
Transparent Polynomial Delegation and Its Applications to Zero

Knowledge Proof∗

Jiaheng Zhang† Tiancheng Xie∗ Yupeng Zhang‡ Dawn Song∗

Abstract

We present a new succinct zero knowledge argument scheme for layered arithmetic circuits
without trusted setup. The prover time is O(C + n log n) and the proof size is O(D logC +
log2 n) for a D-depth circuit with n inputs and C gates. The verification time is also succinct,
O(D logC+log2 n), if the circuit is structured. Our scheme only uses lightweight cryptographic
primitives such as collision-resistant hash functions and is plausibly post-quantum secure. We
implement a zero knowledge argument system, Virgo, based on our new scheme and compare its
performance to existing schemes. Experiments show that it only takes 53 seconds to generate
a proof for a circuit computing a Merkle tree with 256 leaves, at least an order of magnitude
faster than all other succinct zero knowledge argument schemes. The verification time is 50ms,
and the proof size is 253KB, both competitive to existing systems.

Underlying Virgo is a new transparent zero knowledge verifiable polynomial delegation
scheme with logarithmic proof size and verification time. The scheme is in the interactive
oracle proof model and may be of independent interest.

1 Introduction

Zero knowledge proof (ZKP) allows a powerful prover to convince a weak verifier that a statement
is true, without leaking any extra information about the statement beyond its validity. In recent
years, significant progress has been made to bring ZKP protocols from purely theoretical interest
to practical implementations, leading to its numerous applications in delegation of computations,
anonymous credentials, privacy-preserving cryptocurrencies and smart contracts.

Despite of these great success, there are still some limitations of existing ZKP systems. In
SNARK [60], the most commonly adopted ZKP protocol in practice, though the proof sizes are of
just hundreds of bytes and the verification times are of several milliseconds regardless of the size of
the statements, it requires a trusted setup phase to generate structured reference string (SRS) and
the security will be broken if the trapdoor is leaked.

To address this problem, many ZKP protocols based on different techniques have been proposed
recently to remove the trusted setup, which are referred as transparent ZKP protocols. Among these
techniques, ZKP schemes based on the doubly efficient interactive proof proposed by Goldwasser et
al. in [42] (referred as GKR protocol in this paper) are particularly interesting due to their efficient
prover time and sublinear verification time for statements represented as structured arithmetic

∗to appear at IEEE Symposium on Security and Privacy 2020
†University of California, Berkeley. Email: {jiaheng_zhang,tianc.x,dawnsong}@berkeley.edu.
‡Texas A&M University. Email: zhangyp@tamu.edu.

1

2

circuits, making it promising to scale to large statements. Unfortunately, as of today we are yet to
construct an efficient transparent ZKP system based on the GKR protocol with succinct1 proof size
and verification time. The transparent scheme in [69] has square-root proof size and verification
time, while the succinct scheme in [70] requires a one-time trusted setup. See Section 1.2 for more
details.

Our contributions. In this paper, we advance this line of research by proposing a transparent
ZKP protocol based on GKR with succinct proof size and verification time, when the arithmetic
circuit representing the statement is structured. The prover time of our scheme is particularly
efficient, at least an order of magnitude faster than existing ZKP systems, and the verification time
is merely tens of milliseconds. Our concrete contributions are:

• Transparent zero knowledge verifiable polynomial delegation. We propose a new zero
knowledge verifiable polynomial delegation (zkVPD) scheme without trusted setup. Compared
to existing pairing-based zkVPD schemes [59, 72, 73], our new scheme does not require a trap-
door and linear-size public keys, and eliminates heavy cryptographic operations such as modular
exponentiation and bilinear pairing. Our scheme may be of independent interest, as polynomial
delegation/commitment has various applications in areas such as verifiable secret sharing [6],
proof of retrievability [71] and other constructions of ZKP [55].

• Transparent zero knowledge argument. Following the framework proposed in [73], we
combine our new zkVPD protocol with the GKR protocol efficiently to get a transparent ZKP
scheme. Our scheme only uses light-weight cryptographic primitives such as collision-resistant
hash functions and is plausibly post-quantum secure.

• Implementation and evaluation. We implement a ZKP system, Virgo, based on our new
scheme. We develop optimizations such that our system can take arithmetic circuits on the
field generated by Mersenne primes, the operations on which can be implemented efficiently
using integer additions, multiplications and bit operations in C++. We plan to open source our
system.

1.1 Our Techniques

Our main technical contribution in this paper is a new transparent zkVPD scheme with O(N logN)
prover time, O(log2N) proof size and verification time, where N is the size of the polynomial. We
summarize the key ideas behind our construction. We first model the polynomial evaluation as
the inner product between two vectors of size N : one defined by the coefficients of the polynomial
and the other defined by the evaluation point computed on each monomial of the polynomial. The
former is committed by the prover (or delegated to the prover after preprocessing in the case of
delegation of computation), and the later is publicly known to both the verifier and the prover.
We then develop a protocol that allows the prover to convince the verifier the correctness of the
inner product between a committed vector and a public vector with proof size O(log2N), based on
the univariate sumcheck protocol recently proposed by Ben-Sasson et al. in [14] (See Section 2.4).
To ensure security, the verifier needs to access the two vectors at some locations randomly chosen
by the verifier during the protocol. For the first vector, the prover opens it at these locations
using standard commitment schemes such as Merkle hash tree. For the second vector, however,

1“succinct” denotes poly-logarithmic in the size of the statement C.

3

it takes O(N) time for the verifier to compute its values at these locations locally. In order to
improve the verification time, we observe that the second vector is defined by the evaluation point
of size only ` for a `-variate polynomial, which is O(logN) if the polynomial is dense. Therefore,
this computation can be viewed as a function that takes ` inputs, expands them to a vector of
N monomials and outputs some locations of the vector. It is a perfect case for the verifier to use
the GKR protocol to delegate the computation to the prover and validate the output, instead of
computing locally. With proper design of the GKR protocol, the verification time is reduced to
O(log2N) and the total prover time is O(N logN). We then turn the basic protocol into zero
knowledge using similar techniques proposed in [5, 14]. The detailed protocols are presented in
Section 3.

1.2 Related Work

Zero knowledge proof. Zero knowledge proof was introduced by Goldwasser et al. in [43] and
generic constructions based on probabilistically checkable proofs (PCPs) were proposed in the sem-
inal work of Kilian [51] and Micali [58] in the early days. In recent years there has been significant
progress in efficient ZKP protocols and systems. Following earlier work of Ishai [48], Groth [45] and
Lipmaa [53], Gennaro et al. [40] introduced quadratic arithmetic programs (QAPs), which leads to
efficient implementations of SNARKs [12, 17, 24, 35, 38, 60, 68]. The proof size and verification
time of SNARK are constant, which is particularly useful for real-world applications such as cryp-
tocurrencies [11] and smart contract [23, 52]. However, SNARKs require a per-statement trusted
setup, and incurs a high overhead in the prover running time and memory consumption, making it
hard to scale to large statements. There has been great research for generating the SRS through
multi-parity secure computations [13] and making the SRS universal and updatable [46, 55].

Many recent works attempt to remove the trusted setup and construct transparent ZKP schemes.
Based on “(MPC)-in-the-head” introduced in [31, 41, 49], Ames et al. [5] proposed a ZKP scheme
called Ligero. It only uses symmetric key operations and the prover time is fast in practice, but
the proof size is O(

√
C) and the verification time is quasi-linear to the size of the circuit. Later, it

is categorized as interactive oracle proofs (IOPs), and in the same model Ben-Sasson et al. built
Stark [9], transparent ZKP in the RAM model of computation. Their verification time is only
linear to the description of the RAM program, and succinct (logarithmic) in the time required for
program execution. Recently, Ben-Sasson et al. [14] proposed Aurora, a new ZKP system in the
IOP model with the proof size of O(log2C). Our new zkVPD and ZKP schemes fall in the IOP
model.

In the seminal work of [42], Goldwasser et al. proposed an efficient interactive proof for layered
arithmetic circuits, which was extended to an arugment system by Zhang et al. in [74] using a
protocol for verifiable polynomial delegation. Later, Zhang et al. [75], Wahby et al. [69] and Xie
et al. [70] made the argument system zero knowledge by Cramer and Damgard transformation [36]
and random masking polynomials [32]. The scheme of [69], Hyrax, is transparent, yet the proof
size and verification time are O(

√
n) where n is the input size of the circuit; the schemes of [72]

and [70] are succinct for structured circuits, but require one-time trusted setup. The prover time
of the GKR protocol is substantially improved in [34, 64, 67, 69, 75], and recently Xie et al. [70]
proposed a variant with O(C) prover time for arbitrary circuits.

Other transparent ZKP schemes based on different techniques include discrete-log-based schemes
[8, 21, 28, 44], hash-based schemes [22] and lattice-based schemes [7]. See Section 5.3 for detailed
asymptotic complexity and practical performance of state-of-the-art systems with implementations.

4

Verifiable polynomial delegation. Verifiable polynomial delegation (VPD) allows a verifier to
delegate the computation of polynomial evaluations to a powerful prover, and validates the result
in time that is constant or logarithmic to the size of the polynomial. Earlier works in the literature
include [18, 39, 50]. Based on [50], Papamanthou et al. [59] propose a protocol for multivariate
polynomials. Later in [73], Zhang et al. extend the scheme to an argument of knowledge using
powers of exponent assumptions, allowing a prover to commit to a multivariate polynomial, and
open to evaluations at points queried by the verifier. In [72], Zhang et al. further make the scheme
zero knowledge. These schemes are based on bilinear maps and require a trusted setup phase that
generates linear-size public keys with a trapdoor.

In a concurrent work, Bünz et al. [26] propose another transparent polynomial commitment
scheme without trusted setup. The scheme utilizes groups of unknown order and the techniques
are different from our construction. The prover and verifier time are O(N) and O(logN) modulo
exponentiation in the group and the proof size is O(logN) group elements. Concretely, the proof
size is 10-20KB for a circuit with 220 gates when compiled to different ZKP systems [26, Section
6], and the prover time and the verification time are not reported. Comparing to our scheme, we
expect the prover and verifier time in our scheme are faster, while our proof size is larger, which
gives an interesting trade-off.

2 Preliminaries

We use λ to denote the security parameter, and negl(λ) to denote the negligible function in λ.
“PPT” stands for probabilistic polynomial time. For a multivariate polynomial f , its ”variable-
degree” is the maximum degree of f in any of its variables. We often rely on polynomial arithmetic,
which can be efficiently performed via fast Fourier tranforms and their inverses. In particular,
polynomial evaluation and interpolation over a multiplicative coset of size n of a finite field can
be performed in O(n log n) field operations via the standard FFT protocol, which is based on the
divide-and-conquer algorthim.

2.1 Interactive Proofs and Zero-knowledge Arguments

Interactive proofs. An interactive proof allows a prover P to convince a verifier V the validity of
some statement through several rounds of interaction. We say that an interactive proof is public
coin if V’s challenge in each round is independent of P’s messages in previous rounds. The proof
system is interesting when the running time of V is less than the time of directly computing the
function f . We formalize interactive proofs in the following:

Definition 1. Let f be a Boolean function. A pair of interactive machines 〈P,V〉 is an interactive
proof for f with soundness ε if the following holds:

• Completeness. For every x such that f(x) = 1 it holds that Pr[〈P,V〉(x) = 1] = 1.

• ε-Soundness. For any x with f(x) 6= 1 and any P∗ it holds that Pr[〈P∗,V〉 = 1] ≤ ε

Zero-knowledge arguments. An argument system for an NP relationship R is a protocol be-
tween a computationally-bounded prover P and a verifier V. At the end of the protocol, V is
convinced by P that there exists a witness w such that (x;w) ∈ R for some input x. We focus on
arguments of knowledge which have the stronger property that if the prover convinces the verifier

5

of the statement validity, then the prover must know w. We use G to represent the generation
phase of the public parameters pp. Formally, consider the definition below, where we assume R is
known to P and V.

Definition 2. Let R be an NP relation. A tuple of algorithm (G,P,V) is a zero-knowledge argument
of knowledge for R if the following holds.

• Correctness. For every pp output by G(1λ) and (x,w) ∈ R,

〈P(pp, w),V(pp)〉(x) = 1

• Soundness. For any PPT prover P, there exists a PPT extractor ε such that for every pp output
by G(1λ) and any x, the following probability is negl(λ):

Pr[〈P(pp),V(pp)〉(x) = 1 ∧ (x,w) /∈ R|w ← ε(pp, x)]

• Zero knowledge. There exists a PPT simulator S such that for any PPT algorithm V∗, auxiliary
input z ∈ {0, 1}∗, (x;w) ∈ R, pp output by G(1λ), it holds that

View(〈P(pp, w),V∗(z, pp)〉(x)) ≈ SV∗(x, z)

We say that (G,P,V) is a succinct argument system if the running time of V and the total com-
munication between P and V (proof size) are poly(λ, |x|, log |w|).

In the definition of zero knowledge, SV∗ denotes that the simulator S is given the randomness of
V∗ sampled from polynomial-size space. This definition is commonly used in existing transparent
zero knowledge proof schemes [5, 14, 28, 69].

2.2 Zero-Knowledge Verifiable Polynomial Delegation

Let F be a finite field, F be a family of `-variate polynomial over F, and d be a variable-degree
parameter. We use W`,d to denote the collection of all monomials in F and N = |W`,d| = (d+ 1)`.
A zero-knowledge verifiable polynomial delegation scheme (zkVPD) for f ∈ F and t ∈ F` consists
of the following algorithms:

• pp← zkVPD.KeyGen(1λ),

• com← zkVPD.Commit(f, rf , pp),

• ((y, π); {0, 1})← 〈zkVPD.Open(f, rf), zkVPD.Verify(com)〉(t, pp)

Note that unlike the zkVPD in [59, 72, 73], our definition is transparent and does not have a
trapdoor in zkVPD.KeyGen. π denotes the transcript seen by the verifier during the interaction
with zkVPD.Open, which is similar to the proof in non-interactive schemes in [59, 72, 73].

Definition 3. A zkVPD scheme satisfies the following properties:

• Completeness. For any polynomial f ∈ F and value t ∈ F`, pp← zkVPD.KeyGen(1λ), com←
zkVPD.Commit(f, rfpp), it holds that

Pr [〈zkVPD.Open(f, rf), zkVPD.Verify(com)〉(t, pp) = 1] = 1

6

• Soundness. For any PPT adversary A, pp ← zkVPD.KeyGen(1λ), the following probability is
negligible of λ:

Pr

(f∗, com∗, t)← A(1λ, pp)

((y∗, π∗); 1)← 〈A(), zkVPD.Verify(com∗)〉(t, pp)

com∗ = zkVPD.Commit(f∗, pp)

f∗(t) 6= y∗

• Zero Knowledge. For security parameter λ, polynomial f ∈ F , pp← zkVPD.KeyGen(1λ), PPT

algorithm A, and simulator S = (S1,S2), consider the following two experiments:

RealA,f (pp):

1. com← zkVPD.Commit(f, rf , pp)

2. t← A(com, pp)

3. (y, π)← 〈zkVPD.Open(f, rf),A〉(t, pp)

4. b← A(com, y, π, pp)

5. Output b

IdealA,SA(pp):

1. com← S1(1λ, pp)

2. t← A(com, pp)

3. (y, π)← 〈S2,A〉(ti, pp), given oracle access to y = f(t).

4. b← A(com, y, π, pp)

5. Output b

For any PPT algorithm A and all polynomial f ∈ F, there exists simulator S such that

|Pr[RealA,f (pp) = 1]− Pr[IdealA,SA(pp) = 1]| ≤ negl(λ).

2.3 Zero Knowledge Argument Based on GKR

In [70], Xie et al. proposed an efficient zero knowledge argument scheme named Libra. The scheme
extends the interactive proof protocol for layered arithmetic circuits proposed by Goldwasser et
al. [42] (referred as the GKR protocol) to a zero knowledge argument using multiple instances of
zkVPD schemes. Our scheme follows this framework and we review the detailed protocols here.

Sumcheck protocol. The sumcheck protocol is a fundamental protocol in the literature of inter-
active proof that has various applications. The problem is to sum a polynomial f : F` → F on the
binary hypercube

∑
b1,b2,...,b`∈{0,1} f(b1, b2, ..., b`). Directly computing the sum requires exponential

time in `, as there are 2` combinations of b1, . . . , b`. Lund et al. [54] proposed a sumcheck protocol
that allows a verifier V to delegate the computation to a computationally unbounded prover P,
who can convince V the correctness of the sum. At the end of the sumcheck protocol, V needs an
oracle access to the evaluation of f at a random point r ∈ F` chosen by V. The proof size of the
sumcheck protocol is O(d`), where d is the variable-degree of f , and the verification time of the
protocol is O(d`). The sumcheck protocol is complete and sound with ε = d`

|F| .

GKR protocol. Let C be a layered arithmetic circuit with depth D over a finite field F. Each
gate in the i-th layer takes inputs from two gates in the (i+ 1)-th layer; layer 0 is the output layer
and layer D is the input layer. The GKR protocol proceeds layer by layer. Upon receiving the
claimed output from P, in the first round, V and P run a sumcheck protocol to reduce the claim
about the output to a claim about the values in the layer above. In the i-th round, both parties
reduce a claim about layer i− 1 to a claim about layer i through sumcheck. Finally, the protocol
terminates with a claim about the input layer D, which can be checked directly by V. If the check
passes, V accepts the claimed output.

7

Formally speaking, we denote the number of gates in the i-th layer as Si and let si = dlogSie.
We then define a function Vi : {0, 1}si → F that takes a binary string b ∈ {0, 1}si and returns the
output of gate b in layer i, where b is called the gate label. With this definition, V0 corresponds
to the output of the circuit, and VD corresponds to the input. As the sumcheck protocol works on
F, we then extend Vi to its multilinear extension, the unique polynomial Ṽi : Fsi → F such that
Ṽi(x1, x2, ..., xsi) = Vi(x1, x2, ..., xsi) for all x1, x2, . . . , xsi ∈ {0, 1}si . As shown in prior work [34],
the closed form of Ṽi can be computed as:

Ṽi(x1, x2, ..., xsi) =
∑

b∈{0,1}si

si∏
i=1

[((1− xi)(1− bi) + xibi) · Vi(b)], (1)

where bi is i-th bit of b.
With these definitions, we can express the evaluations of Ṽi as a summation of evaluations of

Ṽi+1:

αiṼi(u
(i)) + βiṼi(v

(i)) =
∑

x,y∈{0,1}si+1
fi(Ṽi+1(x), Ṽi+1(y)), (2)

where u(i), v(i) ∈ Fsi are random vectors and αi, βi ∈ F are random values. Note here that fi
depends on αi, βi, u

(i), v(i) and we omit the subscripts for easy interpretation.
With Equation 2, the GKR protocol proceeds as follows. The prover P first sends the claimed

output of the circuit to V. From the claimed output, V defines polynomial Ṽ0 and computes
Ṽ0(u

(0)) and Ṽ0(v
(0)) for random u(0), v(0) ∈ Fs0 . V then picks two random values α0, β0 and

invokes a sumcheck protocol on Equation 2 with P for i = 0. As described before, at the end of the
sumcheck, V needs an oracle access to the evaluation of f0 at u(1), v(1) randomly selected in Fs1 . To
compute this value, V asks P to send Ṽ1(u

(1)) and Ṽ1(v
(1)). Other than these two values, f0 only

depends on α0, β0, u
(0), v(0) and the gates and wiring in layer 0, which are all known to V and can

be computed by V directly. In this way, V and P reduces two evaluations of Ṽ0 to two evaluations
of Ṽ1 in layer 1. V and P then repeat the protocol recursively layer by layer. Eventually, V receives
two claimed evaluations ṼD(u(D)) and ṼD(v(D)). V then checks the correctness of these two claims
directly by evaluating ṼD, which is defined by the input of the circuit. Let GKR.P and GKR.V be
the algorithms for the GKR prover and verifier, we have the following theorem:

Lemma 1. [34, 42, 64, 70]. Let C : Fn → F be a layered arithmetic circuit with depth of D.
〈GKR.P,GKR.V〉(C, x) is an interactive proof per Definition 1 for the function computed by C on
input x with soundness O(D log |C|/|F|). The total communication is O(D log |C|) and the running
time of the prover P is O(|C|). When C has regular wiring pattern2, the running time of the verifier
V is O(n+D log |C|).

Extending GKR to Zero Knowledge Argument. There are two limitations of the GKR
protocol: (1) It is not an argument system supporting witness from P, as V needs to evaluate ṼD
locally in the last round; (2) It is not zero knowledge, as in each round, both the sumcheck protocol
and the two evaluations of Ṽi leak information about the values in layer i.

To extend the GKR protocol to a zero knowledge argument, Xie et al. [70] address both of the
problems using zero knowledge polynomial delegation. Following the approach of [69, 72, 73], to

2“Regular” circuits is defined in [34, Theorem A.1]. Roughly speaking, it means the mutilinear extension of its
wiring predicates can be evaluated at a random point in time O(log |C|).

8

Protocol 1 (Zero Knowledge Argument in [70]). Let λ be the security parameter, F be a prime field.
Let C : Fn → F be a layered arithmetic circuit over F with D layers, input in and witness w such that
|in|+ |w| ≤ n and 1 = C(in;w).

• G(1λ): set pp as pp← zkVPD.KeyGen(1λ).

• 〈P(pp, w),V(pp)〉(in):

1. P selects a random bivariate polynomial RD. P commits to the witness of C by sending comD ←
zkVPD.Commit(V̇D, rVD

, pp) to V, where V̇D is defined by Equation 3.

2. P randomly selects polynomials Ri : F2 → F and δi : F2si+1+1 → F for i = 0, . . . , D − 1.
P commits to these polynomials by sending comi,1 ← zkVPD.Commit(Ri, rRi , pp) and comi,2 ←
zkVPD.Commit(δi, rδi , pp) to V. P also reveals R0 to V, as V0 is known to V.

3. V evaluates V̇0(u(0)) and V̇0(v(0)) for randomly chosen u(0), v(0) ∈ Fs0 .

4. For i = 0, . . . , D − 1:

(a) P sends Hi =
∑
x,y∈{0,1}si+1 ,z∈{0,1} δi(x, y, z) to V.

(b) V picks αi, βi, γi randomly in F.

(c) V and P execute a sumcheck protocol on Equation 4. At the end of the sumcheck, V receives a
claim of f ′i at point u(i+1), v(i+1) ∈ Fsi+1 , gi ∈ F selected randomly by V.

(d) P opens Ri(u
(i), gi), Ri(v

(i), gi) and δi(u
(i+1), v(i+1), gi) using zkVPD.Open. P sends V̇0(u(i+1))

and V̇0(v(i+1)) to V.

(e) V validates Ri(u
(i), gi), Ri(v

(i), gi) and δi(u
(i+1), v(i+1), gi) using zkVPD.Verify. If any of them

outputs 0, abort and output 0.

(f) V checks the claim of f ′i using Ri(u
(i), gi), Ri(v

(i), gi), δi(u
(i+1), v(i+1), gi), V̇0(u(i+1)) and

V̇0(v(i+1)). If it fails, output 0.

5. P runs (y1, π1) ← zkVPD.Open(V̇D, rVD
, u(D), pp), (y2, π2) ← zkVPD.Open(V̇D, rVD

, v(D), pp) and
sends y1, π1, y2, π2 to V.

6. V runs Verify(π1, y1, comD, u
(D), pp) and Verify(π2, y2, comD, v

(D), pp) and output 0 if either check
fails. Otherwise, V checks V̇D(u(D)) = y1 and V̇D(v(D)) = y2, and rejects if either fails. If all checks
above pass, V output 1.

support witness w as the input to the circuit, P commits to ṼD using zkVPD before running the
GKR protocol. In the last round of GKR, instead of evaluating ṼD locally, V asks P to open ṼD at
two random points u(D), v(D) selected by V and validates them using zkVPD.Verify. In this way, V
does not need to access w directly and the soundness still holds because of the soundness guarantee
of zkVPD.

To ensure zero knowledge, using the techniques proposed by Chiesa et al. in [32], the prover
P masks the polynomial Ṽi and the sumcheck protocol by random polynomials so that the proof
does not leak information. For correctness and soundness purposes, these random polynomials are
committed using the zkVPD protocol and opened at random points chosen by V. In particular, for
layer i, the prover selects a random bivariate polynomial Ri(x1, z) and defines

V̇i(x1, . . . , xsi)
def
= Ṽi(x1, . . . , xsi) + Zi(x1, . . . , xsi)

∑
z∈{0,1}

Ri(x1, z), (3)

where Zi(x) =
∏si
i=1 xi(1 − xi), i.e., Zi(x) = 0 for all x ∈ {0, 1}si . V̇i is known as the low degree

extension of Vi, as V̇i(x) = Ṽi(x) = Vi(x) for all x ∈ {0, 1}si . As Ri is randomly selected by

9

P, revealing evaluations of V̇i does not leak information about Vi, thus the values in the circuit.
Additionally, P selects another random polynomial δi(x1, . . . , xsi+1 , y1, . . . , ysi+1 , z) to mask the
sumcheck protocol. Let Hi =

∑
x,y∈{0,1}si+1 ,z∈{0,1} δi(x1, . . . , xsi+1 , y1, . . . , ysi+1 , z), Equation 2 to

run sumcheck on becomes

αiV̇i(u
(i)) + βiV̇i(v

(i)) + γiHi

=
∑

x,y∈{0,1}si+1 ,z∈{0,1}
f ′i(V̇i+1(x), V̇i+1(y), Ri(u

(i)
1 , z), Ri(v

(i)
1 , z), δi(x, y, z)) , (4)

where γi ∈ F is randomly selected by V, and f ′i is defined by αi, βi, γi, u
(i), v(i), Zi(u

(i)), Zi(v
(i))3.

Now V and P can execute the sumcheck and GKR protocol on Equation 4. In each round, P
additionally opens Ri and δi at Ri(u

(i)
1 , g(i)), Ri(v

(i)
1 , g(i)), δi(u

(i+1), v(i+1), g(i)) for g(i) ∈ F randomly
selected by V. With these values, V reduces the correctness of two evaluations V̇i(u

(i)), V̇i(v
(i)) to

two evaluations V̇i(u
(i+1)), V̇i(v

(i+1)) on one layer above like before. In addition, as fi is masked by
δi, the sumcheck protocol is zero knowledge; as Ṽi is masked by Ri, the two evaluations of V̇i do
not leak information. The full zero knowledge argument protocol in [70] is given in Protocol 1. We
have the following theorem:

Lemma 2. [70]. Let C : Fn → F be a layered arithmetic circuit with D layers, input in and witness
w. Protocol 1 is a zero knowledge argument of knowledge under Definition 2 for the relation defined
by 1 = C(in;w).

The variable degree of Ri is O(1). δi(x, y, z) = δi,1(x1)+ . . .+δi,si+1(xsi+1)+δi,si+1+1(y1)+ . . .+
δi,2si+1(ysi+1) + δi,2si+1+1(z) is the summation of 2si+1 + 1 univariate polynomials of degree O(1).
Other than the zkVPD instantiations, the proof size is O(D log |C|) and the prover time is O(|C|).
When C is regular, the verification time is O(n+D log |C|).

2.4 Univariate Sumcheck

Our transparent zkVPD protocol is inspired by the univariate sumcheck protocol recently proposed
by Ben-Sasson et al.in [14]. As the name indicates, the univariate sumcheck protocol allows the
verifier to validate the result of the sum of a univariate polynomial on a subset H of the field F:
µ =

∑
a∈H f(a). The key idea of the protocol relies on the following lemma:

Lemma 3. [27]. Let H be a multiplicative coset4 of F, and let g(x) be a univariate polynomial
over F of degree strictly less that |H|. Then

∑
a∈H g(a) = g(0) · |H|.

Because of Lemma 3, to test the result of
∑

a∈H f(a) for f with degree less than k, we can
decompose f into two parts f(x) = g(x)+ZH(x) ·h(x), where ZH(x) =

∏
a∈H(x−a) (i.e., ZH(a) = 0

for all a ∈ H), and the degrees of g and h are strictly less than |H| and k−|H|. This decomposition
is unique for every f . As ZH(a) is always 0 for a ∈ H, µ =

∑
a∈H f(a) =

∑
a∈H g(a) = g(0) · |H| by

Lemma 3. Therefore, if the claimed sum µ sent by the prover is correct, f(x)−ZH(x) ·h(x)−µ/|H|
must be a polynomial of degree less than |H| with constant term 0, or equivalently polynomial

p(x) =
|H| · f(x)− |H| · ZH(x) · h(x)− µ

|H| · x (5)

3Formally, f ′i is I(0, z)fi(V̇i+1(x), V̇i+1(y)) + I((x, y), 0)(αiZi(u
(i))R(u

(i)
1 , z) + βiZi(v

(i))R(v
(i)
1 , z)) + γiδi(x, y, z),

where I(a, b) is an identity polynomial I(a, b) = 0 iff a = b. We will not use f ′i explicitly in our constructions later.
4In [14], the protocols are mainly using additive cosets. We require H to be a multiplicative coset for our con-

structions over prime fields and extensions. The univariate sumsheck on multiplicative cosets is also stated in [14].

10

must be a polynomial of degree less than |H| − 1. To test this, the univariate sumcheck uses a low
degree test (LDT) protocol on Reed-Solomon (RS) code, which we define below.

Reed-Solomon Code. Let L be a subset of F, an RS code is the evaluations of a polynomial ρ(x)
of degree less than m (m < L) on L. We use the notation ρ|L to denote the vector of the evaluations
(ρ(a))a∈L, and use RS[L,m] to denote the set of all such vectors generated by polynomials of degree
less than m. Note that any vector of size |L| can be viewed as some univariate polynomial of degree
less than |L| evaluated on L, thus we use vector and polynomial interchangeably.

Low Degree Test and Rational Constraints. Low degree test allows a verifier to test whether
a polynomial/vector belongs to an RS code, i.e., the vector is the evaluations of some polynomial
of degree less than m on L.

In our constructions, we use the LDT protocol in [14, Protocol 8.2], which was used to transform
an RS-encoded IOP to a regular IOP. It applies the LDT protocol proposed in [10] protocol to a
sequence of polynomials ~ρ and their rational constraint p, which is a polynomial that can be
computed as the division of the polynomials in ~ρ. In the case of univariate sumcheck, the sequence
of polynomials is ~ρ = (f, h) and the rational constraint is given by Equation 5.

The high level idea is as follows. First, the verifier multiplies each polynomial in ~ρ and the
rational constraint p with an appropriate monomial such that they have the same degree max, and
takes their random linear combination. Then the verifier tests that the resulting polynomial is in
RS[L,max+ 1]. At the end of the protocol, the verifier needs oracle access to κ evaluations of each
polynomial in ~ρ and the rational constraint p at points in L indexed by I, and checks that each
evaluation of p is consistent with the evaluations of the polynomials in ~ρ. We denote the protocol
as 〈LDT.P(~ρ, p), LDT.V(~m,deg(p))〉(L), where ~ρ is a sequence of polynomials over F, p(x) is their
rational constraint, ~m,deg(p) is the degrees of the polynomials and the rational constraint to test,
and L is a multiplicative coset of F. We state the properties of the protocol in the following lemma:

Lemma 4. There exist an LDT protocol 〈LDT.P(~ρ, p), LDT.V(~m,deg(p))〉(L) that is complete and

sound with soundness error O(|L||F|) + negl(κ), given oracle access to evaluations of each polynomial

in ~ρ at κ points indexed by I in L. The proof size and the verification time are O(log |L|) other
than the oracle access, and the prover time is O(L).

The LDT protocol can be made zero knowledge in a straight-forward way by adding a ran-
dom polynomial of degree max in ~ρ. That is, there exists a simulator S such that given the
random challenges of I of any PPT algorithm V∗, it can simulate the view of V∗ such that
View(〈LDT.P(~ρ, p),V∗(~m,deg(p))〉(L)) ≈ SV∗(deg(p)). In particular, S generates p∗ ∈ RS[L,deg(p)]
and can simulate the view of any sequence of random polynomials ~ρ∗ subject to the constraint that
their evaluations at points indexed by I are consistent with the oracle access of p∗.

Merkle Tree. Merkle hash tree proposed by Ralph Merkle in [57] is a common primitive to commit
a vector and open it at an index with logarithmic proof size and verification time. It consists of
three algorithms:

• rootc ← MT.Commit(c)

• (cidx, πidx)← MT.Open(idx, c)

• (1, 0)← MT.Verify(rootc, idx, cidx, πidx)

11

The security follows the collision-resistant property of the hash function used to construct the
Merkle tree.

With these tools, the univariate sumcheck protocol works as follows. To prove µ =
∑

a∈H f(a),
the verifier and the prover picks L, a multiplicative coset of F and a superset of H, where |L| >
k. P decompose f(x) = g(x) + ZH(x) · h(x) as defined above, and computes the vectors f |L
and h|L. P then commits to these two vectors using Merkle trees. P then defines a polynomial

p(x) = |H|·f(x)−|H|·ZH(x)·h(x)−µ
|H|·x , which is a rational constraint of f and h. As explained above,

in order to ensure the correctness of µ, it suffices to test that the degree of (f, h), p is less than
(k, k − |H|), |H| − 1, which is done through the low degree test. At the end of the LDT, V needs
oracle access to κ points of f |L and h|L. P sends these points with their Merkle tree proofs, and
V validates their correctness. The formal protocol and the lemma is presented in Appendix A. As
shown in [14], it suffices to set |L| = O(|H|).

3 Transparent Zero Knowledge Polynomial Delegation

In this section, we present our main construction, a zero knowledge verifiable polynomial delegation
scheme without trusted setup. We first construct a VPD scheme that is correct and sound, then
extend it to be zero knowledge. Our construction is inspired by the univariate sumcheck [14]
described in Section 2.4.

Our main idea is as follows. To evaluate an `-variate polynomial f with variable degree d
at point t = (t1, . . . , t`), we model the evaluation as the inner product between the vector of
coefficients in f and the vector of all monomials in f evaluated at t. Formally speaking, let
N = |W`,d| = (d + 1)` be the number of possible monomials in an `-variate polynomial with
variable degree d, and let c = (c1, . . . , cN) be the coefficients of f in the order defined by W`,d such

that f(x1, . . . , x`) =
∑N

i=1 ciWi(x), where Wi(x) is the i-th monomial in W`,d. Define the vector

T = (W1(t), . . . ,WN (t)), then naturally the evaluation equals f(t) =
∑N

i=1 ci ·Ti, the inner product
of the two vectors. We then select a multiplicative coset H such that |H| = N , 5 and interpolate
vectors c and T to find the unique univariate polynomials that evaluate to c and T on H. We
denote the polynomials as l(x) and q(x) such that l|H = c and q|H = T . With these definitions,
f(t) =

∑N
i=1 ci · Ti =

∑
a∈H l(a) · q(a), which is the sum of the polynomial l(x) · q(x) on H. The

verifier can check the evaluation through a univariate sumcheck protocol with the prover. The
detailed protocol is presented in step 1-4 of Protocol 2.

Up to this point, the construction for validating the inner product between a vector committed
by P and a public vector is similar to and simpler than the protocols to check linear constraints
proposed in [5, 14]. However, naively applying the univariate sumcheck protocol incurs a linear
overhead for the verifier. This is because as described in Section 2.4, at the end of the univariate
sumcheck, due to the low degree test, the verifier needs oracle access to the evaluations of l(x) ·q(x)
at κ points on L, a superset of H. As l(x) is defined by c, i.e. the coefficients of f , the prover can
commit to l|L at the beginning of the protocol, and opens to points the verifier queries with their
Merkle tree proofs. q(x), however, is defined by the public vector T , and the verifier has to evaluate
it locally, which takes linear time. This is the major reason why the verification time in the zero
knowledge proof schemes for generic arithmetic circuits in [5, 14] is linear in the size of the circuits.

5If such coset does not exist, we can pad N to the nearest number with a coset of that size, and pad vector T
with 0s at the end.

12

Protocol 2 (Verifiable Polynomial Delegation). Let F be a family of `-variate polynomial over F with
variable-degree d and N = (d + 1)`.We use W`,d = {Wi(x1, . . . , x`)}Ni=1 to denote the collection of all
monomials in F . rf = ⊥ and we omit if in the algorithms.

• pp← KeyGen(1λ): Pick a hash function from the collision-resistant hash function family for Merkle tree.
Find a multiplicative coset H of F such that |H| = (d+ 1)`. Find a multiplicative coset L of F such that
|L| = O(|H|) > 2|H| and H ⊂ L ⊂ F.

• com ← Commit(f, pp): For a polynomial f ∈ F of the form f(x) =
∑N
i=1 ciWi(x), find the unique

univariate polynomial l(x) : F → F such that l|H = (c1, . . . , cN). P evaluates l|L and runs rootl ←
MT.Commit(l|L). Output com = rootl.

• ((µ, π); {0, 1})← 〈Open(f),Verify(com)〉(t, pp): This is an interactive protocol between P and V.

1. P computes µ = f(t) and sends it to V.

2. P evaluates T = (W1(t), . . . ,WN (t)). P finds the unique univariate polynomial q(x) : F → F such
that q|H = T .

3. P computes l(x) · q(x). P uniquely decomposes l(x) · q(x) = g(x) + ZH(x) · h(x) , where ZH(x) =∏
a∈H(x− a) and the degrees of g and h are strictly less than |H| and |H| − 1. P evaluates h|L and

runs rooth ← MT.Commit(h|L) and sends rooth to V.

4. Let p(x) = |H|·l(x)·q(x)−µ−|H|·ZH(x)h(x)
|H|·x . P and V invoke a low degree test: 〈LDT.P((l ·

q, h), p), LDT.V((2|H| − 1, |H| − 1), |H| − 1)〉(L). If the test fails, V aborts and output 0. Other-
wise, at then end of the test, V needs oracle access to κ points of l(x) · q(x), h(x) and p(x) at indices
I.

5. For each index i ∈ I, let ai be the corresponding point in L. P opens (l(ai), π
l
i)← MT.Open(i, l|L)

and (h(ai), π
h
i)← MT.Open(i, h|L).

6. V executes MT.Verify(rootl, i, l(ai), π
l
i) and MT.Verify(rooth, i, h(ai), π

h
i) for all points opened by P.

If any verification fails, abort and output 0.

7. To complete the low degree test, P and V runs 〈GKR.P,GKR.V〉(C, t), where circuit C computes the
evaluations of q|L and outputs the elements q(ai) for i ∈ I (see Figure 1). If any of the checks in
GKR fails, V aborts and outputs 0.

8. For each i ∈ I, V computes l(ai) · q(ai). Together with h(ai), V completes the low degree test. If all
checks above pass, V outputs 1.

Reducing the verification time. In this paper, we propose an approach to reduce the cost of
the verifier to poly-logarithmic for VPD. We observe that in our construction, though the size of
T and q(x) is linear in N , it is defined by only ` = O(logN) values of the evaluation point t. This
means that the oracle access of κ points of q(x) can be modeled as a function that: (1) Takes t as
input, evaluates all monomials Wi(t) for all Wi ∈ W`,d as a vector T ; (2) Extrapolates the vector
T to find polynomial q(x), and evaluates q(x) on L; (3) Outputs κ points of q|L chosen by the
verifier. Although the size of the function modeled as an arithmetic circuit is Ω(N) with O(logN)
depth, and the size of its input and output is only O(logN + κ). Therefore, instead of evaluating
the function locally, the verifier can delegate this computation to the prover, and validate the
result using the GKR protocol, as presented in Section 2.3. In this way, we eliminate the linear
overhead to evaluate these points locally, making the verification time of the overall VPD protocol
poly-logarithmic. The formal protocol is presented in Protocol 2.

To avoid any asymptotic overhead for the prover, we also design an efficient layered arithmetic

13

Input: t = (t1, . . . , t`)
Output: q()

1. Computing vector T = (W1(t), . . . ,WN (t)):

• Compute (t0i , t
1
i , . . . , t

d
i) for i = 1, . . . , `.

• Initialize vector T0 = (1).

• For i = 1, . . . , `:
Ti = (t0i ·Ti−1, . . . , tdi ·Ti−1), where “ ·” here is scalar multiplication between a number and a vector
and “,” means concatenation. Set T = T`.

2. Computing q|L:

• q|L = FFT(IFFT(T,H),L)

3. Outputting evaluations indexed by Iq:

Figure 1: Arithmetic circuit C computing evaluations of q(x) at κ points in L indexed by I.

circuit for the function mentioned above. The details of the circuit are presented in Figure 1. In
particular, in the first part, each value ti in the input t is raised to powers of 0, 1, . . . , d. Then they
are expanded to T , the evaluations of all monomials inW`,d, by multiplying one ti at a time through
a (d+ 1)-ary tree. The size of this part is O(N) = O((d+ 1)`) and the depth is O(log d+ `). In the
second part, the polynomial q(x) and the vector q|L is computed from T directly using FFTs. We
first construct a circuit for an inverse FFT to compute the coefficients of polynomial q(x) from its
evaluations T . Then we run an FFT to evaluate q|L from the coefficients of q(x). We implement
FFT and IFFT using the Butterfly circuit [33]. The size of the circuit is O(N logN) and the depth
is O(logN). Finally, κ points are selected from q|L. As the whole delegation of the GKR protocol
is executed at the end in Protocol 2 after these points being fixed by the verifier, the points to
output are directly hard-coded into the circuit with size O(κ) and depth 1. No heavy techniques
for random accesses in the circuit is needed. Therefore, the whole circuit is of size O(N logN) and
depth O(logN), with ` inputs and κ outputs.

Theorem 1. Protocol 2 is a verifiable polynomial delegation protocol that is complete and sound
under Definition 3.

Proof. Completeness. By the definition of l(x) and q(x), if µ = f(t), then µ =
∑

a∈H l(a) ·q(a) =∑
a∈H g(a) = g(0) · |H| by Lemma 3. Thus, p(x) = |H|·l(x)·q(x)−|H|·ZH(x)h(x)−µ

|H|·x = g(x)−g(0)
x , which is

in RS[L, |H| − 1]. The rest follows the completeness of the LDT protocol and the GKR protocol.
Soundness. Let εLDT, εMT, εGKR be the soundness error of the LDT, Merkle tree and GKR proto-
cols. There are two cases for a malicious prover P.
Case 1: @l∗ ∈ RS[L, |H|+1] such that com = MT.Commit(l∗|L), i.e. com is not a valid commitment.

• By the check in step 6, if com is not a valid Merkle tree root, the verification passes with
probability less than εMT.

• If ∃l∗∗ /∈ RS[L, |H| + 1] such that com ← MT.Commit(l∗∗|L), if the points v∗i opened by P in
step 5 v∗i 6= l∗∗(ai) for some i, the verification passes with probability no more than εMT.

• If the output q∗i returned by P in step 7 is q∗i 6= q(ai) for some i, the verification passes with
probability less than εGKR.

14

• Otherwise, as l∗∗(x) · q(x) /∈ RS[L, 2|H| + 1], by the checks of LDT in step 4, the verification
passes with probability no more than εLDT.

Case 2: ∃l∗ ∈ RS[L, |H| + 1] such that com = MT.Commit(l∗|L). Let c∗ = l∗|H and f∗(x) =∑N
i=1 c

∗
iWi(x), then com = Commit(f∗, pp). Suppose µ∗ 6= f∗(t), then µ∗ 6= ∑

a∈H l
∗(a)q(a).

Then by Lemma 3, for all h ∈ RS[L, |H| + 1], p∗ /∈ RS[L, |H| − 1], as
∑

a∈H(p∗(a) · a) =∑
a∈H

|H|·l∗(a)·q(a)−µ∗
|H| =

∑
a∈H(l∗(a) · q(a))− µ∗ 6= 0. Therefore,

• Similar to case 1, if the commitment in step 3 is not a valid Merkle tree root, or the points
opened by P in step 5 are inconsistent with h or l∗, the verification passes with probability no
more than εMT.

• If the output q∗i returned by P in step 7 q∗i 6= q(ai) for some i, the verification passes with
probability no more than εGKR.

• Otherwise, as l∗ · q ∈ RS[L, 2|H|+ 1], either h /∈ RS[L, |H|+ 1] or p /∈ RS[L, |H| − 1] as explained
above. By the check in step 4, the verification passes with probability no more than εLDT.

By the union bound, the probability of the event of a malicious prover is no more than O(εLDT+

εMT + εGKR). As stated in Section 2, εLDT = O(|L||F|) + negl(κ), εGKR = O(log
2N
|F|) and εMT = negl(λ).

Therefore, with proper choice of parameters, the probability is ≤ negl(λ).

Efficiency. The running time of Commit is O(N logN). C in step 7 is a regular circuit with size
O(N logN), depth O(` + log d) and size of input and output O(` + κ). By Lemma 1 and 5, the
prover time is O(N logN), the proof size and the verification time are (log2N).

Extending to other ZKP schemes. We notice that our technique can be potentially applied to
generic zero knowledge proof schemes in [5, 14] to improve the verification time for circuits/con-
straint systems with succinct representation. As mentioned previously, the key step that introduces
linear verification time in these schemes is to check a linear constraint system, i.e., y = Aw, where
w is a vector of all values on the wires of the circuit committed by the prover, and A is a public
matrix derived from the circuit such that Aw gives a vector of left inputs to all multiplication gates
in the circuit. (This check is executed 2 more times to also give right inputs and outputs.) To check
the relationship, it is turned into a vector inner product µ = ry = rA ·w by multiplying both sides
by a random vector r. Similar to our naive protocol to check inner product, the verification time
is linear in order to evaluate the polynomial defined by rA at κ points. With our new protocol,
if the circuit can be represented succinctly in sublinear or logarithmic space, A can be computed
by a function with sublinear or logarithmic number of inputs. We can use the GKR protocol to
delegate the computation of rA and the subsequent evaluations to the prover in a similar way as in
our construction, and the verification time will only depend on the space to represent the circuit,
but not on the total size of the circuit. This is left as a future work.

3.1 Achieving Zero Knowledge

Our VPD protocol in Protocol 2 is not zero knowledge. Intuitively, there are two places that
leak information about the polynomial f : (1) In step 6 of Protocol 2, P opens evaluations of
l(x), which is defined by the coefficients of f ; (2) In step 4, P and V execute low degree tests on

15

Protocol 3 (Zero Knowledge Verifiable Polynomial Delegation). Let F be a family of `-variate polynomial
over F with variable-degree d and N = (d+ 1)`.We use W`,d = {Wi(x1, . . . , x`)}Ni=1 to denote the collection
of all monomials in F .

• pp← zkVPD.KeyGen(1λ): Same as KeyGen in Procotol 2. Define U = L−H.

• com ← Commit(f, rf , pp): For a polynomial f ∈ F of the form f(x) =
∑N
i=1 ciWi(x), find the unique

univariate polynomial l(x) : F→ F such that l|H = (c1, . . . , cN). P samples a polynomial r(x) with degree
κ randomly and sets l′(x) = l(x) + ZH(x) · r(x), where ZH(x) =

∏
a∈H(x− a). P evaluates l′|U and runs

rootl′ ← MT.Commit(l′|U). Output com = rootl′ .

• ((µ, π); {0, 1}) ← 〈Open(f, rf),Verify(com)〉(t, pp): This is an interactive protocol between P and V. It
replaces the univariate sumscheck on l(x) · q(x) by l′(x) · q(x) + αs(x) and L by U in Protocol 2.

1. P computes µ = f(t) and sends it to V.

2. P evaluates T = (W1(t), . . . ,WN (t)). P finds the unique univariate polynomial q(x) : F → F such
that q|H = T .

3. P samples randomly a degree 2|H|+κ− 1 polynomial s(x). P sends V S =
∑
a∈H s(a) and roots ←

MT.Commit(s|U).

4. V picks α ∈ F randomly and sends it to P.

5. P computes αl′(x) ·q(x)+s(x). P uniquely decomposes it as g(x)+ZH(x) ·h(x), where the degrees of
g and h are strictly less than |H| and |H|+κ. P evaluates h|U and sends rooth ← MT.Commit((h|U)
to V.

6. Let p(x) = |H|·(αl′(x)·q(x)+s(x))−(αµ+S)−|H|·ZH(x)h(x)
|H|·x . P and V invoke the low degree test: 〈LDT.P((l′ ·

q, h, s), p), LDT.V((2|H| + κ, |H| + κ, 2|H| + κ), |H| − 1)〉(U). If the test fails, V aborts and output
0. Otherwise, at the end of the test, V needs oracle access to κ points of l′(x) · q(x), h(x), s(x) and
p(x) at indices I.

7. For each index i ∈ I, let ai be the corresponding point in U. P opens (l′(ai), π
l′

i)← MT.Open(i, l′|U),
(h(ai), π

h
i)← MT.Open(i, h|U) and (s(ai), π

s
i)← MT.Open(i, s|U).

8. V executes MT.Verify(rootl′ , i, l
′(ai), π

l′

i), MT.Verify(rooth, i, h(ai), π
h
i) and

MT.Verify(roots, i, s(ai), π
s
i) for all points opened by P. If any verification fails, abort and

output 0.

9. To complete the low degree test, P and V runs 〈GKR.P,GKR.V〉(C, t), where circuit C computes the
evaluations of q|U and outputs the elements q(ai) for i ∈ I. If any of the checks in GKR fails, V
aborts and outputs 0.

10. For each i ∈ I, V computes l′(ai) · q(ai). Together with h(ai) and s(ai), V completes the low degree
test. If all checks above pass, V outputs 1.

(l(x) · q(x), h(x)), p(x) and the proofs of LDT reveal information about the polynomials, which are
related to f .

To make the protocol zero knowledge, we take the standard approaches proposed in [5, 14]. To
eliminate the former leakage of queries on l(x), the prover picks a random degree κ polynomial r(x)
and masks it as l′(x) = l(x) +ZH(x) · r(x), where as before, ZH(x) =

∏
a∈H(x− a). Note here that

l′(a) = l(a) for a ∈ H, yet any κ evaluations of l′(x) outside H do not reveal any information about
l(x) because of the masking polynomial r(x). The degree of l′(x) is |H|+κ, and we denote domain
U = L−H.

To eliminate the latter leakage, P samples a random polynomial s(x) of the same degree as

16

l′(x) · q(x), sends S =
∑

a∈H s(a) to V and runs the univariate sumcheck protocol on their random
linear combination: αµ + S =

∑
a∈H(αl′(x) · q(x) + s(x)) for a random α ∈ F chosen by V. This

ensures that both µ and S are correctly computed because of the random linear combination and
the linearity of the univariate sumcheck, while leaking no information about l′(x) · q(x) during the
protocol, as it is masked by s(x).

One advantage of our construction is that the GKR protocol used to compute evaluations of
q(x) in step 7 of Protocol 2 remains unchanged in the zero knowledge version of the VPD. This
is because q(x) and its evaluations are independent of the polynomial f or any prover’s secret
input. Therefore, it suffices to apply the plain version of GKR without zero knowledge, avoiding
any expensive cryptographic primitives.

The full protocol for our zkVPD is presented in Protocol 3. Note that all the evaluations are
on U = L−H instead of L, as evaluations on H leaks information about the original l(x). s(x) is
also committed and opened using Merkle tree for the purpose of correctness and soundness. The
efficiency of our zkVPD protocol is asymptotically the same as our VPD protocol in Protocol 2,
and the concrete overhead in practice is also small. We have the following theorem:

Theorem 2. Protocol 3 is a zero knowledge verifiable polynomial delegation scheme by Definition 3.

Proof. Completeness. It follows the completeness of Protocol 2.

Soundness. It follows the soundness of Protocol 2 and the random linear combination. In partic-
ular, in Case 2 of the proof of Theorem 1, if ∃l′∗ ∈ RS[L, |H| + κ + 1], it can always be uniquely
decomposed as l∗(x) = l′∗(x) − ZH(x)r∗(x) such that

∑
a∈H l

′∗(a) =
∑

a∈H l
∗(a) and the degree of

l∗(x) is |H| and the degree of r(x) is κ. If µ∗ 6= µ =
∑

a∈H(l∗(a) · q(a)) =
∑

a∈H(l′∗(a) · q(a)), let
S∗ =

∑
a∈H s

∗(a) where s∗(x) is committed by P in step 5, then
∑

a∈H(αl′∗(a) · q(a) + s∗(a)) =

αµ∗+S∗ = αµ+S if and only if α = S−S∗
µ∗−µ , which happens with probability 1/|F|. The probability

of other cases are the same as the proof of Theorem 1, and we omit the details here.

Zero knowledge. The simulator is given in Figure 2.
To prove zero knowledge, l′sim in S1 and l′ in zkVPD.Commit are both uniformly distributed. In

S2, steps 1, 2 and 9 are the same as the real world in Protocol 3. No message is sent in steps 4, 8
and 10.

In step 3 and 7, ssim and s are both randomly selected and their commitments and evaluations
are indistinguishable. As r(x) is a degree-κ random polynomial in the real world in Protocol 3, κ
evaluations of l′(x) opened in step 7 are independent and randomly distributed, which is indistin-
guishable from step 7 of S2 in the ideal world. Finally, in step 7 of the ideal world, V∗ receives κ
evaluations of hsim at point indexed by I. Together with l′sim · q and ssim, by Lemma 4, the view
of steps 5-7 simulated by LDT.S is indistinguishable from the real world with h, l′ · q and s, which
completes the proof.

Our zkVPD protocol is also a proof of knowledge. Here we give the formal definition of knowl-
edge soundness of a zkVPD protocol in addition to Definition 3 and prove that our protocol has
knowledge soundness.

Knowledge Soundness. For any PPT adversary A, there exists a PPT extractor E such that
given access to the random tape of A, for every pp← zkVPD.KeyGen(1λ), the following probability

17

• com ← S1(1λ, pp): Pick a random polynomial l′sim(x) ∈ RS[L, |H| + κ + 1]. Evaluate l′sim|U and output
rootl′sim ← MT.Commit(l′sim|U).

• S2(t, pp):

1. Given oracle access to µ = f(t), send it to V∗.
2. Evaluate T = (W1(t), . . . ,WN (t)). Find the unique univariate polynomial q(x) : F → F such that

q|H = T .

3. Pick a degree 2|H|+κ−1 polynomial ssim(x) randomly. Send V Ssim =
∑
a∈H ssim(a) and rootssim ←

MT.Commit(ssim|U).

4. Receive α ∈ F from V.

5. Let LDT.S be the simulator the LDT protocol described in Section 2.4. Given the random challenges
I of V∗, call LDT.S to generate p∗(x) ∈ RS[L, |H| − 1]. For each point ai in I, compute hi such

that p∗(ai) =
|H|·(αl′sim(ai)·q(ai)+ssim(ai))−(αµ+Ssim)−|H|·ZH(ai)hi

|H|·ai . Interpolate hi to get polynomial hsim
and sends roothsim ← MT.Commit((hsim|U) to V∗.

6. Call LDT.S to simulate the view of the low degree test LDT.SV∗ .
7. For each index i ∈ I, let ai be the corresponding point in U. P opens (l′sim(ai), π

l′sim
i) ←

MT.Open(i, l′sim|U), (hi, π
hsim
i)← MT.Open(i, hsim|U) and (ssim(ai), π

ssim
i)← MT.Open(i, ssim|U).

8. Wait V∗ to validate the points.

9. Run 〈GKR.P,GKR.V〉(C, t) with V∗, where circuit C computes the evaluations of q|U and outputs
the elements q(ai) for i ∈ I.

10. Wait V∗ for validation.

Figure 2: Simulator S of the zkVPD protocol.

is negl(λ):

Pr

(com∗, t)← A(1λ, pp),

((y∗, π∗); 1)← 〈A(), zkVPD.Verify(com∗)〉(t, pp),

(f, rf)← E(1λ, pp) :

com∗ 6= zkVPD.Commit(f, rf , pp) ∨ f(t) 6= y∗

Our zkVPD protocol is a proof of knowledge in the random oracle model because of the ex-

tractability of Merkle tree, as proven in [15, 66]. Informally speaking, given the root and sufficiently
many authentication paths, there exists a PPT extractor that reconstructs the leaves with high
probability. Additionally, in our protocol the leaves are RS encoding of the witness, which can be
efficiently decoded by the extractor. We give a proof similar to [15, 66] below.

Proof. Suppose the Merkle tree in our protocol is based on a random oracle R : {0, 1}2λ → {0, 1}λ.
We could construct a polynomial extractor E with the same random type of A working as follows:

Simulate AR, and let q1, q2, · · · , qt be the queries made by A to R in the order they are made
where duplicates omitted. Define qi ∈ R(qj) if the first λ bits or the last λ bits of qi is R(qj). If
there exist some i 6= j, R(qi) = R(qj), or some i ≤ j qi ∈ R(qj), E aborts and outputs a random
string as (f, rf).

18

E constructs an acyclic directed graph G according to the query set Q = {q1, q2, · · · , qt}. There
is an edge from qi to qj in G if and only if qi ∈ R(qj). The outdegree of each node is at most 2.
When A generates rootl′ in step 2 of Protocol 3, if rootl′ does not equal R(q) for some q ∈ Q, E
aborts and outputs a random string as (f, rf), otherwise we suppose R(qr) = rootl′ . If a verification
path of π∗ is not valid, E aborts and outputs a random string as (f, rf).

Since E knows the correct depth of the Merkle tree, it could read off all leaf strings with this
depth from the binary tree rooted at qr. If there exists missing leaf, E aborts and outputs a random
string as (f, rf), otherwise, it concatenates these leaf strings as w′ = l′|U, and decodes w = l′|H
using an efficient Reed–Solomon decoding algorithm (such as Berlekamp–Welch). E could easily
output (f, rf) according to w.

Let E1 denote the event ((y∗, π∗); 1) ← 〈A(), zkVPD.Verify(com∗)〉(t, pp) and E2 denote the
event com∗ 6= zkVPD.Commit(f, rf , pp) ∨ f(t) 6= y∗, next we show Pr[E1 ∧ E2] ≤ negl(λ).

The probability that E aborts before constructing the graph G is negl(λ) because of the collision-
resistant property of the random oracle. If some node on a verification path(possibly including the
root) of the proof π∗ does not lie in the graph G, A has to guess the value to construct a valid
verification path, which propability is also negl(λ) since R is noninvertible. Additionally, if one leaf
of the tree is missing, then V will be convinced with probability negl(λ) once it queries this leaf.
And the probability this leaf is not be queried by V is at most (1− 1

|U|)
κ = negl(λ) as κ = O(λ).

If E does not abort, it could always extract some (f, rf) satisfying com∗ = zkVPD.Commit(f, rf , pp).
In this case, V accepts the statement with probability negl(λ) if f(t) 6= y∗ according to the soundness
of zkVPD.

Therefore, Pr[E1∧E2] = Pr[E1∧E2|E aborts]+Pr[E1∧E2|E does not abort] ≤ Pr[E1|E aborts]+
Pr[E1 ∧ E2|E does not abort] ≤ negl(λ) + negl(λ) = negl(λ)

4 Zero Knowledge Argument

Following the framework of [70], we can instantiate the zkVPD in Protocol 1 with our new construc-
tion of transparent zkVPD in Protocol 3 to obtain a zero knowledge argument of knowledge scheme
for layered arithmetic circuits without trusted setup. In this section, we present two optimizations
to improve the asymptotic performance, followed by the formal description of the scheme.

4.1 zkVPD for Input Layer

As presented in Section 2.3, to extend the GKR protocol to a zero knowledge argument, we need
a zkVPD protocol for the low degree extension V̇D of polynomial VD defined by Equation 3. The
variable degree of V̇D for x2, . . . , xsD is 2, and the variable degree for x1 is 3. Naively applying our
zkVPD protocol in Section 3.1 would incur a prover time of O(sD3sD), superlinear in the size of
the input n = O(2sD).

Instead, we observe that the low degree extension in Equation 3 is of a special form: it is the sum
of the multilinear extension ṼD defined by Equation 1 and ZD(x)

∑
z∈{0,1}RD(x1, z), where ZD is

publicly known and
∑

z∈{0,1}RD(x1, z) is a degree-1 univariate polynomial, i.e.
∑

z∈{0,1}RD(x1, z) =

a0+a1x1. Therefore, the evaluation of V̇D at point t ∈ FsD can be modeled as the inner product be-
tween two vectors T and c of length n+2. The first n elements in T are

∏sD
i=1((1− ti)(1− bi)+ tibi)

for all b ∈ {0, 1}sD , concatenated by two more elements ZD(t), ZD(t) · t1. Similarly, the first n
elements of c are VD(b) for all b ∈ {0, 1}sD , concatenated by a0, a1.

19

Protocol 4 (Our Zero Knowledge Argument). Let λ be the security parameter, F be a prime field. Let
C : Fn → F be a layered arithmetic circuit over F with D layers, input x and witness w such that |x|+|w| ≤ n
and 1 = C(x;w).

• G(1λ): set pp as pp← zkVPD.KeyGen(1λ).

• 〈P(pp, w),V(pp)〉(in):

1. P selects a random bivariate polynomial RD. P commits to the witness of C by sending comD ←
zkVPD.Commit(V̇D, pp) to V, where V̇D is defined by Equation 3.

2. P randomly selects polynomials Ri : F2 → F and δi : F2si+1+1 → F for i = 0, . . . , D−1. P commits to
these polynomials by sending comi,1 ← zkVPD.Commit(Ri, pp) and comi,2 ← zkVPD.Commit(δi, pp)
to V. P also reveals R0 to V, as V0 is defined by out and is known to V.

3. V evaluates V̇0(u(0)) and V̇0(v(0)) for randomly chosen u(0), v(0) ∈ Fs0 .

4. For i = 0, . . . , D − 1:

(a) P sends Hi =
∑
x,y∈{0,1}si+1 ,z∈{0,1} δi(x, y, z) to V.

(b) V picks αi, βi, γi randomly in F.

(c) V and P execute a sumcheck protocol on Equation 4. At the end of the sumcheck, V receives a
claim of f ′i at point u(i+1), v(i+1) ∈ Fsi+1 , gi ∈ F selected randomly by V.

(d) P opens Ri(u
(i), gi), Ri(v

(i), gi) and δi(u
(i+1), v(i+1), gi) using zkVPD.Open. P sends V̇0(u(i+1))

and V̇0(v(i+1)) to V.

(e) V validates Ri(u
(i), gi), Ri(v

(i), gi) and δi(u
(i+1), v(i+1), gi) using zkVPD.Verify. If any of them

outputs 0, abort and output 0.

(f) V checks the claim of f ′i using Ri(u
(i), gi), Ri(v

(i), gi), δi(u
(i+1), v(i+1), gi), V̇0(u(i+1)) and

V̇0(v(i+1)). If it fails, output 0.

5. P runs (y1, π1) ← zkVPD.Open(V̇D, u
(D), pp), (y2, π2) ← zkVPD.Open(V̇D, v

(D), pp) and sends
y1, π1, y2, π2 to V.

6. V runs Verify(π1, y1, comD, u
(D), pp) and Verify(π2, y2, comD, v

(D), pp) and output 0 if either check
fails. Otherwise, V checks V̇D(u(D)) = y1 and V̇D(v(D)) = y2, and rejects if either fails. If all checks
above pass, V output 1.

Therefore, P and V replace vectors T and c in Protocol 3 by ones described above. In addition,
the first part of the GKR circuit shown in Figure 1 to compute T from t1, . . . tsD is also changed
according to the definition of T above. The rest of the protocol remains the same and it is straight
forward to prove that the modified protocol is still correct, sound and zero knowledge. In this way,
the prover time is O(n log n), the proof size is O(log2 n) and the verification time is O(log2 n).

4.2 zkVPD for Interior Layers

The second place that uses zkVPD in Protocol 1 is on the masking polynomials Ri and δi in each
layer. By Theorem 2, δi : F2si+1+1 → F is a sparse polynomial that can be expressed as the sum of
2si+1 + 1 univariate polynomials of degree deg(δi) = O(1) on each variable. Therefore, instead of
using the generic zkVPD in Protocol 3 with d = deg(δi), we model the evaluation of δi as a vector
inner product between two dense vectors of size (deg(δi) + 1) · (2si+1 + 1). The vector committed
by P consists of all coefficients in δi, and the one known to V consists of the value of each variable

20

raised to degree 0, 1, . . . ,deg(δi). In addition, as the size of the vector is asymptotically the same as
the number of variables, in step 9-10 of Protocol 3, V can compute the evaluations of q(x) directly
in time O(si+1) and it is not necessary to delegate the computation to P using GKR anymore.
With this approach, the prover time for evaluating the masking polynomials Ri and δi of all layers
is O(D logC log logC), the proof size is O(D log log2C) and the verification time is O(D logC).
As shown in Lemma 2, this does not introduce any asymptotic overhead for the zero knowledge
argument scheme.

To further improve the efficiency in practice, we can also combine all the evaluations of Ri and
δi into one big vector inner product using random linear combinations.

4.3 Putting Everything Together

With the optimizations above, the full protocol of our transparent zero knowledge argument scheme
is presented in Protocol 4. Consider the following theorem:

Theorem 3. For a finite field F and a family of layered arithmetic circuit CF over F, Protocol 4 is
a zero knowledge argument of knowledge for the relation

R = {(C, x;w) : C ∈ CF ∧ C(x;w) = 1},

as defined in Definition 2.
Moreover, for every (C, x;w) ∈ R, the running time of P is O(|C| + n log n) field operations,

where n = |x|+|w|. The running time of V is O(|x|+D·log |C|+log2 n) if C is regular with D layers.
P and V interact O(D log |C|) rounds and the total communication (proof size) is O(D log |C| +
log2 n). In case D is polylog(|C|), the protocol is a succinct argument.

Soundness follows the knowledge soundness of our zkVPD protocol (Protocol 3) and Lemma 1.
To prove zero knowledge, we present the simulator in Figure 3. The efficiency follows Lemma 2
and the efficiency of our instantiations of the zkVPD protocol with optimizations described above.

Proof. Completeness. It follows the completeness of Protocol 3 and the completeness of the GKR
protocol in [70].

Soundness. It follows the soundness of Protocol 3 and the soundness of the GKR protocol with
masking polynomials as proven in [32, 70]. The proof of knowledge property follows the knowledge
soundness of our zkVPD protocol. In particular, the witness can be extracted using the extractor
presented in Section 3. More formally speaking, our construction is an interactive oracle proof
(IOP) as defined in [15]. Applying the transformation from IOP to an argument system using
Merkle tree preserves the proof of knowledge property. Our underlying IOP is proof of knowledge
as the proofs are RS codes and the witness can be efficiently extracted through decoding.

Zero knowledge. The simulator is given in Figure 3. V∗ can behave arbitrarily in Step 3, 4(b),
4(e), 4(f) and 6. We include these steps as place holders to compare to Protocol 4.

To prove zero-knowledge, Step 1, 2, 4(d) and 5 of both worlds are indistinguishable because of
the zero knowledge property of the zkVPD protocol in Protocol 3. As the commitments and proofs
are simulated in step 2 and 4(d) by Svpd without knowing the polynomials, Step 4(c) of both worlds
are indistinguishable as shown in [70, Theorem 3]. Step 4(a) in both worlds are indistinguishable
as δ are randomly selected in both worlds.

21

Let λ be the security parameter, F be a prime field. Let C : Fn → F be a layered arithmetic circuit over
F with D layers, input x and witness w such that |x| + |w| ≤ n and out = C(x;w). We construct the
simulator S given the circuit C, the output out and input size n. Let Svpd, Svpd,Ri

and Svpd,δi be simulators
of zkVPD for the witness and masking polynomials. Let Ssc be the simulator of the sumcheck protocol on
Equation 4, given by [70, Theorem 3].

• G(1λ): set pp as pp← zkVPD.KeyGen(1λ).

• (S(pp, C, out, 1n),V∗(C, pp)):

1. S invokes Svpd to generate com← Svpd(1λ, pp) and sends com to V∗.
2. S randomly selects polynomials Rsim,i : F2 → F and δsim,i : F2si+1+1 → F for i = 0, . . . , D − 1

that have the same monomials as Ri and δi in step 2 of Protocol 4. S invokes Svpd,Ri
and Svpd,δi

to generate comi,1 ← Svpd,Ri
(1λ, ppRi

) and comi,2 ← Svpd,δi(1λ, ppδi) and send them to V∗, where
ppRi

and ppδi are corresponding public parameters. S also reveals Rsim,0 to V, as V0 is defined by
out and is known to V∗.

3. Wait V∗ to evaluate V̇0(u(0)) and V̇0(v(0)) for randomly chosen u(0), v(0) ∈ Fs0 .

4. For i = 0, . . . , D − 1:

(a) S sends Hi =
∑
x,y∈{0,1}si+1 ,z∈{0,1} δsim,i(x, y, z) to V∗.

(b) Receive αi, βi, γi from V∗.
(c) S simulates the sumcheck protocol on Equation 4 using Ssc. At the end of the sumcheck, S

receives queries of δsim,i and Rsim,i at point u(i+1), v(i+1) ∈ Fsi+1 , gi ∈ F selected by V∗. S
randomly computes V̇i+1(u(i+1)), V̇i+1(v(i+1)) satisfying Equation 4 at point u(i+1), v(i+1), gi
and send them to V∗.

(d) S computes Rsim,i(u
(i), gi), Rsim,i(v

(i), gi) and δsim,i(u
(i+1), v(i+1), gi) and invokes Svpd,Ri

and
Svpd,δi to generate the proofs of these evaluations.

(e) Wait for V∗ to validate Rsim,i(u
(i), gi), Rsim,i(v

(i), gi) and δsim,i(u
(i+1), v(i+1), gi).

(f) Wait for V∗ to check the last claim of the sumcheck about f ′i using Rsim,i(u
(i), gi),

Rsim,i(v
(i), gi), δsim,i(u

(i+1), v(i+1), gi), V̇i+1(u(i+1)) and V̇i+1(v(i+1)).

5. In last part of the protocol, S needs to prove to V∗ the values of V̇D(u(D)) and V̇D(v(D)), where
u(D) ∈ Fn and v(D) ∈ Fn are chosen by V∗. S gives u(D), V̇D(u(D)) to Svpd and invokes S2 of Svpd
in Figure 2 to simulate this process. Do the same process again for v(D), V̇D(v(D)).

6. Wait for V to run zkVPD.Verify to validate the value of V̇D(u(D)) and V̇D(v(D)).

Figure 3: Simulator S of Virgo.

Removing interactions. Similar to [70], our construction can be made non-interactive in the
random oracle model using Fiat-Shamir heuristic [37]. As shown in recent work [15, 30], applying
Fiat-Shamir on the GKR protocol only incurs a polynomial soundness loss in the number of rounds.

Regular circuits and log-space uniform. In our scheme, the verification time is succinct only
when the circuit is regular. This is the best that can be achieved for transparent ZKP, as in the
worst case, the verifier must read the entire circuit, which takes linear time. In fact, as shown
in [42], the verification time is succinct for all log-space uniform circuits. However, it introduces an
extra overhead on the prover time, thus we state all of our results on regular circuits.

In practice, with the help of auxiliary input and circuit squashing, most computations can
be expressed as regular circuits with low depth, such as matrix multiplication, image scaling and

22

Merkle hash tree in Section 5. Asymptotically, as shown in [9, 16, 75], all random memory access
(RAM) programs can be validated by circuits that are regular with log-depth in the running time of
the programs (but linear in the size of the programs) by RAM-to-circuit reduction, which justifies
the expressiveness of such circuits.

5 Implementation and Evaluation

We implement Virgo, a zero knowledge proof system based on our construction in Section 4. The
system is implemented in C++. There are around 700 lines of code for our transparent zkVPD
protocol and 2000 lines for the GKR part.

Hardware. We run all of the experiments on AMD RyzenTM 3800X Processor with 64GB RAM.
Our current implementation is not parallelized and we only use a single CPU core in the experi-
ments. We report the average running time of 10 executions, unless specified otherwise.

5.1 Choice of Field with Efficient Arithmetic

One important optimization we developed during the implementation is on the choice of the un-
derlying field. Our scheme is transparent and does not use any discrete log or bilinear pairing as
in [69, 70, 72, 73]. However, there is one requirement on the finite field: in order to run the low
degree test protocol in [10], either the field is an extension of F2, or there exists a multiplicative
subgroup of order 2k in the field for large enough k (one can think of 2k ≥ |L| = O(|H|) = O(n)).
Existing zero knowledge proof systems that use the LDT protocol as a building block such as
Stark [9] and Aurora [14] run on the extension fields F264 and F2192 . Modern CPUs (e.g., AMD
RyzenTM 3800X Processor) have built-in instructions for field arithmetics on these extension fields,
which improves the performance of these systems significantly. However, the drawback is that the
arithmetic circuits representing the statement of ZKP must also operate on the same field, and the
additions (multiplications) are different from integer or modular additions (multiplications) that are
commonly used in the literature. Because of this, Stark [9] has to design a special SHA-256 circuit
on F264 , and Aurora [14] only reports the performance versus circuit size (number of constraints),
but not on any commonly used functions.

One could also use a prime field p with an order-2k multiplicative subgroup. Equivalently, this
requires that 2k is a factor of p − 1. In fact, there exist many such primes and Aurora [14] also
supports prime fields. However, the speed of field arithmetic is much slower than extension fields
of F2 (see Table 1).

In this paper, we provide an alternative to achieve the best of both cases. A first attempt is to use
Mersenne primes, primes that can be expressed as p = 2m− 1 for integers m. As shown in [34, 64],
multiplications modulo Mersenne primes is known to be very efficient. However, Mersenne primes
do not satisfy the requirement of the LDT, as p − 1 = 2m − 2 = 2 · (2m−1 − 1) only has a factor
21. Instead, we propose to use the extension field of a Mersenne prime Fp2 .The multiplicative

128-bit prime F264 F2192 Our field

+ 6.29ns 2.16ns 4.75ns 1.23ns

× 30.2ns 7.29ns 15.8ns 8.27ns

Table 1: Speed of basic arithmetic on different fields. The time is averaged over 100 million runs
and is in nanosecond.

23

212 214 216 218 220

size of polynomial

10−2

10−1

100

101

102

pr
ov

er
 ti

m
e

(s
)

Bilinear

Ours

(a) P time

212 214 216 218 220

size of polynomial
10−3

10−2

10−1

ve
rif

ica
tio

n
tim

e
(s

)

Bilinear

Ours

(b) V time

212 214 216 218 220

size of polynomial
100

101

102

103

pr
oo

f s
ize

 (K
B) Bilinear

Ours

(c) Proof size

Figure 4: Comparison of our zkVPD and the pairing-based zkVPD in [72].

group of Fp2 is a cyclic group of order p2 − 1 = (2m − 1)2 − 1 = 22m − 2m+1 = 2m+1(2m−1 − 1),
thus it has a multiplicative subgroup of order 2m+1, satisfying the requirement of LDT when m
is reasonably large. Meanwhile, to construct an arithmetic circuit representing the statement of
the ZKP, we still encode all the values in the first slot of the polynomial ring defined by Fp2 . In
this way, the additions and multiplications in the circuit are on Fp and our system can take the
same arithmetic circuits over prime fields in prior work. Meanwhile, the LDT, zkVPD and GKR
protocol are executed on Fp2 , preserving the soundness over the whole field.

With this alternative approach, we can implement modular multiplications on Fp2 using 3
modular multiplications on Fp. (The modular multiplication is analog to multiplications of complex
numbers.) In our implementation, we choose Mersenne prime p = 261−1, thus our system provides
100+ bits of security. We implement modular multiplications on Fp for p = 261 − 1 with only one
integer multiplication in C++ (two 64-bit integers to one 128-bit integer) and some bit operations.
As shown in Table 1, the field arithmetic on Fp2 is comparable to F264 , 2× faster than F2192 and
4× faster than a 128-bit prime field. Encoding numbers in Fp for p = 261 − 1 is enough to avoid
overflow for all computations used in our experiments in Section 5.2. For other computations
requiring larger field, one can set p as 289 − 1, 2107 − 1 or 2127 − 1, which incurs a moderate slow
down. For example, the multiplication over Fp2 for p = 289 − 1 is 2.7× slower than p = 261 − 1.

This optimization can also be applied to Stark [9] and Aurora [14], which use the same LDT
in [10]. Currently they run on F264 and F2192 and their performances are reported in Section 5.3.
With our optimization, they can run on Fp2 with similar efficiency while taking arithmetic circuits
in Fp.

5.2 Performance of zkVPD

In this section, we present the performance of our new transparent zkVPD protocol, and compare
it with the existing approach based on bilinear maps. We use the open-source code of [70], which
implements the zkVPD scheme presented in [72]. For our new zkVPD protocol, we implement
the univariate sumcheck and the low degree test described in Section 2.4. We set the repetition
parameter κ in Lemma 4 as 33, and the rate of the RS code as 32 (i.e., |L| = 32|H|). These
parameters provide 100+ bits of security, based on Theorem 1.2 and Conjecture 1.5 in [10], and are
consistent with the implementation of Aurora [14]. In addition, we use the field Fp2 with p = 261−1,
which has a multiplicative subgroup of order 2m+1. Thus |L| can be as big as 260 and the size of
the witness |H| is up to 255. We pad the size of the witness to a power of 2, which introduces an
overhead of at most 2×.

Figure 4 shows the prover time, verification time and proof size of the two schemes. We fix
the variable degree of the polynomial as 1 and vary the number of variables from 12 to 20. The

24

size of the multilinear polynomial is 212 to 220. As shown in the figure, the prover time of our
new zkVPD scheme is 8-10× faster than the pairing-based one. It only takes 11.7s to generate
the proof for a polynomial of size 220. This is because our new scheme does not use any heavy
cryptographic operations, while the scheme in [72] uses modular exponentiations on the base group
of a bilinear map. In terms of the asymptotic complexity, though the prover time is claimed to
be linear in [72], there is a hidden factor of log |F| because of the exponentiations. The prover
complexity of our scheme is O(n log n), which is strictly better than O(n log |F|) field operations.
Additionally, as explained in Section 5.1, our scheme is on the extension field of a Mersenne prime,
while the scheme in [72] is on a 254-bit prime field with bilinear maps, the basic arithmetic of which
is slower.

The verification time of our zkVPD scheme is also comparable to that of [72]. For n = 220, it
takes 12.4ms to validate the proof in our scheme, and 20.9ms in [72].

The drawback of our scheme is the proof size. As shown in Figure 4(c), the proof size of our
scheme is 30-40× larger than that of [72]. This is due to the opening of the commitments using
Merkle tree, which is a common disadvantage of all IOP-based schemes [5, 9, 14]. The proof size
of our scheme can be improved by a factor of log n using the vector commitment scheme with
constant-size proofs in [20], with a compromise on the prover time. This is left as a future work.

Finally, the scheme in [72] requires a trusted setup phase, which takes 12.6s for n = 220. We
remove the trusted setup completely in our new scheme.

5.3 Performance of Virgo

In this section, we present the performance of our ZKP scheme, Virgo, and compare it with existing
ZKP systems.

Methodology. We first compare with Libra [70], as our scheme follows the same framework and
replaces the zkVPD with our new transparent one. We use the open-source implementation and
the layered arithmetic circuits at [4] for all the benchmarks. The circuits are generated using [63].

We then compare the performance of Virgo to state-of-the-art transparent ZKP systems: Ligero
[5], Bulletproofs [28], Hyrax [69], Stark [9] and Aurora [14]. We use the open-source implementations
of Hyrax, Bulletproofs and Aurora at [2] and [3]. As the implementation of Aurora runs on F2192 ,
we execute the system on a random circuit with the same number of constraints. For Ligero, as
the system is not open-source, we use the same number reported in [5] on computing hashes. For
Stark, after communicating with the authors, we obtain numbers for proving the same number of
hashes in the 3rd benchmark. The experiments were executed on a server with 512GB of DDR3
RAM (1.6GHz) and 16 cores (2 threads per core) at speed of 3.2GHz.

Benchmarks. We evaluate the systems on three benchmarks: matrix multiplication, image scaling
and Merkle tree, which are used in [69, 70].

• Matrix multiplication: P proves to V that it knows two matrices whose product equals a public
matrix. We evaluate on different dimensions from 4× 4 to 256× 256, and the size of the circuit
is n3.

• Image scaling: It computes a low-resolution image by scaling from a high-resolution image.
We use the classic Lanczos re-sampling [65] method. It computes each pixel of the output as
the convolution of the input with a sliding window and a kernel function defined as: k(x) =
sinc(x)/sinc(ax), if − a < x < a; k(x) = 0, otherwise, where a is the scaling parameter and

25

24 25 26 27 28

#matrix columns
10−2

10−1

100

101

102

pr
ov

er
 ti

m
e

(s
)

(a) P time: MatMul.

104 105 106

#pixels

10−1

100

101

102

103

pr
ov

er
 ti

m
e

(s
)

(b) P time: 16x Lanczos

21 22 23 24 25 26 27 28

#leaves
10−1
100
101
102
103
104
105

pr
ov

er
 ti

m
e

(s
)

(c) P time: Merkle tree

24 25 26 27 28

#matrix columns

10−2

10−1

ve
rif

ica
tio

n
tim

e
(s

)

(d) V time: MatMul.

104 105 106

#pixels

10−3

10−2

10−1

100

ve
rif

ica
tio

n
tim

e
(s

)

(e) V time: 16x Lanczos

21 22 23 24 25 26 27 28

#leaves
10−3
10−2
10−1
100
101
102
103

ve
rif

ica
tio

n
tim

e
(s

)

(f) V time: Merkle tree

24 25 26 27 28

#matrix columns

101

102

pr
oo

f s
ize

 (K
B)

(g) Proof size: MatMul.

104 105 106

#pixels
101

102

103

pr
oo

f s
ize

 (K
B)

(h) Proof size: 16x Lanczos

21 22 23 24 25 26 27 28

#leaves

100

101

102

103

pr
oo

f s
ize

 (k
B)

(i) Proof size: Merkle tree

Libra

Hyrax

Bulletproofs

Ligero

Virgo

libSTARK

Aurora

Figure 5: Comparisons of prover time, proof size and verification time between Virgo and existing
ZKP systems.

sinc(x) = sin(x)/x. We evaluate by fixing the window size as 16× 16 and increase the image size
from 112x112 to 1072x1072.

• Merkle tree: P proves to V that it knows the value of the leaves of a Merkle tree that computes
to a public root value [19]. We use SHA-256 for the hash function. We implement it with a flat
circuit where each sub-computation is one instance of the hash function. The consistency of the
input and output of corresponding hashes are then checked by the circuit. There are 2M − 1
SHA256 invocations for a Merkle tree with M leaves. We increase the number of leaves from 16
to 256. The circuit size of each SHA256 is roughly 218 gates and the size of the largest Merkle
tree instance is around 226 gates.

Comparing to Libra. Figure 5 shows the prover time, verification time and proof size of our
ZKP system, Virgo, and compares it with Libra. The prover time of Virgo is 7-10× faster than
Libra on the first two benchmarks, and 3-5× faster on the third benchmark. The speedup comes
from our new efficient zkVPD. As shown in Section 5.2, the prover time of our zkVPD is already
an order of magnitude faster. Moreover, the GKR protocol for the whole arithmetic circuit must
operate on the same field of the zkVPD. In Libra, it runs on a 254-bit prime field matching the
base group of the bilinear map, though the GKR protocol itself is information-theoretic secure and
can execute on smaller fields. This overhead is eliminated in Virgo, and both zkVPD and GKR

26

Ligero [5] Bulletproofs [28] Hyrax6 [69] Stark [9] Aurora [14] Virgo

P time O(C logC) O(C) O(C logC) O(C log2 C) O(C logC) O(C + n logn)

V time O(C) O(C) O(D logC +
√
n) O(log2 C) O(C) O(D logC + log2 n)

Proof size O(
√
C) O(logC) O(D logC +

√
n) O(log2 C) O(log2 C) O(D logC + log2 n)

Table 2: Performance of transparent ZKP systems. C is the size of the regular circuit with depth
D, and n is witness size.

run on our efficient extension field of Mersenne prime, resulting in an order of magnitude speedup
for the whole scheme. It only takes 53.40s to generate the proof for a circuit of 226 gates. Our
improvement on the third benchmark is slightly less, as most input and values in the circuit are
binary for SHA-256, which is more friendly to exponentiation used in Libra.

The verification time of Virgo is also significantly improved upon Libra, leading to a speedup of
10-30× in the benchmarks. This is because in Libra, the verification time of the zkVPD for the input
layer is similar to that for the masking polynomials in each layer, both taking O(logC) bilinear
pairings. Thus the overall verification time is roughly D times one instance of zkVPD verification.
This is not the case in Virgo. As explained in the optimization in Section 4.2, we combine all the
evaluations into one inner product through random linear combinations. Therefore, the verification
time in Virgo is only around twice of the zkVPD verification time, ranging from 7ms to 50ms in all
the benchmarks.

Because of the zkVPD, the proof size of Virgo is larger than Libra. For example, Virgo generates
a proof of 253KB for Merkle tree with 256 leaves, while the proof size of Libra is only 90KB.
However, the gap is not as big as the zkVPD schemes themselves in Section 5.2, as the proof size of
Libra is dominated by the GKR protocol of the circuit, which is actually improved by 2× in Virgo
because of the smaller field. Finally, Libra requires a one-time trusted setup for the pairing-based
zkVPD, while Virgo is transparent.

Comparing to other transparent ZKP Systems. Table 2 and Figure 5 show the comparison
between Virgo and state-of-the-art transparent ZKP systems. As shown in Figure 5, Virgo is the
best among all systems in terms of practical prover time, which is faster than others by at least an
order of magnitude. The verification time of Virgo is also one of the best thanks to the succinctness
of our scheme. It only takes 50ms to verify the proof of constructing a Merkle tree with 256 leaves,
a circuit of size 226 gates. The verification time is competitive to Stark, and faster than all other
systems by 2 orders of magnitude. The proof size of Virgo is also competitive to other systems. It
is larger than Bulletproofs [28] and is similar to Hyrax, Stark and Aurora.

In particular, our scheme builds on the univariate sumcheck proposed in [14]. Compared to
the system Aurora, Virgo significantly improves the prover time due to our efficient field and the
fact that the univariate sumcheck is only on the witness, but not on the whole circuit. For the
computation in Figure 5, the witness size is 16× smaller than the circuit size. E.g., the witness
size for one hash is around 214 while the circuit size is 218. In the largest instance in the figure,
the witness size is 222 while the circuit size is 226. The verification time is also much faster as we
reduce the complexity from linear to logarithmic. The proof size is similar to Aurora. Essentially
the proof size is the same as that in Aurora on the same number of constraint as the witness size,
plus the size of the GKR proofs in the zkVPD and for the whole circuit.

6When the circuit is data parallel, the prover time of Hyrax [69] is O(C + C′ logC′) where C′ is the size of
each copy in the data parallel circuit. Hyrax has the option with proof size O(D logC + nτ) and verification time
O(D logC + n1−τ) for τ ∈ [0, 1

2
].

27

6 Applications

In this section, we discuss several applications of our new zkVPD and ZKP schemes.

6.1 Verifiable Secret Sharing

Verifiable polynomial delegations (or polynomial commitments) are widely used in secret sharing to
achieve malicious security. In Shamir’s secret sharing [62], the secret is embedded as the constant
term of a univariate polynomial f(x), and the shares hold by party i is the evaluation of the
polynomial f(i). To update the shares, in proactive secret sharing [47], each party generates a
random polynomial δ(x) with constant term 0, and sends the evaluation of the polynomial δ(i)
to party i. To prevent adversaries from changing the secret or sending inconsistent shares, the
random polynomial is committed using a polynomial commitment scheme together with a proof
that δ(0) = 0, and each evaluation to party i comes with a proof of the polynomial evaluation.
Similar mechanism is used in mobile secret sharing [61] to change the parties.

Existing schemes mainly apply the VPD scheme in [50], which requires a trusted setup phase to
generate the structured reference string. In addition, the computation time to generate the proofs
are high because of the use of modular exponentiation. For example, in a recent paper, Maram et
al. [56] proposed a mobile and proactive secret sharing scheme on blockchain. As it is using the
pairing-based VPD, the SRS has to be generated by a trusted party, posted on the blockchain while
the trapdoor must be destroyed after the setup. Moreover, as shown in [56, Figure 5], it takes 185s
for each party to generate the proofs of the polynomial evaluations in each phase of the scheme for
a committee of 1000 parties, which is the bottleneck of the system.

Using our new VPD scheme in Protocol 2, we can completely remove the trusted setup phase
of these secret sharing schemes for the first time, while maintaining the succinct proof size and
verification time. Additionally, the proof generation time is significantly improved. Based on
Figure 4, it will take around 11s to generate the proofs for 1000 parties. The proof size will
definitely increase. However, as the proofs are sent offline among the parties in [56], the overall
throughput will be improved by at least an order of magnitude with reasonable bandwidth between
parties.

6.2 Privacy on Blockchain

Zero knowledge proof is widely used in blockchain systems to provide privacy for cryptocurrencies
(e.g., Zcash [11]), smart contracts (e.g., Hawk [52]) and zero knowledge contingent payment [29]. As
mentioned in the introduction, the most commonly deployed ZKP scheme, SNARK [16], requires
a trusted setup phase. A trusted party is usually absent in the setting of blockchains and an
expensive “ceremony” [13] among multiple parties is usually deployed to generate the SRS. To
address this issue, there are recent attempts to use transparent ZKP schemes. For example, in [25],
Bünz et at. proposed Zether, which uses a variant of Bulletproofs [28] to hide account balances
and provide confidentiality for applications such as auction. However, due to the high prover time
and verification time of Bulletproofs for general computations, providing full anonimity still remain
impractical.

As shown in Section 5.3, among all transparent ZKP schemes, Virgo achieves the best prover
time and one of the best verification time, which are critical for applications of ZKP on blockchains.
Compared to existing GKR-based ZKP scheme, Virgo removes the trusted setup of Libra [70], and

28

improves the verification time of both Libra and Hyrax [69] by 1-2 orders of magnitude. These make
Virgo a good candidate to build privacy-preserving cryptocurrencies and smart contract without
trusted setup. The overhead on the proof size is comparable to schemes based on IOPs, which is
acceptable in scenarios such as permissioned blockchain and can be potentially reduced through
proof composition [17].

6.3 Large Scale Zero Knowledge Proof

Other than blockchain, there are many other applications of ZKP that require proving large state-
ments. For example, defense advanced research project agency (DARPA) recently intended to
use ZKP to prove the behavior of complicated programs without leaking sensitive information [1].
Such applications require scaling ZKP schemes to circuits with billions of gates. The obstacles in
all existing ZKP schemes are the high overhead of running time and memory consumption on the
prover. In our new scheme, we completely removes the operations of modular exponentiation in
Hyrax [69] and Libra [70], which is the bottleneck of both the prover time and memory usage. Our
implementation, Virgo, is purely based on symmetric-key operations, which are fast and memory
friendly. As shown in the experiments, Virgo is promising to scale to large circuits and enable
applications such as proving program behavior on secret data or states.

Acknowledgments

This material is in part based upon work supported by the National Science Foundation(NSF)
under Grant No. TWC-1518899, DARPA under Grant No. N66001-15-C-4066 and Center for
Long-Term Cybersecurity (CLTC). Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of
NSF, DARPA or CLTC.

29

References

[1] Darpa sieve program. https://www.darpa.mil/news-events/2019-07-18

[2] Hyrax reference implementation. https://github.com/hyraxZK/hyraxZK

[3] libiop. https://github.com/scipr-lab/libiop

[4] Libra implementation. https://github.com/sunblaze-ucb/fastZKP/tree/Libra

[5] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sublinear argu-
ments without a trusted setup. In: Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (2017)

[6] Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing revisited. In: Inter-
national Conference on the Theory and Application of Cryptology and Information Security.
pp. 590–609. Springer (2011)

[7] Baum, C., Bootle, J., Cerulli, A., Del Pino, R., Groth, J., Lyubashevsky, V.: Sub-linear lattice-
based zero-knowledge arguments for arithmetic circuits. In: Annual International Cryptology
Conference. pp. 669–699. Springer (2018)

[8] Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques. pp.
263–280. Springer (2012)

[9] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum
secure computational integrity. Cryptology ePrint, 2018

[10] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interactive oracle
proofs of proximity. In: 45th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

[11] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zero-
cash: Decentralized anonymous payments from bitcoin. In: Proceedings of the Symposium on
Security and Privacy SP, 2014 (2014)

[12] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Verifying
program executions succinctly and in zero knowledge. In: CRYPTO 2013

[13] Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of public
parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium on Security and
Privacy. pp. 287–304. IEEE (2015)

[14] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: Trans-
parent Succinct Arguments for R1CS. Cryptology ePrint, 2018

[15] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Theory of Cryptography
Conference. pp. 31–60. Springer (2016)

[16] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct Non-Interactive Zero Knowledge
for a von Neumann Architecture. In: Proceedings of the USENIX Security Symposium, 2014

https://www.darpa.mil/news-events/2019-07-18
https://github.com/hyraxZK/hyraxZK
https://github.com/scipr-lab/libiop
https://github.com/sunblaze-ucb/fastZKP/tree/Libra

30

[17] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of
elliptic curves. In: CRYPTO 2014, pp. 276–294 (2014)

[18] Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets.
In: CRYPTO 2011. pp. 111–131

[19] Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness of mem-
ories. Algorithmica 12(2-3), 225–244 (1994)

[20] Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to iops
and stateless blockchains. Tech. rep., Cryptology ePrint Archive, Report 2018/1188, Tech. Rep
(2018)

[21] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments
for arithmetic circuits in the discrete log setting. In: International Conference on the Theory
and Applications of Cryptographic Techniques (2016)

[22] Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen, S.K.: Linear-time
zero-knowledge proofs for arithmetic circuit satisfiability. In: International Conference on the
Theory and Application of Cryptology and Information Security. pp. 336–365. Springer (2017)

[23] Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: Zexe: Enabling decentralized
private computation. Cryptology ePrint Archive, Report 2018/962 (2018), https://eprint.
iacr.org/2018/962

[24] Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish, M.: Verifying
computations with state. In: ACM SIGOPS 24th Symposium on Operating Systems Principles,
SOSP, 2013

[25] Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a smart contract
world. IACR Cryptology ePrint Archive 2019, 191 (2019)

[26] Bünz, B., Fisch, B., Szepieniec, A.: Transparent snarks from dark compilers. Cryptology ePrint
Archive, Report 2019/1229 (2019), https://eprint.iacr.org/2019/1229

[27] Byott, N.P., Chapman, R.J.: Power sums over finite subspaces of a field. Finite Fields and
Their Applications 5(3), 254–265 (1999)

[28] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short
proofs for confidential transactions and more. In: Proceedings of the Symposium on Security
and Privacy (SP), 2018. vol. 00, pp. 319–338

[29] Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge contingent pay-
ments revisited: Attacks and payments for services. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. pp. 229–243. ACM (2017)

[30] Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum, R.D.: Fiat-
shamir from simpler assumptions. Cryptology ePrint Archive, Report 2018/1004 (2018)

https://eprint.iacr.org/2018/962
https://eprint.iacr.org/2018/962
https://eprint.iacr.org/2019/1229

31

[31] Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D.,
Zaverucha, G.: Post-quantum zero-knowledge and signatures from symmetric-key primitives.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. pp. 1825–1842. ACM (2017)

[32] Chiesa, A., Forbes, M.A., Spooner, N.: A Zero Knowledge Sumcheck and its Applications.
CoRR abs/1704.02086 (2017), http://arxiv.org/abs/1704.02086

[33] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Third
Edition. The MIT Press, 3rd edn. (2009)

[34] Cormode, G., Mitzenmacher, M., Thaler, J.: Practical Verified Computation with Streaming
Interactive Proofs. In: Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference. ITCS ’12

[35] Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno, B.,
Zahur, S.: Geppetto: Versatile verifiable computation. In: S&P 2015

[36] Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or: Can zero-
knowledge be for free? In: Annual International Cryptology Conference, 1998

[37] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature
problems. In: Crypto 1986

[38] Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash first, argue
later: Adaptive verifiable computations on outsourced data. In: Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (2016)

[39] Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix compu-
tations, with applications. In: CCS 2012. pp. 501–512

[40] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct
NIZKs without PCPs. In: EUROCRYPT 2013. pp. 626–645 (2013)

[41] Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: Faster zero-knowledge for boolean circuits. In:
USENIX Security Symposium. pp. 1069–1083 (2016)

[42] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating Computation: Interactive Proofs for
Muggles. J. ACM 62(4), 27:1–27:64 (Sep 2015)

[43] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems.
SIAM Journal on computing 18(1), 186–208 (1989)

[44] Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Advances in
Cryptology-CRYPTO 2009, pp. 192–208. Springer (2009)

[45] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: International
Conference on the Theory and Application of Cryptology and Information Security. pp. 321–
340. Springer (2010)

http://arxiv.org/abs/1704.02086

32

[46] Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal
common reference strings with applications to zk-snarks. In: Annual International Cryptology
Conference. pp. 698–728. Springer (2018)

[47] Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: How to cope
with perpetual leakage. In: Annual International Cryptology Conference. pp. 339–352. Springer
(1995)

[48] Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short pcps. In: 22nd
Annual IEEE Conference on Computational Complexity (CCC 2007)

[49] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty
computation. In: Proceedings of the annual ACM symposium on Theory of computing. pp.
21–30. ACM (2007)

[50] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their
applications. In: ASIACRYPT 2010. pp. 177–194

[51] Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In:
Proceedings of the ACM Symposium on Theory of Computing (1992)

[52] Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain model
of cryptography and privacy-preserving smart contracts. In: Proceedings of Symposium on
security and privacy (SP), 2016

[53] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge
arguments. In: Theory of Cryptography Conference (2012)

[54] Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic Methods for Interactive Proof Systems.
J. ACM 39(4), 859–868 (Oct 1992)

[55] Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks from linear-
size universal and updateable structured reference strings. Cryptology ePrint Archive, Report
2019/099 (2019), https://eprint.iacr.org/2019/099

[56] Maram, S.K.D., Zhang, F., Wang, L., Low, A., Zhang, Y., Juels, A., Song, D.: Churp:
Dynamic-committee proactive secret sharing. Cryptology ePrint Archive, Report 2019/017
(2019), https://eprint.iacr.org/2019/017

[57] Merkle, R.C.: A certified digital signature. In: CRYPTO 1989. pp. 218–238

[58] Micali, S.: Computationally sound proofs. SIAM J. Comput. (2000)

[59] Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: TCC 2013.
pp. 222–242 (2013)

[60] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable compu-
tation. In: S&P 2013. pp. 238–252 (2013)

[61] Schultz, D.A., Liskov, B., Liskov, M.: Mobile proactive secret sharing. In: Proceedings of the
twenty-seventh ACM symposium on Principles of distributed computing. pp. 458–458. ACM
(2008)

https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2019/017

33

[62] Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

[63] Tange, O.: Gnu parallel - the command-line power tool. The USENIX Magazine 36(1), 42–47
(Feb 2011), http://www.gnu.org/s/parallel

[64] Thaler, J.: Time-Optimal Interactive Proofs for Circuit Evaluation. In: Canetti, R., Garay,
J.A. (eds.) Advances in Cryptology – CRYPTO 2013 (2013)

[65] Turkowski, K.: Filters for common resampling tasks. In: Graphics gems. pp. 147–165. Aca-
demic Press Professional, Inc. (1990)

[66] Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In: Theory of Cryptography Conference. pp. 1–18. Springer (2008)

[67] Wahby, R.S., Ji, Y., Blumberg, A.J., Shelat, A., Thaler, J., Walfish, M., Wies, T.: Full
accounting for verifiable outsourcing. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM (2017)

[68] Wahby, R.S., Setty, S.T., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient ram and control flow
in verifiable outsourced computation. In: NDSS (2015)

[69] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs
without trusted setup. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 926–943.
IEEE (2018)

[70] Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: Succinct zero-knowledge
proofs with optimal prover computation. In: Advances in Cryptology (CRYPTO) (2019)

[71] Yuan, J., Yu, S.: Proofs of retrievability with public verifiability and constant communica-
tion cost in cloud. In: Proceedings of the 2013 international workshop on Security in cloud
computing. pp. 19–26. ACM (2013)

[72] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A Zero-Knowledge
version of vSQL. Cryptology ePrint, 2017

[73] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: Verifying arbi-
trary SQL queries over dynamic outsourced databases. In: IEEE Symposium on Security and
Privacy (S&P) 2017 (2017)

[74] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: Verifying arbi-
trary SQL queries over dynamic outsourced databases. In: Security and Privacy (SP), 2017
IEEE Symposium on. pp. 863–880. IEEE (2017)

[75] Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM: Faster verifi-
able RAM with program-independent preprocessing. In: Proceeding of IEEE Symposium on
Security and Privacy (S&P) (2018)

http://www.gnu.org/s/parallel

34

A Univariate Sumcheck Protocol

The protocol of the univariate sumcheck in [14] is in Protocol 5. We have the following lemma:

Lemma 5. Let f : F → F be a univariate poynomial with degree less than k and H ⊆ L ⊆ F and
|L| > k. Protocol 5 is an interactive proof to prove µ =

∑
a∈H f(a) with soundness O(LF + negl(κ)).

The proof size and the verification time are O(log2 |L|) and the prover time is O(|L| log |L|).

Protocol 5 (Univariate Sumcheck). Let f be a degree k univariate polynomial on F with degree less than
k and H,L be a multiplicative coset of F such that H ⊂ L ⊂ F and |L| > k. To prove µ =

∑
a∈H f(a), a

univariate sumcheck protocol has the following algorithms.

• SC.com← SC.Commit(f):

1. P computes polynomial h such that f(x) = g(x) + ZH(x) · h(x). P evaluates of f |L and h|L.

2. P commits to the vectors using Merkle tree rootf ← MT.Commit(f |L) and rooth ← MT.Commit(h|L).
P sends V com = (rootf , rooth).

• 〈SC.Prove(f),SC.Verify(com, µ)〉:

1. Let p(x) = |H|·f(x)−µ−|H|·ZH(x)h(x)
|H|·x .

2. P and V invoke the low degree test: 〈LDT.P((f, h), p), LDT.V((k, k − |H|), |H| − 1)〉(L). If the test
fails, V aborts and output 0. Otherwise, at then end of the test, V needs oracle access to κ points
of f, h and p in L. We denote their indices as I.

3. For each index i ∈ I, P opens MT.Open(i, f |L) and MT.Open(i, h|L).

4. V executes MT.Verify for all points opened by P. If any verification fails, abort and output 0.

5. V completes the low degree test with these points. If all checks above pass, V outputs 1.

	Introduction
	Our Techniques
	Related Work

	Preliminaries
	Interactive Proofs and Zero-knowledge Arguments
	Zero-Knowledge Verifiable Polynomial Delegation
	Zero Knowledge Argument Based on GKR
	Univariate Sumcheck

	Transparent Zero Knowledge Polynomial Delegation
	Achieving Zero Knowledge

	Zero Knowledge Argument
	zkVPD for Input Layer
	zkVPD for Interior Layers
	Putting Everything Together

	Implementation and Evaluation
	Choice of Field with Efficient Arithmetic
	Performance of zkVPD
	Performance of Virgo

	Applications
	Verifiable Secret Sharing
	Privacy on Blockchain
	Large Scale Zero Knowledge Proof

	Univariate Sumcheck Protocol

