
Byzantine Fault Tolerance in Partially Connected Asynchronous
Networks

Yongge Wang
College of Computing and Informatics, UNC Charlotte

Charlotte, NC 28223, USA
yonwang@uncc.edu

February 10, 2020

Abstract

We review several widely deployed solutions for the Byzantine Fault Tolerance (BFT) problem and analyze their
security in asynchronous networks. There are two types of widely accepted definitions for partial synchronous net-
works. In the Type I network, Denial of Service (DoS) attack is not allowed and in the Type II network, DoS attack is
allowed before the Global Stabilization Time (GST). When DoS attack is allowed, the point-to-point communication
channel and the broadcast channel are not reliable. We show that if either the broadcast channel or the point-to-
point communication channel is not reliable (e.g., before GST) then several widely deployed BFT protocols (e.g.,
Tendermint BFT) would reach a deadlock before GST and the deadlock could not be removed after GST. To make
things worse, we show that, for most of our attacks, the adversary only needs to control one participant to carry out
the attack instead of controlling bn−1

3
c participants. Thus these BFT protocols are not secure in the Type II partial

synchronous networks. Furthermore, in these protocols, if a participant does not receive appropriate messages within
a fixed time period, it initiates a view change process. After a view change, participants will no long accept messages
from previous views. Thus our attacks in Type II networks will also work against these protocols in Type I networks
. Consequently, these protocols are not secure in any of the widely accepted partial synchronous networks. It should
be noted that Tendermint BFT has been adopted in more than 40% Proof of Stake Blockchains such as Cosmos and
Hyperledger burrow. Based on our analysis of BFT security requirements for partial synchronous networks, we pro-
pose a BFT protocol BDLS and prove its security in partial synchronous networks. It is shown that BDLS is one
of the most efficient BFT protocols in partial synchronous networks. The BDLS protocol could be used in several
application scenarios such as state machine replication or as blockchain finality gadgets.

1 Introduction
It is challenging to design consensus protocols for distributed computer system in an asynchronous environment. For
non-malicious (non-Byzantine) faults, several practical protocols such as Paxos [14] and Raft [16] have been deployed
in relatively closed environments. For example, Google, Microsoft, IBM, and Amazon have used Paxos in their storage
or cluster management systems. Both Paxos and Raft can tolerate bn−12 c non-Byzantine faults.

Lamport, Shostak, and Pease [15] and Pease, Shostak, and Lamport [17] initiated the study of reaching consensus
in face of Byzantine failures and designed the first synchronous solution for Byzantine agreement. Dolev and Strong
[8] proposed an improved protocol in a synchronous network with O(n3) communication complexity. By assuming
the existence of digital signature schemes and a public-key infrastructure, Katz and Koo [12] proposed an expected
constant-round BFT protocol in a synchronous network setting against bn−12 c Byzantine faults.

For an asynchronous network, Fischer, Lynch, and Paterson [10] showed that there is no deterministic protocol for
the BFT problem in face of a single failure. Their proof is based on a diagonalization construction and has two as-
sumptions: (1) when a process writes a bit on the output register, it is finalized and can not change anymore; and (2) an
honest process runs infinitely many steps in a run. Several researchers have tried to design BFT consensus protocols to
circumvent the impossibility. For example, Ben-Or [1] initiated the probabilistic approach to BFT consensus protocols
in completely asynchronous networks and Dwork, Lynch, and Stockmeyer [9] designed BFT consensus protocols in
partial synchronous networks. Castro and Liskov [5] initiated the study of practical BFT consensus protocol design

1

and introduced the PBFT protocol for partial synchronous networks. The core idea of PBFT has been used in the de-
sign of several widely adopted BFT systems such as Tendermint BFT [3]. Tendermint BFT has been used in more than
40% Proof of State blockchains (see, e.g., [13]) such as the “Internet of Blockchain” Cosmos [6]. More recently, Yin
et al [22] improved the PBFT/Tendermint protocol by changing the mesh communication network in PBFT to hub-like
(or star) communication networks in HotStuff and by using threshold cryptography. Facebook’s Libra blockchain has
adopted HotStuff in their LibraBFT protocol [19].

In the literature, there are mainly two kinds of partial synchronous networks for Byzantine Agreement protocols.
In Type I partial synchronous networks, all messages are guaranteed to be delivered. In this type of networks, Denial of
Service (DoS) attacks are not allowed and reliable point to point communication channels for all pairs of participants
are required for the underlying networks. In Type II partial synchronous networks, the network becomes synchronous
after an unknown Global Synchronization Time (GST). In this type of networks, Denial of Service (DoS) attacks are
allowed before GST though it is not allowed after GST. The Type II network is more realistic and is commonly used
in the literature.

Several partial synchronous network models for BFT design assume the existence of reliable broadcast commu-
nication channels for certain message transmission. In particular, these protocols normally leverage the gossip-based
broadcast protocol in Bracha [2] which is based on the existence of reliable point-to-point communication channels
for all pairs of participants. In particular, the broadcast protocol in Bracha [2] assumes a complete network to achieve
“a reliable message system in which no messages are lost or generated”. Since our Internet infrastructure is not
a complete network, one needs to be very careful in building Internet based BFT protocols using Bracha’s results.
Specifically, one should not assume that there is a reliable broadcast channel before GST of Type II networks.

This paper shows that if there does not exist a reliable broadcast channel before GST of Type II networks, then
one can launch attacks on several widely deployed BFT protocols (e.g., Tendermint BFT, and GRANDPA BFT [11])
so that participants would reach a deadlock before GST and the deadlock could not be removed after GST. Thus the
participants would never reach an agreement and these BFT protocols are not secure in type II partial synchronous
networks. For Type I networks, one does not know when the message could be delivered. Thus the broadcast protocol
may be “unreliable” until the end of a fixed unknown time period. That is, the same attack in the Type II networks
could be used to show that these protocol will reach deadlock before the end of this unknown time period. On the
other hand, all these protocols will change views after certain timeout and after a view change, participants would not
accept messages from previous views. That is, even all messages are delivered at the end of this unknown time period,
participants discard these messages if they have changed views already. Thus these protocols will remain deadlocked.
In a summary, our attacks show that these BFT protocols are insecure in all types of partial synchronous networks
(including both Type I and Type II networks).

It should also be noted that though Tendermint [3] BFT protocol claims security in Type II asynchronous networks,
it actually uses a Type I network model since it assumes a reliable point to point communication channel for each pair
of participants in the network and no message is ever lost (including messages before GST). However, our discussion
in the preceding paragraph shows that Tendermint is not secure in the Type I networks either. It should also be noted
that in the first version of the LibraBFT specification (accessed on July 19, 2019, not accessible currently), its network
model is a Type II partial synchronous network. In the current version [19] of the LibraBFT specification (dated as
November 8, 2019 and accessed on February 9, 2020) , its network model is essentially a Type I partial synchronous
network since all messages are delivered in the end (see pages 3 of Section 2 in [19]).

Based on the security requirement analysis for BFT protocols in asynchronous networks, we propose a BFT finality
gadget protocol BDLS for blockchains. It should be noted that the first BFT protocol (i.e., the DLS protocol) for Type
II networks was proposed by Dwork, Lynch, and Stockmeyer [9]. DLS protocol leverages a star network where
participants only exchange messages via round leaders. The PBFT protocol allows all participants to broadcast their
messages to all other participants. By leveraging this kind of mesh network, PBFT protocol was able to achieve
consensus with reduced round complexity. By leveraging the lock-mechanisms in PBFT/Tendermint BFT protocols
and changing the mesh network back to star network, HotStuff BFT/LibraBFT is able to achieve consensus with
reduced communication complexity but increased round complexity. The BDLS protocol proposed in this paper is
based on the original DLS protocol [9] and is able to achieve consensus with both reduced round complexity and
reduced communication complexity. Specifically, BDLS has the same round complexity as PBFT and has reduced
communication complexity than HotStuff BFT/LibraBFT. BDLS is proved to be secure in Type II partial synchronous
networks and achieves the best performance among existing BFT protocols for blockchains. Though both BDLS and
HotStuff BFT leverages star networks, BDLS employs the lock-mechanisms used in DLS protocol while HotStuff

2

employs the lock-mechanisms used in PBFT/Temdermint BFT protocols. Thus BDLS could achieve consensus in 4
steps while HotStuff requires 7 steps to achieve consensus in synchrony.

The structure of the paper is as follows. Section 2 introduces various network models that we have interest in.
Section 3 discusses several issues regarding broadcast channel reliability. Section 4 reviews the Tendermint BFT
protocol and presents several attacks against it. Section 5 discusses several issues related to Ethereum’s BFT finality
gadgets. Section 6 reviews the Polkadot’s GRANDPA BFT protocol and presents an attack against it. Section 7
presents the BDLS protocol design and analyzes its security within Type II networks.

2 Synchronous, asynchronous, and partial synchronous networks
Assume that the time is divided into discrete units called slots T0, T1, T2, · · · where the length of the time slots are
equal. Furthermore, we assume that: (1) the current time slot is determined by a publicly-known and monotonically
increasing function of current time; and (2) each participant has access to the current time. In a synchronous network, if
an honest participant P1 sends a message m to a participant P2 at the start of time slot Ti, the message m is guaranteed
to arrive at P2 at the end of time slot Ti. In the complete asynchronous network, the adversary can selectively delay,
drop, or re-order any messages sent by honest parties. In other words, if an honest participant P1 sends a message m
to a participant P2 at the start of time slot Ti1 , P2 may never receive the message m or will receive the message m
eventually at time Ti2 where i2 = i1 + ∆. Dwork, Lynch, and Stockmeyer [9] considered the following two kinds of
partial synchronous networks:

• Type I asynchronous network: ∆ < ∞ is unknown. That is, there exists a ∆ but the participants do not know
the exact value of ∆.

• Type II asynchronous network: ∆ <∞ holds eventually. That is, the participant knows the value of ∆. But this
∆ only holds after an unknown time slot T = Ti. Such a time T is called the Global Stabilization Time (GST).

For Type I asynchronous networks, the protocol designer supplies the consensus protocol first, then the adversary
chooses her ∆. For Type II asynchronous networks, the adversary picks the ∆ and the protocol designer (knowing ∆)
supplies the consensus protocol, then the adversary chooses the GST. The definition of partial synchronous networks
in [5, 22, 19] is the second type of partial synchronous networks. That is, the value of ∆ is known but the value of
GST is unknown. In such kind of networks, the adversary can selectively delay, drop, or re-order any messages sent by
honest participants before an unknown time GST. But the network will become synchronous after GST. Several BFT
protocols in the literature (e.g., Tendermint, GRANDPA, and the current version of LibraBFT dated on November 8,
2019) uses Type II networks, but they also assume that no message gets lost. With this additional assumption, the
network is actually a Type I network since all messages are delivered within a time period GST+∆ where GST is
unknown and ∆ is known.

For the Type I network model, Denial of Service (DoS) attack is not allowed since message could be lost with DoS
attacks. We think that it is more natural to use Type II asynchronous networks for distributed BFT protocol design and
analysis. Thus this paper adopts the Type II network model unless specified otherwise.

3 Reliable broadcast communication channels
The difference between point-to-point communication channels and broadcast communication channels has been ex-
tensively studied in the literature. A reliable broadcast channel requires that the following two properties be satisfied.

1. Correctness: If an honest participant broadcasts a message m, then every honest participant accepts m.

2. Unforgeability: If an honest participant does not broadcast a message m, then no honest participant accepts m.

For complete networks, reliable broadcast protocols have been proposed in Bracha [2]. For a given integer k,
a network is called k-connected if there exist k-node disjoint paths between any two nodes within the network. In
non-complete networks, it is well known that (2t + 1)-connectivity is necessary for reliable communication against
t Byzantine faults (see, e.g., Wang and Desmedt [21] and Desmedt-Wang-Burmester [7]). On the other hand, for
broadcast communication channels, Wang and Desmedt [20] showed that there exists an efficient protocol to achieve

3

probabilistically reliable and perfectly private communication against t Byzantine faults when the underlying commu-
nication network is (t + 1)-connected. The crucial point to achieve these results is that: in a point-to-point channel,
a malicious participant P1 can send a message m1 to participant P2 and send a different message m2 to participant
P3 though, in a broadcast channel, the malicious participant P1 has to send the same message m to multiple partici-
pants including P2 and P3. If a malicious P1 sends different messages to different participants in a reliable broadcast
channel, it will be observed by its neighbors.

Though broadcast channels at physical layers are commonly used in local area networks, it is not trivial to design
reliable broadcast channels over the Internet infrastructure since the Internet connectivity is not a complete graph
and some direct communication paths between participants are missing (see, e.g., [15, 21]). Quite a few broadcast
primitives have been proposed in the literature using message relays (see, e.g., Srikanth and Toueg [18], Bracha [2],
and Dwork-Lynch-tockmeyer [9]). In the message relay based broadcast protocol, if an honest participant accepts a
message signed by another participant, it relays the signed message to other participants. However, in order for these
message relay based broadcast protocol to be reliable, it requires that the network graph is complete which is not true
for the Internet environments.

A broadcast channel is unreliable if a malicious participant could broadcast a message m1 to a proper subset
of the participants but not to other participants. That is, some participants will receive the message m1 while other
participants will receive a different message m2 or receive nothing at all. In next sections, we show that several BFT
protocols are insecure due to the lack of reliable broadcast channels before GST (messages before GST could get lost
or re-ordered by the definition). Thus it is important to design BFT protocols that could tolerate unreliable broadcast
channels before GST.

In the following sections, if not specified explicitly, we will assume that there are n = 3t + 1 participants
P0, · · · , Pn−1 for the BFT protocol and at least t of them are malicious. Furthermore, we assume that each par-
ticipant has a public and private key pair where the public key is known to all participants. We use the notation 〈·〉i to
denote that the message is digitally signed by the participant Pi.

4 Security analysis of Tendermint BFT
Buchman, Kwon, and Milosevic [3] initiated the study of BFT protocols as a finality gadget for blockchains. Specifi-
cally, the authors in [3] proposed Tendermint BFT as an overlay atop a block proposal mechanism.

4.1 Tendermint BFT protocol
Tendermint BFT protocol [3] is based on the PBFT protocol. In Tendermint BFT, there are n = 3t + 1 participants
P0, · · · , Pn−1 and at most t of them are malicious. Each participant maintains five variables step, lockedV, lockedR,
validV, and ValidR throughout the protocol run. For each blockchain height h, the protocol runs from round to
round until it reaches an agreement for the height h. Then the protocol moves to the next blockchain height. For
each round, it contains three steps: propose, prevote, and precommit. For each height h, the participants start the
process by initializing their five variables to: step = propose, lockedV = nil, lockedR = −1, validV = nil,
and ValidR = −1. Then it starts from round 0 until an agreement is reached for the height h. There is a public
function proposer(h, r) that returns the round leader for a given round r of the height h. The round r of the height h
proceeds as follows:

1. propose: The leader Pi = proposer(h, r) distinguishes the two cases:

• r = 0 or validV = nil: Pi chooses her proposal v and vr = −1.

• r > 0 and validV 6= nil: Pi lets v = validV and vr = ValidR

Pi broadcasts the signed message
〈PROPOSAL, h, r, v, vr〉i (1)

to all participants. All other participants Pj initialize the timeout counter to execute OnTimeoutPropose(h, r).

2. prevote: For all participants Pj who are in step = propose, Pj distinguishes the following three cases:

4

• Pj receives (1) with vr = −1. If lockedR = −1 or validV =v, then Pj broadcasts the message
〈PREVOTE, h, r,H(v)〉j . Otherwise, Pj broadcasts the message 〈PREVOTE, h, r,nil〉j . Pj sets step = prevote.

• Pj receives (1) with vr ≥ 0 and Pj has received 2t + 1 〈PREVOTE, h, vr,H(v)〉. Pj distinguishes the
following two cases

– lockedR ≤ vr or lockedV = v: Pj broadcasts 〈PREVOTE, h, r,H(v)〉j
– Otherwise: Pj broadcasts the message 〈PREVOTE, h, r,nil〉j .

Pj sets step = prevote.

• Pj receives (1) with vr ≥ 0 though Pj has not received 2t+ 1 〈PREVOTE, h, vr,H(v)〉. Pj does nothing.

3. precommit:

(a) As soon as a participant Pj in step prevote receives 2t + 1 messages 〈PREVOTE, h, r, ∗〉 for the first
time, Pj initializes timeout counter to execute OnTimeoutPrevote(h, r).

(b) As soon as a participant Pj in step prevote receives 2t + 1 messages 〈PREVOTE, h, r, nil〉 for the first
time, Pj broadcasts 〈PRECOMMIT, h, r, nil〉 and sets step = precommit.

(c) If Pj is in step prevote ∨ precommit, has received the proposal (1), and has received 2t + 1 messages
〈PREVOTE, h, r,H(v)〉, then Pj carries out the following steps

• If step = prevote, then Pj sets lockedV = v, lockedR = r, broadcasts 〈PRECOMMIT, h, r,H(v)〉,
and sets step = precommit.

• Pj sets validV = v and validR = r.

4. decision: As soon as a participant Pj receives 2t + 1 messages 〈PRECOMMIT, h, r, ∗〉 for the first time, Pj

initializes timeout counter to execute OnTimeoutPrecommit(h, r). If Pj has not decided a value for the height
h, has received the proposal (1), and has received 2t + 1 messages 〈PRECOMMIT, h, r,H(v)〉, then Pj sets v
as the decision value for height h, resets values for the five variables, and goes to round 0 of height h + 1.

5. automatic update round: During any time of the protocol, if a participant Pj receives t+ 1 messages for a round
r′ > r, Pj moves to round r′.

6. Timeout functions:

(a) OnTimeoutPropose(h, r): broadcast 〈PREVOTE, h, r,nil〉 and set step = prevote.

(b) OnTimeoutPrevote(h, r): broadcast 〈PRECOMMIT, h, r,nil〉 and set step = precommit.

(c) OnTimeoutPrecommit(h, r): move to round r + 1 of height h.

4.2 Attacks on Tendermint BFT
In this section, we show that Tendermint BFT does not achieve the liveness property in partial synchronous networks.
We describe our attack in the Type II networks where the broadcast channel is unreliable before GST. Specifically,
we show that if a malicious participant could choose to broadcast a message to a subset of the users before GST, then
the system will reach a deadlock and no new block will be created anymore (even after GST). In other words, the
Tendermint BFT will reach deadlock before GST and the deadlock could not be removed after GST. We then extend
these attacks on Tendermint BFT to Type I networks. For simplicity, we assume that for a given height h, the leader
participant is P0 and the participants in P1 = {P0, · · · , Pt−1} are malicious. Furthermore, let P2 = {Pt, · · · , P2t},
and P3 = {P2t+1, · · · , P3t}.

Attack 1. In round 0 of height h, P0 chooses a minimal valid value v and broadcasts 〈PROPOSAL, h, 0, v,−1〉
to participants in P1 ∪ P2. After receiving 〈PROPOSAL, h, 0, v,−1〉 from P0, each participant Pj ∈ P1 broadcasts
〈PREVOTE, h, 0, H(v)〉 to participants in P2 and each participant Pj ∈ P2 broadcasts 〈PREVOTE, h, 0, H(v)〉 to all
participants and sets step = prevote. Each participant Pj ∈ P2 receives 2t + 1 messages 〈PREVOTE, h, 0, H(v)〉.
Thus the participant Pj ∈ P2 sets lockedV = v, lockedR = 0, step = precommit, validV = v, validR = 0, and
then broadcasts 〈PRECOMMIT, h, 0, H(v)〉. Since each participant receives at most t + 1 pre-commit messages for
the value v, no decision will be made during the round 0. After timeout for round 0, all participants moves to round

5

1 of height h. The participants in P1 will become dormant from now on. If a participant in P2 becomes the leader
of round 1, it will broadcast the proposal 〈PROPOSAL, h, 1, v, 0〉. Since participant Pj in P3 has received at most
t + 1 provote messages for the value v in round 0, Pj will do nothing until timeout. Thus no honest participant can
collect sufficient prevote messages for v to move ahead. After timeout for round 1, the system will move to round 2
of height h. On the other hand, if a participant Pj in P3 becomes the leader of round 1, it will broadcast the proposal
〈PROPOSAL, h, 1, v′,−1〉. Since P0 has selected the value v as the minimal valid value and new transactions have
been inserted into the system since then, the honest leader for round 1 will select a valid value v′ 6= v with high
probability. Thus participants in P2 will not accept the proposal for v′ and will broadcast 〈PROVOTE, h, 1, nil〉.
That is, no agreement could be made during round 1 and the system will move to round 2 of height h after timeout.
This process will continue forever without making an agreement for the height h even after GST.

Attack 2. One can launch an attack on Tendermint BFT so that some participants in P2 will decide on a value v
for the height h (though no participant in P3 decides on any value for the height h) and then the system moves to the
deadlock. It is noted that due to the lock function in Tendermint BFT and due to the blockchain property, the adversary
will not be able to let the participants in P3 to decide on a different value for the height h or h + 1.

In the preceding Attack 1, the malicious user needs to control t participants in the set P1. Indeed, we can revise
the attack in such a way that the malicious user only needs to control one user P0 to launch a similar attack. We use
the same set P1,P2,P3. But this time, we assume that only the leader P0 is malicious and all other participants are
honest.

Attack 3. In round 0 of height h, P0 chooses a minimal valid value v and broadcasts 〈PROPOSAL, h, 0, v,−1〉
to participants in P1 ∪ P2. P0 then broadcasts 〈PREVOTE, h, 0, H(v)〉 to participants in P1 ∪ P2 and becomes
dormant. After receiving 〈PROPOSAL, h, 0, v,−1〉 from P0, each participant Pj ∈ (P1 \ {P0}) ∪ P2 broadcasts
〈PREVOTE, h, 0, H(v)〉 to all participants and sets step = prevote. Each participant Pj ∈ P1 ∪P2 receives 2t + 1
messages 〈PREVOTE, h, 0, H(v)〉. The participant Pj ∈ (P1 \ {P0}) ∪ P2 sets lockedV = v, lockedR = 0,
step = precommit, validV = v, validR = 0, and broadcasts 〈PRECOMMIT, h, 0, H(v)〉. Since each participant
receives at most 2t pre-commit messages for the value v, no decision will be made during the round 0. A similar
argument as in the Attack 1 can be used to show that the protocol will enter a deadlock. Please note in this Attack 3,
participant Pj in P3 has received at most 2t prevote messages for the value v in round 0, which is still insufficient for
Pj to accept a proposal for a locked value v from other participants.

5 Casper FFG
Buterin and Griffith [4] proposed the BFT protocol Casper the Friendly Finality Gadget (Casper FFG) as an overlay
atop a block proposal mechanism. In Casper FFG, weighted participants validate and finalize blocks that are proposed
by an existing proof of work chain or other mechanisms. To simplify our discussion, we assume that there are n =
3t + 1 validators of equal weight. The Casper FFG works on the checkpoint tree that only contains blocks of height
100 ∗ k in the underlying block tree. Each validator Pi can broadcast a signed vote 〈Pi : s, t〉 where s and t are two
checkpoints and s is an ancestor of t on the checkpoint tree. For two checkpoints a and b, we say that a → b is a
supermajority link if there are at least 2t + 1 votes for the pair. A checkpoint a is justified if there are supermajority
links a0 → a1 → · · · → a where a0 is the root. A checkpoint a is finalized if there are supermajority links a0 →
a1 → · · · → ai → a where a0 is the root and a is the direct son of ai. In Casper FFG, an honest validator Pi should
not publish two distinct votes

〈Pi : s1, t1〉 AND 〈Pi : s2, t2〉

such that either
h(t1) = h(t2) OR h(s1) < h(s2) < h(t2) < h(t1)

where h(·) denotes the height of the node on the checkpoint tree. Otherwise, the validator’s deposit will be slashed.
Casper FFG is proved to achieve accountable safety and plausible liveness in [4] where

1. achieve accountable safety means that two conflicting checkpoints cannot both be finalized (assuming that there
are at most t malicious validators), and

2. plausible liveness means that supermajority links can always be added to produce new finalized checkpoints,
provided there exist children extending the finalized chain.

6

In order to achieve he liveness property, [4] proposed to use the “correct by construction” fork choice rule: the
underlying block proposal mechanism should “follow the chain containing the justified checkpoint of the greatest
height”.

The authors in [4] proposed to defeat the long-range revision attacks by a fork choice rule to never revert a finalized
block, as well as an expectation that each client will “log on” and gain a complete up-to-date view of the chain at some
regular frequency (e.g., once per month). In order to defeat the catastrophic crashes where more than t validators
crash-fail at the same time (i.e., they are no longer connected to the network due to a network partition, computer
failure, or the validators themselves are malicious), the authors in [4] proposed to slowly drains the deposit of any
validator that does not vote for checkpoints, until eventually its deposit sizes decrease low enough that the validators
who are voting are a supermajority. Related mechanism to recover from related scenarios such as network partition is
considered an open problem in [4].

No specific network model is provided in [4]. Thus it is important to investigate the security of Casper FFG in
various network models. The specification in [4] does not have sufficient details to guarantee its claimed plausible
liveness. The authors mentioned that the Casper FFG could be used on top of most proof of work chains. However,
without further restrictions on the block generation mechanisms, Casper FFG can reach deadlock (so plausible liveness
property will not be satisfied). Assume that, at time T , the checkpoint a is finalized (where there is a supermajority
link from a to its direct child b) and no vote for b’s descendant checkpoint has been broadcast by any validator yet.
Now assume that the underlying block production mechanism produced a fork starting from b. That is, b has two
descendant checkpoints c and d. If t honest validators vote for c, t + 1 honest validators vote for d, and t malicious
validators vote randomly, then we reach a deadlock (since no link from b to its descendant can have a supermajority).
If the checkpoints are 100 blocks away from each other and if it is expensive/slow to generate blocks (e.g., using PoW)
then this kind of fork may be hard to happen though there is still a possibility.

6 Another finality gadget: Polkadot’s GRANDPA
Based on the Casper FFG protocol, the project Polkadot (https://wiki.polkadot.network/) proposed a
new BFT finality gadget protocol GRANDPA [11]. Specifically, Polkadot implements a nominated proof-of-stake
(NPoS) system. At certain time period, the system elects a group of validators to serve for block production and
the finality gadget. Nominators also stake their tokens as a guarantee of good behavior, and this stake gets slashed
whenever their nominated validators deviate from their protocol. On the other hand, nominators also get paid when
their nominated validators play by the rules. Elected validators get equal voting power in the consensus protocol.
Polkadot uses BABE as its block production mechanism and GRANDPA as its BFT finality gadget. Here we are
interested in the finality gadget GRANDPA (GHOST-based Recursive ANcestor Deriving Prefix Agreement) that is
implemented for the Polkadot relay chain. GRANDPA contain two protocols, the first protocol works in partially
synchronous networks and tolerates 1/3 Byzantine participants. The second protocol works in full asynchronous
networks (requiring a common random coin) and tolerates 1/5 Byzantine participants. In contrast to Casper FFG,
GRANDPA voters can cast votes simultaneously for blocks at different heights and GRANDPA only depends on
finalized blocks to affect the fork-choice rule of the underlying block production mechanism.

The first GRANDPA protocol assumes that after an unknown time GST, the network becomes synchronous. How-
ever, it also assumes that all messages are delivered before time GST+∆ for some given value ∆. That is, no message
gets lost. This network model is equivalent to our Type I asynchronous network and will not tolerate DoS attacks
and network partition attacks. In the following paragraphs, we will show that GRANDPA is not even secure in the
synchronous network.

Assume that there are n = 3t+ 1 participants P0, · · · , Pn−1 and at most t of them are malicious. Each participant
stores a tree of blocks produced by the block production mechanism with the genesis block as the root. A participant
can vote for a block on the tree by digitally signing it. For a set S of votes, a participant Pi equivocates in S if Pi has
more than one vote in S. S is called tolerant if at most t participants equivocate in S. A vote set S has supermajority
for a block B if

|{Pi : Pi votes for B∗} ∪ {Pi : Pi equivocates}| ≥ 2t + 1

where Pi votes for B∗mean that Pi votes for B or votes for a descendant of B. The 2/3-GHOST function g(S) returns
the block B of the maximal height such that S has a supermajority for B. If a tolerant vote set S has a supermajority

7

https://wiki.polkadot.network/

for a block B, then there are at least t + 1 voters who do vote for B or its descendant but do not equivocate. Based on
this observation, it is easy to check that if s ⊆ T and T is tolerant, then g(S) is an ancestor of g(T).

The authors in [11] defined the following concept of possibility for a vote set to have a supermajority for a block:
“We say that it is impossible for a set S to have a supermajority for a block B if at least 2t+ 1 voters either equicovate
or vote for blocks who are not descendant of B. Otherwise it is possible for S to have a supermajority for B.” Then
the authors [11] claimed that “a vote set S is possible to have a supermajority for a block B if and only if there exists
a tolerant vote set T ⊇ S such that T has a supermajority for B”. Unfortunately, this claim has semantic issues in
practice. For example, assume that blocks B and C are inconsistent and the vote set S contains the following votes:

1. t malicious voters vote for B, one honest voter votes for B.

2. 2t honest voters vote for C.

By the definition of [11], S is not impossible to have a supermajority for B. Thus S is possible to have a supermajority
for a block B. Since honest voters will not equivocate, there does not exist a semantically valid tolerant vote set T ⊇ S
such that T has a supermajority for B. This observation could easily be used to show that the GRANDPA protocol
cannot achieve the liveness property (see our discussion in next paragraphs).

6.1 GRANDPA protocol
The GRANDPA protocol starts from round 1. For each round, one participant is designated as the primary and all
participants know who is the primary. Each round consists of two phases: prevote and precommit. Let Vr,i and Cr,i

be the sets of prevotes and precommits received by Pi during round r respectively. Let E0,i be the genesis block and
Er,i be the last ancestor block of g(Vr,i) that is possible for Cr,i to have a supermajority. If either Er,i < g(Vr,i) or
it is impossible for Cr,i to have a supermajority for any children of g(Vr,i), then we say that Pi sees that round r is
completable. Let ∆ be a time bound such that it suffices to send messages and gossip them to everyone. The protocol
proceeds as follows.

1. Pi starts round r > 1 if round r − 1 is completable and Pi has cast votes in all previous rounds. Let tr,i be the
time Pi starts round r.

2. If Pi is the primary of round r and has not finalized Er−1,i, then it broadcasts Er−1,i.

3. Pi waits until either it is at least time tr,i + 2∆ or round r is completable. Pi prevotes for the head of the best
chain containing Er−1,i unless Pi receives a block B from the primary with g(Vr−1, i) ≥ B > Er−1,i. In this
case, Pi uses the best chain containing B.

4. Pi waits until g(Vr,i) ≥ Er−1,i and one of the following conditions holds

(a) it is at least time tr,i + 4∆

(b) round r is completable

(c) it is impossible for Vr,i to have a supermajority for any child of g(Vr,i) (this is an optional condition)

Then Pi broadcasts a precommit for g(Vr,i)

At any time after the precommit step of round r, if Pi sees that B = g(Cr,i) is descendant of the last finalized block
and Vr,i has a supermajority, then Pi finalizes B.

6.2 Attacks on GRANDPA
In this section, we show that GRANDPA protocol cannot achieve the liveness property even in the synchronous
networks. Assume that Er−1,0 = · · · = Er−1,n−1. During round r, the block production mechanisms produced a
fork for Er−1,0. That is, two child blocks B and C of Er−1,0 are produced. At round r, t + 1 voters (including
all malicious voters) prevote for B and the remaining honest 2t voters prevote for C. For each voter Pi, we have
g(Vr,i) = Er−1,i. Thus each Pi precommits g(Vr,i) = Er−1,i. Now each voter Pi estimates Er,i = g(Vr,i) = Er−1,i.
Since it is possible for Cr,i to have a supermajority for any child of Er,i, the round r is not completable. That is, the
process stuck at round r forever.

8

Even if one can revise the “possible” definition in the GRANDPA to resolve the issues that we have discussed in
the preceding paragraph, our attacks on Tendermint could be easily mounted against GRANDPA protocol also. Thus
GRANDPA protocol could not be secure in Type II networks.

7 A secure BFT protocol in Type II partial synchronous networks
In this section, we propose a Byzantine Agreement Protocol that achieves safety and liveness properties in Type II
partial synchronous networks. Though our protocol could be used in other scenarios such as State Machine Replication
(SMR), we present the protocol as a finality gadget for blockchains. Assume that there is a separate block proposal
mechanism that produces children blocks for finalized blocks by our BFT finality gadget. Let B0, · · · , Bh−1 be the
blockchain where B0 is the genesis block and Bh−1 is the most recently finalized head block. The block proposal
mechanism may produce several child blocks Bh

0 , B
h
1 , · · · , Bh

n0−1 of the current head block Bh−1. These child blocks
are strictly ordered. For example, in proof of stake blockchain applications, each participant has a stake value for the
chain height h and these child blocks may be ordered using proposer’s stake values. However, it is beyond the scope
of this paper to specify how these child blocks are ordered for general blockchains. It is the task for the BFT finality
gadget to select the maximal block among these candidate child blocks as the next block Bh. Though the goal of the
BFT protocol is to select the maximal child block as the final version of block Bh, this may not be true in certain
scenarios. For example, if t + 1 honest participants have seen the child block Bh

n0−2 and have not seen the maximal
block Bh

n0−1 at the start of the protocol (at the same time, we may assume that the other t honest participants have
seen the maximal block Bh

n0−1), then our BFT protocol BDLS will finalize Bh
n0−2 instead of Bh

n0−1 (assuming that
the t malicious participants submit the block Bh

n0−2 to the leader). Secondly, our BFT protocol leverages the fact
that a candidate block is self-certified. That is, the validity of a candidate child block can be verified by using the
information contained in the candidate block itself against the currently finalized blockchain.

7.1 The BFT protocol BDLS
Our BFT protocol is based on the original DLS protocol in Dwork, Lynch, and Stockmeyer [9] and we call it a
Blockchain version of DLS (BDLS). For each blockchain height h, BDLS protocol runs from round to round un-
til it reaches an agreement for the height h. Then the protocol moves to the next blockchain height h + 1. Let
P0, · · · , Pn−1 be the n = 3t + 1 participants of the protocol. Assume that there are n0 valid candidate proposals
Bh

0 < Bh
1 < · · · < Bh

n0−1 for the block Bh. During the protocol run, each participant Pi maintains a local vari-
able BLOCKi ⊆ {Bh

0 , B
h
1 , · · · , Bh

n0−1} that contains the candidate blocks that it has learned so far. Participant Pi

prefers the maximal block in BLOCKi to be selected as the final block for Bh. The goal of the BDLS protocol is for
participants P0, · · · , Pn−1 to reach a consensus on the finalized block Bh.

Generally, we can use a robust threshold signature scheme to reduce the authenticator complexity. For simplicity,
the following protocol description is based on a standard digital signature scheme. It could be easily revised to used
a threshold signature scheme. Following Dwork, Lynch, and Stockmeyer [9], we assume that all messages after the
unknown GST (Global Stabilization Time) will be delivered in the same round and messages before round GST could
get lost or re-ordered. Furthermore, though all participants have a common numbering for the round, they do not know
when the round GST occurs. A candidate block B′ is acceptable to Pi if Pi does not have a lock on any value except
possibly B′. There is a public function leader(h, r) that returns the round leader for a given round r of the height
h. For each height h, the BDLS protocol proceeds from round to round (starting from round 0) until the participant
decides on a value. The round r of the height h starts when at least 2t+ 1 participants submit a round-change message
to the leader participant. Specifically, the round r proceeds as follows where Pi = leader(h, r) is the leader for round
r:

1. Each participant Pj (including Pi) sends the signed message 〈h, r,B′j〉j to the leader Pi where B′j ∈ BLOCKj

is the maximal acceptable candidate block for Pj . The message 〈h, r,B′j〉j is considered as a round-change
message. Pj then sets the timeout counter for the round r of height h.

2. If Pi receives at least 2t round-change messages (excluding himself), Pi sends himself a message as in Step 1 (if
he has not done so yet) and starts the round r of height h. In these round-change messages, if there are at least

9

2t+ 1 signed messages from 2t+ 1 participants with the same candidate block B′ in step 1, then Pi broadcasts
the following signed message (2) to all participants

〈lock, h, r, B′, proof〉i (2)

where proof is a list of at least 2t+ 1 signed messages showing that B′ is the candidate blocks for at least 2t+ 1
participants (the proof also shows that round-change request has been authorized by at least 2t+ 1 participants).
If Pi does not receive such a block B′, then Pi adds all received candidate blocks to its local variable BLOCKj

and broadcasts 〈B′′, proof〉 where B′′ is the candidate block B′′ = max{B : B ∈ BLOCKi} and proof is a list
of at least 2t + 1 round-change messages from Step 1. Pi sets the timeout counter for the round r of height h if
he has not done so yet.

3. If a participant Pj receives a valid 〈B′′, proof〉 from Pi during Step 2, then it adds B′′ to its BLOCKj . If a
participant Pj receives a valid message 〈lock, h, r, B′, proof〉i from Pi in Step 2, then it does the following:

(a) releases any potential lock on B′ from previous round, but does not release locks on any other potential
candidate blocks

(b) locks the candidate block B′ by recording the valid lock (2)

(c) sends the following signed commit message to the leader Pi.

〈commit, h, r, B′〉j . (3)

4. If Pi receives at least 2t+1 commit messages (3), then Pi decides on the value B′ and broadcasts the following
decide message to all participants

〈decide, h, r, B′, proof〉i. (4)

where proof is a list of at least 2t + 1 commit messages (3).

5. If a participant Pj receives a decide message (4) from step 4 or from its neighbor, it decides on the block B′

for Bh and moves to the next height h + 1 (that is, run the Step 1 of height h + 1 by sending the round-change
message). At the same time, the participant Pj propagates (broadcasts) the decide message (4) to all of its
neighbors if it has not done so yet (see the following Remark 3 for more details on this). Otherwise, it goes to
the following lock-release step:

• (lock-release) If a participant Pj has some locked values, it broadcasts all of its locked values with proofs.
A participant releases its lock on a value 〈lock, h, r′′, B′′, proof〉i′′ if it receives a lock 〈lock, h, r′, B′, proof〉i′
with r′ ≥ r′′ and B′ 6= B′′.

• Move to the next round r + 1 (i.e., run the Step 1 of height h with r + 1).

6. height synchronization: If Pj receives a finalized bock of height h (e.g., a decide message (4)), Pj decides for
height h and moves to height h + 1.

7. round synchronization: If Pj receives a valid message from the leader for a round r′ > r, Pj moves to round r′.

8. timeout: If Pj does not receive enough messages to move forward within a pre-fixed time period, it moves to
the next round r + 1 (i.e., run the Step 1 of height h with r + 1). To make round synchronization more efficient,
BDLS also recommends the use of PaceMaker (see Section 8).

Remark 1: In the BDLS protocol, the lock-release step is a mesh network broadcast. In some applications, one may
prefer a star network to reduce the total number of messages from n2 to n. One may achieve this kind of needs by
replacing the “lock-release” step with the following additions to the protocol. At the Step 1 of round r, each participant
Pj sends the message

all-locked-values, 〈h, r,B′j〉j
instead of only sending the message 〈h, r,B′j〉j to Pi, where “all-locked-values” is the set of candidate blocks that Pj

has locks on. During Step 2, if Pi cannot lock a candidate block during round r, then it broadcasts the candidate block

10

B′′ = max{B : B ∈ BLOCKi} together with all locked candidate blocks by all participants. It is straightforward to
check that our security analysis in the next section remains unchanged for this protocol revision.
Remark 2: During Step 5 of the BDLS protocol, when a participant receives a decide message, it propagates/broad-
casts the decide message to its neighbors. It is recommended that each participant keep broadcasting the signed
decide message for height h regularly until it receives at least 2t broadcasts of the decide message for height h
from other 2t participants. The importance of this propagation/broadcast is illustrated in Section 9.

7.2 Liveness and Safety
The security of BDLS protocol is proved by establishing a series of Lemmas. The proofs for Lemmas 7.1, 7.2,
7.3 and Theorem 7.4 follow from straightforward modifications of the corresponding Lemmas/Theorem in [9]. For
completeness, we include these proofs here also.

Lemma 7.1 It is impossible for two candidate blocks B′ and B′′ to get locked in the same round r of height h.

Proof. In order for two blocks B′ and B′′ to get locked in one round r of height h, the leader Pi = leader(h, r)
must send two conflict lock messages (2) with different proofs. This can only happen if there exist at least t + 1
participants Pj each of whom equivocates two messages 〈h, r,B′〉j and 〈h, r,B′′〉j to Pi. This is impossible since
there are at most t malicious participants. 2

Lemma 7.2 If the leader Pi decides a block value B′ at round r of height h and r is the smallest round at which a
decision is made. Then at least t + 1 honest participants lock the candidate block B′ at round r. Furthermore, each
of the honest participants that locks B′ at round r will always have a lock on B′ for round r′ ≥ r.

Proof. In order for Pi to decide on B′, at least 2t+ 1 participants send commit messages (3) to Pi at round r of height
h. Thus at least t+ 1 honest participants have locks on B′ at round r. Assume that the second conclusion is false. Let
r′ > r be the first round that the lock on B′ is released. In this case, the lock is released during the lock-release step
of round r′ if some participant has a lock on another block B′′ 6= B′ with associated round r′′ where r′ ≥ r′′ ≥ r.
Lemma 7.1 shows that it is impossible for a participant to have a lock on B′′ ar round r. Thus the participant acquired
the lock on B′′ in round r′′ with r′ ≥ r′′ > r. This implies that, at the step 1 of round r′′, more than 2t+1 participants
send signed messages 〈h, r′′, B′′〉 to the leader participant. That is, at least 2t + 1 participants have not locked B′ at
the step 1 of round r′′. This contradicts the fact that at least t + 1 participants have locked B′ at the start of round r′′.
2

Lemma 7.3 Immediately after any lock-release step at or after the round GST, the set of candidate blocks locked by
honest participants contains at most one value.

Proof. This follows from the lock-release step. 2

Theorem 7.4 (Safety) Assume that there are at most t malicious participants. It is impossible for two participants to
decide on different block values.

Proof. Suppose that an honest participant Pi decides on B at round r and this is the smallest round at which the
decision is made. Lemma 7.2 implies that at least t + 1 participants will lock B′ in all future rounds. Consequently,
no other block values other than B′ will be acceptable to 2t + 1 participants. Thus no participants will decide on any
other values than B′. 2

Theorem 7.5 (Liveness) Assume that there are at most t malicious participants and valid candidate child blocks for
Bh are always produced by the block proposal mechanism before the start of first round for height h for all h. Then
BDLS protocol will finalize blocks for each height h. That is, the BDLS protocol will not reach a deadlock.

Proof. We consider two cases. For the first case, assume that no decision has been made by any honest participants
and no honest participant locks a candidate block at round r where r ≥ GST is the first round after GST that the leader
participant is honest. In this case, if Pi receives 2t + 1 signed messages for a candidate block B′ in step 1 of round r,
then all honest participants will decides on B′ by the end of round r. Otherwise, Pi broadcasts the maximal candidate
block B′′ during step 2 of round r. Thus all honest participants will receive this maximum block and this candidate

11

Table 1: Comparison of BFT protocols with honest leader after GST

Steps PBFT Tendermint BFT HotStuff BFT BDLS
1
2
3
4
5
6
7

message complexity 2n2 + n 2n2 + n 7n 4n
authenticator complexity [22] O(n2) O(n) O(n) O(n)

block becomes the maximum acceptable candidate block for all honest participants. Then, in round r′ > r where r′ is
the smallest round after r that the leader participant is honest, all honest participants decide on a maximal block.

For the second case, assume that no candidate block is locked at the start of round GST and some participants hold
a lock on a candidate block B′. By Lemma 7.3, there are at most one value locked by honest participants at the end of
round GST. Furthermore, at the end of round GST, all the honest participants either decide on B′ or obtain a lock on
B′. Thus if no decision is made during round GST, the decision will be made during round GST+1. 2

7.3 Performance comparison
In this section, we compare the performance of PBFT, Tendermint BFT, HotStuff BFT and our BDLS protocols.
Three kinds of primitives are used in these protocol design: (1) broadcast from the leader to all participants; (2) all
participants send messages to the leader; and (3) all participants broadcast. We use the following symbols to denote
these primitives.

• : leader broadcasts

• : all participants send messages to the leader

• : all participants broadcast

In the following, we compare the performance of these protocols after the network is synchronized (that is, after GST)
and when the round has an honest leader. For all of these protocols, they will reach agreement within one run of
the protocol assuming all participants have all the necessary input values at the start of the protocol and the leader is
honest. Table 1 lists the steps of one run of these protocols. Furthermore, for BDLS, we use the approaches discussed
in the Remarks after the BDLS protocol description to embed the lock-release step into Steps 1 and 2. For each

or step, there is a total of n messages communicated in the network. For each step, there is a total of n2

messages communicated in the network. The row “message complexity” of Table 1 lists the total number of messages
communicated in the network for each run of the protocol. That is, in the ideal synchronized network, this is the
total number of messages that are needed to achieve a consensus. These numbers show that BDLS has the smallest
number of messages for a consensus in the synchronized network. Another way to compare the performance of BFT
protocols is to compare the number of authenticator operations (signing and verifying) that are needed to achieve a
consensus (see, e.g., [22]). Assume that all these schemes (except PBFT) use threshold digital signature schemes, then
the row “authenticator complexity” of Table 1 lists the total number authenticator operations needed for each run of
the protocol.

8 Chained BDLS and other implementation related issues
In order to improve efficiency, several blockchain BFT protocols (e.g., Ethereum Casper FFG, HotStuff BFT, and
LibraBFT) adopt the chaining paradigm where the BFT protocol phases for commitment are spread across rounds.

12

That is, every phase is carried out in a round and contains a new proposal. The same techniques could be used to
construct a chained BDLS. As noted in HotStuff BFT and LibraBFT, the block tree in chained LibraBFT and chained
HotStuff BFT may contain “chains” that have gaps in round numbers. Thus the commit logic for LibraBFT and
HotStuff BFT requires a 3-chain with contiguous round numbers whose last descendant has been certified. Since
BDLS is a 2-phase BFT protocol, chained BDLS “decide” logic requires a 2-chain with contiguous round numbers
whose last descendant has been certified.

For chained BFT protocol implementation, the BFT protocol participants for various rounds/heights should be
relatively static. If the BFT protocol participants change from rounds to rounds or from heights to heights, it is not
realistic to implement chained BFT protocols. Thus chained BFT protocol implementation is suitable for permissioned
blockchains such as Libra blockchain while it is not suitable for permissionless blockchains where BFT protocol
participants change frequently. The same rule applies to threshold digital signature scheme implementation for BFT
protocols. That is, for permissionless blockchains where BFT protocol participants change frequently, it may have
limited advantage in using threshold digital signature schemes since the expensive key set-up process has to be run
each time when the participants set changes.

In most distributed BFT protocols, when the participants could not reach an agreement in one round, participants
move to a new round by submitting round-change request. Thus BFT participants may be in different states and receive
different messages. It is important to maximize the period of time when at least 2t + 1 honest participants are in the
same round. PBFT protocol achieves round synchronization by exponentially increasing the timeout length for each
round. That is, if the round 0 of height h has a timeout length of ∆, then the round r of height h will have a timeout
length of 2r∆. On the other hand, Tendermint BFT achieves round synchronization by linearly increasing the timeout
length for each round. That is, the round r has a timeout length of r∆ where ∆ is the timeout length for round 0
of height h. HotStuff proposes a functionality called PaceMaker to achieve round synchronization without details on
how to implement the PaceMaker. LibraBFT implemented the PaceMaker functionality in the following way. When a
participant gives up on a certain round r, it broadcasts a timeout message carrying a certificate for entering the round.
This brings all honest participants to r within the transmission delay bound. When timeout messages are collected
from a quorum of participants, they form a timeout certificate. BDLS may use any of these recommended approaches
for round synchronization.

9 The importance of propagating decision messages
During Step 5 of the BDLS protocol, when a participant receives a decide message, it propagates the decide
message to its neighbors. In this section, we show the importance of this process by the potential issues for the
HotStuff protocol since it does not have this decision message propagation process.

9.1 HotStuff BFT protocol
HotStuff BFT [22] includes basic HotStuff protocol and chained HotStuff protocol. For simplicity, we only review the
basic HotStuff BFT protocol. Similar to PBFT and Tendermint BFT, there are n = 3t + 1 participants P0, · · · , Pn−1
and at most t of them are malicious. The view is defined and changes in the same way as in PBFT. The major
differences between PBFT and HotStuff BFT are:

1. PBFT participants “broadcast” signed messages to all participants though HotStuff participants send the signed
messages to the leader participant in a point-to-point channel. In other words, PBFT uses a mesh topology
communication network though HotStuff uses a star topology communication network.

2. PBFT uses standard digital signature schemes though HotStuff uses threshold digital signature schemes.

With these two differences, HotStuff achieves authenticator complexity O(n) for both the correct leader scenario and
the faulty leader scenario. On the other hand, the corresponding authenticator complexity for PBFT is O(n2) for
the correct leader scenario and O(n3) for the faulty leader scenario respectively. For simplicity, we will describe the
HotStuff BFT protocol using a standard digital signature scheme instead of threshold digital signature schemes. Our
analysis does not depend on the underlying signature schemes.

13

HotStuff BFT has revised the validRound and lockedRound variables in Tendermint BFT to its prepareQC
and lockedQC variables respectively. Though Tendermint BFT participants set the values for two variables in the
same phase, HotStuff BFT participants set the values for these variables in different steps.

In HotStuff BFT, each participant stores a tree of pending commands as its local data structure and keeps the
following state variables viewNumber (initially 1), prepareQC (initially nil, storing the highest QC for which it
voted pre-commit), and lockedQC (initially nil, storing the highest QC for which it voted commit).

Each time when a new-view starts, each participant should send its prepareQC variable to the leader. There
is a public function LEADER(viewNumber) that determines the current leader participant. When a client sends
an operation request m to the leader Pi, the n participants carry out the four phases of the BFT protocol: prepare,
pre-commit, commit and decide.

1. prepare: The leader Pi starts the process after it has received 2t + 1 new-view messages. Each new-view
message contains a prepareQC variable. Pi selects highQC as the prepareQC variable with the highest
viewNumber. Pi extends the tail of highQC node by creating a new leaf node proposal. Pi then broadcasts
the digitally signed new leaf node proposal (together with highQC for safety justification) to all participants in
a prepare message. A participant accepts this new leaf node proposal if the new node extends the currently
locked node lockedQC.node or it has a higher view number than the current lockedQC. If a participant Pj

accepts the new leaf node proposal, it sends a prepare vote message to Pi by signing it.

2. pre-commit: When Pi receives 2t + 1 prepare votes for the current proposal, it combines them into a pre-
pareQC. Pi broadcasts prepareQC in a pre-commit message. A participant sets its prepareQC variable to
this received prepareQC value and votes for it by sending the signed prepareQC back to Pi in a pre-commit
message.

3. commit: When Pi receives 2t + 1 pre-commit votes. It combines them into a precommitQC and broadcasts
it in a commit message. A participant sets its lockedQC variable to this received precommitQC value and
votes for it by sending the signed precommitQC back to Pi in a commit message.

4. decide: When Pi receives 2t+ 1 commit votes, it combines them into a commitQC. Pi broadcasts commitQC
in a decide message. Upon receiving a decide message, a participant considers the proposal embodied in
the commitQC a committed decision, and executes the commands in the committed branch. The participant
increments viewNumber and starts the next view.

9.2 What happens if leader does not reliably broadcast decide messages in HotStuff
In the following, we describe three scenarios with completely different semantics where the client receives different
responses. However, the HotStuff trees are identical for these three scenarios. First assume that at the end of view v−1,
we have lockedQC = prepareQC and the HotStuff path corresponding to lockedQC.node is a0 → a1 → al
where a0 is the root. Assume that the views v and v + 1 are executed before GST. That is, the broadcast channel is
not reliable before the end of view v + 1. Assume that the leader for view v is Pi and the leader for view v + 1 is Pi′ .
Furthermore, assume that both Pi and Pi′ are malicious,
Scenario I: The leader Pi for view v receives 2t + 1 new-view messages that contain the identical highQC =
prepareQC with the corresponding path a0 → a1 → al. Pi extends the path to the new path a0 → a1 → al → b
and creates a proposal for the new leaf node b. Pi then broadcasts the digitally signed new leaf node proposal (together
with highQC) to all participants in a prepare message. All participant accept this new leaf node proposal and sends
a prepare vote message to Pi by signing it. In the pre-commit phase, Pi receives 2t + 1 prepare votes for the
current proposal, it combines them into a prepareQC and broadcasts prepareQC in a pre-commit message to all
participants. All participant set their prepareQC variable to this received prepareQC value and vote for it by sending
the signed prepareQC back to Pi. During the commit phase, Pi receives 2t + 1 pre-commit votes. It combines
them into a precommitQC and broadcasts it in a commit message. All participant set their lockedQC variable to
this received precommitQC value and vote for it by sending the signed precommitQC back to Pi. In the decide phase,
Pi receives 2t + 1 commit votes, it combines them into a commitQC. Pi only send the commitQC to one honest
participant Pj but not to anyone else. After timeout, the view v + 1 starts. During view v + 1, the leader participant
extends the path a0 → a1 → al → b to a0 → a1 → al → b → c by including a new client command to the node
c. Assume that all messages during view v + 1 are delivered and all participants behaves honestly. Thus at the end

14

of view v + 1, all participants (except Pj) only executed the commands contained the node c and Pj executed the
commands contained both in b and c. Since the client only received one response from Pj that the commands in node
b is executed, it will not accept it.
Scenario II: In this scenario, the leader participant Pi for view v does not send any decide message in the last step
of view v. All other steps are identical to the Scenario I. Thus at the end of view v + 1, all participants executed the
command contained in the node c though no participants executed the command contained in the node b.
Scenario III: In this scenario, the leader participant Pi for view v sends the decide message to all participants in
the last step of view v. All other steps are identical to the Scenario I. Thus at the end of view v + 1, all participants
executed the commands contained in the nodes b and c.

For all these three scenarios, the path corresponding to the prepareQC at the end of view v + 1 is a0 → a1 →
al → b→ c though the internal states of honest participants are different.

In the HotStuff BFT protocol [22], it is mentioned that “In practice, a recipient who falls behind can catch up by
fetching missing nodes from other replicas”. For all three of the scenarios that we have described, at the end of view
v+1, the participant who falls behind may fetch the prepareQC corresponding to the path a0 → a1 → al → b→ c.
But it does not know which scenario has happened. It should be noted that in the HotStuff BFT protocol, the node
on the tree only contains the following information: the hash of the parent node and the client command. However, it
does not contain any information whether the command has been executed. Our analysis shows that it is important to
include in the tree node whether a given command has been executed.

References
[1] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols (extended ab-

stract). In Proc. 2nd ACM PODC, pages 27–30, 1983.

[2] G. Bracha. An asynchronous [(n−1)/3]-resilient consensus protocol. In Proc. 3rd ACM PODC, pages 154–162.
ACM, 1984.

[3] E. Buchman, J. Kwon, and Z. Milosevic. The latest gossip on BFT consensus. Preprint arXiv:1807.04938, 2018.

[4] V. Buterin and V. Griffith. Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437v4, 2019.

[5] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery. ACM TOCS, 20(4):398–461,
2002.

[6] Cosmos. Cosmos Network: Internet of Blockchains https://cosmos.network.

[7] Yvo Desmedt, Yongge Wang, and Mike Burmester. A complete characterization of tolerable adversary struc-
tures for secure point-to-point transmissions without feedback. In International Symposium on Algorithms and
Computation, pages 277–287. Springer, 2005.

[8] D. Dolev and H.R. Strong. Polynomial algorithms for multiple processor agreement. In Proc. 14th ACM STOC,
pages 401–407. ACM, 1982.

[9] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. JACM, 35(2):288–323,
1988.

[10] M.J. Fischer, N. A Lynch, and M.S. Paterson. Impossibility of distributed consensus with one faulty process.
Journal of the ACM (JACM), 32(2):374–382, 1985.

[11] Web3 Foundation. Byzantine finality gadgets, https://research.web3.foundation/en/latest/
polkadot/GRANDPA/, April 17, 2019.

[12] J. Katz and C.-Y. Koo. On expected constant-round protocols for byzantine agreement. Journal of Computer and
System Sciences, 75(2):91–112, 2009.

[13] J. Kwon. Tendermint powers 40%+ of all proof-of-stake blockchains. invest:asia, available at https://
realsatoshi.net/12886/, Sept. 12, 2019.

15

https://cosmos.network
https://research.web3.foundation/en/latest/polkadot/GRANDPA/
https://research.web3.foundation/en/latest/polkadot/GRANDPA/
https://realsatoshi.net/12886/
https://realsatoshi.net/12886/

[14] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS), 16(2):133–169, 1998.

[15] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[16] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In 2014 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 14), pages 305–319, 2014.

[17] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal of the ACM
(JACM), 27(2):228–234, 1980.

[18] TK Srikanth and S. Toueg. Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Dis-
tributed Computing, 2(2):80–94, 1987.

[19] The LibraBFT Team. State machine replication in the Libra Blockchain.
available at https://developers.libra.org/docs/assets/papers/
libra-consensus-state-machine-replication-in-the-libra-blockchain/
2019-11-08.pdf, November 28, 2019.

[20] Y. Wang and Y. Desmedt. Secure communication in multicast channels: the answer to Franklin and Wright’s
question. Journal of Cryptology, 14(2):121–135, 2001.

[21] Y. Wang and Y. Desmedt. Perfectly secure message transmission revisited. Information Theory, IEEE Tran.,
54(6):2582–2595, 2008.

[22] M. Yin, D. Malkhi, M.K. Reiter, G.G. Gueta, and I. Abraham. HotStuff: BFT consensus in the lens of blockchain.
arXiv preprint arXiv:1803.05069, 2018.

16

https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-replication-in-the-libra-blockchain/2019-11-08.pdf
https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-replication-in-the-libra-blockchain/2019-11-08.pdf
https://developers.libra.org/docs/assets/papers/libra-consensus-state-machine-replication-in-the-libra-blockchain/2019-11-08.pdf

	Introduction
	Synchronous, asynchronous, and partial synchronous networks
	Reliable broadcast communication channels
	Security analysis of Tendermint BFT
	Tendermint BFT protocol
	Attacks on Tendermint BFT

	Casper FFG
	Another finality gadget: Polkadot's GRANDPA
	GRANDPA protocol
	Attacks on GRANDPA

	A secure BFT protocol in Type II partial synchronous networks
	The BFT protocol BDLS
	Liveness and Safety
	Performance comparison

	Chained BDLS and other implementation related issues
	The importance of propagating decision messages
	HotStuff BFT protocol
	What happens if leader does not reliably broadcast decide messages in HotStuff

