate A before A and s are multiplied by rearranging
the steps.

Saber on ESP32 15

5 Results

5.1 Implementation performance

We develop our implementation in C language, based on the SDK for ESP32
provided in [7]. We execute the implementation on an ESP32-DevKitC develop-
ment board [6] to evaluate the performance. And we use the official function
ESP.getCycleCount() to count the clock cycles.

Table 4: Performance of 256 degree polynomial multiplication on ESP32
Implementation Modulus Cycles

NTTa 7681 243,967

Toom-Cook4 with KS1MUL b 7681 127,293
Toom-Cook4 with KS1MUL (parallel) c 7681 94,537
Karatsuba with KS1MUL 8192 130,025
Karatsuba with KS1MUL (parallel) 8192 97,050
Toom-Cook4 with KS1MUL 1024 105,633
Toom-Cook4 with KS1MUL (parallel) 1024 85,178

a Based on the NTT implementation of Kyber submission [27]. Including
2*Forward NTT + 1*Pointwise Multiplication + 1*Inverse NTT.

b No extra bit precision acquired in the interpolation phase in Toom-Cook4
since all the divisions are performed by computing multiplications by their
respective inverses with the prime modulus (q = 7681). The coefficients are
packed into 32 bits.

c The “parallel” version is running CPU and coprocessor in parallel with
“using CPU idle time” strategies.

In Table 4, we compare the performance of a single 256-degree polynomial
multiplication with different modulus on ESP32. Here we use the source code in
Kyber[14] [27] to execute the multiplication by NTT, and execute the implemen-
tations we presented in previous sections utilizing the big integer coprocessor.
We note that the cycles in Table 4 includes the reduction. The reduction is per-
formed as Algorithm 10 in the appendix except NTT-based multiplication and
the reduction operation is cheap. The correctness of these implementations in
Table 4 has been checked and the source code of these implementations is also
available in our github link.

As can be seen from the Table 4, our implementations utilizing the big integer
coprocessor are faster than NTT-based multiplication with modulus 7681 by
around 2.6x, 2.5x and 2.9x times with moduli 7681, 8192, 1024 respectively.
It can also be seen that by using CPU idle time to allow the CPU and the
coprocessor to run in parallel, the clock cycles of 28.7%, 25.4%, 19.4% (parallel
versions in the table) can be reduced, respectively.

16 Bin Wang, Xiaozhuo Gu, and Yingshan Yang

Table 5: Performance of polynomial multiplication functions in Saber on ESP32
Functions Cycles

MatrixMulRoundinga 827,050
VectorMul 243,023

a Merged operation of MatrixMul and Rounding.

Table 5 shows the clock cycles of polynomial multiplication functions in
Saber. The benefit of using CPU idle time strategies is also appreciable in
MatrixMulRounding and VectorMul, where the total clock cycles are smaller
than the times count of single polynomial multiplication (for MatrixMulRounding,
827,050 vs. 3*3*97,050=873,450; for VectorMul, 243,023 vs. 3*85,178=255,534).

Table 6: Performance of Saber on ESP32
Implementation Algorithm Cycles Run time(ms) Speedup ratio

Reference [15]
CCA.GEN 12,287,254 51.2 1x
CCA.ENC 16,365,828 68.2 1x
CCA.DEC 20,042,134 83.5 1x

ESP32 (single-core)
CCA.GEN 1,638,677 6.8 7.5x
CCA.ENC 2,123,010 8.8 7.7x
CCA.DEC 2,192,991 9.1 9.1x

ESP32 (dual-core)
CCA.GEN 1,176,191 4.9 10.4x
CCA.ENC 1,624,650 6.8 10.1x
CCA.DEC 1,514,185 6.3 13.2x

The performance of our implementation for Saber on ESP32 are listed in
Table 6. Our single-core version implementation is faster than the reference by
7.5x, 7.7x and 9.1x times for GEN, ENC, DEC respectively, and the dual-core version
is faster than the reference by 10.5x, 10.1x and 13.2x times for GEN, ENC, DEC
respectively.

We note that we use the Saber round-1 submission [15] as the “Reference”
in Table 6 and our optimized implementation is based on it, for making a di-
rect comparison with previous optimized implementation [20] with the same
“Reference” in the next sub-section. Also the changes in the Saber round-2 sub-
mission [17] listed in its supporting documentation make a negligible difference
on the performance compared with round-1: “Transposing matrix A” has no
impact of performance in our optimized implementation since our performance
of polynomial multiplication is irrelative of transposing; “The parameter T” and
“Simplification of the specification” have no impact on the implementation; “Re-
placement of constant polynomial h” slightly changes the implementation and
has negligible impact on the actual performance.

Saber on ESP32 17

5.2 Comparison with related work

Table 7: Performance of Saber on Cortex-M4[20]
Implementation Algorithm Cycles Run time(ms) Speedup ratio

Reference [15] a
CCA.GEN 6,530,000 40.8 1x
CCA.ENC 8,684,000 54.3 1x
CCA.DEC 10,581,000 66.1 1x

Cortex-M4 [20]
CCA.GEN 895,000 5.6 7.3x
CCA.ENC 1,161,000 7.3 7.5x
CCA.DEC 1,204,000 7.5 8.8x

a The cycles are reported in [20].

Cortex-M4, belongs to ARM Cortex-M series, has been well-studied for im-
plementing post-quantum cryptography. The performance of the fastest opti-
mized implementation of Saber from [20] is shown in Table 7. It is not fair to
compare the cycles of the same cryptography scheme in these two different plat-
forms, since Cortex-M4 with an ARM CPU and ESP32 with Xtensa LX6 CPUs
are of different CPU families with different instruction sets. But as can be seen
from two tables, with a same “Reference”[15], the speedup ratios of our single-
core implementations on ESP32 are slightly higher than the speedup ratios of
[20] on Cortex-M4, and our dual-core version are even higher. On the other hand,
the run time of our dual-core version is better than [20].

Table 8: Comparison of HW and SW functions for polynomial multiplications
Implementation AlgorithmTypeFunctions CyclesPercentage

Kyber variant [10]

CPA.GEN
HW MulAddSingle, FinalElla 1,901,046 58%
SW Snort, Sneeze 1,352,445 42%

CPA.ENC
HW MulAddSingle, FinalEll 2,534,728 59%
SW Snort, Sneeze 1,772,243 41%

CPA.DEC
HW MulAddSingle, FinalEll 633,682 55%
SW Snort, Sneeze 512,849 45%

Saber (ours)

CPA.GEN
HW MatrixMulRounding 695,547 84%
SW Internal operations 131,503 16%

CPA.ENC
HW MatrixMulRounding, VectorMul 875,874 82%
SW Internal operations 194,199 18%

CPA.DEC
HW VectorMul 180,327 74%
SW Internal operations 62,696 26%

a The detail cycles of internal sw-based operations are not reported.

In [10], Albrecht et al. presented an implementation of Kyber variant utilizing
the RSA coprocessor (big integer coprocessor) on SLE78. We emphasize that our

18 Bin Wang, Xiaozhuo Gu, and Yingshan Yang

approach is different from the one used in [10]. Albrecht et al. split the ring with
the idea from Schönhage [26] or Nussbaumer [24] and computed the polynomial
multiplication C(x) = A(x) ∗ B(x) mod+ F for A,B,C ∈ Zp with p = F =
22048 + 1 (converted to big integer modular multiplications) by the RSA
coprocessor on SLE78, meanwhile we split the polynomial multiplication and
computed the small degree polynomial multiplications (converted to big integer
standard multiplications) by the big integer coprocessor on ESP32.

For polynomial multiplication, Kyber(n=256, q=7681, k=3) and Saber(n=256,
q=8192 or 1024, k=3) are of similar parameters. For CPA secure GEN, ENC,
DEC of functions for polynomial multiplication, implementation of [10] costs
81, 108, 27 calls of hardware-based 2048+1 bits modular multiplications in
MulAddSingle respectively, while ours costs 81, 102, 21 calls of hardware-based
2048 bits standard multiplications.

With similar computational complexity of hardware-based functions (ours
may be less complex since computing standard multiplication is cheaper than
the similar bits of modular multiplication and there are also 3 multiplications in
one call of FinalEll), due to use the coprocessor, the implementation in [10] has
a large amount of software overhead. There are 42%, 41%, 45% of total cycles
cost by additional software functions of CPA-secure GEN, ENC, DEC respectively.
As a result, our approach takes a better advantage of the big integer coprocessor
with significantly lower software overhead.

We note that the cycles of [10] in Table 8 are computed by the cycles of
single function and the number of calls of KS1 version reported from its Table 3.
Although the cycles of KS2 version (slightly less calls of hardware-based modular
multiplication but similar total cycles) is slightly different, we can still get the
same comparison result.

6 Conclusion

In this paper, we provide an efficient implementation of polynomial multiplicati-
ons and a speed-optimized implementation of the CCA-secure lattice-based key
encapsulation scheme Saber on embedded microcontroller ESP32.

The efficient implementation of polynomial multiplications utilizing the big
integer coprocessor outperforms the NTT-based multiplications on our platform,
and also contains significantly lower software overhead than the implementa-
tion of [10]. Our fastest dual-core version implementation of Saber takes 1176K,
1625K, 1514K clock cycles for key generation, encapsulation and decapsulation
respectively, that is, 4.9, 6.8, 6.3 milliseconds assuming 240 MHz frequency to
execute. We have shown that the existing big integer coprocessor originally de-
signed for the acceleration of RSA or ECC is available for making a significant
speedup for the time-consuming polynomial multiplications in lattice-based cryp-
tography. The dual core is also a good feature to get a better performance for
the scheme designed of sequential execution, when properly assigning tasks to
two cores running in parallel.

Saber on ESP32 19

References

1. National institute of standards and technology. submission requirements
and evaluation criteria for the post-quantum cryptography standardization
process. http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/

call-for-proposals-final-dec-2016.pdf (2016)
2. NIST post-quantum cryptography round 1 submissions. https://csrc.nist.gov/

Projects/Post-Quantum-Cryptography/Round-1-Submissions (2017)
3. TSR Report: 2017 wireless connectivity market analysis. www.t-s-r.co.jp/e/

report/4543.html (2018)
4. Espressif milestones. www.espressif.com/en/company/about-us/milestones

(2019)
5. mbedtls. https://tls.mbed.org/ (2019)
6. ESP32 development-boards. https://www.espressif.com/en/products/

hardware/development-boards (2019)
7. ESP32 software development kit. https://github.com/espressif/

arduino-esp32 (2019)
8. FreeRTOS. https://www.freertos.org/ (2019)
9. NIST post-quantum cryptography round 2 submissions. https://csrc.nist.gov/

projects/post-quantum-cryptography/round-2-submissions (2019)
10. Albrecht, M.R., Hanser, C., Höller, A., Pöppelmann, T., Virdia, F., Wallner, A.:

Implementing rlwe-based schemes using an RSA co-processor. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2019(1), 169–208 (2019), https://doi.org/10.13154/
tches.v2019.i1.169-208

11. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key ex-
change - A new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Secu-
rity Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016.
pp. 327–343. USENIX Association (2016), https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/alkim

12. Bodrato, M., Zanoni, A.: Integer and polynomial multiplication: towards optimal
toom-cook matrices. In: Wang, D. (ed.) Symbolic and Algebraic Computation,
International Symposium, ISSAC 2007, Waterloo, Ontario, Canada, July 28 - Au-
gust 1, 2007, Proceedings. pp. 17–24. ACM (2007), https://doi.org/10.1145/

1277548.1277552

13. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Rag-
hunathan, A., Stebila, D.: Frodo: Take off the ring! practical, quantum-secure key
exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016. pp. 1006–
1018. ACM (2016), https://doi.org/10.1145/2976749.2978425

14. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - kyber: A cca-secure module-
lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018, London, United Kingdom, April 24-26, 2018. pp. 353–367. IEEE
(2018), https://doi.org/10.1109/EuroSP.2018.00032

15. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber algorithm in-
formation in the NIST round-1 submissions. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-1-Submissions (2017)

16. D’Anvers, J., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Module-lwr based
key exchange, cpa-secure encryption and cca-secure KEM. In: Joux, A., Nitaj, A.,

http://csrc.nist.gov/groups/ST/post-quantum-crypto/ documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/ documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
www.t-s-r.co.jp/e/report/4543.html
www.t-s-r.co.jp/e/report/4543.html
www.espressif.com/en/company/about-us/milestones
https://tls.mbed.org/
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://www.freertos.org/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.13154/tches.v2019.i1.169-208
https://doi.org/10.13154/tches.v2019.i1.169-208
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://doi.org/10.1145/1277548.1277552
https://doi.org/10.1145/1277548.1277552
https://doi.org/10.1145/2976749.2978425
https://doi.org/10.1109/EuroSP.2018.00032
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

20 Bin Wang, Xiaozhuo Gu, and Yingshan Yang

Rachidi, T. (eds.) Progress in Cryptology - AFRICACRYPT 2018 - 10th Interna-
tional Conference on Cryptology in Africa, Marrakesh, Morocco, May 7-9, 2018,
Proceedings. Lecture Notes in Computer Science, vol. 10831, pp. 282–305. Springer
(2018), https://doi.org/10.1007/978-3-319-89339-6_16

17. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber algorithm in-
formation in the NIST round-2 submissions. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-2-Submissions (2019)

18. Harvey, D.: Faster polynomial multiplication via multipoint kronecker substitution.
J. Symb. Comput. 44(10), 1502–1510 (2009), https://doi.org/10.1016/j.jsc.
2009.05.004

19. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography - 15th
International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 10677, pp. 341–371.
Springer (2017), https://doi.org/10.1007/978-3-319-70500-2_12

20. Kannwischer, M.J., Rijneveld, J., Schwabe, P.: Faster multiplication in Z2m [x] on
Cortex-M4 to speed up NIST PQC candidates. In: Deng, R.H., Gauthier-Umaña,
V., Ochoa, M., Yung, M. (eds.) Applied Cryptography and Network Security -
17th International Conference, ACNS 2019, Bogota, Colombia, June 5-7, 2019,
Proceedings. Lecture Notes in Computer Science, vol. 11464, pp. 281–301. Springer
(2019), https://doi.org/10.1007/978-3-030-21568-2_14

21. Karatsuba, A.A., Ofman, Y.P.: Multiplication of many-digital numbers by au-
tomatic computers. In: Doklady Akademii Nauk. vol. 145, pp. 293–294. Russian
Academy of Sciences (1962)

22. Karmakar, A., Mera, J.M.B., Roy, S.S., Verbauwhede, I.: Saber on ARM cca-
secure module lattice-based key encapsulation on ARM. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2018(3), 243–266 (2018), https://doi.org/10.13154/
tches.v2018.i3.243-266

23. Knuth, D.E.: The art of computer programming, Volume I: Fundamental Al-
gorithms, 3rd Edition. Addison-Wesley (1997), http://www.worldcat.org/oclc/
312910844

24. Nussbaumer, H.: Fast polynomial transform algorithms for digital convolution.
IEEE Transactions on Acoustics, Speech, and Signal Processing 28(2), 205–215
(1980)

25. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves.
arXiv preprint quant-ph/0301141 (2003)

26. Schönhage, A.: Schnelle multiplikation von polynomen über körpern der charakte-
ristik 2. Acta Inf. 7, 395–398 (1977), https://doi.org/10.1007/BF00289470

27. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyu-
bashevsky, V., Schanck, J.M., Seiler, G., Stehle, D.: Kyber algorithm infor-
mation in the NIST round-2 submissions. https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography/Round-1-Submissions (2019)
28. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete lo-

garithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997),
https://doi.org/10.1137/S0097539795293172

https://doi.org/10.1007/978-3-319-89339-6_16
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://doi.org/10.1016/j.jsc.2009.05.004
https://doi.org/10.1016/j.jsc.2009.05.004
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-030-21568-2_14
https://doi.org/10.13154/tches.v2018.i3.243-266
https://doi.org/10.13154/tches.v2018.i3.243-266
http://www.worldcat.org/oclc/312910844
http://www.worldcat.org/oclc/312910844
https://doi.org/10.1007/BF00289470
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1137/S0097539795293172

Saber on ESP32 21

A CPA secure Saber KEM

Algorithm 5: Saber.KeyGen()

1 seedA ← U({0, 1}256)

2 A← gen(seedA) ∈ Rl×lq

3 s← βµ(Rl×1
q)

4 b = bits(As+ h, εq, εp) ∈ Rl×1
q

5 return (pk := (b, seedA), sk := s)

Algorithm 6: Saber.Enc(pk = (b, seedA),m ∈M ; r)

1 A← gen(seedA) ∈ Rl×lq

2 s′ ← βµ(Rl×1
q)

3 b′ = bits(ATs′ + h, εq, εp) ∈ Rl×1
p

4 v′ = bT bits(s′, εp, εp) + h1 ∈ Rp
5 cm = bits(v′ + 2εp−1m, εp, εt + 1) ∈ R2t

6 return c := (cm, b
′)

Algorithm 7: Saber.Dec(sk = s, cm, b
′)

1 v = b′T bits(s, εp, εp) + h1 ∈ Rp
2 m′ = bits(v − 2εp−εt−1cm + h2, εp, 1) ∈ R2

3 return m′

22 Bin Wang, Xiaozhuo Gu, and Yingshan Yang

B CCA secure Saber KEM

Algorithm 8: Saber.Encaps(pk = (b, seedA))

1 m← U{0, 1}256

2 (K̂, r) = G(pk,m)
3 c = Saber.Enc(pk,m; r)

4 K = H(K̂, c)
5 return (c,K)

Algorithm 9: Saber.Decaps(sk = (s, z), pk = (b, seedA, c))

1 m′ = Saber.Dec(s, c)

2 (K̂′, r′) = G(pk,m′)
3 c′ = Saber.Enc(pk,m′; r′)
4 if c = c′ then

5 return K = H(K̂′, c)

6 else
7 return K = H(z, c)

C Performance of big integer multiplication by
coprocessor

Table 9: Performance of big integer multiplication by coprocessor
Bits Cycles a

1536 4,966
2048 8,587

a Only including the cycles of computing. (Not including registers writing
and reading)

Saber on ESP32 23

D Reduction in the ring Rq = Zq[x]/(x
n + 1)

Algorithm 10: Reduction(h, n, q)

Input: product h of two n degree polynomials
Input: modulus q of coefficients in h to reduce
Output: reduced polynomial r from h in the ring Rq = Zq[x]/(xn + 1)

1 for i = 0, 1, . . . , n− 1 do
2 ri ← (hi − h(i+n)) mod q

3 r(n−1) ← h(n−1) mod q
4 return r;

E Performance of other key functions in Saber on ESP32

Table 10: Performance of other key functions in Saber on ESP32
Functions Cycles

Gen(A) 476,658
shake128(32B→3744B) a 430,184
Gen(s) 116,548

shake128(32B→768B)b 102,950
sha256(1088B) 210,643
sha256(992B) 183,213
sha256(64B) 27,129
sha512(64B) 26,365

a Internal operation in Gen(A).
b Internal operation in Gen(s).

24 Bin Wang, Xiaozhuo Gu, and Yingshan Yang

F Karatsuba Algorithm

Algorithm 11: Karatsuba Algorithm

Input: Two polynomials A(x) and B(x) of degree n
Output: C(x) = A(x) ∗B(x)
// Splitting A(x) and B(x) into two polynomials of size n

2

1 A(y) = A1 · y +A0 where y = x
n
2

2 B(y) = B1 · y +B0

// Evaluation of the Polynomials at y = {0, 1,∞}
3 w1 = A(∞) ∗B(∞) = A1 ∗B1

4 w2 = A(1) ∗B(1) = (A0 +A1) ∗ (B0 +B1)
5 w3 = A(0) ∗B(0) = A0 ∗B0

// Interpolation

6 w2 = w2 − w1 − w3

7 return w1 · y2 + w2 · y + w3

Saber on ESP32 25

G Toom-Cook4 Algorithm

Algorithm 12: Toom-Cook4 Algorithm

Input: Two polynomials A(x) and B(x) of degree n
Output: C(x) = A(x) ∗B(x)
// Splitting A(x) and B(x) into four polynomials of size n

4

1 A(y) = A3 · y3 +A2 · y2 +A1 · y +A0 where y = x
n
4

2 B(y) = B3 · y3 +B2 · y2 +B1 · y +B0

// Evaluation of the Polynomials at y = {0,±1,± 1
2
, 2,∞}

3 w1 = A(∞) ∗B(∞) = A3 ∗B3

4 w2 = A(2) ∗B(2) = (A0 + 2 ·A1 + 4 ·A2 + 8 ·A3) ∗ (B0 + 2 ·B1 + 4 ·B2 + 8 ·B3)
5 w3 = A(1) ∗B(1) = (A0 +A1 +A2 +A3) ∗ (B0 +B1 +B2 +B3)
6 w4 = A(−1) ∗B(−1) = (A0 −A1 +A2 −A3) ∗ (B0 −B1 +B2 −B3)
7 w5 = A(1

2
) ∗B(1

2
) = (8 ·A0 + 4 ·A1 + 2 ·A2 +A3) ∗ (8 ·B0 + 4 ·B1 + 2 ·B2 +B3)

8 w6 = A(−1
2

)∗B(−1
2

) = (8 ·A0−4 ·A1 +2 ·A2−A3)∗ (8 ·B0−4 ·B1 +2 ·B2−B3)
9 w7 = A(0) ∗B(0) = A0 ∗B0

// Interpolation

10 w2 = w2 + w5

11 w6 = w6 − w5

12 w4 = (w4 − w3)/2
13 w2 = w5 − w1 − 64 · w7

14 w3 = w3 + w4

15 w5 = 2 · w5 + w6

16 w2 = w2 − 65 · w3

17 w3 = w3 − w7 − w1

18 w2 = w2 + 45 · w3

19 w5 = (w5 − 8 · w3)/24
20 w6 = w6 + w2

21 w2 = (w2 + 16 · w4)/18
22 w3 = w3 − w5

23 w4 = −(w4 + w2)
24 w6 = (30 · w2 − w6)/60
25 w2 = w2 − w6

26 return w1 · y6 + w2 · y5 + w3 · y4 + w4 · y3 + w5 · y2 + w6 · y + w7

26 Bin Wang, Xiaozhuo Gu, and Yingshan Yang

H Implementation of unrolled Karatsuba with KS1MUL

Algorithm 13: Unrolled Karatsuba parallel

Input: polynomials a, b ∈ Z[x] with same degree n = 256
Output: root res = a ∗ b

1 aL = &a[0]; aH = &a[128]; bL = &b[0]; bH = &b[128];
2 aLL = &a[0]; aLH = &a[64]; aHL = &a[64 ∗ 2]; aHH = &a[64 ∗ 3];
3 bLL = &b[0]; bLH = &b[64] ; bHL = &b[64 ∗ 2]; bHH = &b[64 ∗ 3];

// root w3← (aL, bL)
4 write regs(aLL, bLL) // write aLL, bLL by loop function
5 aS = aL + aH; bS = bL + bH;
6 aSL = &aS[0]; aSH = &aS[64]; bSL = &bS[0]; bSH = &bS[64];
7 aREG = alignment(aLH); bREG = alignment(bLH);
8 read regs(rREG);
9 write regs(aREG, bREG) // write aLH, bLH by memcpy function

10 sub w3 = reduction(rREG) // reduce 32-bit to 13-bit
11 aLS = aLL + aLH; bLS = bLL + bLH
12 aREG = alignment(aLS); bREG = alignment(bLS); // 32-bit alignment
13 read regs(rREG);
14 write regs(aREG, bREG) // aLS,bLS
15 sub w1 = reduction(rREG);
16 aREG = alignment(aHL); bREG = alignment(aHL);
17 read regs(rREG);

// root w1← (aH, bH)
18 write regs(aREG, bREG) ; // aHL,bHL
19 sub w2 = reduction(rREG); sub w2 = sub w2− sub w1− sub w3 ;
20 root w3 = recomposition(sub w1, sub w2, sub w3);
21 aREG = alignment(aHH); bREG = alignment(aHH);
22 read regs(rREG);
23 write regs(aREG, bREG) // aHH,bHH
24 sub w3 = reduction(rREG);
25 aHS = aHL + aHH; bHS = bHL + bHH;
26 aREG = alignment(aHS); bREG = alignment(bHS);
27 read regs(rREG);
28 write regs(aREG, bREG); // aHS,bHS
29 sub w1 = reduction(rREG)
30 aREG = alignment(aSL); bREG = alignment(bSL);
31 read regs(rREG);

// root w2← (aS, bS)
32 write regs(aREG, bREG); // aSL,bSL
33 sub w2 = reduction(rREG);
34 sub w2 = sub w2− sub w1− sub w3 ;
35 root w1 = recomposition(sub w1, sub w2, sub w3);
36 aREG = alignment(aSH); bREG = alignment(bSH);
37 read regs(rREG);
38 write regs(aREG, bREG) // aSH,bSH
39 sub w3 = reduction(rREG);
40 aSS = aSL + aSH; bSS = bSL + bSH
41 aREG = alignment(aSS); bREG = alignment(bSS);
42 read regs(rREG);
43 write regs(aREG, bREG); // aSS,bSS
44 sub w1 = reduction(rREG);
45 read regs(rREG);
46 sub w2 = reduction(rREG);
47 sub w2 = sub w2− sub w1− sub w3 ;
48 root w2 = recomposition(sub w1, sub w2, sub w3);
49 root w2 = root w2− root w1− root w3;
50 root res = recomposition(root w1, root w2, root w3);
51 return reduction(root res);

Saber on ESP32 27

I Implementation of Toom-Cook4 with KS1MUL

Algorithm 14: Toom-Cook4 parallel

Input: polynomials a, b ∈ Z[x] with same degree n = 256
Output: res = a ∗ b

1 a0 = &a[0]; a1 = &a[64]; a2 = &a[64 ∗ 2]; a3 = &a[64 ∗ 3];
2 b0 = &b[0]; b1 = &b[64]; b2 = &b[64 ∗ 2]; b3 = &b[64 ∗ 3];
3 ainf = a3; binf = b3;

// w1← ainf ∗ binf
4 write regs(ainf, binf); // write ainf,binf by loop
5 a1 = a0 + a1 + a2 + a3; b1 = b0 + b1 + b2 + b3 ;
6 an1 = a0 + a2 − (a1 + a3); bn1 = b0 + b2 − (b1 + b3);
7 aREG = alignment(a1); bREG = alignment(b1); // 32-bit alignment
8 read regs(rREG);

// w3← a1 ∗ b1
9 write regs(aREG, bREG); // write a1,b1 by memcpy

10 w1 = reduction(rREG);
11 ahalf = 8 ∗ a0 + 4 ∗ a1 + 2 ∗ a2 + a3; bhalf = 8 ∗ b0 + 4 ∗ b1 + 2 ∗ b2 + b3;
12 anhalf = 8 ∗ a0 + 2 ∗ a2 − (4 ∗ a1 + a3); bnhalf = 8 ∗ b0 + 2 ∗ b2 − (4 ∗ b1 + b3);
13 aREG = alignment(an1); bREG = alignment(bn1);
14 read regs(rREG);

// w4← an1 ∗ bn1
15 write regs(aREG, bREG); // an1,bn1
16 w3 = reduction(rREG);
17 a2 = a0 + 2 ∗ a1 + 4 ∗ a2 + 8 ∗ a3; b2 = b0 + 2 ∗ b1 + 4 ∗ b2 + 8 ∗ b3;
18 aREG = alignment(ahalf); bREG = alignment(bhalf);
19 read regs(rREG);

// w5← ahalf ∗ bhalf
20 write regs(aREG, bREG); // ahalf,bhalf
21 w4 = reduction(rREG);
22 w4 = (w4− w3)/2;
23 w3 = w3 + w4;
24 aREG = alignment(a2); bREG = alignment(b2);
25 read regs(rREG);

// w2← a2 ∗ b2
26 write regs(aREG, bREG); // a2,b2
27 w5 = reduction(rREG);
28 w5 copy = w5;
29 w5 = w5− w1;
30 aREG = alignment(a0); bREG = alignment(b0);
31 read regs(rREG);

// w7← a0 ∗ b0
32 write regs(aREG, bREG) // a0,b0
33 w2 = reduction(rREG);
34 w2 = w2 + w5 copy;
35 w2 = w2− 65 ∗ w3;
36 w3 = w3− w1;
37 aREG = alignment(anhalf); bREG = alignment(bnhalf);
38 read regs(rREG);

// w6 = anhalf ∗ bnhalf
39 write regs(aREG, bREG) // anhalf,bnhalf
40 w7 = reduction(rREG);
41 w5 = w5− 64 ∗ w7; w3 = w3− w7;
42 w2 = w2 + 45 ∗ w3; w2 copy = w2;
43 w2 = (w2 + 16 ∗ w4)/18; w4 = −(w4 + w2/2);
44 read regs(rREG);
45 w7 = reduction(rREG);
46 w6 = w6− w5 copy; w5 = 2 ∗ w5 + w6;
47 w5 = (w5− 8 ∗ w3)/24; w6 = w6 + w2 copy;
48 w3 = w3− w5; w6 = (30 ∗ w2− w6)/60; w2 = w2− w6;
49 res = recomposition(w1, w2, w3, w4, w5, w6, w7);
50 return reduction(res)

28 Bin Wang, Xiaozhuo Gu, and Yingshan Yang

J Figure explaining of dual-core task partitioning

Fig. 1: Task partitioning of CCA secure GEN. The arrow indicates the semaphore
for two cores communication.

s

Fig. 2: Task partitioning of CCA secure ENC

Saber on ESP32 29

Fig. 3: Task partitioning of CCA secure DEC

	Saber on ESP32

