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Abstract. Common for the overwhelming majority of privacy-preserving
greater-than integer comparison schemes is that cryptographic computa-
tions are conducted in a bitwise manner. To ensure the secrecy, each bit
must be encoded in such a way that nothing is revealed to the opposite
party. The most noted disadvantage is that the computational and com-
munication cost of the bitwise encoding is as best linear to the number
of bits. Also, many proposed schemes have complex designs that may be
difficult to implement and are not intuitive.

Carlton et al. [2] proposed in 2018 an interesting scheme that avoids bit-
wise decomposition and works on whole integers. A variant was proposed
by Bourse et al. [1] in 2019. In this paper, we show that in particular
the Bourse scheme does not provide the claimed security. Inspired by the
two mentioned papers, we propose a comparison scheme with a somewhat
simpler construction and with clear security reductions.

1 Introduction

The idea of the Millionaire’s Problem [5] is to facilitate two millionaires, not
trusting each other and who do not want to reveal their worth to each other,
to find out who is the richest. Although such tasks could trivially be solved
by a trusted third party who decides which party has the greatest value, the
goal is to replace the trusted party with a privacy-preserving protocol. In other
words, it is the ability to privately performing greater-than integer comparisons
without a trusted third party. We refer to this concept as privacy-preserving
integer comparison (PPC).

PPC may be typically used as a sub-protocol for conducting privacy-preserving
computations on encrypted data sets. Practical applications are auctions with
private biddings, voting systems, privacy-preserving database retrieval and data-
mining, privacy-preserving statistical analysis, genetic matching, face recogni-
tion, private set intersection, where two parties holding separate data sets want
to find common data points without disclosing the data sets to each other, etc.



Privacy-preserving integer comparison is an active research field, where con-
tributions are based based on techniques such as homomorphic encryption, gar-
bled circuits, oblivious transfer, and secret sharing. Authors generally tend to
claim some improvement over some other scheme in particular with regard to
efficiency, but the actual efficiency may not be readily comparable (for example
due to that the methods are very different) nor available in many cases. Common
for overwhelming majority of privacy-preserving greater-than integer comparison
schemes is that cryptographic computations are conducted in a bitwise manner.
To ensure the secrecy, each bit of the private inputs must be encoded in such
a way that nothing is revealed to the opposite party. Bitwise cryptographic
processing results in high computational and communication costs that is pro-
portional to the data input sizes. Also, many proposed schemes have complex
designs that may be difficult to implement and are not intuitive.

Carlton et al. [2] proposed in 2018 a PPC scheme that works on whole num-
bers and does not require bitwise coding or encryption. Inspired by [3, 4], it
makes use of a special composite RSA modulus, whose two prime integers are
selected with regard to the integers to be compared. Blinding is conducted to
protect the input values. At the end of the protocol, a plaintext equality test
(PET) subprotocol is ran to determine the outcome of the comparison. This
subprotocol provides an additional performance cost. Bourse et al. [1] proposed
a slightly modified two-pass PPC protocol that avoids using a PET protocol,
and whose function is replaced simply by a control value that is sent to party A
in the last pass. By means of this value, party A determines the outcome of the
comparison.

Both the Carlton and Bourse schemes claim that the security is based on the
small RSA subgroup decision assumption, cf. Definition 1. This assumption holds
if integers from the group Z∗n and the subgroup H ⊂ Z∗n are indistinguishable.
However, this computational problem applies only to the first pass, while there
is no clear security reduction in the second pass. After the second pass, party A
performs a “decryption” that reduces the subgroup order to the subgroup G,
which are considerable smaller than H, and is outside the scope of the claimed
small RSA subgroup decision assumption. The group order of G is of a power
order pd0, where p0 is a small prime. Input values are represented internally in
the Carlton and Bourse schemes as exponents to p0, as pd+mA−mB

0 . This results
in a reduced subgroup G′ ⊆ G of variable order that is a function of the input
integers.

Briefly summarized, the mentioned comparison schemes have the following
issues:

1. The subgroup order of G is not fixed, but variable as a function of the input
values.

2. No clear security assumption w.r.t. party A.

In this paper, we describe in particular the Bourse scheme and show that it vul-
nerable to attacks. We also propose a PPC scheme that mitigates the mentioned
security issues. Our scheme has a simpler composite modulus n than that of the



Carlton and Bourse schemes, and there is no long-term private key associated
with a user.

2 The Bourse comparison scheme

In this section, we describe the Bourse scheme and show that it works in a
smaller subgroup than claimed and that it is of variable order, and that this in
conjunction with the mentioned control value (that replaces the PET subprotocol
of the Carlton scheme) makes it vulnerable to attacks.

2.1 Preliminaries

The Carlton and Bourse schemes make use of the following parameters:

– ps, pt, qs and qt are large distinct primes.
– p0 is a small prime, preferably an odd prime, for instance 3.
– a and d, where 0 < a ≤ d and d/a is an upper bound on mA,mB ≤ d/a.1

– A composite integer n = pq, where p = 2pd0pspt + 1 and q = 2pd0qsqt + 1 are
primes.

– A generator g of order pd0 modulo n.2

– b̄ is an upper bound of the secret psqs.
– c is a long-term private key that is used by party A, where

c = psqs

(
1

psqs
mod pd0

)
Public parameters are {n, a, d, p0, g, h, b̄}. Private parameters known by party A
are {p, q, c}.

The scheme works in the cyclic subgroups G ⊂ Z∗n of order (number of
elements) pd0 generated by g, and H ⊂ Z∗n of order psqs generated by h, and
whose elements are coprime with p0. The core idea in the Carlton scheme [2] is
that the element

gp
d+mA−mB
0 mod n (1)

can be used to compare two integers mA and mB . Evidently, if multiples of p0

exceed pd0 in the exponent in Eq. 1, this results in

gp
d+mA−mB
0 = gp

d+x
0 = (gp

d
0 )p

x
0 = 1p

x
0 = 1 if mA ≥ mB i.e., x ≥ 0

This construction is almost identical in the Bourse scheme [1], which has an
additional public parameter3 a, where integer comparison is conducted according
to

gp
d+a·(mA−mB)

0 = gp
d+a·x
0

1 The parameter a does not exist in the Carlton scheme, where simply d is the upper
bound mA,mB ≤ d.

2 Given the composition of p and q, if g generates a subgroup of order pd0 modulo p
and q, then it also generates the same modulo n.

3 The purpose of this parameter is not clear, and the authors do not explain in what
sense that a contributes to security.



which entails that if mA < mB , then x becomes negative.

An observation is that for a negative x, 0 > x ≥ − d
a , the element gp

d+a·x
0

generates variable subgroups G′ ⊂ G, whose order is pd+a·x
0 . This means that the

maximum subgroup G is only present if x = − d
a . As elaborated in Section 2.5,

this makes the Bourse scheme susceptible to attacks.

2.2 The Bourse scheme

The Bourse et al. scheme [1] is summarized in Figure 1. In the first pass, Alice
blinds her plaintext mA by computing

C = gp
a·mA
0 hr1 mod n (2)

Subsequently in the second pass, Bob computes a blinded computation that
contains mB :

D = Cu·pd−a·mB
0 gvhr2 mod n (3)

and the control value D′ = f(gv). Finally, Alice computes

C ′ = Dc = (Cu·pd−a·mB
0 gvhr2)c

= (gp
a·mA
0 ·u·pd−a·mB

0 hr1gvhr2)c

= gu·p
d+a·(mA−mB)

0 gv

(4)

Note that by application of c the factors containing the base h are eliminated.

Alice Bob

r1 ∈ [1, b̄− 1]

C = gp
a·mA
0 hr1

C−−−−−−−−−−−−−−−→
u ∈ [1, pa0 − 1]

v ∈ [1, pd0 − 1]
r2 ∈ [1, b̄− 1]

D = Cu·pd−a·mB
0 gv hr2

D′ = f(gv)
D,D′←−−−−−−−−−−−−−−−

C′ = Dc

If D′ = f(C′) then mA ≥ mB

Else mA < mB .

Fig. 1. The Bourse et al. comparison scheme



2.3 Claimed security assumption

Carlton et al. and Bourse et al. [2, 1] state that the security of their schemes is
based on the small RSA subgroup decision assumption. The following definition
is from [1]:

Definition 1 (The small RSA subgroup decision assumption) This assump-
tion holds if given an RSA quintuple (u, p0, d, n, g), the distributions x and

xp
d
0p1q1 are computationally indistinguishable for a uniformly random quadratic

residue x = r2 mod n.

This assumption states that it is hard to distinguish elements in H ⊂ Z∗n of order
psqs (generated by h) from a random quadratic residue in Z∗n. In other words,
it holds if it is not possible to determine if an integer belongs to H or not.

2.4 Actual security viewed by computational complexity

In the Bourse scheme, Party B generates three secret random secret integers
(r2, u, v):

– r2 is exponent of the factor hr2 of D, cf. Eq. 3. Since hr2 is eliminated by
party A, cf. Eq. 4, it does not provide any security w.r.t. party A.

– u is an exponent in D.
– v is exponent of the factor gv of D and the control value D′ = f(gv).

Brute-forcing is conducted w.r.t. u and the low-entropy mB in conjunction with

the control value D′, by checking f(g−u
′·p

d−a·m′B
0 C ′)

?
= D′. The actual security

of the scheme w.r.t party A is determined by the secret random integer u only.

2.5 Security issues

We will now discuss the alluded security issues of the Bourse scheme.

The stated security assumption is not applicable After the second pass,
Alice uses her long-term private key c and computes C ′ = Dc, cf. Eq. 4. Since C ′

is an element in G, this crucial final computation is outside the scope of the stated
small RSA subgroup decision assumption, which pertains to the much larger
subgroup H. This means that the stated security assumption is not applicable.
This also means that this “decryption” operation provides no added protection
for neither party, which makes the use of a long-term private key unclear.

The consequence of the “decryption” is that the resulting value C ′ is in
the small subgroup G, which is considerable smaller than H. However, next we
will see that C ′ is element of a smaller subgroup G′ ⊂ G. This means a lower
computational complexity and security than claimed, which is discussed next.

A note on semantic security. This is equivalent to so-called ciphertext indis-
tinguishability under chosen-plaintext attack. Bourse et al. formulated the small



RSA subgroup decisional problem in order to show semantic security. However,
the small RSA subgroup decision assumption implies indistinguishability and se-
mantic security, but since this is assumption not applicable to their construction,
the scheme cannot be said to uphold semantic security.

Variable subgroup order In the Bourse paper, the computation C ′ (Eq. 4) is
claimed to be element in G, whose order is pd0. But the input values (mA,mB)

figure as exponents to p0 as p
d+a·(mA−mB)
0 , cf. Eq. 4. This means that C ′ is an

element of a smaller subgroup G′ ⊆ G, whose order is variable and is a function
of the input plaintext values. Hence, G′ = G if mA = 0 and mB = d, otherwise
G′ ⊂ G.

The reduced subgroup order of G′ makes the Bourse scheme more suspectable
to attacks, w.r.t. to the security of party B, where party A represents the ad-
versarial party. For this purpose, party A sets mA = 0. As noted, the security of
the scheme depends on the secrecy of the random integer u, which protects the

privacy-sensitive factor gu·p
d−a·mB
0 of C ′.

The reduced subgroup order means that the integer range to brute-force
w.r.t. u is reduced as a function of mB to the range [0, pd−a·mB

0 ], which reflects
the variable subgroup order of G′, due to the congruence relation

u pd−a·mB
0 ≡ u′ pd−a·mB

0 (mod pd0)

where u′ < u.

3 Privacy-preserving integer comparison

Inspired by [2, 1], our scheme uses a cyclic subgroup of a power order pd0 that is
reflected in the composition of a RSA modulus n. Similar to [2], the idea is that
Eq. 1 can be used to compare two integers m1 and m2 in a privacy-preserving
manner. Unlike the mentioned papers, whose schemes partially rely on the small
RSA subgroup decision problem, the security of our scheme partially assumes
the following computational problem:

Definition 2 (Small RSA subgroup computational problem) Given (α, g, n)
and a random integer R ∈ Z∗n, it is computationally intractable to find Rp1q1 ,
which is an element in the subgroup G.

Our privacy-preserving greater-than integer comparison protocol is presented
next.

Construction Let n = pq denote a modulus, where

– p0 is a small odd prime.
– p = 2pd0p1 + 1, q = 2pd0q1 + 1, p1 and q1 are large distinct primes.
– d is an upper bound for 0 ≤ mA,mB < d.

Select an element α that is a generator (a.k.a. a primitive root) for Zp and
Zq. Then g = α2p1q1 mod n is a generator that generates the subgroup G of
order pd0 modulo n.



Alice Bob

r1, r2 ∈ Zb̄ r3 ∈ Z∗
pd0

r4, r5 ∈ Zb̄

x = gp
mA
0 αr1

x−−−−−−−−−−−−−−−→
y = αr3p

d−mB
0

c = αr4

z = xr3p
d−mB
0 c

β = cr5

y, z, β←−−−−−−−−−−−−−−−
c′ = zy−r1

γ = (c′)r2

δ = βr2

γ, δ−−−−−−−−−−−−−−−→
If δ = γr5

then mA ≥ mB

Else mA < mB .

Fig. 2. Protocol for secure comparison

3.1 Correctness

Next is a detailed exposition of the proposed scheme that is summarized in
Figure 2. Let Z∗

pd
0

denote the integers less than pd0 that are coprime with p0, and

Zb̄ = {x ∈ {1, . . . , b̄} | gcd(x, p0)=1} denote the integers less than b̄ that are
coprime with p0, where b̄ < p1, q1 is an upper boundary.

Alice randomly generates the secret ephemeral integers r1, r2 ∈ Zb̄ and Bob
generates r3 ∈ Z∗

pd
0
, r4, r5 ∈ Zb̄. In Round 1 Alice shares the blinded

x = gp
mA
0 αr1

with Bob. In Round 2, Bob computes and sends to Alice:

– y = αr3p
d−mB
0

– z = xr3p
d−mB
0 c = (gp

mA
0 αr1)r3p

d−mB
0 c = gr3p

d+mA−mB
0 αr1r3p

d−mB
0 αr4 , where

c = αr4 is a control value for the subsequent comparison.
– β = cr5

In Round 3, a privacy-preserving equality comparison of c is performed. Alice
computes

c′ = zy−r1

= (gr3p
d+mA−mB
0 αr1r3p

d−mB
0 αr4)(αr3p

d−mB
0 )−r1

= gr3p
d+mA−mB
0 c

(5)



Note that Eq. 5 has two outcomes. If mA ≥ mB , then gr3p
d+mA−mB
0 =1 and c′ = c.

Otherwise, c′ 6= c.
Next, Alice computes and sends

γ = (c′)r2 and δ = βr2

to Bob, who checks

δ
?
= γr5

If mA ≥ mB then δ = βr2 = cr2r5 . Otherwise, if mA < mB then δ 6= γr5 with
an overwhelming probability.

3.2 Security of the proposed protocol

In this section, we prove that the proposed protocol preserve the confidentiality
of private inputs against honest-but-curious adversaries in the standard model.

Theorem 1 (Privacy of A). The secrecy of mA is preserved.

Proof. Round 1. Let αr1 ∈ Z∗n and gp
mA
0 ∈ G be factors of x. Since the group

size of Z∗n is larger than G, and αr1 is uniformly random and unique for every
instance of x, then x is not distinguishable from some uniform random integer
αr. Thus, x does not leak any information about mA.

In Round 3, Bob knows (r3, r4, r5, c, β, γ, δ). Let mB = d to ensure that

gr3p
d+mA−mB
0 = gr3p

mA
0

{
6= 1 if 0 ≤ mA < d
= 1 if mA = d

(6)

There two options w.r.t. disclosing mA:

1. Solve the equation βr2 = δ. Then insert r2 into Eq. 7 and solve it w.r.t. mA.
2. Solve the equation (

gr3p
mA
0 c

)r2
= γ (7)

w.r.t. (r2,mA).

Either case requires solving discrete logarithms. But the Discrete Logarithm
Problem has no known feasible solution, which means that the secrecy of mA is
preserved. �

Theorem 2 (Privacy of B). The secrecy of mB is preserved provided that the
small RSA subgroup computational problem holds.

Proof. In Round 2, Alice receives (y, z, β). After Round 2, Alice knows (r1, r2, x, y, z, β).
We consider y and z, β as two cases:



1. By transforming y into yp1q1 enables deduction of mB by simple trial-and-
error w.r.t mB . Transforming y into yp1q1 requires to solve the small RSA
subgroup computational problem. Assuming that this assumption holds, the
confidentiality of mB is protected w.r.t. y.

2. Solving the equation(
z

xr3p
d−mB
0

)r5

=

(
xr3p

d−mB
0 αr4

xr3p
d−mB
0

)r5

= β (8)

w.r.t. (r3, r5,mB). However, since there are three unknowns, Eq. 8 is under-
defined and has more than one solution. In addition, the ranges of r3, r5 are
too large for brute-force attacks.

Given the hardness of both cases, the secrecy of mB is therefore preserved. �

4 Conclusion

Common for the overwhelming majority of privacy-preserving greater-than in-
teger comparison schemes is that cryptographic computations are conducted in
a bitwise manner. Recently, Carlton et al. [2] and Bourse et al. [1] proposed
privacy-preserving integer comparison schemes that work on whole integers in
contrast to bitwise decomposition and encoding of the private inputs. In this
paper, we have presented and analysed the Bourse scheme and shown that its se-
curity does not reduce to the small RSA subgroup decisional problem as claimed
and that it is vulnerable to attacks. Inspired by the two mentioned papers, our
other contribution is a comparison scheme that has a somewhat simpler con-
struction and with clear security reductions.
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