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Abstract. The boomerang attack is a variant of differential cryptanalysis which re-
gards a block cipher E as the composition of two sub-ciphers, i.e., E = E1 ◦ E0, and
which constructs distinguishers for E with probability p2q2 by combining differential
trails for E0 and E1 with probability p and q respectively. However, the validity of
this attack relies on the dependency between the two differential trails. Murphy has
shown cases where probabilities calculated by p2q2 turn out to be zero, while tech-
niques such as boomerang switches proposed by Biryukov and Khovratovich give rise
to probabilities greater than p2q2. To formalize such dependency to obtain a more
accurate estimation of the probability of the distinguisher, Dunkelman et al. pro-
posed the sandwich framework that regards E as Ẽ1 ◦Em ◦Ẽ0, where the dependency
between the two differential trails is handled by a careful analysis of the probability
of the middle part Em. Recently, Cid et al. proposed the Boomerang Connectivity
Table (BCT) which unifies the previous switch techniques and incompatibility together
and evaluates the probability of Em theoretically when Em is composed of a single
S-box layer. In this paper, we revisit the BCT and propose a generalized framework
which is able to identify the actual boundaries of Em which contains dependency of
the two differential trails and systematically evaluate the probability of Em with any
number of rounds. To demonstrate the power of this new framework, we apply it
to two block ciphers SKINNY and AES. In the application to SKINNY, the probabilities
of four boomerang distinguishers are re-evaluated. It turns out that Em involves
5 or 6 rounds and the probabilities of the full distinguishers are much higher than
previously evaluated. In the application to AES, the new framework is used to ex-
clude incompatibility and find high probability distinguishers of AES-128 under the
related-subkey setting. As a result, a 6-round distinguisher with probability 2−109.42

is constructed. Lastly, we discuss the relation between the dependency of two dif-
ferential trails in boomerang distinguishers and the properties of components of the
cipher.
Keywords: block cipher · boomerang attack · sandwich attack · boomerang connec-
tivity table · SKINNY · AES

1 Introduction
Differential cryptanalysis, proposed by Biham and Shamir [BS93], is one of the most
powerful approaches to assess the security of block ciphers. The basic idea is to exploit
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Figure 1: Basic boomerang attack (left), sandwich attack (middle) and Em with only an S-box
layer,

non-random pairs of input and output differences of the cipher, i.e., high probability
differentials. In many cases, it is hard or impossible to find long differentials. In such
cases, the boomerang attack [Wag99] which was proposed as an extension of the differential
cryptanalysis may be applied to combine short differentials with high probabilities to get
a long one.

In boomerang attacks, a cipher E is regarded as the composition of two sub-ciphers E0
and E1, i.e., E = E1◦E0. Suppose there exists a differential α→ β of E0 with probability
p and a differential γ → δ of E1 with probability q. Under the assumption that the two
differentials are independent, the boomerang attack exploits the high probability of the
following differential property:

Pr
[
E−1(E(P1)⊕ δ)⊕ E−1(E(P1 ⊕ α)⊕ δ) = α

]
= p2q2.

As illustrated in the left part of Figure 1, two plaintexts with difference α are encrypted
and the resulting ciphertexts are then XORed with δ to generate two new ciphertexts.
These two new ciphertexts are then decrypted to give two new plaintexts. If the difference
between the two new plaintexts is also α, it is said the boomerang returns and the two
pairs of plaintexts form a right quartet. According to [Wag99], if (pq)−2 < 2n, where
n is the block size, then E can be distinguished from an ideal cipher with a complexity
corresponding to (pq)−2 adaptive chosen plaintext/ciphertext queries.

Later, refinements on the boomerang attack were proposed. Particularly, Kelsey et
al. [KKS00] developed amplified boomerangs which are pure chosen-plaintext attacks. In
amplified boomerang attacks, the probability of finding a right quartet is 2−np2q2 while
for a random permutation the expected probability is 2−2n. In [BDK01], Biham et al.
proposed the rectangle attack which allows any value of β and γ to occur as long as β ̸= γ.
As a result, the probability of generating a right quartet increases to 2−np̂2q̂2, where
p̂ =

√
ΣiPr2(α −→ βi) and q̂ =

√
ΣjPr2(γj −→ δ).

In applications of boomerang attacks to concrete block ciphers, such as [Wag99,BDK01,
ALLW14], attackers typically aim to find differential trails with high probability and then
combine them to form long boomerang distinguishers. However, the dependency between
the two differential trails highly affects the probability of the boomerang distinguisher. As
pointed out by Murphy in [Mur11], there exist cases where the probabilities formulated
by p2q2 are highly inaccurate. He showed that in some cases of S-box based ciphers, two
independently chosen differential trails are incompatible, making the boomerang never
return, and in other cases, the dependency leads to a higher probability than p2q2.
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Further, Biryukov et al. made an improvement on exploiting the positive dependency
of boomerang distinguishers, which was named boomerang switch [BK09]. The idea was
to optimize the transition between the differential trails of E0 and E1 in order to minimize
the overall complexity of the boomerang distinguisher. In [BK09], three types of switches
were proposed. Instead of decomposing a cipher into rounds by default, the ladder switch
decomposes the cipher regarding smaller operations, like columns and bytes, which may
lead to better distinguishers. The S-box switch refers to the case when both differential
trails activate the same S-box with identical input and output differences, the probability
of this S-box counts only once for the boomerang distinguisher. The Feistel switch, also
noted in [BDK05], stands for a free middle round in the boomerang distinguisher for a
Feistel cipher.

The above cases of dependency were later covered and unified in the sandwich attack
proposed by Dunkelman et al. [DKS10, DKS14], which is depicted in the middle part
of Figure 1. It regards E as E = Ẽ1 ◦ Em ◦ Ẽ0 instead, where the middle part Em

specifically handles the dependency and contains a relatively small number of rounds. If
the probability of generating a right quartet for Em is r, then the probability of the whole
boomerang distinguisher is

Pr
[
E−1(E(P1)⊕ δ)⊕ E−1(E(P1 ⊕ α)⊕ δ) = α

]
= p̃2q̃2r,

where p̃ (resp. q̃) is the probability of the differential of Ẽ0 (resp. Ẽ1). Let (x1,x2,x3,x4)
and (y1,y2,y3,y4) be input and output quartet values for Em, where yi = Em(xi). Suppose
the differential trail for Ẽ0 (resp. Ẽ1) ends (resp. starts) with difference β (resp. γ), i.e.,
x1 ⊕ x2 = x3 ⊕ x4 = β and y1 ⊕ y3 = y2 ⊕ y4 = γ. Then, r was formally defined as:

r = Pr
[
(x3 ⊕ x4) = β|(x1 ⊕ x2 = β) ∧ (y1 ⊕ y3 = γ) ∧ (y2 ⊕ y4 = γ)

]
In [DKS10,DKS14], the probability r of Em was evaluated by experiments.

Recently in [CHP+18], the issue of dependency in boomerang distinguishers was revis-
ited, and a tool named Boomerang Connectivity Table (BCT) was proposed, which calcu-
lates r theoretically when Em is composed of a single S-box layer, as shown in the right
part of Figure 1. More importantly, the previous observations on the S-box including the
ladder switch and the S-box switch as well as the incompatibility can be well explained by
BCT, which gives new insights into boomerang attacks and provides a new point of view
for designing a good S-box. As a follow-up, Boura and Canteaut [BC18] gave a thorough
analysis of BCT properties of some important families of S-boxes.

Although the introductory paper of BCT [CHP+18] well handles the dependency of two
differential trails in boomerang distinguishers when Em is of one S-box layer, the following
questions may be asked naturally.

• How to decide the actual boundaries of Em which contains dependency of the two
differential trails in boomerang distinguishers?

• How to calculate r when Em contains multiple rounds?

Answers to these questions would be of great importance on evaluating the probability of
the boomerang distinguishers. Only when the probability of the boomerang distinguisher
is accurately computed can we evaluate the exact resistance of a cipher against boomerang
attacks.

Our contributions. This paper gives the first solution to the above questions by propos-
ing a generalized framework of BCT. Specifically, our new framework is able to not only
find the actual boundaries of Em which contains dependency of two differential trails in
the setting of boomerang attacks, but also systematically calculate the probability r of
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Em with any number of rounds. With the issues of Em settled, the probability of the full
distinguisher of E = Ẽ1 ◦ Em ◦ Ẽ0 can then be closely modeled by p̃2q̃2r.

To achieve this, we start with the basic formula of BCT and then extend it to general
cases. Specifically, new formulas are developed for all possible cases with the help of a
new concept named crossing difference which refers to the difference propagated from the
other differential trail of the boomerang distinguisher. With the crossing difference, the
middle part Em can be well described. First, the boundaries of Em are delineated by
the round where the crossing differences turn into random. Second, the probability r of
Em depends on the distribution of the crossing difference. Finally, the case considered
in [CHP+18] where Em is of one S-box layer maps to the case here where the crossing
differences are fixed.

To demonstrate the power of our generalized framework, we apply it to SKINNY [BJK+16]
and AES [DR02], which are two typical block ciphers using weak and strong round func-
tions respectively. In the case of SKINNY, we re-evaluate the probabilities of the four
boomerang distinguisher proposed in [LGS17] and the results are summarized in Table 1.
As shown in Table 1, the lengths of Em for these distinguishers are 5 or 6 rounds. The
corresponding r probabilities are computed and confirmed by experiments. Adjacent to
Em there are some passive rounds for all these distinguishers, so the probability remains
r with these passive rounds included. The increased numbers of rounds by adding these
passive rounds are displayed in parentheses. The probabilities of the full boomerang dis-
tinguishers are then computed accordingly with p̃2q̃2r which turn out to be much higher
than the probabilities given in [LGS17] by p̂2q̂2. In the case of AES, we propose a 6-round
related-subkey boomerang distinguisher of probability 2−109.42 by combining two 3-round
differential trails. In this case, Em is of two rounds. Our framework is then used to
exclude incompatibility and optimize p̃2q̃2r by selecting a good combination.

Table 1: Probabilities of the boomerang distinguishers of SKINNY where |Em| denotes the number
of rounds Em contains

Version n
Em E = Ẽ1 ◦ Em ◦ Ẽ0 Trails

|Em| r |E| p̃2q̃2r Pr. [LGS17]

n-2n
64 6 (13) 2−12.96 17 2−29.78 2−48.72 Table 7
128 5 (12) 2−11.45 18 2−77.83 2−103.84 Table 4

n-3n
64 5 (17) 2−10.50 22 2−42.98 2−54.94 Table 8
128 5 (17) 2−9.88 22 2−48.30 2−76.84 Table 8

Lastly, we discuss the relation between the dependency of two differential trails in
boomerang distinguishers and the properties of the round function. It is deduced from
our generalized framework that the length of Em is mainly determined by the diffusion
effect of the linear layer, and the probability r is strongly affected by differential properties
of the non-linear layer.

Concurrently, Wang and Peyrin [WP19] studied the effect of BCT in multiple rounds,
based on which an improved attack on AES-256 was proposed in the related-key setting.

Organization. The rest of the paper is organized as follows. Section 2 provides prelim-
inaries of boomerang attacks and previous works on BCT. Our generalized framework of
BCT is presented in Section 3. Section 4 applies the new framework to SKINNY. Section 5
extends the application to AES. We then discuss in Section 6 the relation between the de-
pendency occurring in boomerang distinguishers and the properties of the cipher. Finally,
Section 7 concludes the paper.
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2 Preliminaries
This section gives a clearer picture of the boomerang attack and reviews the previous
works on the boomerang connectivity table. In addition, notations used throughout this
paper are also introduced.

2.1 Framework of Boomerang Attacks
The boomerang attack, proposed by David Wagner [Wag99], treats a block cipher E as
the composition of two sub-ciphers E0 and E1, for which there exist short differentials
α→ β and γ → δ of probabilities p and q respectively. The two differentials are then com-
bined in a chosen plaintext and ciphertext attack setting to construct a long boomerang
distinguisher, as shown in Figure 1. Later, the basic boomerang attack was extended to
the related-key setting and was formulated in [BDK05] by using four related-key oracles.

Let EK(P ) and E−1
K (C) denote the encryption of P and the decryption of C under a

key K, respectively. Suppose ∆K,∇K are the master key differences of the differentials.
Then the boomerang framework in the related-key setting works as follows.

1. K1 ← K, K2 ← K1 ⊕∆K, K3 ← K1 ⊕∇K, K4 ← K1 ⊕∆K ⊕∇K.

2. Repeat the following steps many times.

(a) P1 ← random() and P2 ← P1 ⊕ α.
(b) C1 ← EK1(P1) and C2 ← EK2(P2).
(c) C3 ← C1 ⊕ δ and C4 ← C2 ⊕ δ.
(d) P3 ← E−1

K3
(C3) and P4 ← E−1

K4
(C4).

(e) Check if P3 ⊕ P4 = α.

In step 2(e), if P3 ⊕ P4 = α holds, then a right quartet (P1, P2, P3, P4) is found such
that P1 ⊕ P2 = P3 ⊕ P4 = α and C1 ⊕ C3 = C2 ⊕ C4 = δ. This happens with probability
p2q2 under the assumption that the two differentials are independent.

2.2 Boomerang Connectivity Table
We introduce here the definitions and propositions related to the boomerang connectivity
table of S-box S : Fn

2 → Fn
2 .

Definition 1 (Difference Distribution Table). Let S be a function from Fn
2 to Fn

2 . The
difference distribution table (DDT) is a two-dimensional table defined by

DDT(α, β) = #{x ∈ Fn
2 : S(x)⊕ S(x⊕ α) = β}, where α, β ∈ Fn

2 .

The differential uniformity of S is the highest value in the DDT except for the first row and
the first column.

Definition 2 (Boomerang Connectivity Table [CHP+18]). Let S be a permutation of Fn
2 .

The boomerang connectivity table (BCT) of S is a two-dimensional table defined by

BCT(α, β) = #{x ∈ Fn
2 : S−1(S(x)⊕ β)⊕ S−1(S(x⊕ α)⊕ β) = α}, where α, β ∈ Fn

2 .

The boomerang uniformity of S is the highest value in the BCT except for the first row
and the first column.

Example 1. The SKINNY’s 4-bit S-box takes the following mapping. Its DDT and BCT are
provided in Table 2 and 3 respectively. It can be noted that its differential and boomerang
uniformities are 4 and 16 respectively
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x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S[x] c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

Table 2: DDT of SKINNY’s 4-bit S-box
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 4 4 4 4 0 0 0 0
2 0 4 0 4 0 4 4 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
4 0 0 4 0 0 0 2 2 0 0 0 4 2 2 0 0
5 0 0 4 0 0 0 2 2 0 0 4 0 2 2 0 0
6 0 2 0 2 2 0 0 2 2 0 2 0 0 2 2 0
7 0 2 0 2 2 0 0 2 0 2 0 2 2 0 0 2
8 0 0 0 0 4 4 0 0 0 0 0 0 2 2 2 2
9 0 0 0 0 4 4 0 0 0 0 0 0 2 2 2 2
a 0 0 0 0 0 4 4 0 2 2 2 2 0 0 0 0
b 0 4 0 4 0 0 0 0 0 0 0 0 2 2 2 2
c 0 0 4 0 0 0 2 2 4 0 0 0 0 0 2 2
d 0 0 4 0 0 0 2 2 0 4 0 0 0 0 2 2
e 0 2 0 2 2 0 0 2 0 2 0 2 0 2 2 0
f 0 2 0 2 2 0 0 2 2 0 2 0 2 0 0 2

Table 3: BCT of SKINNY’s 4-bit S-box
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 0 16 0 0 0 0 0 8 8 8 8 0 0 0 0
2 16 8 0 8 8 16 8 0 0 0 0 0 0 0 0 0
3 16 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
4 16 0 8 0 0 0 2 2 4 4 4 4 2 2 0 0
5 16 0 8 0 0 0 2 2 4 4 4 4 2 2 0 0
6 16 2 0 2 2 0 0 2 2 0 2 0 0 2 2 0
7 16 2 0 2 2 0 0 2 0 2 0 2 2 0 0 2
8 16 4 0 4 4 8 4 0 0 0 0 0 2 2 2 2
9 16 4 0 4 4 8 4 0 0 0 0 0 2 2 2 2
a 16 4 0 4 4 8 4 0 2 2 2 2 0 0 0 0
b 16 4 0 4 4 8 4 0 0 0 0 0 2 2 2 2
c 16 0 8 0 0 0 2 2 4 4 4 4 0 0 2 2
d 16 0 8 0 0 0 2 2 4 4 4 4 0 0 2 2
e 16 2 0 2 2 0 0 2 0 2 0 2 0 2 2 0
f 16 2 0 2 2 0 0 2 2 0 2 0 2 0 0 2

Following [CLN+17], we introduce the notation:

XDDT(α, β) , {x ∈ Fn
2 : S(x)⊕ S(x⊕ α) = β},

YDDT(α, β) , {S(x) ∈ Fn
2 : x ∈ Fn

2 , S(x)⊕ S(x⊕ α) = β}.

Based on the above notation, the proposition from [BC18] that illuminates the relation
between BCT and DDT can be written as follow.
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Proposition 1 ( [BC18]). For any permutation S of Fn
2 , for all α, β ∈ Fn

2 , we have

BCT(α, β) = DDT(α, β) +
∑

γ ̸=0,β

#(YDDT(α, γ) ∩ (YDDT(α, γ)⊕ β)). (1)

Note that, due to symmetry, Eq. 1 is equivalent to

BCT(α, β) = DDT(α, β) +
∑

γ ̸=0,α

#(XDDT(γ, β) ∩ (XDDT(γ, β)⊕ α)).

2.3 Notations
We treat the block cipher as E = E1 ◦E0 where there exist differential trails of E0 and E1
with probabilities p and q respectively. Let Em denote the middle part of the cipher which
contains dependency of the two differential trails. The probability of Em of generating a
right quartet is denoted by r. We let Ẽ0 ← E0\Em, i.e., the front rounds of E0 that do
not contain dependency, and Ẽ1 ← E1\Em, i.e., the rear rounds of E1 that do not contain
dependency. With Em clearly defined, we treat E = Ẽ1 ◦Em ◦ Ẽ0 so that the probability
of generating a right quartet (also called the probability of the boomerang distinguisher)
can be computed precisely as p̃2q̃2r where p̃ (resp. q̃) is the probability of the differential
trail of Ẽ0 (resp. Ẽ1). We denote the number of rounds in E by |E|.

3 Generalized Framework of BCT
In this section, through a new explanation of BCT, we extend the previous analysis
in [CHP+18] for Em with only one S-box layer to the case where Em contains multiple
rounds and we also show how to decide the boundaries of Em.

In the beginning, we treat the block cipher as E = E1 ◦ E0, then identify the middle
part Em that contains dependency. Once Em is identified, we let Ẽ0 ← E0\Em and
Ẽ1 ← E1\Em so that E = Ẽ1 ◦ Em ◦ Ẽ0.
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Figure 2: (1) S-box at the connecting point, (2) S-box in E0 and (3) S-box in E1

3.1 New Explanation
We first consider the Em with only one S-box layer at the connecting point of E0 and E1,
as shown in Figure 2(1). For such Em, the differences α, β are specified by the differential
trails. By re-expressing Eq. 1 as

BCT(α, β) =
∑

γ

#(YDDT(α, γ) ∩ (YDDT(α, γ)⊕ β)), (2)
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it is known that only those γs are possible when YDDT(α, γ)∩ (YDDT(α, γ)⊕β) is not empty,
i.e., there exists y1 ∈ YDDT(α, γ) such that y1 ⊕ β also belongs to YDDT(α, γ), as depicted
in Figure 2(1). If y1 ⊕ β ∈ YDDT(α, γ), we will always have x3 ⊕ x4 = α; otherwise, the
boomerang never returns. Therefore, the probability of Em for generating a right quartet
is

r = BCT(α, β)
2n

=
∑

γ

DDT(α, γ)
2n

· #{y ∈ YDDT(α, γ) : y ⊕ β ∈ YDDT(α, γ)}
#YDDT(α, γ)

. (3)

Similar results can be obtained as follows with XDDT due to symmetry.

BCT(α, β) =
∑
γ′

#(XDDT(γ′, β) ∩ (XDDT(γ′, β)⊕ α)),

r = BCT(α, β)
2n

=
∑
γ′

DDT(γ′, β)
2n

· #{x ∈ XDDT(γ′, β) : x⊕ α ∈ XDDT(γ′, β)}
#XDDT(γ′, β)

. (4)

Even though Eq. 3 and 4 look more complex than Eq. 1, they are helpful when we
consider Em of multiple rounds. In fact, the dependency of two differential trails may
penetrate into multiple rounds. Next, we are to extend the analysis to Em with multiple
layers of S-boxes around the connecting point of E0 and E1, and find the boundaries of
Em, as well as evaluate the probability of it.

3.2 Generalization
Now, we consider S-boxes in general cases which are not necessarily located at the con-
necting point of E0 and E1. We observe that for S-boxes away from the connecting point,
the differences α in Eq. 4 or β in Eq. 3 (to be defined as crossing differences) may not be
fixed but follow some distributions. Our intuition is to take into account the distributions
which turn out to be a key factor for evaluating the dependency of two differential trails
in a boomerang distinguisher.

Suppose the input and output differences of S-boxes in the two differential trails are
given. We use r̄ to denote the probability of getting a right quartet that follows exact
differential trails. In fact, the differences in between may have many choices. The actual
probability r is composed of the probabilities r̄ corresponding to all possible intermediate
differences and hence r is usually greater than or equal to any single r̄. As an analogy to
the clustering effect of differentials, we call this the clustering effect of Em.

Active S-boxes in E0. Let us consider an active S-box in the upper differential trail of
E0. This situation is illustrated in Figure 2(2) and 3(1). Suppose the input and output
differences α, γ of this S-box are specified by the upper differential trail. β is the difference
propagated from the lower differential trail and called the lower crossing difference, as
depicted in Figure 2(2). The value of β may not be fixed. From Eq. 2, it can be seen that
only when YDDT(α, γ) ∩ (YDDT(α, γ)⊕ β) is not empty will the boomerang return. That is,
both y1 and y3 = y1 ⊕ β should belong to YDDT(α, γ) (see Figure 2(2)). If the distribution
of the lower crossing difference β is independent of the upper differential trail, i.e., the
value of β is not affected by the upper differential trail as showcased in 3(1), then the
probability that the boomerang returns when the output difference of this S-box is γ is

r̄ = DDT(α, γ)
2n

·
∑

β

#{y ∈ YDDT(α, γ) : y ⊕ β ∈ YDDT(α, γ)}
#YDDT(α, γ)

· Pr(y1 ⊕ y3 = β). (5)

When we take all possible output differences γ of this S-box into account, we have

r =
∑

γ

r̄ =
∑

β

BCT(α, β)
2n

· Pr(y1 ⊕ y3 = β). (6)
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Figure 3: Toy examples of (1) active S-boxes in E0, (2) active S-boxes in E1 and (3) interrelated
active S-boxes, where ‘S’ denotes an n-bit S-box, ‘L’ denotes the linear layer and the red (resp.
blue) arrows stand for extensions of the upper (resp. lower) differential trails with probability 1.

Particularly, if the lower crossing difference β is constant, then

r̄ = DDT(α, γ)
2n

· #{y ∈ YDDT(α, γ) : y ⊕ β ∈ YDDT(α, γ)}
#YDDT(α, γ)

,

and r =
∑

γ r̄ = BCT(α,β)
2n is exactly the same as Eq. 3. If β is always 0,

r̄ = DDT(α, γ)
2n

and r = 1.

If the lower crossing difference β is uniformly distributed, i.e., for any a ∈ Fn
2 , Pr(β =

a) = 1
2n , then

r̄ =
(

DDT(α, γ)
2n

)2

,

which becomes identical to the computation by p2q2 in the classical boomerang attack.

Active S-boxes in E1. For an active S-box in the lower differential trail of E1, similar
results can be obtained. Suppose the output and input differences β, γ of this S-box are
specified by the lower differential trail, as shown in Figure 2(3) and 3(2). In this case, α is
the difference propagated from the upper differential trail and called the upper crossing
difference. The value of α may not be fixed. From Eq. 4, it can be seen that only when
XDDT(γ, β) ∩ (XDDT(γ, β) ⊕ α) is not empty will the boomerang return. That is, both x1
and x2 = x1 ⊕ α should belong to XDDT(γ, β) (see Figure 2(3)). If the distribution of the
upper crossing difference α is independent of the lower differential trail, i.e., the value of
α is not affected by the lower differential trail as showcased in 3(2), then the probability
that the boomerang returns when the input difference of this S-box is γ is

r̄ = DDT(γ, β)
2n

·
∑

α

#{x ∈ XDDT(γ, β) : x⊕ α ∈ XDDT(γ, β)}
#XDDT(γ, β)

· Pr(x1 ⊕ x2 = α). (7)

When we take all possible input difference γ of this S-box into account, we have

r =
∑

γ

r̄ =
∑

α

BCT(α, β)
2n

· Pr(x1 ⊕ x2 = α). (8)

Particularly, if the upper crossing difference α is constant, then

r̄ = DDT(γ, β)
2n

· #{x ∈ XDDT(γ, β) : x⊕ α ∈ XDDT(γ, β)}
#XDDT(γ, β)

,
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and r =
∑

γ r̄ = BCT(α,β)
2n is exactly the same as Eq. 4. If α is always 0,

r̄ = DDT(γ, β)
2n

and r = 1.

If the upper crossing difference α is uniformly distributed, i.e., for any a ∈ Fn
2 , Pr(α =

a) = 1
2n , then

r̄ =
(

DDT(γ, β)
2n

)2

,

which becomes identical to the computation by p2q2 in the classical boomerang attack.

Interrelated active S-boxes. It is possible that active S-box A in E0 and active S-box B
in E1 affect each other, as showcased in Figure 3(3). Suppose the differential of S-box A
is α → γ, according to the upper differential trail. Similarly, the differential of S-box B
is γ′ → β′, according to the lower differential trail. The interrelation here refers to two
things. One is that the upper crossing difference α′ of S-box B is propagated from S-box A,
and the other is that the lower crossing difference β of S-box A is propagated from S-box
B. To calculate the probability, we further introduce

DBCT(α, β, γ) , {x ∈ Fn
2 : S−1(S(x)⊕ β)⊕ S−1(S(x⊕ α)⊕ β) = α,

x⊕ S−1(S(x)⊕ β) = γ}.

Then, we have

r̄ =
∑
α′

DDT(α, γ)
2n

· Pr(γ → α′)DBCT(α′, β′, γ′)
2n

· Pr(γ′ → β)·

#{y ∈ YDDT(α, γ) : y ⊕ β ∈ YDDT(α, γ)}
#YDDT(α, γ)

.

Let (y1, y2, y3, y4) be the output quartet of S-box A and (x′
1, x′

2, x′
3, x′

4) be the input quartet
of S-box B. The above formula means that both the condition for S-box A that y1 and
y3 = y1 ⊕ β belong to YDDT(α, γ) and the condition for S-box B that x′

1 and x′
2 = x′

1 ⊕ α′

belong to XDDT(γ′, β′) should be satisfied simultaneously.
When we consider all possible output differences γ of S-box A and all possible input

differences γ′ of S-box B, we have

r =
∑

γ

∑
γ′

r̄. (9)

If more than two active S-boxes affect each other, a similar analysis can be performed
to calculate the probability r. Such examples can be found in Section 4.3.

Boundaries of Em. From the above analysis, it can be deduced that the upper boundary
of Em is delineated by the round where the lower crossing differences for its active S-boxes
are distributed (almost) uniformly. Also, the lower boundary of Em is marked by the
round where the upper crossing differences for its active S-boxes are distributed (almost)
uniformly. Due to this, the length of Em heavily depends on the diffusion properties of the
cipher, which will be exemplified by the application to SKINNY and AES in the following
two sections.
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3.3 Algorithm for Evaluating r

Given two differential trails over E0, E1 respectively, we are to find the middle part Em

that contains dependency and evaluate its probability r for generating a right quartet.
Once this is done, the probability of the full boomerang distinguisher of E = Ẽ1 ◦Em ◦ Ẽ0
can be closely modeled as p̃2q̃2r where p̃ (resp. q̃) is the probability of the differential trail
over Ẽ0 (resp. Ẽ1).

Given two differential trails over E0 and E1 respectively, we take the following steps
to find the boundaries of Em and calculate the probability r.

1. Extend the upper differential trail forwards with probability 1; also, extend the lower
differential trail backwards with probability 1. With the extensions, it can be told
whether an active S-box of the differential trail is affected by the other differential
trail or not.

2. Initialize Em with the last round of E0 and the first round of E1.

3. Prepend Em with one more round,

(a) Check whether the lower crossing differences for this newly added round are
distributed uniformly or not. If yes, peel off the first round of Em and go to
step 4.

(b) Go to step 3.

4. Append one more round to Em,

(a) Check whether the upper crossing differences for the newly added round are
distributed uniformly or not. If yes, peel off the last round of Em and go to
step 5.

(b) Go to step 4.

5. Calculate r using formulas in Section 3.2.

In step 4 and 5 of the algorithm, the upper boundary and the lower boundary are de-
termined respectively, and these two steps can be swapped. If the returned r is 0, it
means the two differential trails are incompatible. The time complexity of the algorithm
depends on the properties of the cipher and the two differential trails of the boomerang
distinguisher. We will discuss it in more details in Section 6.

4 Application to SKINNY
In [LGS17] Liu et al. mounted related-tweakey rectangle attacks against SKINNY. The
attacks evaluated the probability of the distinguishers by taking into account the amplified
probability but did not consider the dependency of two differential trails. In [CHP+18]
which introduced BCT, the authors accurately evaluated the probability of generating the
right quartet for two middle rounds by applying the BCT.

In this section, we revisit this issue by applying the generalized framework of BCT to
SKINNY. With the generalized framework of BCT, we are able to identify the actual bound-
aries of Em and accurately calculate the probability r for Em. Most notably, accurate
evaluations of the probability of full distinguishers of SKINNY become possible. The results
show that there exist dependency in 5 or 6 middle rounds, which makes real probability
much higher than previously evaluated.

In the remainder of this section, we first give a brief description of SKINNY, followed
by a review of boomerang distinguishers proposed in [LGS17], for which we show how the
generalized framework of BCT helps to evaluate the probability r. At last, an analysis of
the results is added.
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4.1 Description of SKINNY
SKINNY [BJK+16] is a family of lightweight block ciphers which adopt the substitution-
permutation network and elements of the TWEAKEY framework [JNP14]. Members
of SKINNY are denoted by SKINNY-n-t, where n ∈ {64, 128} is the block size and t ∈
{n, 2n, 3n} is the tweakey size. The internal states of SKINNY are represented as 4 × 4
arrays of cells with each cell being a nibble in case of n = 64 bits and a byte in case of n =
128 bits. The tweakey state is seen as a group of z 4×4 arrays, where, z = t/n. The arrays
are marked as TK1, (TK1, TK2) and (TK1, TK2, TK3) for z = 1, 2, 3 respectively.

Encryption. SKINNY iterates a round function for Nr rounds and each round consists of
the following five steps.

1. SubCells (SC) - A 4-bit (resp. 8-bit) S-box whose maximal differential probability is
2−2 is applied to all cells when n is 64 (resp. n is 128). The boomerang uniformity
of the 8-bit S-box is 256.

2. AddConstants (AC) - This step involves XORing constants to the internal state.

3. AddRoundTweakey (ART) - The first two rows of the internal state absorb the first
two rows of TK, where

TK =
z⊕

i=1
TKi.

The tweakey states TKi are then updated by a tweakey scheduling algorithm.

4. ShiftRows (SR) - Each cell in row j is rotated to the right by j cells.

5. MixColumns (MC) - Each column of the internal state is multiplied by matrix M . The
inverse MixColumns operation employs M−1 instead. Note, the branch number of
MC is only 2.

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 M−1 =


0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1


Tweakey Scheduling Algorithm. The tweakey schedule of SKINNY is a linear algorithm.
The t-bit tweakey is first loaded into z 4 × 4 tweakey states. After each ART step, the
tweakey states are updated as follows.

• Permutation Phase: A cell-wised permutation P is applied to each tweakey state,
where P is defined as: P = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]

• LFSR Update Phase: Cells in the first two rows of all tweakey states but TK1 are
individually updated using LFSRs.

4.2 Previous Boomerang Attacks
In [LGS17], Liu et al. proposed boomerang distinguishers for SKINNY-n-2n and SKINNY-
n-3n by connecting two short differential trails α→ β and γ → δ. For completeness, the
differential trails are copied to Table 4, 7, and 8. The probabilities of these boomerang dis-
tinguishers are evaluated by p̂2q̂2, where p̂ =

√
ΣiPr2(α −→ βi) and q̂ =

√
ΣjPr2(γj −→ δ).

Since the probabilities are too small to be verified experimentally, the authors of [LGS17]
verified two middle rounds, the last round of E0 and the first round of E1, to exclude
incompatibility between the trails.
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For boomerang distinguishers, two things are of concern. The first is the compatibility
of two differential trails. If the differential trails are compatible, then the second concern
is the exact probability. In [CHP+18], the probabilities of the two middle rounds of these
distinguishers were evaluated with BCT. However, the problem of accurately evaluating
the probability of a full distinguisher remains unsolved. Next, we will show that the
generalized framework of BCT provides us with the first solution to this problem.

4.3 Probability Evaluation of Boomerang Distinguishers
Here we take the boomerang distinguisher of SKINNY-128-256 as an example. Both the
upper and lower differential trails have 9 rounds, as shown in Table 4. Following the
algorithm in Section 3.3, we extend both differential trails with probability 1 towards
each other. Around the connecting point, there are 5 rounds containing dependency, as
depicted in Figure 4.

Table 4: Differential trails of SKINNY-128-256 where each non-zero cell is given in hexadecimal.
The master tweakey difference is denoted by ∆K. For each round of SKINNY, input/output
differences of the S-box layer in each round, as well as the the round tweakey difference are
presented.

9-round upper trail p = 2−34.42 9-round lower trail q = 2−20

∆K 0,0,cc,0, 0,0,0,0, 0,0,0,0, ff,0,0,0 fc,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,f3,0, 0,0,0,0, 0,0,0,0, 9f,0,0,0 ff,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0

R1 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0a 80,0,0,0, 0,0,01,0, 0,01,0,0, 01,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,3f 03,0,0,0, 0,0,20,0, 0,20,0,0, 20,0,0,0
0,0,3f,0, 0,0,0,0 03,0,0,0, 0,0,0,0

R2 0,0,0,0, 0,0,3f,0, 0,0,0,0, 0,0,3f,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,20
0,0,0,0, 0,0,41,0, 0,0,0,0, 0,0,e3,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,80
0,0,0,0, 0,0,c0,0 0,0,0,0, 0,0,0,0

R3 0,e3,0,0, 0,0,0,0, 0,0,0,81, 0,0,0,0 0,0,80,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,2a,0,0, 0,0,0,0, 0,0,0,2a, 0,0,0,0 0,0,02,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 2a,0,0,0 0,0,02,0, 0,0,0,0

R4 0,0,0,0, 0,2a,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,80,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,80,0,0 0,0,0,0, 0,0,0,0

R5 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R6 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R7 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,55,0,0 0,0,0,0, 0,0,04,0

R8 0,0,0,0, 0,0,0,0, 0,0,55,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,04, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,01,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,01, 0,0,0,0
0,0,0,0, 0,0,0,01 0,0,0,0, 0,0,0,0

R9 01,0,0,0, 0,0,0,0, 0,0,0,0, 01,0,0,0 0,01,0,0, 0,0,0,0, 0,01,0,0, 0,01,0,0
20,0,0,0, 0,0,0,0, 0,0,0,0, 20,0,0,0 0,20,0,0, 0,0,0,0, 0,20,0,0, 0,20,0,0
0,0,0,ff, 0,0,0,0 0,0,0,0, 0,0c,0,0

Understanding Figure 4. The vertical line in the figure separates E0 and E1, and the
final Em is composed of two rounds from E0 and three rounds from E1. The upper and
lower differential trails are marked in black, while their extensions are marked in gray.
Colored squares stand for active cells where "∗" means non-zero differences, "?" means
any differences and hex numbers are exact differences specified by the differential trails.
For convenience, we use the row index and the column index to describe the position of
a cell. Different colors are used to show the differential propagation of certain cells. For
example, the cell at (2,2) after SC and AC of R1 is outlined in dark green, meaning its lower
crossing difference propagates through the dark green cells from the lower differential trail.
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Figure 4: The five middle rounds of the 18-round boomerang distinguisher of SKINNY-128-256

Similarly, the cell at (3,3) before SC and AC of R4 is outlined in purple, meaning its upper
crossing difference propagates through the purple cells from the upper differential trail.

Probability of Em with R2 and R3. According to the upper differential trail, only two
cells of the input of R2 are active and the input differences are both β = 0x01. For the
lower differential trail, four cells in the first round (R3 in the figure) are active and their
output differences are 0x03, 0x20, 0x20 and 0x20. From the differential trails and the
extensions, it is known that the lower crossing differences of the two active S-boxes in R2
of the upper trail are always 0, while the upper crossing differences of the active S-boxes
at (0,0) and (3,0) in R3 of the lower trail are α (as depicted in Figure 4) which is non-zero
and propagated from the active S-box at (0,0) in R2 of the upper trail. Note that in the
context of Em with only R2 and R3, the propagation of β → α is independent of the lower
trail. By applying the generalized BCT (the exact formulas in use are indicated explicitly),

r =
∑

α

DDT(0x01, α)
28 · BCT(α, 0x03)

28 · BCT(α, 0x20)
28 = 2−1.75(by Eq. 8).

Probability of Em with R1, R2 and R3. Now Em starts from R1. In this case, the
analysis of the lower differential trail remains the same while the analysis for the upper
differential trail changes, compared with the Em with only R2 and R3. In the upper
differential trail, only the S-box at (2,2) of R1 is active and has input difference 0x55.
However, its output difference β has multiple choices and might not be 0x01. Therefore the
S-box at (2,0) of R2 might be active. In R2, the lower crossing difference for S-box at (2,0)
is the difference in blue that propagates from the lower differential trail and this difference
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is independent of the upper differential trail. Another affected active S-box of the upper
differential trail is the active S-box in R1. Specifically, its lower crossing difference is the
difference in green propagated from S-box (2,1) in R3 of the lower differential trail through
two rounds backwards. The probability of this Em is then computed as

p0(β, γ) =
∑

ρ

BCT(β, ρ) · DDT(ρ, γ)
(28)2 (by Eq. 6),

p1(β, γ) =
∑

α

DDT(β, α) · BCT(α, 0x03) · BCT(α, γ)
(28)3 (by Eq. 8),

p2(β, γ) =DDT(0x55, β)
28 ·

∑
d

#{y ∈ YDDT(0x55, β) : y ⊕ d ∈ YDDT(0x55, β)}
#YDDT(0x55, β)

· Pr(d 2 rounds←−−−−− γ)(by Eq. 5),

r =
∑

β

p0(β ⊕ 1, 0x20) · p1(β, 0x20) · p2(β, 0x20) = 2−6.06.

Probability of Em with R1, R2, R3 and R4. We do not prepend more rounds from E0
with Em since the three rounds ahead are fully passive and after propagating the lower
differential trail by three more rounds backwards, the crossing differences can be seen as
uniform. Then we try to append more rounds from E1. First, we append R4 to Em. The
only active S-box in R4 is located at (3,3) and its upper crossing difference propagates
through purple cells from the upper differential trail. We can see that the upper and lower
differential trails strongly interrelate. However, compared with the previous situation
where Em is composed of R1, R2 and R3, the only extra effect is that the upper crossing
difference in purple affects S-box (3,3) of R3. Still, we can calculate

p3(β, γ, η) = DDT(γ, η)
28 ·

∑
d

#{x ∈ XDDT(γ, η) : x⊕ d ∈ XDDT(γ, η)}
#XDDT(γ, η)

· Pr(β 2 rounds−−−−−→
0xff

d)(by Eq. 7),

r =
∑

γ

∑
β

p0(β ⊕ 1, γ) · p1(β, γ) · p2(β, γ) · p3(β, γ, 0x80)(by Eq. 9)

= 2−9.54.

Probability of Em with R1, R2, R3, R4 and R5. In fact, the upper crossing differences
at R5 becomes so random that we can neglect the dependency in R5. However, due to
the weak diffusion of the MC, the difference of the only active S-box in R4 of the lower
trail does not diffuse to more cells. Actually, the output differences η of the active S-box
in R4 on the two faces of the boomerang do not have to be identical. Considering this,
we calculate

p4(β, γ, η1, η2) =
∑

d

#{x ∈ XDDT(γ, η1) : x⊕ d ∈ XDDT(γ, η2)}
#XDDT(γ, η1)

· Pr(β 2 rounds−−−−−→
0xff

d),

p5(γ, η1, η2) = DDT(γ, η1) · DDT(η1, 0x02) · DDT(η2, 0x02)
(28)3 ,

r =
∑
η1

∑
η2

∑
γ

∑
β

p0(β ⊕ 1, γ) · p1(β, γ) · p2(β, γ)

· p4(β, γ, η1, η2) · p5(γ, η1, η2) = 2−11.45.

Now we have identified the middle part Em of the boomerang distinguisher of SKINNY-
128-256. The Em has 5 rounds and its probability of generating a right quartet is r =
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2−11.45. The probabilities of intermediate Em with 2 ∼ 4 rounds and the final Em with
5 rounds are confirmed by experiments. By adding three passive rounds to the front and
four passive rounds to the rear, we obtain a 12-round boomerang distinguisher of the
same probability, namely 2−11.45. For the full 18-round distinguisher, the probability of
the first four rounds is p̃ = 2−25.19 by a simple calculation considering the clustering effect
of differentials. The probability of the last two rounds is q̃ = 2−8 (no clustering effect).
Therefore, the probability of the full distinguisher is p̃2q̃2r = 2−77.83, which is much higher
than 2−103.84 calculated in [LGS17]. For other versions of SKINNY, a similar analysis can
be done and we summarize the result as follows.

4.4 Results
The results of all the four versions of SKINNY-n-2n and SKINNY-n-3n are summarized
in Table 1, where the fourth column presents the probabilities r of Em computed by
the algorithm in Section 3.3. We carry out experiments on Em and the experimental
probabilities are 2−12.95, 2−11.37, 2−10.51 and 2−9.89, which are close to the probabilities in
the fourth column. The computation of r for the four versions is practical and takes 0.38,
189.26, 0.11 and 23.16 seconds respectively on a desktop. The source codes for calculating
and verifying the probabilities r for Em are available online1.

The sixth column stands for the probabilities of the full boomerang distinguishers. It
can be seen that the re-evaluated probabilities of the full distinguishers are much higher
than the probabilities p̂2q̂2 evaluated before without considering the dependency of the
two differential trails [LGS17]. Notably, the complexity of the full 17-round distinguisher
of SKINNY-64-128 is 229.78, which is practical. Indeed, 9 right quartets are found among
11× 229 quartets by an experiment while one could expect a right one in 248.72 quartets
according to [LGS17]. This big gap shows that the issue of dependency cannot be neglected
in boomerang attacks.

Additionally, we have two interesting observations of the results. One observation is
that the probabilities of the boomerang distinguishers of SKINNY in Table 1 are much
higher than the probabilities of the differential trails of the same number of rounds. In
Table 5, we copy the lowerbounds on the number of active S-boxes in SKINNY under the
related-tweakey setting from [BJK+16]. For example, the minimal number of active S-
boxes of 9-round SKINNY-n-2n is 9, which means the probability of optimal differential
trails could not be higher than 2−18. Actually, the probability of the optimal differential
trails of SKINNY-64-128 is 2−20, as studied in [LGS17]. The differential trail in Table 7 is
an example of the optimal differential trails. This probability can be increased to 2−18

by considering the clustering effect2. On the contrary, the boomerang distinguisher of
SKINNY-64-128 with 6 up to 13 rounds has a much higher probability of 2−12.96.

Table 5: Lowerbounds on the number of active S-boxes in SKINNY under the related-tweakey
setting [BJK+16]

#Rounds 9 10 11 12 13 14 15 16 17
SKINNY-n-2n 9 12 16 21 25 31 35 40 43
SKINNY-n-3n 3 6 10 13 16 19 24 27 31

The other observation of Table 1 is that the probability of the 17-round distinguisher
of SKINNY-128-384 is slightly higher than the probability of the 17-round distinguisher
of SKINNY-64-192. Even though an 8-bit S-box is used in the big versions of SKINNY,
its optimal differential probability is 2−2 which is the same as the optimal differential

1https://drive.google.com/file/d/1cd9lNruJrHhUM2QIvI-XXKK7b8LNOgXv/view?usp=sharing
2There only exist 4 trails (each of probability 2−20) when the input, output and key differences are

fixed.
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probability of the 4-bit S-box used in the small versions. Therefore, the probability of a
boomerang distinguisher of the big versions is not necessarily lower than the probability
of distinguishers of the small versions.

5 Application to AES
In [BK09], Biryukov et al. presented boomerang attacks on full AES-192 and AES-256
under the related-key setting, specifically, the related-subkey setting. Their attacks were
based on high probability boomerang distinguishers constructed by applying the so-called
boomerang switches. However, boomerang attacks or distinguishers of AES-128 were not
covered in [BK09]. One reason might be that the boomerang switches do no work for
AES-128 whose differences of a differential trail are much denser than those of AES-192 and
AES-256.

In this section, we briefly review the specification of AES-128, and then search for
differential trails of AES-128 under related-key setting. By choosing a pair of 3-round
differential trails according to the generalized framework of BCT, we construct the 6-round
boomerang distinguisher. The probability of the boomerang distinguisher is 2−109.42 under
the related-subkey setting.

5.1 Description of AES

The Advanced Encryption Standard (AES) [DR02] is an iterated block cipher which en-
crypts 128-bit plaintexts with secret keys of sizes 128, 192, and 256 bits. In this paper, we
focus on AES-128 which iterates 10 rounds using a 128-bit key. The internal state of AES
can be represented as a 4 × 4 array of bytes. The round function consists of four basic
steps as follows.

1. SubBytes (SB) - An 8-bit S-box is applied to each byte of the internal state. The
details of the S-box could be found in [DR02].

2. ShiftRows (SR) - Each cell in row j is rotated to the left by j cells.

3. MixColumns (MC) - Each column of the internal state is multiplied by a Maximum
Distance Separable (MDS) matrix over F28 .

4. AddRoundKey (AK) - A round key is XORed with the internal state.

At the very beginning of the encryption, an additional whitening key addition is per-
formed, and the last round does not contain MC.

The key schedule of AES-128 generates round keys which are used in each of the rounds.
The 128-bit master key can be seen as 4 32-bit words (W [0], W [1], W [2], W [3]). Then W [i]
for i > 4 is computed as follows and each round key takes four consecutive words.

W [i] =

{
W [i− 4]⊕ SB(W [i− 1] ≪ 8)⊕Rcon i ≡ 0 mod 4,

W [i− 8]⊕W [i− 1] otherwise

Property of AES S-box. The best differential probability of AES S-box is 2−6. Given any
input difference α, there exists exactly one output difference β such that DDT(α, β) = 4
and 27 − 1 output differences β such that DDT(α, β) = 2, and vice versa. Its boomerang
uniformity is 6.
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5.2 Search for Differential Trails
In the literature, several methods have been proposed to search differential trails for AES
under the related-key setting, such as [BN10, GMS16, SGL+17, GLMS18]. The methods
in [GMS16, GLMS18] employ Constraint Programming (CP) and perform well for all
versions of AES. Therefore, we adopt the CP-based methods for searching differential
trails of AES-128.

As pointed out in [GLMS18], the minimal number of active S-boxes in three rounds
of AES-128 under the related-key setting is 5. When we increase the number of rounds
to four, the minimal number of active S-boxes becomes 12. Based on this, we aim to
construct 6-round boomerang distinguishers of AES-128 from 3-round differential trails.

5.3 Boomerang Distinguisher
There exist only two 3-round differential trails with 5 active S-boxes and both have prob-
ability 2−31. However, these two differential trails turn out to be incompatible, i.e., the
dependent part Em of two differential trails could not generate a right quartet. How hard
can we find a pair of compatible differential trails? According to the properties of the AES
S-box, we give a rough estimation as follows.

For an active S-box in E0 (resp. E1) whose lower (resp. upper) crossing difference
is non-zero and fixed, the differences are compatible (the BCT entry is greater than 0)
with probability close to 2−1. For a pair of interrelated active S-boxes, the differences
are compatible (the probability in Eq. 9 is greater than 0) with probability close to 2−2.
Therefore, the sparser the differences are, the more easily we can get a pair of compatible
differential trails.

We then search for more 3-round differential trails by allowing 6 active S-boxes and
obtain 18 differential trails with probability 2−36, 2−37 or 2−38 respectively. From these
3-round differential trails, we search for a compatible combination by the generalized
framework of BCT. The best one we find is composed of a 3-round upper differential trail
of probability 2−31 and a 3-round lower differential trail of probability 2−37, as shown in
Table 6.

Table 6: 6-round related-subkey boomerang distinguisher of AES-128 with probability 2−109.42

Round Before AK Subkey diff. Before SB After SB After SR pr

R1

8c 1f 8c 00 8c 00 8c 00 00 1f 00 00 00 a3 00 00 00 a3 00 00

(2−6)801 99 01 00 01 00 01 00 00 99 00 00 00 8d 00 00 8d 00 00 00
8d 00 8d c2 8d 00 8d 00 00 00 00 c2 00 00 00 46 00 46 00 00
37 00 8d 00 8d 00 8d 00 ba 00 00 00 97 00 00 00 00 97 00 00

R2

8c 8c 00 00 8c 8c 00 00 00 00 00 00 00 00 00 00 00 00 00 00

(2−7)201 fe 00 00 01 01 00 00 00 ed 00 00 00 8d 00 00 8d 00 00 00
8d 8d 00 00 8d 8d 00 00 00 00 00 00 00 00 00 00 00 00 00 00
8d 8d 00 00 8d 8d 00 00 00 00 00 00 00 00 00 00 00 00 00 00

R3

8c 00 00 00 8c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

101 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
8d 00 00 00 8d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
8d 00 00 00 8d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

R4

0a 87 0a 00 0a 00 0a 00 00 87 00 00 00 74 00 00 00 74 00 00

2−33.420c bc f6 00 0c 00 0c 00 00 bc fa 00 00 06 4e 00 06 4e 00 00
06 00 06 fb 06 00 06 00 00 00 00 fb 00 00 00 6c 00 6c 00 00
23 00 06 00 06 00 06 00 19 00 00 00 5c 00 00 00 00 5c 00 00

R5

0a 0a 00 00 0a 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00

(2−7)20c 00 00 00 0c 0c 00 00 00 0c 00 00 00 06 00 00 06 00 00 00
06 06 00 00 06 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00
06 06 00 00 06 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00

R6

0a 00 00 00 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

10c 00 00 00 0c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
06 00 00 00 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
06 00 00 00 06 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The dependent part Em of the 6-round boomerang distinguisher of AES-128 contains
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only two rounds, as depicted in Figure 5. The probability of generating a right quartet is

r = BCT(0x8c, 0x74) · BCT(0x01, 0x06) · BCT(0x01, 0x4e) · BCT(0x8d, 0x6c) · BCT(0x8d, 0x5c)
(28)5

= 2 · 6 · 2 · 2 · 2
(28)5 = 2−33.42.

Therefore, the probability for the 6-round boomerang distinguisher is

p̃2q̃2r = 2−31×22−7×22−33.42 = 2−109.42.

The probability of the 2-round Em is verified by experiments.

SB SR

AK

MC

SB SR MC

8c 8c 8c 8c

01 01 01 01

8d 8d 8d 8d

8d 8d 8d 8d

AK SB

74

06 4e

6c

5c

SB

8c 8c 8c 8c

01 01 01 01

8d 8d 8d 8d

8d 8d 8d 8d

0a 0a

0c 0c

06 06

06 06

Upper trail

Lower trail

Figure 5: The two middle rounds of the 6-round boomerang distinguisher of AES-128

6 Discussions
As showcases, we apply our generalized framework of BCT to SKINNY and AES. Both SKINNY
and AES are SPN block ciphers and share similar round functions. However, AES and
SKINNY are typical examples of block ciphers with very strong and weak round functions
respectively. Specifically, the AES S-box is differentially 4-uniform (6-uniform for BCT)
and the AES MC has a branch number of 5. On the contrary, the SKINNY’s 8-bit S-box is
differential 64-uniform (256-uniform for BCT) and the branch number of its MC is only 2.
Together with the analysis of the two block ciphers, we summarize two general properties
of the dependent part Em of the boomerang distinguisher.

Property 1 The length of Em is mainly determined by the diffusion effect of the linear
layer, even though it is also influenced by the density of differences of the trails.
Note that, AES takes 2 rounds to diffuse an active byte to the full state while SKINNY
takes 6 rounds to have the same effect. Compared with the 2-round Em of AES, the
Em of SKINNY is quite long and can be 6 rounds, which can be seen from the analysis
in Section 4 and 5.

Property 2 The probability of Em is strongly affected by the DDT and BCT of the S-box.
For example, when we replace SKINNY-128-256’s S-box in Figure 4 with the AES
S-box, the probabilities of Em with two and three middle rounds decrease from
2−1.75, 2−6.06 to 2−15.87, 2−31.67 respectively.
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As can be seen, these properties are identical to the common criteria for designing symmetric-
key primitives.

The time complexity of calculating the probability r of Em mainly depends on the
length of Em and the S-box used in the cipher. Specifically, for a short Em with small or
weak S-boxes, calculating r is efficient, while for a long Em with large and strong S-boxes,
calculating r might be a time-consuming task, i.e., the time complexity might be greater
than 235.

7 Concluding Remarks
In this paper, we revisited the boomerang connectivity table (BCT) and provided a gener-
alized framework of BCT which systematically handles the dependency of two differential
trails in boomerang distinguishers. Particularly, our framework not only identifies the
actual boundaries of the dependent part Em of the boomerang distinguisher, but also
calculates the probability r of Em for generating a right quartet. With our generalized
framework of BCT, the sandwich E = Ẽ1 ◦ Em ◦ Ẽ0 now closely models the boomerang
distinguisher with probability p̃2q̃2r where p̃ (resp. q̃) is the probability of the differential
of Ẽ0 (resp. Ẽ1).

The power of the generalized framework of BCT was demonstrated by the application
to SKINNY and AES. In the application to SKINNY, the probabilities of four boomerang
distinguishers of SKINNY were accurately computed for the first time, which show that
the actual probabilities are much higher than those previously computed by the formula
p̂2q̂2. In the application to AES, a 6-round related-subkey boomerang distinguisher was
constructed with the generalized framework of BCT.

We also discussed the general relation between the dependency of two differential
trails in a boomerang distinguisher and the properties of the components of the cipher,
and showed that the dependency is strongly influenced by both the diffusion property of
the linear layer and differential properties of the non-linear layer.
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Table 7: Differential trails of SKINNY-64-128 [LGS17]
8-round upper trail p = 2−12 9-round lower trail q = 2−20

∆K 0,0,0,0, 0,0,0,0, 6,0,0,0, 0,0,0,0 0,0,c,0, 0,0,0,0, 0,0,0,0, e,0,0,0
0,0,0,0, 0,0,0,0, 9,0,0,0, 0,0,0,0 0,0,f,0, 0,0,0,0, 0,0,0,0, b,0,0,0

R1 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,1 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,2
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,8 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,3
0,0,0,0, 0,0,0,0 0,0,3,0, 0,0,0,0

R2 0,0,8,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,3,0, 0,0,0,0, 0,0,3,0
0,0,5,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,d,0, 0,0,0,0, 0,0,c,0
0,0,5,0, 0,0,0,0 0,0,0,0, 0,0,9,0

R3 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,c,0,0, 0,0,0,0, 0,0,0,4, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,2,0,0, 0,0,0,0, 0,0,0,2, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 2,0,0,0

R4 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,2,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,1,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,1,0,0

R5 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R6 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,b,0 0,0,0,0, 0,0,0,0

R7 0,0,0,0, 0,0,0,0, 0,0,0,b, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,1, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,4,0,0

R8 0,1,0,0, 0,0,0,0, 0,1,0,0, 0,1,0,0 0,0,0,0, 0,0,0,0, 0,0,4,0, 0,0,0,0
0,8,0,0, 0,0,0,0, 0,8,0,0, 0,8,0,0 0,0,0,0, 0,0,0,0, 0,0,2,0, 0,0,0,0
0,0,0,0, 0,c,0,0 0,0,0,0, 0,0,0,2

R9 2,0,0,0, 0,0,0,0, 0,0,0,0, 2,0,0,0
6,0,0,0, 0,0,0,0, 0,0,0,0, 5,0,0,0
0,0,0,d, 0,0,0,0

Table 8: Differential trails of SKINNY-n-3n [LGS17]
11-round trail for SKINNY-64 p = 2−20 11-round trail for SKINNY-128 q = 2−21

∆K 0,a,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,aa,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,2,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,e6,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,d,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,cf,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0

R1 0,2,0,0, 1,0,0,0, 0,0,0,1, 0,0,1,0 0,20,0,0, 10,0,0,0, 0,0,0,10, 0,0,10,0
0,5,0,0, b,0,0,0, 0,0,0,b, 0,0,b,0 0,83,0,0, 40,0,0,0, 0,0,0,40, 0,0,40,0
0,5,0,0, 0,0,0,0 0,83,0,0, 0,0,0,0

R2 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,b,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,40,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,1,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,04,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R3 1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 04,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
8,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 01,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
8,0,0,0, 0,0,0,0 01,0,0,0, 0,0,0,0

R4 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R5 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R6 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R7 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R8 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R9 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
0,0,0,0, 0,0,8,0 0,0,0,0, 0,0,01,0

R10 0,0,0,0, 0,0,0,0, 0,0,0,8, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,01, 0,0,0,0
0,0,0,0, 0,0,0,0, 0,0,0,4, 0,0,0,0 0,0,0,0, 0,0,0,0, 0,0,0,20, 0,0,0,0
0,0,0,0, 0,0,0,0 0,0,0,0, 0,0,0,0

R11 0,4,0,0, 0,0,0,0, 0,4,0,0, 0,4,0,0 0,20,0,0, 0,0,0,0, 0,20,0,0, 0,20,0,0
0,2,0,0, 0,0,0,0, 0,2,0,0, 0,2,0,0 0,80,0,0, 0,0,0,0, 0,80,0,0, 0,80,0,0
0,0,0,0, 0,5,0,0 0,0,0,0, 0,83,0,0
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