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Abstract. In the profiled side-channel analysis, deep learning-based
techniques proved to be very successful even when attacking targets pro-
tected with countermeasures. Still, this does not mean that countermea-
sures do not make the attacks more difficult or that deep learning attacks
will always succeed. As such, to improve the performance of attacks, an
intuitive solution is to remove the effect of countermeasures.
In this paper, we investigate whether we can consider certain types of
countermeasures as noise and then use deep learning to remove that
noise. We conduct a detailed analysis of four different types of noise
and countermeasures either separately or combined and show that in
all scenarios, denoising autoencoder improves the attack performance
significantly.

Keywords: Side-channel analysis, Deep learning, Noise, Countermeasures, De-
noising autoencoder

1 Introduction

Side-channel analysis (SCA) is a threat exploiting weaknesses in physical im-
plementations of cryptographic algorithms rather than the algorithms them-
selves [1]. During the execution of an algorithm, leakages like electromagnetic
(EM) radiation [2] or power dissipation [3] can happen. With an unprotected
target, an attacker can record the leakages and then retrieve the secret infor-
mation by analyzing those leakages. Side-channel analysis can be divided into
1) direct attacks like single power analysis (SPA) and differential power analysis
(DPA) [3], and 2) profiled attacks like template attack (TA) [4] and supervised
machine learning-based attacks [5–8]. In recent years, machine learning-based
approaches and especially deep learning-based approaches proved to be a pow-
erful option when conducting profiled SCA. While such attack methods strongly
threaten the security of cryptographic devices, there are still some serious limi-
tations. More precisely, attack methods commonly rely on the correlation char-
acteristics of the signal, i.e., signal patterns that are related to the data being
processed. Once the correlation degrades, attacks become less effective and some-
times even useless [9]. To optimize the data correlation, common approaches are
to delimit the Points of Interest (POI) [10] or improve the alignment of the
leakage traces [11].
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In some cases, the low signal-to-noise ratio of the leakage increases the diffi-
culties of identifying these patterns. Additionally, there are various countermea-
sures in both hardware and software that make the attacks even more difficult.
Such countermeasures can be divided into two categories: masking and hiding.
Masking splits the sensitive intermediate values into different shares to decrease
the key dependency [12,13]. Hiding, on the other hand, aims at reducing the side-
channel information by adding randomness to the leakage signals. There are sev-
eral approaches to hiding. For example, the direct addition of noise [14] or the
design of dual-rail logic styles [15] are frequently considered options. Exploit-
ing time-randomization is another alternative, e.g., Random Delay Interrupts
(RDIs) [16] implemented in software and clock jitters from the hardware. Still,
the countermeasures (especially the hiding ones) are not without weaknesses. No
matter what hiding approach is used, we can treat the effects of countermeasures
as noise because of their randomness. In other words, the ground truth of the
traces always exists. If we can find a way to denoise the traces and recover the
ground truth of the leakage, then the reconstructed traces could become more
vulnerable to the SCA.

While considering the countermeasures as noise and then removing that noise
sounds like an intuitive approach, this is not an easy problem. Indeed, the noise
(both from the environment and countermeasures) is a part of a signal and
those two components cannot be separated if we do not know their precise char-
acterizations. While the signal can be relatively easily characterized, the noise
component has a stochastic nature and thus, its characterization is not read-
ily available. Even in the scenarios where countermeasures could be described
with a function, we must take into account the environmental changes that will,
in turn, change the noise characterization. Additionally, for realistic settings, we
must also consider the portability and the differences among various devices [17].
Combining all these factors makes this problem very complex and to the best of
our knowledge, there are no good (universal) approaches against it.

Common approaches to remove noise are using low-pass filters [18], conduct-
ing trace alignments [11], and various feature engineering methods [10,19]. More
recently, the side-channel community used deep learning techniques that can
conduct implicit feature selection and/or fight countermeasures [7, 8, 20]. While
such techniques are useful, they are usually aimed either against a single source
of noise or in cases when they can handle more sources of noise, they do not offer
interpretability of results, i.e., it is not clear at what point noise removal stops
and attack itself starts (or even if there is such a point). Finally, we emphasize
that being able to reduce the noise comprehensively brings several advantages 1)
understanding the attack techniques better, 2) understanding the noise better
and consequently, (hopefully) being able to design stronger countermeasures, 3)
ability to mount stronger/simpler attacks as there is no noise to consider.

In this paper, we propose a new method to remove the hiding countermea-
sure with a denoising autoencoder. Although the denoising autoencoder has been
proved to be successful to remove the noise from an image [21], to the best of our
knowledge, this technique has not been applied to the side-channel domain to
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reduce the noise/countermeasures effect. In this paper, we demonstrate the effec-
tiveness of a convolutional denoising autoencoder in dealing with different types
of noise and countermeasures separately, i.e., white noise, desynchronization,
RDIs, and clock jitters. Then, we make the problem more realistic by combining
various types of noise and countermeasures with the traces and trying to denoise
it with the same machine learning model. The results show that the denoising
autoencoder is surprisingly efficient in removing the noise and countermeasures
in all investigated situations.

1.1 Related Work

Analysis of the leakage traces in the profiled SCA scenario can be seen as a clas-
sification problem where the goal of an attacker is to classify leakage traces based
on the related data (i.e., the encryption key). The most powerful attack from the
information-theoretic point of view is the template attack (TA) [4]. Still, this at-
tack can reach its full potential only if the attacker has an unbounded number of
traces and the noise follows the Gaussian distribution [22]. More recently, various
machine learning techniques emerged as preferred options for cases where 1) the
number of traces is either limited or very large, 2) the number of features is very
large, 3) countermeasures are implemented, and 4) we cannot make assumptions
about data distribution. In the beginning, the side-channel community showed
most interest in techniques like random forest [23, 24] and support vector ma-
chines [25, 26]. More recently, multilayer perceptron [27, 28] and convolutional
neural networks [5, 7, 8] emerged as the most potent approaches. Convolutional
neural networks were demonstrated to be capable to cope with random delay
countermeasure due to their spatial invariance property [7,8]. At the same time,
the fully-connected layers in multilayer perceptron and convolutional neural net-
works are effective against masking countermeasure as they produce the effect of
a higher-order attack (combining features) [8,29]. Finally, as far as we are aware,
the only application of autoencoders for profiled SCA is done by Maghrebi et
al., but there the authors use it for classification and not noise removal and they
report a relatively poor performance when compared to CNNs [5].

1.2 Our Contributions

In this paper, we consider denoising the protected traces with convolutional
autoencoder (CAE), which to the best of our knowledge, has not been explored
before in the side-channel domain. More precisely, we introduce a novel approach
to remove the countermeasures and we provide:
1. A convolutional autoencoder architecture, which requires a limited number

of traces to train and can denoise/remove the effect of various hiding tech-
niques.

2. A methodology to recover the ground truth of the traces.
3. An approach to regulate the traces from different sources.

We emphasize that from an attacker perspective, a CAE can be easily trained
by noisy(protected)–clean(unprotected) traces pairs. Once the training finishes,
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the autoencoder can be used to denoise the leakages from real-world devices. The
method proposed in this paper can significantly decrease the protection level of
devices that in turn become more vulnerable to the existing attack methods.

This paper is organized as follows. In Section 2, we provide details about
profiled SCAs, machine learning techniques we use, and the dataset we inves-
tigate. In Section 3, we provide details about denoising autoencoders and their
convolutional version. Section 4 gives experimental results when considering the
effects of noise either separately or combined. Finally, in Section 5, we conclude
the paper and present possible future research directions.

2 Background

In this section, we start by introducing the notation we follow. Afterward, we
discuss profiled side-channel analysis and neural networks. Finally, we give details
about the ASCAD dataset we use in the rest of the paper.

2.1 Notation

Let k∗ denote the fixed secret cryptographic key (byte), k any possible key
hypothesis, and p plaintext. To guess the secret key, the attacker first needs to
choose a leakage model Y (p, k) (or Y when there is no ambiguity) depending on
the key guess k and some known text p, which relates to the deterministic part
of the leakage. The size of the keyspace equals |K|.

For the autoencoder, we denote its input as X . The encoder of an autoen-
coder is denoted as φ and the decoder as ψ. Its latent space is denoted as F .
As for the training data, we refer to protected leakages/traces (with noise and
countermeasures) as noisy leakages/traces; the unprotected leakages are denoted
as clean leakages/traces.

2.2 Profiled Side-channel Analysis

In the context of implementation attacks, attacks target physical leakage from
the insecure implementation of otherwise theoretically secure cryptographic al-
gorithms. The profiled side-channel attacks represent the most powerful category
of SCAs as we assume an attacker with access to an open (keys can be chosen/or
are known by the attacker) clone device. Then, the attacker can use that clone
device to obtain measurements from it and construct a characterization model of
the device’s behavior. To launch an attack, the attacker then collects a few power
traces from the attack device where the secret key is not known. By comparing
the attack traces with the characterized model, the secret key can be revealed.
Ideally, the secret key can be obtained with a single trace from the attack device.
This is difficult in practice due to the effect of the noise, countermeasures, and
a finite number of traces in the profiling phase (while we assume the attacker is
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not bounded in his power and he can collect any number of traces, that number
represent a small fraction of all possible measurements).

To assess the performance of the attacker, one uses a metric denoting the
number of measurements required to obtain the secret key. A common example
of such a metric is guessing entropy (GE) [30]. GE represents the average num-
ber of key candidates an adversary needs to test to reveal the secret key after
conducting a side-channel analysis. In particular, given T amount of samples in
the attacking phase, an attack outputs a key guessing vector g = [g1, g2, ..., g|K|]
in decreasing order of probability. Then, guessing entropy is the average position
of k∗ in g over several experiments.

2.3 Neural Networks

A neural network is an interconnected assembly of simple processing elements,
units or nodes, whose functionality is based on the biological process occurring
in the brain [31]. In general, a neural network consists of three blocks: an input
layer, one or more hidden layers, and an output layer, whose processing ability
is represented by the strength (weight) of the inter-unit connections, learning
from a set of training patterns from the input layer.

In the supervised machine learning paradigm, neural networks work in two
phases: training and testing. In the training phrases, the goal is to learn a func-
tion f , s.t. f : X → Y, given a training set of N pairs (xi, yi). Here, for each
example (trace) x, there is a corresponding label y, where y ∈ Y. Once the func-
tion f is obtained, the testing phase starts with the goal to predict the labels
for new, previously unseen examples.

Convolutional Neural Networks Convolutional neural networks (CNNs) are
a type of neural network originally designed for 2-dimensional convolutions as
inspired by the biological processes of animals’ visual cortex [32]. They are com-
monly used for image classification but in recent years, they have shown their
strengths for time series data [33, 34], speech [35], but also security applica-
tions [36].

CNNs resemble ordinary neural networks (e.g., multilayer perceptron) from
the architecture perspective: they consist of several layers where each layer is
made of neurons. CNN usually consists of three types of layers: convolutional
layers, pooling layers, and fully-connected layers. Each layer of a network trans-
forms one volume of activation functions to another through a differentiable
function. When considering the CNN architecture, input holds the raw features.
Convolution layer computes the output of neurons that are connected to local
regions in the input, each computing a dot product between their weights and
a small region they are connected to in the input volume. Pooling decrease the
number of extracted features by performing a down-sampling operation along
the spatial dimensions. The fully-connected layer computes either the hidden
activations or the class scores. To avoid the overfitting, batch normalization
layer, which normalizes the input layer by adjusting and scaling the activations
is commonly added to the network.
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Autoencoders Autoencoders were first introduced in the 1980s by Hinton
and the PDP group [37] to address the problem of “backpropagation without a
teacher”. Unlike other neural network architectures that map the relationship be-
tween input and its labels, an autoencoder aims to transform inputs into outputs
with the least possible amount of distortion [38]. Benefiting from its unsuper-
vised learning characteristic, autoencoder has been used in many applications
such as data compression [39], anomaly detection [40], and image recovery [21].
The basic structure of an MLP-based autoencoder is shown in Figure 1.

Input Layer � �¹� Hidden Layer � �� Hidden Layer � �³ Hidden Layer � �� Output Layer � �¹�

Fig. 1: An example of an autoencoder network with three hidden layers (created
with NN-SVG [41]).

An autoencoder consists of two parts: encoder (φ) and decoder (ψ). Intu-
itively, the encoder squeezes the input with more features to its bottleneck with
fewer features, while the goal of the decoder is to reverse this process. More
precisely, the goal of the encoder is to transfer the input to its latent space F , in
other words φ : X → F . The decoder, on the other hand, reconstructs the input
from latent space, which is equivalent to ψ : F → X . To train an autoencoder,
the goal is to minimize the distortion when transferring the input to the output
(Eq. (1)). Stated differently, the most representative input features are forced to
be kept in the smallest layer in the network.

φ, ψ = arg min
φ,ψ

‖X − (ψ ◦ φ)X‖2. (1)

When applying the autoencoder for the denoising purpose, the input and
output are not identical but represent the noisy-clean data pairs. Ideally, a well-
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trained autoencoder can keep the most representative information (e.g., charac-
teristics of the original data) in its bottleneck while neglecting the less important
features (e.g., random noise). Consequently, the original data (without noise) can
be recovered by feeding noisy data to the input of the autoencoder.

A similar idea can also be applied to remove the countermeasures from the
leakage traces. Since the noise and countermeasures existing in the leakage are
random in the amplitude or time domain, we can also consider them as noise. For
example, we can refer to the white noise as the noise in the amplitude domain;
the global jitters (desynchronization), random delay interrupts, and clock jitters,
on the other hand, can be considered as the noise in the time domain. Since
the autoencoder is good at extracting the important features while neglecting
randomness, we use autoencoder to filter out this noise and recover the ground
truth of the traces. Then, one can expect that with the recovered traces the
attack efficiency will be dramatically improved.

2.4 The ASCAD dataset

The ASCAD dataset was introduced by Prouff et al. to provide a benchmark to
evaluate machine learning techniques in the context of side-channel attacks [29].
An ATMega8515 device was used to record the emitted EM radiation during
the execution of a software AES implementation protected by known masks. All
traces were captured with a sensor attached to an oscilloscope sampling at 2
GS/s.

There are two data sets recorded in different conditions: fixed key encryp-
tion and random key encryption. For the data with fixed key encryption, the
dataset provided separate HDF5 files with different synchronization level: AS-
CAD.h5, ASCAD desync50.h5, and ASCAD desync100.h5. The traces in the
ASCAD.h5 file are time-aligned in a prepossessing step, whereas the traces in
ASCAD desync50.h5 and ASCAD desync100.h5 have been shifted with a max-
imum jitters window of respectively 50 and 100 samples [29]. Each file con-
tains 60 000 EM traces (50 000 training / cross-validation traces and 10 000 test
traces). Each trace consists of 700 points of interest.

For the data with random key encryption, there are 200 000 traces in the
profiling dataset that is provided to train the (deep) neural network models.
A 100 000 traces attack dataset is used to check the performance of the trained
models after the profiling phase. A window of 1 400 points of interest is extracted
around the leaking spot.

Throughout the paper, we use the raw traces and the pre-selected window
of relevant samples per trace corresponding to masked S-box for i = 3. As a
leakage model, we use the unprotected S-box output, i.e.:

Y (i) = Sbox[(p[i]⊕ k[i])]. (2)

Note that the model given in Eq. (2) does not leak information directly as it
is first-order protected. Consequently, we do not state a model-based SNR. The
SNR for the ASCAD dataset is ≈ 0.8 under the assumption we know the mask
(shown in Figure 4a) while it is almost 0 with the unknown mask.
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3 Denoising with Convolutional Autoencoder

In this section, we discuss the attacker model and afterward, the details about
the convolutional autoencoder architecture.

3.1 Denoising Strategy

As discussed in Section 2.3, noisy-clean trace pairs are required to train a de-
noising autoencoder. Inspired by the profiled side-channel analysis, we devise a
denoising strategy shown in Figure 2.

Fig. 2: Denoising strategy.

We assume an attacker has full control of a device (Device A). Specifically,
he can enable/disable the implemented countermeasure. To attack the real de-
vices with countermeasures enabled (Device B), he first acquires several traces
with and without countermeasures from Device A to build the training sets.
Then the attacker uses these traces to train the denoising autoencoder. Once
the training process is finished, the trained model can be used to pre-process
the leakage traces obtained from Device B. Finally, with ”cleaner” traces recon-
structed by the denoising autoencoder, an attacker can eventually retrieve the
secret information with less effort.

3.2 Convolutional Autoencoder Architecture

An autoencoder can be implemented with different neural network architectures,
the most common examples are the MLP-based autoencoder and convolutional
autoencoder (CAE). Since related works indicate that CNN outperforms MLP
in dealing with the side-channel leakages [5,28], we use the convolution layer as
the basic element for denoising purpose.

To maximize the denoising ability of the proposed architecture, we tune the
hyperparameters by evaluating the CAE performance towards different types of
noise. The tuning range and selected hyperparameters are shown in Table 1.
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We use the SeLU activation function to avoid vanishing and exploding gradi-
ent problems [42] and He Uniform initialization to improve weight initializa-
tion [43].

Table 1: CAE hyperparameter tuning.

Hyperparameter Range Selected

Optimizer Adam, RMSProb, SGD RMSProb
Weight initialization Uniform distribution, He uniform He uniform
Activation function tanh, ReLU, SeLU SeLU
Learning Rate 1e-5, 5e-5, 1e-4, 5e-4 1e-4
Batch size 32, 64, 128, 256 128
Epochs 30, 50, 70, 100, 200 100

Training sets 1 000, 5 000, 10 000, 20 000 10 000
Validation sets 1 000, 2 000 2 000

In terms of the autoencoder architecture, we observed that when dealing
with trace desynchronization, an autoencoder that has shallow architecture can
denoise the traces successfully. Still, when we introduce other types of noise into
the traces while keeping the same hyperparameters, such autoencoder cannot
recover the ground truth of the traces. Therefore, we decided to increase the
depth of the autoencoder to ensure it will be suitable for different types of noise.

The size of the latent representation in the middle of the autoencoder is a
critical parameter that should be fine-tuned. One should be aware that although
the autoencoder can reconstruct the input, some information from the input is
lost. For the denoising purpose, we aim at maximizing the removal of noise while
minimizing the loss of useful information. By choosing a smaller size of the bot-
tleneck, the signal quality will be degraded. In contrast, a larger size of bottleneck
may introduce less critical features to the output. To better control the size of
the latent space, we flatten the output of the convolutional blocks and introduce
a fully-connected layer as the middle layer in our proposed architecture.

The CAE architecture used for this paper is shown in Table 2. The convolu-
tion block (Convblock in the table) normally consists of three layers: convolution
layer, activation layer (function), and Max pooling layer. As we noticed that an
autoencoder implemented in this manner suffers from overfitting and poor per-
formance in denoising the validation traces, we add the batch normalization layer
in each convolution block.

The convolutional encoder converts the leakages to its latent representation
by passing through multiple convolution blocks. Then, these compressed high-
dimensional features are further calculated with a fully-connected layer, which
is then reshaped to the convolution size and reconstructed to the target traces.
Note that the latent space size is controlled by the number of neurons in the fully-
connected layer. To ensure the CAE output has the same shape with the clean



10

traces, the size of the fully-connected layer Slatent is calculated with Eq. (3):

Slatent =
Sclean∏n
i=1 Spooli

∗Nfilter0. (3)

Sclean is the size of the target clean traces, Spooli represents the ith non-zero
pooling stride of the decoder, and Nfilter0 represents the number of the filters
of the first Deconv layer.

Table 2: CAE architecture.

Block/Layer Filter size Filter number Pooling stride

Conv block * 2 2 256 0
Conv block 2 256 5
Conv block * 2 2 128 0
Conv block 2 128 2
Conv block * 2 2 64 0
Conv block 2 64 2

Flatten - - -
Fully-connected - - -
Reshape - - -

Deconv block 2 64 2
Deconv block * 2 2 64 0
Deconv block 2 128 2
Deconv block * 2 2 128 0
Deconv block 2 256 5
Deconv block * 2 2 256 0

Deconv block 2 1 0

4 Experimental Results

Several noise types can exist in the power profiles or EM traces. To show the
effectiveness of the proposed CAE in dealing with different types of noise, we
investigate four types of noise/countermeasures that commonly exist in the de-
vices: Gaussian noise, desynchronization (misalignment), random delay inter-
rupts (RDI), and clock jitters. All of these noise/countermeasures are simulated
based on the observation or implementation of the real devices. To compare the
denoising performance of CAE with the existing techniques commonly used by
attackers, the denoising performance of trace averaging is also evaluated in this
paper. Here, 10 traces are averaged to obtain a single trace.

Throughout the experiments, we use the ASCAD dataset (with fixed key
and random key) as the training datasets. Note that the ASCAD dataset is
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masked and there is no first-order leakage. To obtain a direct intuition of the
properties of the reconstructed traces, we evaluate the SNR of the masked S-box
output (Eq. (4)). The SNR is sometimes named F-Test to refer to its original
introduction in [44]. For a noisy observation Lt at each time sample t of an event
Z, it is defined in Eq. (5):

Y (i) = Sbox[(p[i]⊕ k[i])⊕ rout]. (4)

SNR [t] =∆
VarE[Lt|Z]

EVar[Lt|Z]
. (5)

The numerator denotes the signal magnitude and the denominator denotes
the noise magnitude estimate. The model for the attacking is the CNN best as
given in the ASCAD paper [29]. The selected hyperparameters are shown in
Table 3. The quality of the recovered traces is evaluated by guessing entropy
(GE). For a good estimation of GE, the attack traces are randomly shuffled and
100 GEs are computed to obtain the average value.

Table 3: CNN Hyperparameter.

Hyperparameter Value

Optimizer RMSProb
Weight initialization Uniform distribution
Activation function ReLU
Learning Rate 1e-5
Batch size 200
Epochs 100

Training sets 35 000
Validation sets 5 000

4.1 Baseline

We first attack the synchronized ASCAD dataset (ASCAD.h5) as the baseline
in the comparison with different scenarios. The detailed attack approach can
be found in the original paper [29]. An example of two traces to be attacked is
presented in Figure 3. From the comparison of those two traces, we see that most
of the parts are identical, but there are still some variations existing (especially
on the peaks).

As mentioned, we use the CNN best model for the attack. The SNR of the
masked S-box output and the resulting guessing entropy are presented in Fig-
ure 4. Without noise and countermeasures in the traces, guessing entropy reaches
zero after 200 traces, indicating that the real key has been successfully obtained.
The outcomes of this attack are used as the baseline and the following attacks
on noisy and denoised traces are evaluated based on these results.
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Fig. 3: Baseline: example traces.
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Fig. 4: Baseline: SNR and guessing entropy.

4.2 Gaussian Noise

The Gaussian noise is the most common type of noise existing in side-channel
traces. The transistor, data buses, the transmission line to the record devices
such as oscilloscopes or even the work environment can be the source of Gaus-
sian noise. The noise can also be artificially introduced by dummy operation
or dedicated noise engine. In terms of trace leakage, the increment of the noise
level hides the useful patterns and reduces the signal-to-noise (SNR) ratio. Con-
sequently, the noise influences the effectiveness of an attack, i.e., more traces are
needed to obtain the attacked intermediate data.

To demonstrate the influence of the Gaussian noise, we simulate it by adding
a random number to each point of the trace. Specifically, a random number is
uniformly distributed between -20 to 20 to simulate the real leakage behavior
with the Gaussian noise. An example of the manipulated trace and its zoom-in
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view is shown in Figure 5. Compared with the baseline traces, the Gaussian noise
significantly distorted the shape of the original traces in the amplitude domain.
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(a) Gaussian noise: example traces.
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Fig. 5: Gaussian noise: example traces and its zoom-in view.

Then, we denoise the Gaussian noise with trace averaging as well as CAE
proposed in this paper. The SNR of the noisy and denoised traces are shown in
Figure 6a while GE values after deep learning attacks are shown in Figure 6b.
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Fig. 6: Noisy and denoised traces (Gaussian noise): SNR and guessing entropy.

Firstly, when considering the baseline attack with “clean” traces, the exis-
tence of the Gaussian noise reduces the leakage of the attacked intermediate
data: the SNR drops from 0.8 to 0.03. Fortunately, the SNR of denoised traces
clearly shows that the CAE has filtered out a part of the Gaussian noise, as the
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SNR peak of the denoised traces is more than three times higher than the noisy
one.

From the attack (GE) perspective, GE converges in both cases when the
number of trace increases. For the noisy traces, 5 000 traces reduces GE from 130
to only 110. On the other hand, outstanding attacking performance is obtained
with denoised traces: 5 000 traces are sufficient to reach GE of 0 when denoised
with both CAE and averaging techniques. It is worth to note that GE of averaged
traces is slightly better than GE of CAE, proving that trace averaging is a good
candidate in removing the Gaussian noise. Still, we can conclude that CAE can
remove the Gaussian noise and consequently improve the attacking efficiency.

4.3 Desynchronization

Well-synchronized traces can significantly improve the correlation of the inter-
mediate data. The alignment of the traces is, therefore, an essential step for the
side-channel attack. To align the traces, normally, an attacker should select a
distinguishable trigger/pattern from the traces, so that the following part can be
aligned using the selected part as a reference. There are two limitations to this
approach. First, the selected trigger/pattern should be distinctive, so that it will
not be obfuscated with other patterns and lead to misalignment. Second, due to
the existence of the signal jitters and other countermeasures, the selected trigger
should be sufficiently close to the points of interest, thus minimizing the noise
effect. From a practical point of view, a good reference that meets both limita-
tions is not always easy to find. Even with an unprotected device, sometimes the
traces synchronization can be a challenging task.

We consider the desynchronization as a type of noise existing in the traces.
Different from the Gaussian noise, the desynchronization noise adds randomness
to the time domain. To show the effect of the traces desynchronization, we use
traces with a maximum of 50 points of desynchronization (ASCAD desync50 [29]).
An example of the traces with desynchronization is shown in Figure 7.

Next, we attack the misaligned traces as well as the denoised traces from
CAE. The SNR and GE results are shown in Figure 8.

Figure 8a shows that only CAE can increase the SNR of the intermediate
data (0.16). The averaged traces, on the other hand, have similar SNR (0.03)
with noisy ones, indicating that traces averaging is ineffective in dealing with
desynchronization.

From Figure 8b, GE of the noisy traces converges faster than the averaged
traces. From this result, first, we conclude that the averaging of the desynchro-
nized traces is harmful to recovering the traces. Second, CNN proves its ability
to delimit the desynchronization effect, as GE converges to around 55 with 5 000
traces when attacking the noisy traces. Still, considering that the original “clean”
traces only needed around 200 traces to retrieve the key, the desynchronization
indeed degraded the performance of the attack. One can expect that performance
to become even worse with an increased desynchronization level.

CAE provides an alternative simple approach in synchronizing the traces.
By training a CAE with desynchronized–synchronized traces pair, the model
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(a) Desynchronization: example traces.
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Fig. 7: Desynchronization: example traces and its zoom-in view.
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Fig. 8: Noisy and denoised traces (desynchronization): SNR and guessing entropy.

can align the traces automatically. Consequently, the number of required traces
to retrieve the key reduces to around 1 000, which performs the best from all
three considered scenarios.

4.4 Random Delay Interrupts (RDIs)

Desynchronization introduces the global time-randomness to the entire trace.
RDIs, on the other hand, lead to the time-randomness locally. As a type of coun-
termeasure normally implemented in the software, the existence of RDIs breaks
the traces into fragments, thus significantly increasing the randomness of traces
in the time domain and reducing the correlation of the attacked intermediate
data.

To simulate the RDIs, we inject RDIs based on the Floating Mean method in-
troduced in [45]. The RDIs implemented in such a way can provide more variance
to the traces when compared with the uniform RDI distribution, thus further
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increasing the attack difficulty. An example of the traces with RDIs with its
zoom-in view is shown in Figure 9. We observe that more randomness was intro-
duced locally to the traces when compared to the traces with desynchronization.
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(a) Random Delay Interrupts: example
traces.
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Fig. 9: Random Delay Interrupts: example traces and its zoom-in view.

As a result, the SNR and rank of the original traces with RDIs and denoised
traces with averaging and CAE are shown in Figure 10. The guessing entropy of
the traces with RDIs converges slowly (120 to 100 with 5 000 traces), indicating
that the CNN best model we are using is not powerful enough to extract the
useful patterns and retrieve the key with 5 000 traces. We can conclude that
RDIs implemented in this way dramatically increase the attack difficulty.
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Fig. 10: Noisy and denoised traces (RDIs): SNR and guessing entropy.
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Trace averaging is again not helpful to remove the countermeasure and the
GE value fluctuates around 140. By applying the CAE, the effect of RDIs has
been reduced dramatically: the SNR increases three times to 0.09 and GE reaches
zero after around 2 500 traces. From the results, we can conclude that CAE can
recover the original traces from the noisy traces with RDIs countermeasure.

4.5 Clock Jitters

Clock jitters is a classical hardware countermeasure against side-channel attacks,
realized by introducing the instability in the clock [7]. Comparable to the Gaus-
sian noise that introduces randomness to every point in the amplitude domain,
the clock jitters increase the randomness for each point in the time domain. In-
deed, the accumulation of the deforming effect increase the misalignment of the
traces as well as decrease the correlation of the intermediate data. As a conse-
quence, the attacked intermediate data become more difficult to retrieve. Here,
we simulate the clock jitters by randomly adding or removing points with a pre-
defined range. More precisely, we generate a random number r that is uniformly
distributed between -4 to 4 to simulate the clock variation in a magnitude of 16.
When scanning each point in the trace, r points will be added to the trace if r
is greater than zero. Otherwise, the following r points in the trace are deleted.
An example of the traces with clock jitters is shown in Figure 11.
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(a) Clock Jitters: example traces.
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Fig. 11: Clock Jitters: example traces and its zoom-in view.

We denoise the clock jitters with CAE and a comparison of the attack re-
sults for the noisy and denoised traces with averaging and CAE is shown in
Figure 12. As in the previous settings, traces averaging is not efficient in dealing
with time-based noise and countermeasures. The proposed CAE, on the other
hand, successfully reduces the effect of clock jitters. From the SNR perspective,
although the denoised SNR is the lowest (0.044) for all four different types of
noise, it still outperforms its noisy and averaged counterparts. When compared
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with noisy traces, the GE of the denoised traces converges to around 20 after
applying 5 000 traces.
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Fig. 12: Noisy and denoised traces (clock jitters): SNR and guessing entropy.

To conclude, the proposed CAE proves its ability to delimit the effect of the
Gaussian noise, desynchronization, random delay interrupts, and clock jitters.
Traces averaging performs well in removing the Gaussian noise but is ineffective
in dealing with the noise and countermeasures in the time domain.

4.6 Combining the Effects of Gaussian Noise and Countermeasures

In the previous section, we add and denoise different types of noise individually.
Now, we investigate a more realistic situation by adding all of the discussed
noise types together and then verifying the effectiveness of the CAE approach.
Here, we test two different datasets: AES with a fixed key and AES with random
keys. Since trace alignment is proved to be inefficient in dealing with time-based
noise and countermeasure, we only evaluate the SNR and GE of the noisy and
denoised traces with CAE.

AES with Fixed Key Similar to the procedure of the previous sections, we
calculated the SNR and GE of the noisy and denoised traces and make a compar-
ison between them. The SNR comparison is presented in Figure 13a. Compared
with the noisy traces, the SNR of denoised traces is increased sightly (0.0345).
This observation indicates that the combination of the noise types degraded the
performance of the CAE.

From the GE plot (Figure 13b), the noisy traces do not converge with the in-
creasing number of traces. The GE of denoised traces, on the other hand, reaches
around 30 with 5 000 traces. Although it converges slower than the denoised
traces with a single type of noise, CAE still proves its capability in removing the
combined effect of noise and countermeasures.
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Fig. 13: Noisy and denoised traces (all): SNR and guessing entropy.

AES with Random Keys Next, we verify the performance of the CAE by
trying to denoise the AES traces with random keys. To retrieve the correct key
from the leakage traces, we first train the model with leakage with a random but
known key, then use the trained model to attack the leakages and try to retrieve
the unknown key. When comparing with the fixed-key traces, the randomness
of the key introduces more variance into the traces, thus further increasing the
difficulties in denoising the traces. In terms of attack settings, we use 1 400 POI
for the attack. The attacked intermediate data was kept the same.
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Fig. 14: Noisy and denoised traces with variable key (all): SNR and guessing
entropy.

Based on the results, there is no significant improvement from the SNR per-
spective. Still, guessing entropy indicates the improved performance as a result
of CAE: GE value converged to around 43 with 5 000 traces. The GE of the
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noisy traces, on the other hand, fluctuates above 100 regardless of the number
of traces. Therefore, we can conclude that the proposed CAE can denoise the
leakage in both fixed key and variable key scenarios.

5 Conclusions and Future Work

In this paper, we introduce a convolutional autoencoder to remove the noise and
countermeasure from the leakage traces. Different types of noise and counter-
measures, such as Gaussian noise, desynchronization, random delay interrupts,
and clock jitters are simulated and attacked with the CNN model. The noisy
traces and denoised traces are compared from two different perspectives: SNR
and guessing entropy. We show that the CAE can reconstruct the ground truth
from the noisy traces and thus improve the attack efficiency. Additionally, we
simulate the scenario where all noise types and countermeasures are combined
into the measurements. Surprisingly, the proposed CAE can still remove the noise
and find out the underlying ground truth. Throughout the paper, two types of
leakage traces (one encrypted with fixed and another with random keys) are
tested and in both cases, the CAE proves its performance for denoising purpose.

CAE provides an attacker with a powerful tool to pre-process the traces.
Besides that, we expect the denoising autoencoder could be used to solve other
problems like portability [17]. For the attack portability, the biggest obstacle
comes from the variance among different devices. These variances introduce the
variation of the trace, making the attack model generated from one device diffi-
cult to transfer to another one. With the help of the autoencoder, this problem
can be solved in another way: instead of working with the training model, we can
consider the traces variation as noise and use denoising autoencoder to remove
it. The basic idea is to select the traces from one device as a reference and then
train an autoencoder to convert the traces from other devices to the selected
device. Since the variation of the traces between devices should be diminished
with the help of the autoencoder, the attack model from one device could be
applied to other devices.
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