
Remove Some Noise: On Pre-processing of1

Side-channel Measurements with Autoencoders2

Anonymous Submission3

Abstract. In the profiled side-channel analysis, deep learning-based techniques proved4

to be very successful even when attacking targets protected with countermeasures.5

Still, there is no guarantee that deep learning attacks will always succeed. What is6

more, various countermeasures make attacks significantly more difficult, and those7

countermeasures can be further combined to make the attacks even more challenging.8

From the other side, to improve the performance of attacks, an intuitive solution9

would be to reduce the effect of countermeasures.10

In this paper, we investigate whether we can consider certain types of hiding coun-11

termeasures as noise and then use a deep learning technique called the denoising12

autoencoder to remove that noise. We conduct a detailed analysis of four different13

types of noise and countermeasures either separately or combined and show that in14

all scenarios, denoising autoencoder improves the attack performance significantly.15

Keywords: Side-channel analysis, Deep learning, Noise, Countermeasures, Hiding,16

Denoising autoencoder17

1 Introduction18

Side-channel analysis (SCA) is a threat exploiting weaknesses in physical implementations19

of cryptographic algorithms rather than the algorithms themselves [MOP06]. During the20

execution of an algorithm, leakages like electromagnetic (EM) radiation [QS01] or power21

dissipation [KJJ99] can happen. Side-channel analysis can be divided into 1) direct attacks22

like single power analysis (SPA) and differential power analysis (DPA) [KJJ99], and 2)23

profiled attacks like template attack (TA) [CRR02] and supervised machine learning-based24

attacks [MPP16, PSK+18, CDP17, KPH+19]. In recent years, machine learning-based25

approaches and especially deep learning-based approaches proved to be a powerful option26

when conducting profiled SCA. While such attack methods actively threaten the security27

of cryptographic devices, there are still severe limitations. More precisely, attack methods28

commonly rely on the correlation characteristics of the signal, i.e., signal patterns that are29

related to the data being processed. Once the correlation degrades, attacks become less30

effective and sometimes even useless [BCO04].31

In some cases, the low signal-to-noise ratio of the leakage increases the difficulties of32

identifying these patterns. Additionally, there are various countermeasures in both hardware33

and software that make the attacks even more difficult. Such countermeasures can be34

divided into two categories: masking and hiding. Masking splits the sensitive intermediate35

values into different shares to decrease the key dependency [CJRR99,BDF+17]. Hiding,36

on the other hand, aims at reducing the side-channel information by adding randomness37

to the leakage signals. There are several approaches to hiding. For example, the direct38

addition of noise [CCD00] or the design of dual-rail logic styles [TV03] are frequently39

considered options. Exploiting time-randomization is another alternative, e.g., Random40

Delay Interrupts (RDIs) [CK09] implemented in software and clock jitters in hardware. Still,41

the countermeasures (especially the hiding ones) are not without weaknesses. Regardless of42

what hiding approaches are used, we can treat their effects as noise due to their randomness.43
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In other words, the ground truth of the traces always exists. If we can find a way to remove44

the noise (denoise) from the traces and recover the ground truth of the leakage, then the45

reconstructed traces could become more vulnerable to the SCA.46

While considering the countermeasures as noise and then removing that noise sounds like47

an intuitive approach, this is not an easy problem. The noise (both from the environment48

and countermeasures) is a part of a signal, and those two components cannot be separated49

perfectly if we do not know their characterizations. In addition, in realistic settings, we50

must also consider the portability and the differences among various devices [BCH+19].51

The combination of all these factors makes this problem very complex, and to the best52

of our knowledge, there are no universal approaches on how to remove the effects of53

environmental noise and countermeasures.54

Common approaches to remove/reduce noise are using low-pass filters [WLL+18],55

conducting trace alignments [TGWC18,TGWC18], and various feature engineering meth-56

ods [ZZY+15,PHJB19]. More recently, the SCA community used deep learning techniques57

that can conduct implicit feature selection and fight countermeasures [CDP17,KPH+19,58

ZBHV19]. While such techniques are useful, they are usually aimed either against a59

single source of noise or in cases when they can handle more sources of noise, they do60

not offer interpretability of results. More precisely, in such cases, it is not clear at what61

point noise removal stops and attack starts (or even if there is such a point). Finally,62

we emphasize that being able to reduce the noise comprehensively could bring several63

advantages 1) understanding the attack techniques better, 2) understanding the noise64

better and consequently, (hopefully) being able to design stronger countermeasures, 3)65

ability to mount stronger/simpler attacks as there is no noise to consider.66

In this paper, we propose a new approach to remove several common hiding counter-67

measures with a denoising autoencoder. Although the denoising autoencoder proved to be68

successful in removing the noise from an image [Gon16], as far as we are aware, this tech-69

nique has not been applied to the side-channel domain to reduce the noise/countermeasures70

effect. We demonstrate the effectiveness of a convolutional denoising autoencoder in dealing71

with different types of noise and countermeasures separately, i.e., white noise, desynchro-72

nization, RDIs, and clock jitters. Then, we make the problem more realistic by combining73

various types of noise and countermeasures with the traces and trying to denoise it with74

the same machine learning models. The results show that the denoising autoencoder75

is surprisingly efficient in removing the noise and countermeasures in all investigated76

situations. We emphasize that denoising autoencoder is not a technique to conduct the77

profiled attack, but to pre-process the measurements so that any attack strategy can be78

applied.79

1.1 Related Work80

The analysis of the leakage traces in the profiled SCA scenario can be seen as a classification81

problem where the goal of an attacker is to classify those traces based on the related data82

(i.e., the encryption key). The most powerful attack from the information-theoretic point83

of view is the template attack (TA) [CRR02]. Still, this attack can reach its full potential84

only if the attacker has an unbounded number of traces and the noise follows the Gaussian85

distribution [LPB+15]. More recently, various machine learning techniques emerged as86

preferred options for cases where 1) the number of traces is either limited or very high,87

2) the number of features is very high, 3) countermeasures are implemented, and 4) we88

cannot make assumptions about data distribution. First, the side-channel community89

showed most interest in techniques like random forest [LMBM13,HPGM16] and support90

vector machines [HZ12,PHJ+17]. More recently, multilayer perceptron [GHO15,PHJ+19]91

and convolutional neural networks [MPP16,CDP17,KPH+19] emerged as the most potent92

approaches. Convolutional neural networks were demonstrated to be capable of coping with93

the random delay countermeasure due to their spatial invariance property [CDP17,KPH+19].94
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At the same time, the fully-connected layers in multilayer perceptron and convolutional95

neural networks are effective against masking countermeasures as they produce the effect96

of a higher-order attack (combining features) [BPS+18,KPH+19]. As far as we are aware,97

the only application of autoencoders for profiled SCA is made by Maghrebi et al., but98

there the authors use it for classification and not noise removal, and they report a poor99

performance when compared to CNNs [MPP16].100

1.2 Our Contributions101

In this paper, we consider how to denoise the side-channel traces with convolutional102

autoencoder (CAE), which to the best of our knowledge, has not been explored before in103

the side-channel domain. More precisely, we introduce a novel approach to remove the104

effect of countermeasures and we propose:105

1. A convolutional autoencoder architecture, which requires a limited number of traces106

to train and can denoise/remove the effect of various hiding countermeasures.107

2. A methodology to recover the ground truth of the traces.108

To conduct experimental analysis, we consider four separate sources of noise or their com-109

bination. We investigate the performance of both multilayer perceptron and convolutional110

neural networks for classification after noise removal. Finally, we experiment with several111

different noise levels, as well as datasets, having either fixed or random keys, to show the112

universality of our approach.113

114

This paper is organized as follows. In Section 2, we provide details about profiled SCAs,115

machine learning techniques we use, and the dataset we investigate. In Section 3, we provide116

details about denoising autoencoders and their convolutional version. Section 4 gives117

experimental results when considering the effects of noise either separately or combined.118

Finally, in Section 5, we conclude the paper and present possible future research directions.119

2 Background120

In this section, we start by introducing the notation we follow. Afterward, we discuss121

profiled side-channel analysis and neural networks. Finally, we give details about the122

ASCAD dataset we use in the rest of the paper.123

2.1 Notation124

Let k∗ denote the fixed secret cryptographic key (byte), k any possible key hypothesis,125

and p plaintext. To guess the secret key, the attacker first needs to choose a leakage model126

Y (p, k) (or Y when there is no ambiguity) depending on the key guess k and some known127

text p, which relates to the deterministic part of the leakage. The size of the keyspace128

equals |K|. For profiled attacks, the number of acquired traces in the profiling phase equals129

N , while the number of traces in the testing phase equals T .130

For the autoencoder, we denote its input as X . The encoder part of an autoencoder131

is denoted as φ and the decoder part as ψ. Its latent space is denoted as F . As for the132

training data, we refer to protected leakages/traces (with noise and countermeasures) as133

noisy leakages/traces while the unprotected leakages are denoted as clean leakages/traces.134

2.2 Profiled Side-channel Analysis135

In the context of implementation attacks, they target physical leakages from the insecure136

implementation of otherwise theoretically secure cryptographic algorithms. The profiled137

side-channel attacks represent the most powerful category of SCAs as we assume an138
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attacker with access to an open (keys can be chosen/or are known by the attacker) clone139

device. Then, the attacker can use that clone device to obtain N measurements from140

it and construct a characterization model of the device’s behavior. When launching an141

attack, the attacker then collects a few power traces from the attack device where the142

secret key is not known. By comparing the attack traces with the characterized model, the143

secret key can be revealed. Ideally, the secret key can be obtained with a single trace from144

the attack device. Single trace attack is difficult in practice due to the effect of the noise,145

countermeasures, and a finite number of traces in the profiling phase (while we assume146

the attacker is not bounded in his power and he can collect any number of traces, that147

number represent a small fraction of all possible measurements).148

To assess the performance of the attacker, one uses a metric denoting the number of149

measurements required to obtain the secret key. A typical example of such a metric is150

guessing entropy (GE) [SMY09]. GE represents the average number of key candidates an151

adversary needs to test to reveal the secret key after conducting a side-channel analysis.152

In particular, given T amount of samples in the attacking phase, an attack outputs a key153

guessing vector g = [g1, g2, ..., g|K|] in decreasing order of probability. Then, guessing154

entropy is the average position of k∗ in g over several experiments.155

2.3 Neural Networks156

A neural network is an interconnected assembly of simple processing elements, units or157

nodes, whose functionality is based on the biological process occurring in the brain [Gur14].158

In general, a neural network consists of three blocks: an input layer, one or more hidden159

layers, and an output layer, whose processing ability is represented by the strength (weight)160

of the inter-unit connections, learning from a set of training patterns from the input layer.161

In the supervised machine learning paradigm, neural networks work in two phases:162

training and testing. In the training phrases, the goal is to learn a function f , s.t.163

f : X → Y , given a training set of N pairs (xi, yi). Here, for each example (trace) x, there164

is a corresponding label y, where y ∈ Y . Once the function f is obtained, the testing phase165

starts with the goal to predict the labels for new, previously unseen examples.166

2.3.1 Multilayer Perceptron167

The multilayer perceptron (MLP) is a feed-forward neural network that maps sets of inputs168

onto sets of appropriate outputs. MLP consists of multiple layers (at least three - one169

input layer, one output layer, and one or more hidden layers) of nodes in a directed graph,170

where each layer is fully connected to the next one, and training of the network is done171

with the backpropagation algorithm.172

2.3.2 Convolutional Neural Networks173

Convolutional neural networks (CNNs) are a type of neural network originally designed174

for 2-dimensional convolutions as inspired by the biological processes of animals’ visual175

cortex [LB+95]. They are commonly used for image classification, but in recent years, they176

have shown their strengths for time series data [ODZ+16,CFSC17], speech [PC+15], but177

also security applications [SIJW18].178

CNNs resemble ordinary neural networks (e.g., multilayer perceptron) from the archi-179

tecture perspective: they consist of several layers where each layer is made of neurons.180

CNN usually consists of three types of layers: convolutional layers, pooling layers, and181

fully-connected layers. Each layer of a network transforms one volume of activation182

functions to another through a differentiable function. Convolution layer computes the183

output of neurons that are connected to local regions in the input, each computing a184

dot product between their weights and a small region they are connected to in the input185
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Figure 1: An example of an autoencoder network with three hidden layers (created with
NN-SVG [LeN19]).

volume. Pooling decrease the number of extracted features by performing a down-sampling186

operation along the spatial dimensions. The fully-connected layer computes either the187

hidden activations or the class scores. To avoid the overfitting, batch normalization layer,188

which normalizes the input layer by adjusting and scaling the activations is commonly189

added to the network.190

2.3.3 Autoencoders191

Autoencoders were first introduced in the 1980s by Hinton and the PDP group [RHW85] to192

address the problem of “backpropagation without a teacher”. Unlike other neural network193

architectures that map the relationship between the inputs and the labels, an autoencoder194

aims to transform inputs into outputs with the least possible amount of distortion [Bal12].195

Benefiting from its unsupervised learning characteristic, autoencoder has been used in196

many applications such as data compression [TSCH17], anomaly detection [AC15], and197

image recovery [Gon16]. The basic structure of an MLP-based autoencoder is given in198

Figure 1.199

An autoencoder consists of two parts: encoder (φ) and decoder (ψ). Intuitively, the200

encoder squeezes the input with more features to its bottleneck with fewer features, while201

the goal of the decoder is to reverse this process. More precisely, the goal of the encoder202

is to transfer the input to its latent space F , i.e., φ : X → F . The decoder, on the other203

hand, reconstructs the input from the latent space, which is equivalent to ψ : F → X .204

When training an autoencoder, the goal is to minimize the distortion when transferring205

the input to the output (Eq. (1)), i.e., the most representative input features are forced to206

be kept in the smallest layer in the network.207

φ, ψ = arg min
φ,ψ

‖X − (ψ ◦ φ)X‖2. (1)208

When applying the autoencoder for the denoising purpose, the input and output are not209

identical but represent the noisy-clean data pairs. Ideally, a well-trained autoencoder can210
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keep the most representative information (e.g., characteristics of the original data) in its211

bottleneck while neglecting the less important features (e.g., random noise). Consequently,212

the original data (without noise) can be recovered by feeding noisy data to the input of213

the autoencoder.214

A similar idea can also be applied to remove the countermeasures from the leakage traces.215

Since the noise and countermeasures existing in the leakage are random in the amplitude or216

time domain, we could also consider them as noise. For example, we can refer to the white217

noise as the noise in the amplitude domain; the global jitters (desynchronization), random218

delay interrupts, and clock jitters, on the other hand, can be considered as the noise in the219

time domain. Since the autoencoder is good at extracting the important features while220

neglecting randomness, we use it to filter out the noise and recover the ground truth of221

the traces. Then, one can expect that with the recovered traces, the attack efficiency will222

be dramatically improved.223

2.4 The ASCAD Dataset224

The ASCAD dataset was introduced by Prouff et al. to provide a benchmark to evaluate225

machine learning techniques in the context of side-channel attacks [BPS+18]. An AT-226

Mega8515 device was used to record the emitted EM radiation during the execution of a227

software AES implementation protected by known masks. All traces were captured with a228

sensor attached to an oscilloscope sampling at 2 GS/s.229

There are two data sets recorded in different conditions: fixed key encryption and230

random key encryption. For the data with fixed key encryption, the dataset provided231

separate HDF5 files with different synchronization level: the traces in the ASCAD.h5 file232

are time-aligned in a prepossessing step, whereas the traces in ASCAD_desync50.h5 and233

ASCAD_desync100.h5 have been shifted with a maximum jitters window of respectively234

50 and 100 samples [BPS+18]. Each file contains 60 000 EM traces (50 000 training /235

cross-validation traces and 10 000 test traces). Each trace consists of 700 points of interest.236

For the data with random key encryption, there are 200 000 traces in the profiling237

dataset that is provided to train the (deep) neural network models. A 100 000 traces attack238

dataset is used to check the performance of the trained models after the profiling phase. A239

window of 1 400 points of interest is extracted around the leaking spot.240

Throughout the paper, we use the raw traces and the pre-selected window of relevant241

samples per trace corresponding to masked S-box for i = 3. As a leakage model, we use242

the unprotected S-box output, i.e.:243

Y (i) = Sbox[(p[i]⊕ k[i])]. (2)244

Note that the model given in Eq. (2) does not leak information directly as it is first-order245

protected. Consequently, we do not state a model-based SNR. The SNR for the ASCAD246

dataset is ≈ 0.8 under the assumption we know the mask (shown in Figure 5a) while it is247

almost 0 with the unknown mask.248

3 Denoising with Convolutional Autoencoder249

In this section, we discuss the attacker model and the way to obtain clean/noisy traces.250

Afterward, we give details about the convolutional autoencoder architecture used in our251

experiments.252

3.1 Denoising Strategy253

As discussed in Section 2.3.3, noisy-clean trace pairs are required to train a denoising254

autoencoder. Inspired by the profiled side-channel analysis method, we devise a denoising255

strategy shown in Figure 2.256
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Figure 2: Denoising strategy.

We assume an attacker has full control of a device (Device A). Specifically, he can257

enable/disable the implemented countermeasures. To attack the real devices with counter-258

measures enabled (Device B), he first acquires several traces with and without counter-259

measures from Device A to build the training sets. Then the attacker uses these traces to260

train the denoising autoencoder. Once the training process is finished, the trained model261

can be used to pre-process the leakage traces obtained from Device B. Finally, with ”clean”262

(or, at least, cleaner) traces reconstructed by the denoising autoencoder, an attacker can263

eventually retrieve the secret information with less effort.264

3.2 Convolutional Autoencoder Architecture265

An autoencoder can be implemented with different neural network architectures. The most266

common examples are the MLP-based autoencoder and convolutional autoencoder (CAE).267

Since related works indicate that CNN outperforms MLP in dealing with the side-channel268

leakages [MPP16,PHJ+19], we use the convolution layer as the basic element for denoising269

purpose.270

To maximize the denoising ability of the proposed architecture, we tune the hyperpa-271

rameters by evaluating the CAE performance towards different types of noise. The tuning272

range and selected hyperparameters are shown in Table 1. We use the SeLU activation273

function to avoid vanishing and exploding gradient problems [KUMH17] and He Uniform274

initialization to improve weight initialization [HZRS15].275

Table 1: CAE hyperparameter tuning.
Hyperparameter Range Selected
Optimizer Adam, RMSProb, SGD RMSProb
Weight initialization Uniform distribution, He uniform He uniform
Activation function tanh, ReLU, SeLU SeLU
Learning Rate 1e-5, 5e-5, 1e-4, 5e-4 1e-4
Batch size 32, 64, 128, 256 128
Epochs 30, 50, 70, 100, 200 100
Training sets 1 000, 5 000, 10 000, 20 000 10 000
Validation sets 1 000, 2 000 2 000

In terms of the autoencoder architecture, we observed that when dealing with trace276

desynchronization, an autoencoder that has shallow architecture can denoise the traces277

successfully. Still, when introducing other types of noise into the traces while keeping the278

same hyperparameters, such autoencoders cannot recover the ground truth of the traces.279
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Encoder DecoderInput Output

Figure 3: High-level CAE structure

Consequently, we decided to increase the depth of the autoencoder to ensure it will be280

suitable for different types of noise.281

The size of the latent representation in the middle of the autoencoder is a critical282

parameter that should be fine-tuned. One should be aware that although the autoencoder283

can reconstruct the input, some information from the input is lost. For the denoising284

purpose, we aim at maximizing the removal of noise while minimizing the loss of useful285

information. By choosing a smaller size of the bottleneck, the signal quality will be286

degraded. In contrast, a larger size of bottleneck may introduce less critical features287

to the output. To better control the size of the latent space, we flatten the output of288

the convolutional blocks and introduce a fully-connected layer as the middle layer in our289

proposed architecture.290

The details on the CAE architecture used in this paper are given in Table 2. The291

convolution block (denoted Convblock) usually consists of three parts: convolution layer,292

activation layer (function), and Max pooling layer. As we noticed that an autoencoder293

implemented in this manner suffers from overfitting and poor performance in denoising294

the validation traces, we add the batch normalization layer to each convolution block.295

A high-level CAE structure is shown in Figure 3. The convolutional encoder converts296

the leakages to its latent representation by passing through multiple convolution blocks.297

Then, these compressed high-dimensional features are further processed through a fully-298

connected layer, which is then reshaped to the convolution size and reconstructed to the299

target traces. Note that the size of the latent space (represented by four red circles) is300

controlled by the number of neurons in the fully-connected layer. To ensure the CAE301

output has the same shape with the training sets, we develop the following equation to302

calculate the needed size of the fully-connected layer Slatent:303

Slatent = Sclean∏n
i=1 Spooli

∗Nfilter0. (3)304

Sclean is the size of the target clean traces, Spooli represents the ith non-zero pooling stride305

of the decoder, and Nfilter0 represents the number of the filters of the first Deconvolution306

block. Note, one can vary the size of the latent space for different cases by changing the307

size of the pooling layer as well as the number of filters. ‘308

We emphasize that from an attacker perspective, a CAE can be easily trained by noisy309

(protected)–clean (unprotected) traces pairs. Once the training finishes, the autoencoder310

can be used to denoise the leakages from real-world devices.311
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Table 2: CAE architecture.
Block/Layer Filter size Filter number Pooling stride
Conv block * 2 2 256 0
Conv block 2 256 5
Conv block * 2 2 128 0
Conv block 2 128 2
Conv block * 2 2 64 0
Conv block 2 64 2
Flatten - - -
Fully-connected - - -
Reshape - - -
Deconv block 2 64 2
Deconv block * 2 2 64 0
Deconv block 2 128 2
Deconv block * 2 2 128 0
Deconv block 2 256 5
Deconv block * 2 2 256 0
Deconv block 2 1 0

4 Experimental Results312

Different types of noise must be investigated to evaluate the performance of denoising CAE.313

At the same time, there are no publicly available datasets concentrating on differences314

between noise types. To investigate the precise influence of different sources of noise in315

a fair way, we simulated four types of noise/countermeasures that commonly exist in316

the devices: Gaussian noise, desynchronization (misalignment), random delay interrupts317

(RDI), and clock jitters with different noise levels. The simulation approaches are based318

on previous researches as well as the observation or implementation of the real devices.319

The pseudocode for the noise simulation is available in the Appendix C.320

There is a question of whether the denoising procedure can help regardless of the noise321

amount. In our experiments, we show the results where the denoising architecture is able322

to reduce the GE to 0 (or close value) within 5 000 attack traces. Higher noise levels are323

still affected by CAE, but we require more measurements to reach GE of close to 0. As324

expected, smaller noise levels are simpler for CAE, and we can reach GE of 0 with even325

fewer attack traces. We demonstrate this in Appendix A. Finally, we consider what would326

happen if one applies denoising autoencoder to measurements that do not have noise.327

In Appendix B, we show that in such a case, a part of the useful signal is removed (as328

expected), but the attack still works, albeit somewhat worse.329

To compare the denoising performance of CAE with the existing techniques commonly330

used by attackers, we also evaluate the denoising performance of trace averaging. Here,331

ten traces are averaged to obtain a single trace.332

Throughout the experiments, we use the ASCAD dataset (with fixed key and random333

key) as the training datasets. Note that the ASCAD dataset is masked and there is no334

first-order leakage. To obtain an intuition of the properties of the reconstructed traces, we335

evaluate the SNR of the masked S-box output (Eq. (4)).336

Y (i) = Sbox[(p[i]⊕ k[i])⊕ rout]. (4)337

The SNR is sometimes named F-Test to refer to its original introduction in [Fis22]. For338

a noisy observation Lt at each time sample t of an event Z, it is defined in Eq. (5). The339
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numerator denotes the signal magnitude and the denominator denotes the noise magnitude340

estimation.341

SNR [t] =∆ VarE[Lt|Z]
EVar[Lt|Z] . (5)342

Two models, CNN_best and MLP_best given in the ASCAD paper [BPS+18], are343

used to attack the traces. The architectures are listed in Table 3 and Table 4. Additionally,344

the average pooling layer is used in the Conv block for CNN architecture. In this work,345

we use an NVIDIA GTX 1080 Ti graphics processing unit (GPU) with 11 Gigabytes of346

GPU memory and 3 584 GPU cores. All of the experiments are implemented with the347

TensorFlow [AAB+15] computing framework and Keras deep learning framework [C+15].348

Table 3: CNN architecture used for attacking.
Layer Filter size Filter number Pooling stride Neuron number
Conv block 11 64 2 -
Conv block 11 128 2 -
Conv block 11 256 2 -
Conv block 11 512 2 -
Flatten - - - -
Fully-connected * 2 - - - 4 096

Table 4: MLP architecture used for attacking.
Layer Neuron number
Fully-connected *4 200

Finally, the selected hyperparameters for both deep learning models are shown in349

Table 5. Since these two models have different complexities, we can evaluate the denoising350

performance in a fair way. We emphasize that we do not aim to find the best attack models351

but to show how denoising autoencoders can help improving performance for various352

attacks. The quality of the recovered traces is evaluated by guessing entropy (GE). For a353

good estimation of GE, the attack traces are randomly shuffled and 100 GEs are computed354

to obtain the average value.355

Table 5: Hyperparameters for MLP and CNN classifiers.
Hyperparameter Value
Optimizer RMSProb
Weight initialization Uniform distribution
Activation function ReLU
Learning Rate 1e-5
Batch size 200
Epochs 100 (CNN) / 500 (MLP)
Training sets 35 000
Validation sets 5 000
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Figure 4: Baseline: example traces.

4.1 Baseline356

We first attack the synchronized ASCAD dataset (ASCAD.h5) as the baseline in comparison357

with different scenarios. The detailed attack approach can be found in the original358

paper [BPS+18]. An example of two traces to be attacked is presented in Figure 4. From359

the comparison of those two traces, we see that most of the parts are identical, but there360

are still some variations (especially on the peaks).361

Here, we use the CNN_best model for the attack. The SNR of the masked S-box362

output and the resulting guessing entropy are presented in Figure 5.
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Figure 5: Baseline: SNR and guessing entropy.
363

Without noise and countermeasures in the traces, guessing entropy reaches zero quickly364

after 405 traces, indicating that the real key has been successfully predicted. The outcomes365

of this attack are used as the baseline and the following attacks on noisy and denoised366

traces are compared based on these results.367

4.2 Gaussian Noise368

The Gaussian noise is the most common type of noise existing in side-channel traces. The369

transistor, data buses, the transmission line to the record devices such as oscilloscopes,370



12 Pre-processing of Side-channel Measurements with Autoencoders

or even the work environment can be the source of Gaussian noise. The noise can also371

be artificially introduced by dummy operation or dedicated noise engine. In terms of372

trace leakage, the increment of the noise level hides the correlated patterns and reduces373

the signal-to-noise (SNR) ratio. Consequently, the noise influences the effectiveness of an374

attack, i.e., more traces are needed to obtain the attacked intermediate data.375

To demonstrate the influence of the Gaussian noise, we add a uniformly distributed376

random value between -20 to 20 to each point of the trace. An example of the manipulated377

trace and its zoom-in view is shown in Figure 6. Compared with the baseline traces, the378

Gaussian noise significantly distorted the shape of the original traces in the amplitude379

domain.380
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(a) Gaussian noise: example traces.
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Figure 6: Gaussian noise: example traces and its zoom-in view.

Next, we denoise the Gaussian noise with trace averaging as well as CAE proposed in381

this paper. The SNR of the noisy and denoised traces are shown in Figure 7a, while GE382

values after deep learning attacks are shown in Figure 7b.383
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Figure 7: Noisy and denoised traces (Gaussian noise): SNR and guessing entropy.

For the baseline attack with “clean” traces, the existence of the Gaussian noise reduces384

the leakage of the attacked intermediate data: the SNR drops from 0.8 to 0.03. The SNR385

of denoised traces clearly shows that the CAE has filtered out a part of the Gaussian noise,386

as the SNR peak of the denoised traces is more than three times higher than the noisy one.387

From the attack (GE) perspective, GE converges in both cases when the number of388
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trace increases. For the noisy traces, 5 000 traces reduce GE from 121 to only 109 on389

average. When considering a multilayer perceptron, we observe that its behavior is better390

than CNN when no denoising is done. This indicates that the denoising autoencoder works391

regardless of the applied attack technique. What is more, we see that a simpler attack392

technique in combination with CAE can outperform more complicated attack techniques.393

CNN attack performance after denoising with either averaging or denoising autoencoder394

is significantly improved over the noisy version: 5 000 traces are sufficient to reach GE395

of 0. It is worth noting that GE of averaged traces is slightly better than GE of CAE,396

proving that trace averaging is a good candidate in removing the Gaussian noise. Still,397

we can conclude that CAE can remove the Gaussian noise and consequently improve the398

attacking efficiency.399

4.3 Desynchronization400

Well-synchronized traces can significantly improve the correlation of the intermediate data.401

The alignment of the traces is, therefore, an essential step for the side-channel attack. To402

align the traces, usually, an attacker should select a distinguishable trigger/pattern from403

the traces, so that the following part can be aligned using the selected part as a reference.404

There are two limitations to this approach. First, the selected trigger/pattern should be405

distinctive, so that it will not be obfuscated with other patterns and lead to misalignment.406

Second, due to the existence of the signal jitters and other countermeasures, the selected407

trigger should be sufficiently close to the points of interest, thus minimizing the noise effect.408

From a practical point of view, a good reference that meets both limitations is not always409

easy to find. Even with an unprotected device, sometimes the traces synchronization can410

be a challenging task.411

We consider the desynchronization as a type of noise existing in the traces. Different412

from the Gaussian noise, the desynchronization noise adds randomness to the time domain.413

To show the effect of the traces desynchronization, we use traces with a maximum of 50414

points of desynchronization (ASCAD_desync50 [BPS+18]). An example of the traces with415

desynchronization is shown in Figure 8.416
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(a) Desynchronization: example traces.

300 320 340 360 380 400
Time Samples

−60

−40

−20

0

20

40

Am
pl
itu

de

Trace 1
Trace 2

(b) Desynchronization: zoom-in view.

Figure 8: Desynchronization: example traces and its zoom-in view.

Next, we attack the misaligned traces as well as the denoised traces from CAE. Figure 9a417

shows that only CAE can increase the SNR of the intermediate data (0.16). The averaged418

traces, on the other hand, have similar SNR (0.03) with the noisy ones, indicating that419

traces averaging is ineffective in dealing with desynchronization.420

As evident from Figure 9b, GE of the noisy traces converges faster than for the averaged421

traces. Consequently, we conclude that the averaging of the desynchronized traces is not422
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Figure 9: Noisy and denoised traces (desynchronization): SNR and guessing entropy.

helping to recover the traces. Indeed, the averaging of the point from different time423

locations further degrades the data correlation. On the other hand, CNN proves its ability424

to delimit the desynchronization effect, as GE converges to 53 with 5 000 traces when425

attacking the noisy traces. Still, considering that the original “clean” traces only needed426

405 traces on average to retrieve the key, the desynchronization degraded the performance427

of the attack. Additionally, one can expect that performance to become even worse with428

an increased desynchronization level.429

CAE provides a simple alternative approach in synchronizing the traces. By training430

a CAE with desynchronized–synchronized traces pair, the model can align the traces431

automatically. Consequently, the number of required traces to retrieve the key reduces to432

1 189 with CNN and 2 329 with MLP on average.433

4.4 Random Delay Interrupts (RDIs)434

Desynchronization introduces the global time-randomness to the entire trace. RDIs, on the435

other hand, lead to the time-randomness locally. As a type of countermeasure normally436

implemented in the software, the existence of RDIs breaks the traces into fragments, thus437

significantly increasing the randomness of traces in the time domain and reducing the438

correlation of the attacked intermediate data.439

We simulate RDIs based on the Floating Mean method (with parameter a=5 and b=3)440

introduced in [CK09]. The RDIs implemented in such a way can provide more variance441

to the traces when compared with the uniform RDI distribution, thus further increasing442

the attack difficulty. The probability of the occurrence of RDIs is fixed to 50%. Moreover,443

instructions, such as nop, are used to generate the random delay according to the real444

implementations. In terms of power profile, whenever a random delay occurs, instead of445

flatting the power consumption, a specific pattern, such as peak, is shown in the power446

trace. We consider this effect by generating a small peak with a certain amplitude when447

injecting the random delays to the traces.448

An example of the traces with RDIs with its zoom-in view is shown in Figure 10. We449

observe that more randomness was introduced locally to the traces when compared to the450

traces with desynchronization.451

As a result, the SNR and rank of the original traces with RDIs and denoised traces452

with averaging and CAE are shown in Figure 11. The guessing entropy of the traces with453

RDIs converges slowly (129 to 98 with 5 000 traces), indicating that the CNN_best model454

we are using is not powerful enough to extract the useful patterns and retrieve the key with455
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(a) Random Delay Interrupts: example traces.
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(b) Random Delay Interrupts: zoom-in view.

Figure 10: Random Delay Interrupts: example traces and its zoom-in view.

5 000 traces. We can conclude that RDIs implemented in this way dramatically increase456

the attack difficulty.457
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Figure 11: Noisy and denoised traces (RDIs): SNR and guessing entropy.

Trace averaging is again not helpful to remove the countermeasure and the GE value458

fluctuates around 140. By applying the CAE, the effect of RDIs has been reduced459

dramatically: the SNR increases three times to 0.09 and GE converges significantly faster460

both when attacking with MLP and CNN. CNN performance is especially good as it needs461

only 2 264 traces on average to reach GE of 0 (while MLP requires around double the462

amount of traces). We can conclude that CAE can recover the original traces from the463

noisy traces with RDIs countermeasure.464

4.5 Clock Jitters465

Clock jitters is a classical hardware countermeasure against side-channel attacks, realized466

by introducing the instability in the clock [CDP17]. Comparable to the Gaussian noise467

that introduces randomness to every point in the amplitude domain, the clock jitters468

increase the randomness for each point in the time domain. Indeed, the accumulation of469

the deforming effect increases the misalignment of the traces and decreases the correlation470

of the intermediate data. As a consequence, the attacked intermediate data become more471
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difficult to retrieve. Here, we simulate the clock jitters by randomly adding or removing472

points with a pre-defined range. Similar approaches are used in [CDP17]. More precisely,473

we generate a random number r that is uniformly distributed between -4 to 4 to simulate474

the clock variation in a magnitude of 8. When scanning each point in the trace, r points475

will be added to the trace if r is greater than zero. Otherwise, the following r points in476

the trace are deleted. An example of the traces with clock jitters is shown in Figure 12.477
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(a) Clock Jitters: example traces.
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(b) Clock Jitters: zoom-in view.

Figure 12: Clock Jitters: example traces and its zoom-in view.

We denoise the clock jitters with CAE and a comparison of the attack results for the478

noisy and denoised traces with averaging and CAE is shown in Figure 13. As in the479

previous settings, traces averaging is not efficient in dealing with time-based noise and480

countermeasures. The proposed CAE, on the other hand, successfully reduces the effect of481

clock jitters. From the SNR perspective, although the denoised SNR is the lowest (0.044)482

for all four different types of noise, it still outperforms its noisy and averaged counterparts.483

When compared with noisy traces, the GE of the denoised traces with CNN converges to484

13 after applying 5 000 traces1.485
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Figure 13: Noisy and denoised traces (clock jitters): SNR and guessing entropy.

To conclude, the proposed CAE proves its ability to delimit the effect of the Gaussian486

1Note, we see that for other attacks, GE increases with the increase in the number of traces. We can
invert the key guess to obtain the ranking as now the least likely guess would be correct. Still, CNN’s
performance after DAE is the best one
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noise, desynchronization, random delay interrupts, and clock jitters. Traces averaging487

performs well in removing the Gaussian noise but is ineffective in dealing with the noise488

and countermeasures in the time domain. Denoising autoencoder works for both MLP489

and CNN attacks, but CNN’s performance is better in comparison.490

4.6 Combining the Effects of Gaussian Noise and Countermeasures491

In the previous section, we add and denoise different types of noise individually. Now, we492

investigate a more realistic situation by adding all of the discussed noise types together and493

then verifying the effectiveness of the CAE approach. Here, we test two different datasets:494

AES with a fixed key and AES with random keys. Since trace alignment is proved to be495

inefficient in dealing with time-based noise and countermeasure, we only evaluate the SNR496

and GE of the noisy and denoised traces with CAE.497

4.6.1 AES with the Fixed Key498

Similar to the procedure of the previous sections, we calculated the SNR and GE of the499

noisy and denoised traces and made a comparison between them. The SNR comparison is500

presented in Figure 14a. Compared with the noisy traces, the SNR of denoised traces is501

increased slightly (0.0345). This observation indicates that the combination of the noise502

types degraded the performance of the CAE.503
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Figure 14: Noisy and denoised traces (all): SNR and guessing entropy.

From the GE plot (Figure 14b), the noisy traces do not converge with the increasing504

number of traces. The GE of denoised traces, on the other hand, reaches 34 with 5 000505

traces when using CNN classifier. Interestingly, the MLP behavior after denoising is506

significantly better than CNN’s performance without denoising. Still, GE equals 66 after507

applying 5 000 traces. Finally, we can observe that the attack performance converges slower508

than the denoised traces with a single type of noise, but CAE still proves its capability in509

removing the combined effect of noise and countermeasures.510

4.6.2 AES with Random Keys511

Next, we verify the performance of the CAE by trying to denoise the AES traces with512

random keys. To retrieve the correct key from the leakage traces, we first train the model513

with leakage with a random but known key, then use the trained model to attack the514

leakages and try to retrieve the unknown key. When comparing with the fixed-key traces,515

the randomness of the key introduces more variance into the traces, thus further increasing516
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the difficulties in denoising the traces. In terms of attack settings, there are 1 400 features517

in every trace. The attacked intermediate data was kept the same.518
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Figure 15: Noisy and denoised traces with variable key (all): SNR and guessing entropy.

Based on the results, there is no significant improvement from the SNR perspective.519

Still, guessing entropy indicates the improved performance as a result of CAE: for CNN,520

GE value converges to 42 with 5 000 traces. The GE of the noisy traces, on the other hand,521

fluctuates above 100 regardless of the number of traces. When considering MLP, we see522

that denoising helps but reduces GE to only 93 after 5 000 traces. Still, we can conclude523

that the proposed CAE can denoise the leakage in both fixed key and variable key scenarios524

where the results are especially impressive if using CNN as the attack mechanism.525

5 Conclusions and Future Work526

In this paper, we introduce a convolutional autoencoder to remove the noise and counter-527

measure from the leakage traces. We consider different types of noise and countermeasures,528

such as Gaussian noise, desynchronization, random delay interrupts, and clock jitters.529

Additionally, we simulate the scenario where all noise types and countermeasures are com-530

bined into the measurements. There, the noisy and denoised traces are compared from two531

different perspectives: SNR and guessing entropy. To strengthen our experimental results,532

we consider two types of leakage traces (one encrypted with fixed and another with random533

keys), two attack strategies (CNN and MLP), and various levels of noise/countermeasure534

strengths. The obtained results show that the proposed CAE can still remove/reduce the535

noise and find out the underlying ground truth and thus significantly improve the attack536

performance.537

Denoising autoencoder provides an attacker with a powerful tool to pre-process the538

traces. Besides that, we expect it could be used to help solve other problems like portabil-539

ity [BCH+19]. There, the biggest obstacle stems from the variance among different devices.540

These variances introduce the variation of the trace, making the attack model generated541

for one device difficult to transfer to another one. With the help of an autoencoder, this542

problem can be solved in another way: we can consider the traces variation as noise and543

use denoising autoencoder to remove it. The basic idea is to select the traces from one544

device as a reference and then train an autoencoder to convert the traces from other545

devices to the selected device. Since the variation of the traces between devices should546

be diminished with the help of the autoencoder, the attack model from one device could547

be applied to other devices as it should generalize better. Besides that, in this paper, we548
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considered some common hiding countermeasures. In future work, we aim to investigate549

whether denoising autoencoder could also work for the masking countermeasures.550
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A Additional Results with Smaller Levels of Noise724

To further explore the behavior of the purposed CAE, we explore different levels of725

noise/countermeasures. For the Gaussian noise, the noise level is reduced from ±20 to ±10.726
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The SNR and GE results are shown in Figure 16. From the results, the GEs of denoised727

traces with both MLP and CNN shows better performance than their noisy counterpart.728

As expected, since now the noise level is reduced, the GE performance is improved over729

the case with a noise equal to 20.
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Figure 16: Noisy and denoised traces (Gaussian noise): SNR and guessing entropy.

730

For the desynchronization, the noise level is decreased from 50 to 30. The SNR and731

GE results are shown in Figure 17. In general, in both cases, fewer traces are needed to732

retrieve the key. The GE of the clean traces attacked with CNN is unchanged, indicating733

that in both noise levels (high:50/low:30), the maximum denoising capability of CAE is734

reached (also shown in Appendix B).
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Figure 17: Noisy and denoised traces (desynchronization): SNR and guessing entropy.

735

For the random delay interrupts, the noise level is reduced from a=5/b=3 to a=4/b=2.736

The SNR and GE results are shown in Figure 18. As expected, the GE converges faster737

for all three attack cases.738

Finally, for the clock jitters, the noise level was decreased from 4 to 2. The SNR and739

GE results are shown in Figure 19. Observe that CNN performs the best and that with740

MLP, we need to invert the key guess from the best to the worst one.741
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Figure 18: Noisy and denoised traces (RDIs): SNR and guessing entropy.
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Figure 19: Noisy and denoised traces (clock jitters): SNR and guessing entropy.

B Cleaning the Clean Traces742

One should notice that the traces regenerated by CAE have information loss because of the743

bottleneck in the middle of the architecture. In an ideal case, CAE keeps the most critical744

information while neglecting the less important features. To evaluate the reconstruction745

capability, we now use CAE to denoise the clean traces. In this case, the input and output746

of the CAE are identical. While this does not represent a realistic case (as there is no747

reason to apply denoising autoencoder to traces that do not have noise), we conduct this748

experiment to 1) show that CAE removes mostly noise information, and 2) validate that749

even if the evaluator applies by mistake CAE, the performance of the attack will not be750

significantly reduced.751

Figure 20 depicts results for the scenario when denoising autoencoder would be applied752

to already clean traces (ASCAD dataset with the fixed key). As can be expected, SNR753

reduces for those “cleaned” traces as CAE removes some of the information from the signal.754

For GE, there is no significant difference if we use clean traces or clean traces after CAE.755

In fact, only if the number of traces in the attack set is very limited, there will be a slight756

difference in the performance. More precisely, when compared with original traces, there757

is a 0.15 drop in terms of SNR; the number of traces to obtain the real key increase from758

405 to 891.759
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Figure 20: Original clean traces and denoised clean traces: SNR and guessing entropy.

C Pseudocode for the Noise Simulation Techniques760

In Algorithm 1 to 4, we give pseudocode for constructing traces with Gaussian noise,761

desynchronization, random delay interrupts, and clock jitters, respectively.762

Algorithm 1 Gaussian Noise.
1: function add_gaussian_noise(trace, noise_level)
2: new_trace← [] . container for new trace
3: i← 0
4: while i < len(trace) do
5: level←randomNumber(−noise_level, noise_level)
6: new_trace[i]← traces[i] + level . add noise to the trace
7: i← i+ 1
8: return new_trace

Algorithm 2 Desynchronization.
1: function add_gaussian_noise(trace, desync_level)
2: new_trace← [] . container for new trace
3: level←randomNumber(0, desync_level)
4: i← 0
5: while i+ level < len(trace) do
6: new_trace[i]← traces[i+ level] . add desynchronization to the trace
7: i← i+ 1
8: return new_trace
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Algorithm 3 Random Delay Interrupts.
1: function add_rdis(traces,A,B, rdi_probability, rdi_threshold, rdi_amplitude)
2: a← A . maximum number of RDIs
3: b← B . a value smaller than A
4: new_trace← [] . container for new trace
5: i← 0
6: while i < len(trace) do
7: new_trace[i]← new_trace[i].append(trace[i])
8: if rdi_probability > rdi_threshold then
9: m←randomNumber(0, a− b)

10: rdi_num←randomNumber(m,m+ b) . number of RDIs to be added
11: j ← 0
12: while j < rdi_num do . add RDIs to the trace
13: new_trace[i]← new_trace[i].append(trace[i])
14: new_trace[i]← new_trace[i].append(trace[i] + rdi_amplitude)
15: new_trace[i]← new_trace[i].append(trace[i+ 1])
16: j ← j + 1
17: i← i+ 1
18: return new_trace

Algorithm 4 Clock Jitters.
1: function add_clock_jitters(trace, clock_jitters_level)
2: new_trace← [] . container for new trace
3: i← 0
4: while i < len(trace) do
5: new_trace[i]← new_trace[i].append(trace[i])
6: level←randomNumber(0, clock_jitters_level) . level of clock jitters
7: if level < 0 then
8: i← i+ level . skip points
9: else

10: j ← 0
11: average_amplitude← (trace[i] + trace[i+ 1])/2
12: while j < level do
13: new_trace← new_trace.append(average_amplitude) . add points
14: j ← j + 1
15: i← i+ 1
16: return new_trace
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