
Communication–Computation Trade-offs in PIR
Asra Ali∗, Tancrède Lepoint∗, Sarvar Patel∗, Mariana Raykova∗, Phillipp Schoppmann†,

Karn Seth∗, Kevin Yeo∗
∗ Google, {asraa,tancrede,sarvar,marianar,karn,kwlyeo}@google.com
† Humboldt-Universität zu Berlin, schoppmann@informatik.hu-berlin.de

December 24, 2019

Abstract

In this work, we study the computation and communication costs and their possible trade-offs in existing
constructions for private information retrieval (PIR), including schemes based on homomorphic encryption and the
Gentry–Ramzan PIR (ICALP’05). We present MulPIR, a PIR construction which uses somewhat homomorphic
encryption in a new way that provides a better trade-off between communication and computation, and for the
first time enables the implementation of PIR with full recursion. Our construction leverages optimizations from
SealPIR (S&P’18) and extends them with new packing and compression techniques. We also present improvements
for the Gentry–Ramzan PIR that reduce significantly the computation cost, the main overhead for this scheme,
which achieves optimal communication in several settings. We further show how to efficiently construct PIR for
sparse databases. Our constructions support batching for multi-queries as well as symmetric PIR. We finally imple-
ment several PIR constructions and present a comprehensive comparison of their communication and computation
overheads, as well as a cost analysis assuming a standard price setting for CPU power and bandwidth.

I. INTRODUCTION

Access to public data often brings privacy concerns for the querier as it may reveal sensitive information about
this party. For example, queries of medical data can reveal sensitive health information and patterns of accessing
financial data may leak investment strategies. In settings where such privacy leakage has significant risk, clients
may shy away from accessing the database. On the flip side, data providers often do not want access to sensitive
client information (such as their queries), as it could later become liability for them.

Private information retrieval (PIR) is a cryptographic primitive that aims to address the above question by
enabling clients to query a database without revealing any information about their queries to the data owner. While
the feasibility of this primitive has been resolved for a long time [CKGS98], the search for concretely efficient
constructions for practical applications has been an active area of research [YKPB13], [DC14], [DSH14], [DDS15],
[MBFK16], [AS16], [GLM16], [ACLS18], [GH19]. In this context, there are several parameters and efficiency
measures that characterize a PIR setting and determine what solution might be most suitable for a particular
scenario. However, a baseline solution that candidate PIR solutions should improve on is the trivial PIR that returns
the whole database to the client.

In this work, we take a deep dive into the setting of PIR where data is stored on a single server. This is the
relevant PIR model in practical settings where no additional party is available to assist with the data storage and
query execution and one does not wish to trust secure hardware. Non-trivial single server PIR constructions are
known to require computational assumptions [KO97b], and such solutions bring significant overheads for both the
communication and computation costs compared to information theoretic constructions that are possible in the multi-
server setting [DHS14]. While theoretical constructions for PIR [KO97b] achieve polylogarithmic communication,
most efficient single server PIR implementations stop short of this goal and implement only variants of the
construction with higher asymptotic communication costs [MBFK16], [AS16], [GLM16], [ACLS18].

In this paper, we analyze the communication–computation trade-offs that different PIR construction approaches
offer and the hurdles towards achieving the optimal asymptotic communication costs in practice. We present a new
PIR construction using somewhat-homomorphic encryption that improves the communication and computation costs
of recursion in existing PIR schemes, enabling for the first time implementation measurements with recursion level

beyond three. While the classic PIR setting is our starting point, we extend our solutions to the symmetric variant
of PIR, and the batching setting of executing multiple PIR queries in parallel. We also propose a new construction
for sparse databases, a.k.a, keyword PIR [CGN97], where the number of database entries is much smaller than
the query key domain. Our solution reduces the server cost to be proportional only to the actual database size and
be independent of the key domain size. In each of the above settings we analyze the communication/computation
trade-offs depending on the shape of the underlying database determined by the number of database entires, and
the size of each entry. We consider three example applications, which involve two opposite database shapes, and
evaluate the performance of our schemes in these settings. The first one is PIR over a small set of large text files,
the second one is PIR over a large set of small entries, and finally the third one is private set membership. Our
batched multi-query techniques for PIR further provide solutions for the problems of private set intersection (PSI)
and PSI cardinality, which bring communication improvements in the case of sets of asymmetric sizes.

A. Background

a) Efficient Constructions of Single Server PIR: The most efficient (secure) single server PIR constructions
implemented in the recent years [YKPB13], [DC14], [DSH14], [DDS15], [MBFK16], [AS16], [GLM16], [ACLS18],
[GH19] are based on homomorphic encryption (HE) techniques and achieve sublinear communication. The baseline
PIR solution (with linear communication complexity) has the client send a selection vector proportional to the
database size n encrypted under additive homomorphic encryption, and has the server return a single encrypted
entry by performing n homomorphic multiplications with a constant and n homomorphic additions. Sublinear
complexity is achieved by using recursion [Ste98]: the database is viewed as a d-dimensional database, and the
query complexity becomes O(d · n1/d). Now, for the recursion to work with additive homomorphic encryption
schemes, the ciphertext after one level of recursion is viewed as a plaintext in the next layer. In particular, if
the additive homomorphic encryption scheme has ciphertext expansion F , the PIR response will include F d−1

ciphertexts (where, e.g., F ≥ 6.4 in lattice-based schemes, as per [ACLS18]). This has limited the number of
recursion layers in practice to d ≤ 3 [MBFK16], [ACLS18].

Along this line of work, there are several papers that present implementations with various resource tradeoffs.
Aguilar-Melchor et al. [MBFK16] present XPIR with small computation costs but quite large communication costs.
On the other hand, another line of work [KLL+15], [LP17] obtain much smaller (almost optimal) communication
at the cost of significantly larger computation. In a recent work, Angel, Chen, Laine, and Setty [ACLS18], present
SealPIR that strikes a better balance in the communication–computation cost. SealPIR requires only slightly more
computation than XPIR but uses almost 1000 times less communication than XPIR (but does not achieve the almost
optimal rate of the works [KLL+15], [LP17]). SealPIR is instantiated from the FV (lattice-based) homomorphic
encryption scheme [FV12] and builds upon XPIR [Ste98], [MBFK16] and adds a clever query compression technique
that reduces the query communication complexity from O(dn1/d) to O(ddn1/d/Ne), where N is the number of
elements that can be packed in one query ciphertext. However, the recursion technique used in SealPIR still suffers
from the exponential number of ciphertexts in the query response.

Another known PIR construction that achieves logarithmic communication complexity is the construction of
Gentry–Ramzan [GR05], which does not rely on homomorphic encryption. This PIR construction extends the idea
from the work of Cachin et al. [CMS99] which proposes to encode the database {Di}i∈[n] using the Chinese
Remainder Theorem (CRT) representation as x ∈ [n] s.t. x ≡ Di mod πi for pairwise coprime moduli {πi}i∈[n].
The query for an element at position i consists of a group G and a generator g of a subgroup of G with order
qπi. The server evaluation of the query computes h = gx in G, which effectively performs a modular reduction
in the exponent to select the component Di mod πi masked with the random value q. The client recovers the
value Di by computing the discrete logarithm of h with base gq. The work of Cachin et al. [CMS99] handled only
binary data items, and the Gentry–Ramzan construction [GR05] shows how to handle larger plaintext domain for the
database entries and improves the communication rate to constant. While the resulting construction achieves optimal
communication rate, it has significant computation costs in several places: the generation of prime numbers needed
to instantiate different groups G at each query, the computation time at the server exponentiating in the query group
G, and the decoding which requires computing a discrete logarithm. Because of its computational overhear this
PIR construction has been rarely considered as a candidate for implementation and practical applications [PBP12].

2

In recent years, single server PIR has also been studied in slightly different settings. Two works [CHR17],
[BIPW17] consider doubly-efficient PIRs that attempt to obtain schemes with sub-linear computational costs,
but require both significant server overhead and new cryptographic assumptions precluding them from practical
applications. Another work [PPY18] introduces the notion of private stateful information retrieval where clients
store some state over multiple queries. Assuming clients perform enough queries, this scheme obtains both smaller
communication and computational costs. In contrast, we build PIR schemes suitable for all settings where clients
are stateless and our efficiency guarantees will hold regardless of the number of queries performed by the client.

b) Handling Multiple Queries: There are PIR settings where multiple queries need to (or can) be executed
at the same time, and batching techniques enable parallel execute of such queries with smaller amortized cost.
One application of batched-PIR queries are constructions for private set intersection (PSI) in the asymmetric
setting [CHLR18], [CLR17], [DRRT18a], [KRS+19].

The observation that executing multiple PIR queries in parallel can be achieved at a lower communication and
computation cost was made in the work of Ishai et al. [IKOS04] who proposed a construction based on batch codes,
which gives asymptotic guarantees but has remained impractical for real implementations. Inspired by the use of
Cuckoo hashing in the context of private set intersection, the work on SealPIR [ACLS18] proposed a batched PIR
construction leveraging a probabilistic batch code, which amortizes CPU cost while introducing a small probability
of failure (≈ 2−40). Groth et al. [GKL10] proposed a batched multi-query version of the Gentry–Ramzan PIR. This
construction leverages the fact that the group order of the client query can encode multiple query indices by being
divisible by the corresponding primes. This technique saves communication and server’s work, but imposes further
restrictions on the database entries’ size.

c) PIR for Sparse Databases: Standard PIR settings assume that the server database has an entry for each
possible index. The complexity of PIR protocols in this setting is proportional to the size of the index space.
However, there are scenarios where the underlying data is sparse, i.e., the database size is much smaller than its
index domain. This setting is also known as keyword PIR [CGN97]. The technique proposed by Chor et al. [CGN97]
is to build a binary search tree over the items in the database and to use a separate PIR instance for each tree
level. A PIR query on the database consists of a logarithmic number PIR queries for the tree levels. The amortized
multi-query PSI techniques [CO18], [CHLR18], [PSTY19] could be viewed as solutions.

d) Symmetric PIR (SPIR): SPIR [GIKM00] extents PIR with additional privacy requirement for the database
which guarantees that the querier does not learn anything more than the requested item. SPIR is also known as
1-out-of-n oblivious transfer. Naor and Pinkas [NPP99] provided general transformation from PIR to SPIR using
oblivious polynomial evaluation, and there have also been direct constructions [KO97a], [Lip05].

B. Our Contributions

In this paper we analyze the exact trade-offs between communication and computation in the context of PIR,
and we study the best communication complexity that we can achieve in practice. We present a new approach for
using HE in PIR constructions that enables new communication–computation trade-offs. We also implement and
optimize the PIR protocol of Gentry and Ramzan [GR05], providing the first implementation of this protocol that
scales to databases with millions of elements. Together, our protocols provide various practical tradeoffs between
computation and communication, which we experimentally evaluate using three application scenarios.

a) Communication–Computation Trade-offs in HE-based PIR: As we discussed above, the work of Angel
at al. [ACLS18] proposed compression techniques that enable them to pack selection vectors in the slots of a
homomorphic ciphertext and thus they achieve upload communication of O(ddn1/d/Ne) for a database of size
n using HE with modulus size N and PIR recursion level d. While this allows to decrease the upload cost by
increasing the recursion level d, the download communication depends exponentially on the recursion level. The
reason for this is the PIR selection algorithm used in this work, which uses layers of HE encryption to implement
the partial database selection in different recursion layers. This leads to an explosion of the parameter sizes needed
for the outermost encryption.

We propose a different approach (MulPIR) that leverages both the additive and the multiplicative homomorphism
of HE to implement the recursive selection by doing one multiplication of encrypted values per recursion step.
This reduces the size of the upload and download together from O(ddn1/d/Ne + F d−1) in existing approaches,

3

where F is the number of plaintexts needed to fit a single HE ciphertext, to d · dn1/d/Ne · c(d), where c(d) is the
size of a ciphertext that supports d multiplications (hence, a depth of log d). In addition to the technique leveraging
homomorphic multiplication, we propose a new compression technique that allows us to pack multiple selection
vectors in the same ciphertext and this reduces further the communication cost. Inspired by optimization techniques
in recent proposals of post-quantum secure encryption schemes [ADPS16], [BDK+18], we apply “bit dropping”
techniques, which guarantee that a ciphertext can decrypt correctly even when omitting some of the least significant
bits that account for the noise, to further optimize the concrete communication of our scheme.

Our new techniques also allow us to achieve the ideal asymptotic communication complexities for PIR in practice
and enable for the first time implementation experiments with recursion level beyond three.

b) Gentry–Ramzan PIR: The Gentry–Ramzan PIR construction [GR05] achieves optimal communication
complexity for several settings but it pays with significant computational cost. Thus, our contributions focus on
ways to reduce this computation overhead, which includes new efficient techniques for encoding the server database
in CRT form needed for the computation in the scheme, new techniques for fast modular exponentiation needed
to answer each query, as well as techniques for client-aided query response that trade-off between communication
and computation overhead.

In this PIR protocol, the server database {Di}i∈[n] needs to be encoded as x = Di mod πi for i ∈ [n], where πi
are pairwise coprime integers. A naive application of the Chinese Remainder Theorem requires computation at least
quadratic in the size of the database. We leverage a divide-and-conquer modular interpolation algorithm [BM74]
that enables us to achieve computation complexity Õ(n log2 n). This technique also allows for pre-computation that
can be reused for computations that use the same set of moduli πi.

The main computation cost on the server side is the modular exponentiation, where the server cannot know the
prime factorization of the modulus and thus we cannot use techniques that leverage the factorization to speed-up the
computation of the exponentiation. Our approach will be to compute the exponentiation as a product of precomputed
powers of the generator and to use Straus’s algorithm [Str64] to do this efficiently. Further we notice that since
the precomputed powers of the generator are independent of the exponent, they can be computed at the client who
knows the order of the group that it is using for the PIR query and thus can compute exponentiation in this group
faster by first reducing the exponent modulo the order of the group. This gives a way to trade-off computation and
communication complexity for the protocol. In Section VI, we show evidence that providing several precomputed
powers optimizes the server’s work.

To implement private set membership, we also apply batching techniques leveraging probabilistic batch codes
from Cuckoo hashing [PR04], which provide better scalability for broader sets of the database parameters compared
to previous batching approaches for Gentry–Ramzan PIR [GKL10].

c) New Construction for Sparse PIR: We present a new PIR construction for sparse databases, which provides
the client with an answer that either contains the corresponding data if the element is present in the database or
is empty, otherwise (see Appendix C). Our construction leverages Cuckoo hashing [PR04] in a new way inspired
by ideas from private set intersection [CHLR18], [PSSZ15], [PSWW18], [DRRT18b] and oblivious RAM [PR10],
[GMOT12], [PPRY18]. In particular, we observe that we can compress the domain of the database from a large
sparse domain to a small dense domain using Cuckoo hashing, which in comparison to regular hashing distributes
the items in the hash tables guaranteeing that no collisions occur. To implement a PIR construction that does not
require any privacy for the database, we can just have the client run as many PIR queries on the new dense database
as the number of hash functions used by the Cuckoo hashing. We achieve a symmetric variant of the sparse PIR
construction that reveals only the sparsity of the server’s database (without revealing the empty locations). For this
we leverage Cuckoo hashing with a stash [KMW09] where the parameters for the scheme are guaranteed to be
independent of the data that is hashed and insertion failures occur with negligible probability. In this case the client
executes SPIR queries for each location, where the communication of any part of the database that may need to
be checked at each query, e.g. a Cuckoo stash, can be amortized across queries.

d) Comparison and Empirical Evaluation of PIR: We present a comprehensive comparison of the costs of
PIR based on homomorphic encryption. This includes detailed concrete efficiency estimates for the ciphertext size
and the computation costs for encryption, decryption and homomorphic operations of different HE schemes. We
leverage these estimates to profile the efficiency costs of PIR constructions using the corresponding schemes when

4

instantiated with and without recursion. We further present empirical evaluations of implementations of these PIRs
with databases of different shapes (numbers of records and entry sizes). Our benchmarks demonstrate that for the
majority of the settings constructions based on lattice based HE constructions, which could also offer multiplicative
homomorphism, outperform in computation other additive HE schemes. In terms of communication, additive HE
solutions have advantage when the dominant communication cost is the download, e.g., in solutions without recursion
for small databases with large entries, since these encryption provides best ratio between plaintext and ciphertext.

We evaluate our new PIR construction, MulPIR, that uses somewhat-homomorphic encryption (SHE) and compare
it against SealPIR. MulPIR enables a trade-off of computation for communication, which allows us reduce the
communication of SealPIR by 80% while increasing the computation roughly twice. We also provide the first
empirical evaluation of PIR with recursive level beyond three. Surprisingly, we observe that higher recursion level
does not necessarily improve communication. This is due to the fact that lattice-based HE encryptions have a complex
relationship between parameters sizes, support for homomorphic operations and number of encryption slots. In this
context recursion improves complexity when the database size increases beyond the number of encryption slots
in a ciphertext, however, at the same time increasing the database size requires support for more homomorphic
operations, which leads to larger parameters.

In our experiments, Gentry–Ramzan construction always achieves the best communication complexity but comes
with a significant computation cost that can be prohibitive in some settings. However, we show that in terms of
monetary cost, Gentry–Ramzan can outperform all other PIR approaches considered when database elements are
small, which for example is the case in the SealPIR application we consider [AS16].

Finally, we apply our construction for keyword PIR to a password checkup problem, where a client aims to
check if their password is contained in a dataset of leaked passwords, without revealing it to the server. Previous
approaches to this problem [TPY+19] first reveal a k-anonymous identifier to the server to reduce the number of
candidate passwords to compare against to k, and then apply a variant of Private Set Intersection to compare the
current password against the k candidates. Our implementations of Genry–Ramzan and MulPIR enable such lookups
to be sub-linear in k, therefore either enabling better anonymity for the same bandwidth, or same anonymity and
smaller bandwidth.

II. BACKGROUND

Throughout the rest of this paper, we assume a server owns a database D = {D1, . . . ,Dn} of n elements, each
at most l bits long.

For any m ∈ Z, m ≥ 1, we denote by [m] the interval [1,m]. We denote by δi,j the Kronecker delta function,
defined as δi,j = 0 if i 6= j, and δj,j = 1. For two party computation protocols we will use the notation Ja, bK to
denote either inputs or outputs for the two parties, i.e., a is either an input or output for the first party, and similarly
b is either input or output for the second party.

A. Private Information Retrieval (PIR)

Definition 1 (Private Information Retrieval [CKGS98]). A private information retrieval protocol addresses the
setting where a server holds a database D = {D1, . . . ,Dn} of n elements, and client has an input index i. The
goal of the protocol is to enable the client to learn Di while guaranteeing that the server does not learn anything
about i. A PIR scheme is specified with the following two algorithms:
• q ← PIR.Query(i) – this is an algorithm that the client runs on its input index i to generate a corresponding

query.
• JDi,⊥K← PIR.Eval(Jq,DK) – this is a two-party computation protocol with inputs the client’s encoded query

and the server’s database that outputs the corresponding database items to the client. Most PIR constructions
are non-interactive and we can replace the evaluation protocol with the following two algorithms (cf. Fig. 1).
– r ← PIR.Response(D, q) – an algorithm that the server runs on the client’s encoded query to compute an
encoded response.
– Di ← PIR.Extract(r) – an algorithm that the client runs on the server’s response to extract the output for
the queried item.

5

Client Server

q ← PIR.Query(i) q

r ← PIR.Response(D, q).
r

d← PIR.Extract(r)

Fig. 1. A non-interactive PIR protocol. At the end of the protocol, the correctness of the PIR protocol will ensure that d = Di.

Definition 2 (Symmetric Private Information Retrieval (SPIR)). Symmetric PIR extends the PIR functionality with
privacy requirement also for the database guaranteeing the client does not learn anything beyond the element Di.

B. Homomorphic-Encryption-based PIR

In this section, we recall the baseline PIR solution based on additive homomorphic encryption [KO97b]. For
ease of presentation and w.l.o.g., recall that an additive homomorphic encryption scheme HE = (KeyGen,Enc,Dec)
with plaintext space Zt is an encryption scheme with the following properties:
• Enc(sk,m1) + Enc(sk,m2) = Enc(sk, (m1 +m2) mod t),
• Enc(sk,m1) · λ = Enc(sk,m1 · λ mod t),

for every m1,m2, λ ∈ Zt, for some specific operations + and · over the ciphertexts.
Let t ≥ 2l and HE = (KeyGen,Enc,Dec) be a homomorphic encryption scheme with plaintext space Zt and

ciphertext space C. The PIR protocol works by interpreting each element Di as an element of Zt. To construct the
query for index k, the client encrypts component by component the selection vector ~s = (si)i=1...n proportional
to the size of the database n, which verifies si = δi,k = 0 for i 6= k and sk = δk,k = 1. To answer the query
q = (Enc(sk, si))i=1...n, the server computes the inner product between the query and the database D (where
Di ∈ Zt), eventually yielding

〈q,D〉 =

n∑
i=1

Enc(sk, si) · Di = Enc
(
sk,

n∑
i=1

δi,kDi

)
= Enc(sk,Dk). (1)

We give the description of the HE-based PIR protocol in Procedures 1 to 3. In the rest of the paper, we will instantiate
this protocol with the Paillier/Damgård–Jurik cryptosystem [Pai99], [DJ01], the El-Gamal cryptosystem [Gam85],
and an RLWE-based homomorphic cryptosystem [FV12], [MBFK16], [ACLS18].

C. Gentry–Ramzan PIR

In this section, we recall the baseline PIR protocol by Gentry and Ramzan [GR05]. It works by interpreting the
server’s database as a number in a Residue Number System (RNS). That is, given n coprime integers π1, . . . , πn,

Procedure 1 PIR.HE.Query

Input: k ∈ [1, n].
~s = (si)i=1...n = (δi,k)i=1...n.
∀i ∈ [1, n], qi ← Enc(sk, si).

Output: ~q = (qi)i=1...n ∈ Cn.

Procedure 2 PIR.HE.Response
Input: D ∈ Znt , ~q ∈ Cn.
r = 〈~q,D〉 = Enc

(
sk, 〈~s,D〉

)
as in Eq. (1).

Output: r ∈ C.

6

with πi ≥ 2l for all i ∈ [n], we encode D as an integer E, such that

E ≤
n∏
i=1

πi, and E ≡ Di mod πi for all i ∈ [n]. (2)

The existence and uniqueness of E follows from the Chinese Remainder Theorem, which can also be used to
compute E given D and all πi. Observe that (2) implies that we can retrieve the element at index i by reducing
E modulo πi. The idea of [GR05] is to have the server perform this reduction in the exponent of a multiplicative
group, thus hiding i. We give the description of the PIR protocol in Algorithms 4 to 6.

Remark 1. An advantage of the Gentry-Ramzan PIR protocol is its constant communication rate (c < 1/4 in
practice), which comes at the cost of increased server computation time. In Section V-B we introduce a extension
to Gentry-Ramzan that we dub Client-Aided PIR, which allows users to trade off between computation and
communication costs.

III. HOMOMORPHIC ENCRYPTION-BASED PIR

The majority of private information retrieval constructions that achieve sublinear communication rely on homo-
morphic encryption in order to enable the client to compress its query.

We start from the baseline PIR and survey the two flavors of homomorphic-encryption-based PIR protocols
with sublinear communication that exist in the literature, respectively based on additive homomorphic encryption
(AHE) schemes and fully homomorphic encryption (FHE) schemes. Then, we propose a third flavor that exploits
the homomorphic multiplication in a somewhat homomorphic encryption (SHE) scheme to trade-off computation
and communication. We summarize the communication and computation costs for different PIR constructions in
Table I.

Finally, in Appendix A, we discuss the instantiations of the above approaches with existing HE schemes and
report on the specific HE costs for different schemes in Table VII.

A. Baseline PIR

Let us start from the baseline PIR protocol. For ease of exposition, assume the plaintext space of the homomorphic
encryption scheme is Zt with t ≥ 2l, where l is the bitsize of the elements of the database. In this protocol, the
client sends a selection vector proportional to the database size n encrypted under additive homomorphic encryption
(cf. Section II-B). The server returns a single encrypted entry by performing n homomorphic multiplications with
a scalar (the database element) and n homomorphic additions as in Eq. (1).

Denote by c(n) the size of a ciphertext element that enables n homomorphic scalar multiplications followed by
n homomorphic additions. The overall communication cost is n · c(n) + 1 · c(n), hence, is at least linear in the
database size. A direct way to trade-off communication of upload and download is by reducing the length k of
the selection vector and returning n/k database items (assuming t > 2kl). This PIR construction could reduce the

Procedure 3 PIR.HE.Extract
Input: r ∈ C.
d := Dec(sk, r) mod 2l.

Output: d ∈ Z2l .

Procedure 4 PIR.GR.Query

Input: i ∈ [n].
Q1 := 2q1 + 1←$P.
Q2 := 2q2πi + 1←$P.
m := Q1Q2.
g←$Zm s.t. |〈g〉| = q1q2πi.

Output: (m, g) ∈ Z× Z∗m.

7

TABLE I
COMMUNICATION-COMPUTATION TRADE-OFF OF HOMOMORPHIC ENCRYPTION BASED PIR PROTOCOLS, FROM SECTIONS III-B

TO III-D.

Total Communication Approximate computation cost
in number of ciphertexts Expressed in homomorphic computation unit:

A: addition; S: scalar multiplication; M : multiplication

Recursion 1 ≤ d ≤ logn d = log(n) 1 ≤ d ≤ logn
logF

logn
logF

< d ≤ logn d = log(n)

Additive HE
(Sec-
tion III-B)

O
(
dn

1
d + F d−1

)
O
(
logn+ F logn−1

)
n(A+ S) n

1
dF d−1(A+ S) F logn−1(A+ S)

Somewhat HE

(Sec-
tion III-D)

O
(
dn

1
d

)
O(logn) n(A+ S) + n

d−1
d M n(A+ S) + n

d−1
d M n(A+ S +M)

Fully HE
(Sec-
tion III-C)

– O(logn) – – n lognM + n(A+ S)

This tables aims at giving an insight on the overall trend but does not reflect accurately the costs; e.g., the communication in indicated in
number of ciphertexts while the actual size of the ciphertexts may depend on the database size, and similarly the costs of the homomorphic
operations differ between each row.

communication to O(n1/2) ciphertexts, by sending a selection vector of size n1/2 and returning O(n1/2) encrypted
database entries.

Two approaches have been proposed in the literature to reduce the overall communication cost: either using
recursion (also called folding [GH19]) using additive homomorphic encryption, or a trivial solution using fully ho-
momorphic encryption. We survey these two approaches below, before presenting our protocols based on somewhat
homomorphic encryption.

B. Recursion with Additive HE

Kushilevitz, Ostrovsky [KO97b], and later Stern [Ste98], propose the following modification of Algorithms 1
to 3. Instead of representing the database D as a vector of size n, one can represent D as a n1/2 × n1/2 matrix
M = (Mi,j), where (say) Mi,j := Din1/2+j . Now, instead of sending (the encryption of) one selection vector
~s = (δi,k) of dimension n for index k, the client writes k = i′n1/2 + j′ where i′, j′ ∈ [n1/2], and sends two
binary selection vectors ~s1 = (s1,i) = (δi,i′) and ~s2 = (s2,i) = (δj,j′) of dimension n1/2. In particular, it holds that
s1,i · s2,j = δi,i′ · δj,j′ = δin1/2+j,k, for all i, j.
The server then performs three steps:

Procedure 5 PIR.GR.Response

Input: D, (m, g) ∈ Z× Z∗m.
Encode D as an integer E as in Eq. (2).
g′ := gE mod m.

Output: g′ ∈ Z∗m.

Procedure 6 PIR.GR.Extract
Input: g′ ∈ Z∗m.
h := gq1q2

h′ := g′q1q2

Solve h′ = hd for d using Pohlig–Hellman algorihm.
Output: d ∈ Zπi

.

8

1) For each of the n1/2 rows Mi = (Mi,1 · · ·Mi,n1/2), the server computes the response with the (encryption of
the) selection vector ~s2 as in Eq. (1), i.e., the server obtains the n1/2 ciphertexts

ci = Enc
(
sk, 〈~s2, (Mi,j)j〉

)
= Enc

(
sk,Din1/2+j′

)
.

2) Since the ciphertext expansion is F > 1, for each i ∈ [n1/2], the server represents ci as F plaintext elements
ci,1, . . . , ci,F .

3) For each of the vectors (c1,f · · · cn1/2,f) with f ∈ [F], the server computes the response with the (encryption
of the) selection vector ~s1 as in Eq. (1), i.e., the server obtains the F ciphertexts

c′f = Enc
(
sk, 〈~s1, (ci,f)i〉

)
= Enc

(
sk, ci′,f

)
.

Upon reception of the response, r = (c′1, . . . , c
′
F) ∈ CF , the client finally extracts the desired result as follows.

1) It uses the homomorphic encryption decryption key to recover ci′,f for all f ∈ [F].
2) It reconstructs ci′ from the ci′,f ’s elements.
3) It uses the homomorphic encryption decryption key on ci′ to recover Di′n1/2+j′ = Dk.

This method easily generalizes by representing the database as a d-dimensional hyperrectangle [n1] × · · · × [nd]
with n = n1 ·n2 · · ·nd (the baseline PIR corresponds to d = 1 with n1 = n, and the recursion above to d = 2 with
n1 = n2 = n1/2). When ni = n1/d, we accomplish the following communication complexity: O

(
c(n) · dn1/d

)
for the user’s query and O

(
F d−1c(n)

)
for the server’s response. In particular, for small values of d, we will get

sublinear communication. However, note that for full recursion, i.e., d = log n, communication becomes polynomial
in n.

The “layering technique” explained above provides a way to emulate multiplicative homomorphism in one very
restricted setting, which, however, suffices for PIR construction. The computation that is enabled by the layering
approach for multiplication is inner product with a selection vector that has exactly one non-zero entry which is
equal to one.

Remark 2. We assumed w.l.o.g. that F ∈ Z. Note that we do not ask for any algebraic conditions from the
map; for example we could just break down a binary representation of elements of C into F plaintexts. For the
Paillier cryptosystem, or more precisely the generalization from Damgård and Jurik [DJ01], we will take a different
approach: we will select parameters so that the ciphertext after the first folding exactly fits in the plaintext space
for the second folding; cf. Appendix A.

C. Polylogarithmic Communication with FHE

On the other side of the spectrum, assume the homomorphic encryption scheme is fully homomorphic, i.e.,
(w.l.o.g. for simplicity of presentation) there exists a Eval procedure that takes as input ciphertexts ci for respective
messages mi and any function description f : Zκt → Zt, and outputs a ciphertext of f(m1, . . . ,mκ), which we
denote

Eval({Enc(sk,mi)}i∈[κ], f) = Enc(sk, f(m1, . . . ,mκ)).

A possible approach to computing the selection vector for the PIR query using FHE is based on the following
observation: the i-th bit in the PIR query vector is the output of the equality check between the query index k and
i. Hence, instead of sending the selection vector ~s, the client can encrypt each bit kj of the index k and send the
resulting κ = log n ciphertexts to the server. The server then homomorphically computes the selection vector and
proceeds as in the baseline PIR construction.

This construction achieves communication complexity: O(log n) for the user’s query and O(1) for the server’s
response (note that the ciphertext size is independent of the database, hence included in the O notation.).

D. Computation-Communication Trade-Offs using SHE

Somewhat homomorphic encryption (SHE) provides bounded level of multiplicative homomorphism. Most exist-
ing FHE solutions can be instantiated also as SHE [BGV14], [FV12]. In this section, we present a PIR construction
that leverages SHE to achieve new computation-communication trade-offs.

9

a) First Approach: Equality Circuit: A first approach is essentially implementing the protocol from Sec-
tion III-C leveraging the observation that since the values k and i have at most κ = log n bits and the arithmetic
circuit for computing equality comparison has multiplicative depth log κ = log log n. In that case, the ciphertext
size depends on the size of the database and the communication complexity becomes O(c(n) log n) for the user’s
query and O (c(n)) for the server’s response, it suffices to use somewhat homomorphic encryption that supports
such level of multiplicative homomorphism. In that case, the ciphertext size depends on the size of the database and
the communication complexity becomes O(c(n) log n) for the user’s query and O(c(n)) for the server’s response.

Computing the equality comparison bit for two bit values b1 and b2 is equivalent to computing 1−(b1+b2−2b1b2)
over the integers. Note that in our case only one of the bits coming from the query will be encrypted. Thus, bit
equality computation will not require any multiplicative homomorphism. The dominant cost is the multiplication
of log n encrypted bits, which requires log log n multiplicative degree.

b) Second Approach: Layered Multiplications: A second approach would be to start from the recursive protocol
of Section III-B, but using SHE homomorphic multiplication as opposed to “emulating” with additions Using the
same notation as in Section III-B, the PIR protocol becomes as follows. The server performs two steps:

1) For each of the n1/2 rows Mi = (Mi,1 · · ·Mi,n1/2), the server computes the response with the (encryption of
the) selection vector ~s2 as in Eq. (1), i.e., the server obtains the n1/2 ciphertexts

ci = Enc
(
sk, 〈~s2, (Mi,j)j〉

)
= Enc

(
sk,Din1/2+j′

)
.

2) The server now computes the response with the (encryption of the) selection vector ~s1 using homomorphic
multiplication, i.e., the server obtains the ciphertext

c = Enc
(
sk, 〈~s1, {Din1/2+j′}i〉

)
= Enc

(
sk,Di′n1/2+j′

)
.

Upon reception of the response, r = c ∈ C, the client directly uses the HE decryption key to recover Di′n1/2+j′ = Dk.
Here again, this method easily generalizes by representing the database as a d-dimensional hyperrectangle [n1]×

· · · × [nd] with n = n1 · n2 · · ·nd. When ni = n1/d, we accomplish the following communication complexity:
O
(
c(n) · dn1/d

)
for the user’s query and O(c(n)) for the server’s response.

c) Third Approach: Reconstruct Selection Vector: Note that the approach above keeps the layered approach
of the recursive PIR of Section III-B, and in particular, performs sequentially d homomorphic multiplications,
effectively requiring the somewhat homomorphic encryption scheme to support circuits of multiplicative depth d.
In particular, for full recursion, this means that the SHE scheme needs to support circuits of depth κ = log n,
which increases the size of the ciphertexts compared to the first approach, where the SHE only required to handle
depth log κ = log log n. Indeed, the parameters of somewhat homomorphic encryption schemes scales at least
linearly in the multiplicative depth (using techniques called modulus switching or relinearization); hence reducing
the multiplicative depth exponentially with also reduce the ciphertext size exponentially.

We propose below a method that trades communication for computation as follows. First, note that

Di′n1/2+j′ = 〈~s1 ⊗ ~s2, {Di}i∈[n]〉 ,

where ~s1 ⊗ ~s2 is the tensor product of ~s1 and ~s2. More generally, if ~s1, . . . , ~sd denote the selection vectors of
dimension n1/d, such that the indices of the 1 element in ~si is ji, then

D∑d−1
j=0 ji·nj/d = 〈~s1 ⊗ · · · ⊗ ~sd, {Di}i∈[n]〉 .

Hence, this hints to a new protocol, where the client sends the d ·n1/d encryptions of the bits sj,ij for j ∈ [d], ij ∈
[n1/d], the server computes homomorphically

Enc(sk, s1,i1 × · · · × sd,id), ∀i1, . . . , id ∈ [n1/d] ,

and then computes the inner product with the original database, as in the baseline PIR (cf. Eq. (1)). Now, note
that the latter product can be computed using a binary tree of depth log d. For full recursion, i.e., d = log n, the
dominant cost in this algorithm is the multiplication of d = log n encrypted bits, hence requires log d = log log n

10

multiplicative degree.
In Appendix A we overview which of the techniques above are instantiatable with specific HE schemes.

IV. OPTIMIZATIONS AND TRADE-OFFS FOR SEALPIR

The SealPIR protocol proposed by Angel et al. [ACLS18] improves over the XPIR protocol proposed by
Aguilar Melchor et al. [MBFK16]. Both SealPIR and XPIR instantiate the recursive PIR using the lattice-based
FV homomorphic encryption scheme [FV12] (viewed as an additive homomorphic encryption scheme). SealPIR
further proposes several optimizations; most notably a compression and oblivious expansion procedures that reduce
significantly the communication cost.

In this section, we first recall the SealPIR protocol (Section IV-B), and then present several optimizations that
further reduce the communication bandwidth (Sections IV-C and IV-D). Then, we note in Section IV-E that since
the FV scheme is a somewhat homomorphic encryption scheme, it is actually possible to adopt the PIR protocol
we introduced in Section III-D. We thus introduce MulPIR which offer a computation-communication trade-off
compared to SealPIR.

A. The Fan–Vercauteren Cryptosystem

An FV ciphertext is a pair of polynomials over R/qR, where R = Z[x]/(xN+1), and encrypts a message m(x) ∈
R/tR for a t < q. In addition to the standard operations of an encryption scheme (key generation, encryption,
decryption), FV also supports homomorphic operations: addition, scalar multiplication, and multiplication.
• Addition: Given two ciphertexts c1 and c2, respectively encrypting m1(x) and m2(x), the homomorphic

addition of c1 and c2, denoted c1 + c2, results in a ciphertext that encrypts the sum m1(x) +m2(x) ∈ R/tR.
• Scalar multiplication: Given a ciphertext c ∈ (R/qR)2 encrypting m(x) ∈ R/tR, and given m′(x) ∈ R/tR,

the scalar multiplication of c by m′(x), denoted m′(x) · c, results in a ciphertext that encrypts m′(x) ·m(x) ∈
R/tR.

• Multiplication: Given two ciphertexts c1 and c2, respectively encrypting m1(x) and m2(x), the homomorphic
multiplication of c1 and c2, denoted c1 · c2, results in a ciphertext that encrypts the product m1(x) ·m2(x) ∈
R/tR.

Finally, [ACLS18] introduced a specific operation called substitution, instantiated using the plaintext slot permutation
of [GHS12].
• Substitution: Given a ciphertext c ∈ (R/qR)2, that encrypts m(x) ∈ R/tR, and an integer k, the substitution

operation Subk(·) applied on c results in a ciphertext that encrypts m(xk) ∈ R/tR.

B. SealPIR

SealPIR instantiates the protocol of Section III-B on top of the FV homomorphic encryption scheme [FV12]
with a beautiful optimization called compression and oblivious expansion. This optimization aims at reducing the
communication from the client to the server by “compressing” the query on the client side, and expanding it
obliviously on the server side.

In the PIR protocols described in Section III, the query consists of encryptions of the bits of the selection
vector(s). We start with the natural observation that many bits can be encrypted in a single ciphertext (and, in
particular, at least one per polynomial coefficient). The work of [ACLS18] shows that an encryption with one bit
per coefficient can be obliviously expanded by the server to obtain encryptions of each of the bits in the constant
coefficient of the plaintext polynomial.

Denote ~s = (si) ∈ {0, 1}m the selection vector the client wants to encrypt. (For example, in the baseline PIR,
m = n, while in the recursive PIR, the client will encrypt d of these selection vectors of size m = n1/d). Without
loss of generality, assume m ≤ N , otherwise the selection vector can be additionally split into dm/Ne different
selection vectors. SealPIR’s Query algorithm is given in Algorithm 7.

In particular, this technique enables to decrease the upload cost in SealPIR by a factor ≈ N (the polynomial ring
dimension); practical results are presented in Table III for selection vectors of dimension 5000 and 500. Note that,
as soon as recursion is used, the selection vectors will be of size ≤ n1/2, which will be below N = 2048 when
the database size is n ≤ 224.

11

TABLE II
GAIN FROM OUR COMPRESSION TECHNIQUES (SECTIONS IV-C TO IV-E), AND OF MULPIR (SECTION IV-E), COMPARED TO SEALPIR.

Database size n = 218 n = 220

Recursion d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

SealPIR upload (kB) 416 64 96 1664 64 96
SealPIR download (kB) 32 256 2048 32 256 2048

SealPIR and optimizations (Sections IV-C and IV-D) Upload (kB) 183 14 14 733 14 14
SealPIR and optimizations (Sections IV-C and IV-D) Download (kB) 10 82 655 10 82 655
Total communication wrt SealPIR 0.43× 0.30× 0.31× 0.44× 0.30× 0.31×

MulPIR upload (kB) 183 19 59 733 19 59
MulPIR download (kB) 10 21 43 10 21 43
Total communication wrt SealPIR 0.43× 0.13× 0.04× 0.44× 0.13× 0.04×

For SealPIR, we use the same parameters as in [ACLS18, Fig. 9]. The plaintext modulus is fixed to t = 212 + 1. For the optimizations, we
use modulus switching to a prime of 25 bits for SealPIR, drop respectively 5 and 8 bits for upload and download ciphertexts. For MulPIR,
the parameters depend on the recursion: for d = 2, we use N = 2048 and log2(q) = 80, log2(p) = 48; for d = 3, we use N = 4096 and
log2(q) = 120, log2(p) = 50.

Now, when the server receives such a compressed query, it needs to perform an oblivious expansion into the
original query, to then apply Response (Algorithm 2). SealPIR’s oblivious expansion is given in Algorithm 8.

C. Compression and Expansion Beyond Selection Vector

Our first contribution comes from the following observation: SealPIR oblivious expansion (Algorithm 8) is linear
over the plaintext space. Indeed, all operations used in the algorithms are linear over the plaintext space: additions,
substitutions, and scalar multiplications. Hence, it follows that the SealPIR oblivious expansion algorithm enables
to expand encryptions of vectors beyond binary selection vectors. Indeed, if m =

∑
i∈[N]mix

i ∈ R/tR, then the
output of the oblivious expansion consists of N ciphertexts, respectively encrypting each of the mi’s in the constant
coefficient of the plaintexts.

We use the above observation to further compress the size of the query in SealPIR and remark that it could also
be applicable in other contexts as well. In SealPIR with recursion d, the upload consists of d ·dn1/d/Ne ciphertexts,
where the factor d comes from the fact that we have d selection vectors, and dn1/d/Ne comes from the fact that one
selection vector of size n1/d can be embedded in dn1/d/Ne plaintext polynomials in R/tR. Now we can consider
the concatenation of the d selections vectors of size n1/d as one vector of size d · n1/d and use the compression
technique over that vector. It follows that the upload size becomes dd ·n1/d/Ne ciphertexts. In practice, for d ≥ 2,
we usually have d · n1/d < N , which enables to reduce the upload to a unique ciphertext in SealPIR. We report in
Table II the practical improvements in communication when using this technique on the recommended parameters
of SealPIR.

D. Compressing the ciphertexts

The previous technique is helpful to reduce the upload communication, but does not affect the download. In this
section, we propose to use three compression techniques for homomorphic encryption ciphertexts that will enable
to reduce further the communication: using secret key encryption, modulus switching, and bit dropping.

Procedure 7 SealPIR.Query

Input: k ∈ [1, n].
Generate ~sj = (sj,i)i∈[m] the d selections vectors in {0, 1}m.
∀j ∈ [d],mj ←

∑
i∈[m] sj,ix

i ∈ R/tR.
∀j ∈ [d], qj ← Enc(sk,mj).

Output: ~q = (qj)j∈[d] ∈ Cd.

12

a) Using symmetric encryption: The first optimization comes from the fact that the client, who creates the
query ciphertexts, knows the secret key of the homomoprhic encryption scheme. In particular, instead of using the
public key encryption algorithm, it can use the secret key encryption algorithm of FV. Recall that a FV ciphertext
is a tuple (c0, c1) in R/qR. We briefly describe below the public key and secret key encryption algorithms of FV:
• Secret Key Encryption. The secret key is a small polynomial s ∈ R/qR. To encrypt m ∈ R/tR, sample c0

uniformly at random in R/qR and e ∈ R/qR a small polynomial, and define c1 = c0 · s+ e+ dq/tem.
• Public Key Encryption. The secret key is a small polynomial s ∈ R/qR and the public key (a, b = as+e) is an

encryption of 0 using the algorithm above. To encrypt m ∈ R/tR, sample r, e1, e2 ∈ R/qR small polynomials,
and define c0 = a · r + e1, c2 = b · r + e2 + dq/tem.

A key observation is that when using secret key encryption, the first element c0 is sampled uniformly at random in
R/qR, whereas it depends on the public key when using public key encryption. Therefore, instead of sending c0,
the client can instead send a seed ρ ∈ {0, 1}λ, and the server can reconstruct c0 from the seed locally. This saves
roughly a factor two in size for the upload ciphertexts.

b) Using Modulus Switching: In FV, there exists a technique called modulus switching, that allows to transform
a ciphertext (c0, c1) ∈ (R/qR)2 with a noise of norm ≈ E into a ciphertext (c0, c1) ∈ (R/pR)2 with a noise of
norm ≈ min(t, (p/q) ·E) where t is the plaintext space [CLP19]. This technique enables us to reduce the download
communication in PIR as follows. After finishing to compute the response ~r = (ri)i=1...` (Algorithm 2), the server
will use modulus switching on each ciphertext ri ∈ (R/qR)2 to create a new ciphertext r′i ∈ (R/pR)2, where p ≥ t2
is chosen large enough to ensure decryption. In practice, this reduces the download size by ≈ log2 q/(2 log t); using
SealPIR parameters and using modulus switching to a prime p ≈ 225, this techniques enables to reduce the download
by a factor 60/25 = 2.4.

c) Using Bit Dropping: Finally, we propose to use a technique used in most post-quantum lattice-based encryp-
tion schemes proposed for standardization to NIST, such as NewHope [ADPS16] and CRYSTAL-Kyber [BDK+18],
that we call bit-dropping. Essentially, this technique enables to drop the least significant bits of the ciphertext as
they carry no information about the message. Indeed, at the end of the PIR computation, each of the ciphertext ri
in the response if a tuple (c0, c1) ∈ (R/qR)2 such that

c1 − c0 · s mod q = dq/te ·m+ e ∈ Z ,

where ‖e‖ is small (and in particular, ‖e‖∞ ≤ dq/te) and m is the plaintext. Now, assume that instead of c0 and
c1, the server sends the log2 q − b most significant bits from c′′0, c

′′
1 only. This essentially corresponds to defining

Procedure 8 SealPIR Oblivious Expansion

Input: Query q = Enc(
∑k−1
i=0 six

i), k ∈ [N]
Find smaller m = 2` ≥ k
ciphertexts = [q]
for j = 0 to `− 1 do

for k = 0 to 2j − 1 do
c0 ← ciphertexts[k]
c1 ← x−2

j · c0 // scalar multiplication
c′k ← c0 + SubN/2j+1(c0)
c′k+2j ← c1 + SubN/2j+1(c1)

end for
ciphertexts = [c′0, . . . , c

′
2j+1−1]

end for
inverse← m−1 mod t // normalization
for j = 0 to k − 1 do
oj ← inverse · ciphertexts[j]

end for
Output: output = [o0, . . . , ok−1]

13

c′i = ci + ei where ei is a small noise such that the b least significant bits of c′i are 0, and send c′′i = c′i/2
b to the

client. Then, the client can reconstruct the c′i and compute

c′1 − c′0 · s mod q = dq/te ·m+ (e+ e1 − e0) mod q .

Now, if e + e1 − e0 is small enough, the last equality will hold over Z and the client will be able to decrypt
the ciphertext and recover m. This compression technique can be used both for upload and download, and enable
saving a few bits per polynomial coefficient.

d) Compatibility and Cost: Note that all the techniques described above can be use concurrently, and are also
compatible with the technique from Section IV-C. We report in Table II the gain obtained by using these techniques
on SealPIR.

Additionally, none of these techniques depend on the size of the database, and need only to be performed on the
input and output ciphertexts, effectively adding a negligible computational cost to SealPIR.

E. MulPIR: Leveraging Homomorphic Multiplication

While the optimizations from the previous sections enable to critically improve the communication over previous
schemes using the FV homomorphic encryption scheme without optimization [MBFK16], the total communication
cost per PIR query may be prohibitive when d = 1 (baseline PIR) or d ≥ 3. For the former case, this is because
the upload cost is linear in the size of the database, while in the latter case, this comes from the fact that the result
consists of F d−1 ciphertexts where F ≥ 4 is the expansion factor of FV ciphertexts.

Now, for the latter case, we have seen in Section III-B that it is possible to use a somewhat homomorphic
encryption scheme to further reduce the communication bandwidth when recursion is used. Since FV is somewhat
homomorphic, we propose to directly use the homomorphic multiplication of the FV homomorphic encryption
scheme to instantiate the PIR protocol in Section III-D-b. We call the resulting scheme, together with all the
optimizations from Sections IV-C and IV-D, MulPIR, and report the communication costs in Table II.

Since we need to enable one homomorphic multiplication, we need to select larger parameters in MulPIR than in
SealPIR, which explains why the upload cost is higher than for SealPIR with the optimizations from Sections IV-C
and IV-D.

In Appendix B we discuss the one time communication cost for SealPIR and MulPIR associated with sending
the Galois Keys required to perform the Substitute algorithm.

V. EFFICIENTLY IMPLEMENTING GENTRY–RAMZAN PIR

We now describe our concrete implementation of the Gentry–Ramzan PIR protocol [GR05]. Since the main
computation bottleneck for large databases is the server computation (cf. Procedure 4), we focus on optimizing this
part of the protocol. First, we show how to efficiently encode the database such that the encoding satisfies Eq. (2).
While this is a one-time setup, it is non-trivial to implement with complexity sub-quadratic in the database size.
Second, we describe an algorithm for fast exponentiation that exploits the fact that we have a fixed exponent that
is independent of the query. We further speed up the exponentiation with a client-aided variant. Here, we leverage
the fact that the client can exponentiate more quickly by using the prime factorization of the modulus M .

A. Fast Modular Interpolation

Before being able to answer queries, the server must encode the database D according to Eq. (2). Let M =∏n
i=1 πi be the product of all moduli, and Mk = M/πk =

∏n
i=1,i 6=k πi. A naive application of the Chinese

Remainder Theorem computes E as follows:
1) For each k ∈ [n], use the extended Euclidean algorithm to compute integers ak, bk such that akMk+bkπk = 1.

2) Compute E =
n∑
k=1

dkakMk =
n∑
k=1

dkak

(
n∏

i=1,i 6=k
πi

)
.

It is clear that a given modulus πk divides all summands from Step 2 except the k-th. Then, using the identity
from Step 1, we have E ≡ dkakMk ≡ dk − dkbkπk ≡ dk mod πk for all k ∈ [n]. The problem with that solution
is that each Mk has already size Ω(n). While there are quasi-linear variants of integer multiplication [SS71] and

14

the extended Euclidean algorithm [SZ04], we have to perform each of those at least n times, and therefore end up
with a total running time of Ω(n2).

To avoid the quadratic complexity, we rely on the modular interpolation algorithm by Borodin and Moenck [BM74].
Their main observation is that if we divide our set of moduli πi evenly into two parts, and call the products of
those parts M1 and M2, then the first half of the summands in Step 2 above contains M2 as a factor, while the
other half contains M1. Thus, M1 and M2 can be factored out of the sum, reducing the computation to two smaller
sums and two multiplications:

E = M2 ·

(bn/2c∑
k=1

dkak

(bn/2c∏
i=1,i 6=k

πi

))
+

M1 ·

(
n∑

k=bn/2c+1

dkak

(
n∏

i=bn/2c+1,i 6=k

πi

))
.

Repeating the above transformation recursively leads to a divide-and-conquer algorithm for modular interpolation,
which, using the Schönhage-Strassen integer multiplication [SS71], has a total running time of O(n log2 n log log n) [BM74].
It relies on the fact that the supermoduli M1, M2 can be pre-computed, as well as the inverses ak. This is especially
useful, as we can reuse those for multiple interpolations, as long as the set of moduli πi remains the same. We
will make use of this precomputation when applying our implementation of Gentry–Ramzan PIR to databases with
large entries (Section VI-C).

B. Fast Modular Exponentiation

An important subroutine in the Gentry–Ramzan PIR protocol is performing a modular exponentiation with a
large exponent that encodes the entire database. This occurs in a client-server setting where the client holds both
the base g and the modulus M while the server holds the large exponent E. For privacy, it is critical the server
never learns the prime factorization of the modulus M .

Now, it is a well known fact that one can use the prime factorization of the modulus M to reduce the cost
of modular exponentiation (e.g., using Fermat’s Little Theorem). The main idea of our faster algorithm is thus to
leverage the client’s knowledge of the prime factorization of M to improve the computational costs of the server.
To materialize this idea, the client will compute exponentiations of the base g to small exponents using the prime
factorization of M . These small exponents will be independent of the large exponent E. Nonetheless, the server
will be able to use these exponentiations as hints to compute the large exponentiation.

Concretely, the server rewrites the large exponent E according to some base b ≥ 2 (setting b = 2 is binary and
b = 10 is decimal). Without loss of generality, we know that E = E0 +E1b+E2b

2 + . . .+Emb
m. Then, we know

that gE = gE0 · (gb)E1 · (gb2)E2 · · · (gbm)Em . So, the client can compute the m+1 values: g, gb, gb
2

, . . . , gb
m

without
knowing the exponent E. Furthermore, these m exponentiations may be efficiently computed by the client using
the prime factorization of M . Note that revealing these powers of g to the server does not leak any information, as
they could be computed by the server as well, just not as fast. Given these m+ 1 values, the server’s task reduces
to the problem of given m + 1 bases and m + 1 exponents, compute the multiplication of the bases after they
have been exponentiated with their corresponding exponents. To do this efficiently, one can refer to the survey by
Bernstein [Ber]. For our implementation, we choose Straus’s algorithm [Str64], which description can be found
in [KMVOV96, Alg. 14.88].

VI. EXPERIMENTAL EVALUATION

In this section, we present experimental results that measure the efficiency of different PIR protocols and illustrate
the possible tradeoffs that they enable. These results can inform decision making of what is the most appropriate
PIR instantiation for a particular application.

A. Experimental Setup

All our experiments are performed on a desktop computer with a Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz,
64GB of RAM, running Ubuntu. Unless specified otherwise, the parameters of the PIR protocols are as follows:

15

TABLE III
SMALL ELEMENTS DATABASE: 5000 ELEMENTS OF 288B, FOR A TOTAL SIZE OF ≈ 1MB.

Communication (kB) Computation (ms) Total Server
Cost (US cents)

packed upload download C.Setup S.Setup C.Create S.Respond C.Process

SealPIR/MulPIR 7 70480 21 0 522 5474 2803 0.3 0.54
SealPIR/MulPIR with
Expand

7 43 21 0 512 247 15437 0.3 0.0048

SealPIR/MulPIR 3 7048 21 0 52 550 278 0.3 0.054
SealPIR/MulPIR with
Expand

3 14 21 0 53 242 5136 0.3 0.0017

Damgård–Jurik (s =
1)

3 2900 0.6 62806 1 29148 26418 6 0.030

Damgård–Jurik (s =
2)

3 2175 0.9 168273 1 32681 45210 14 0.030

Gentry–Ramzan 3 0.5 1.3 0 1278 12037 49991 361 0.014
Gentry–Ramzan
(Client-Aided)

3 4.1 1.3 0 1280 11327 5631 367 0.0016

ElGamal 3 280 8 560 22 736 9428 11586 0.0048

Average over 10 computations. “Packed” indicates that the database was reduced to store as many elements as possible per
ciphertext. Since Gentry–Ramzan and Damgård–Jurik plaintext block sizes are smaller than the size of the entries, respectively 5 and 72
ciphertexts are needed to store a database element. Damgård–Jurik client’s setup includes precomputation to speed up the query creation.
Total server costs were computed using Google Cloud Platform prices [gcp], which were at the time of writing at one cent per CPU-hour
and 8 cents per GB of network traffic.

Fig. 2. Communication–computation tradeoff of PIR constructions, based on data from Table III (left), Table IV (middle), and Table VI
(right).

MulPIR

MulPIR (Packed)

MulPIR w/ Expand

MulPIR w/ Expand (Packed)

Damgård–Jurik (s = 1)

Damgård–Jurik (s = 2)Gentry–Ramzan

Gentry–Ramzan (Client-Aided)

ElGamal

Communication (kB)

S
er

ve
r C

om
pu

ta
tio

n
(m

s)

1.00E+02

1.00E+03

1.00E+04

1.00E+05

0.01 0.1 1 10 100 1000 10000

Single PIR, 288B Elements

MulPIR
MulPIR w/ Expand

Gentry–Ramzan (Client-Aided)

Damgård–Jurik (s = 1)

ElGamal

Communication (kB)

S
er

ve
r C

om
pu

ta
tio

n
(m

s)

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1000 10000 100000

Single PIR, 307kB Elements

100k

200k

500k

1M

100k

200k

500k1M

100k

200k

500k

1M

Communication (KB)

S
er

ve
r C

om
pu

ta
tio

n
(m

s)

100

1000

10000

100000

1 10 100 1000 10000

Gentry–Ramzan (Client-Aided) MulPIR w/ Expand MulPIR

Password Checkup

• El Gamal PIR: NIST P-224r1 curve and a plaintext block size of 32 bits.
• Damgård–Jurik PIR: 1160-bit primes.
• MulPIR: Polynomials of dimension 2048 and a modulus of 60 bits. Plaintext modulus set to t = 212 + 1.
• Gentry–Ramzan: 2048-bit modulus and plaintext block size of 500 bits. When specified as “client-aided”,

the client sends 15 generators to the server (cf. Section V-B).
All the implementations are standalone and rely only on OpenSSL for BigNum and elliptic curve operations.

B. Baseline Computation Costs

We start with an evaluation of the baseline computation cost of the PIR protocols from Sections II-C and III. Note
that in this setting, since we do not use recursion (hence no homomorphic multiplication is performed), SealPIR
and MulPIR offer essentially the same performance.

In Table III, we consider a database of 5000 elements of length 288B (such database was used for evaluation
in [AS16]) and evaluate the client and server costs to setup, create a request, respond to this request, and extract
the response. We report communication and computation costs when the database is packed (i.e., the database is

16

TABLE IV
PRIVATE FILE DOWNLOAD: 10,000 ELEMENTS OF 307KB, FOR A TOTAL DATABASE SIZE OF ≈ 3GB.

Communication (kB) Computation (ms) Total Server
Cost (US cents)

chunks upload download C.Setup S.Setup C.Create S.Respond C.Process

SealPIR/MulPIR 100 140960 2048 0 105670 11063 36270 25 1.1
SealPIR/MulPIR with Expand 100 71 2048 0 105594 248 56656 25 0.032
Gentry–Ramzan (Client-Aided) 4955 4.1 1259 0 1262133 9676 8848360 344518 2.5
Damgård–Jurik (s = 1) 1060 5800 614 ≈ 39000000 ≈ 2500 ≈ 250000 ≈ 57000000 ≈ 7000 16
ElGamal 76800 280 4300 128 ≈ 41000 ≈ 1500 ≈ 4400000 ≈ 12500000 1.2

Average over 10 computations. The number of chunks indicates how many ciphertexts are needed to store a database element. The
timings indicated with ≈ have been estimated on a smaller number of chunks to finish in a reasonable amount of time. Total server costs
were computed as in Table III.

TABLE V
CPU COSTS (IN MS) OF SEALPIR AND SEAL-MULPIR (RECURSION d = 2) FOR A DATABASE OF n ELEMENTS OF 288B.

SealPIR (d = 2) [sea19b] Seal-MulPIR (d = 2)

database size n 65536 262144 1048576 4194304 65536 262144 1048576 4194304
actual number of rows after packing 6554 26215 104858 419431 6554 26215 104858 419431

Client Setup 40 40 40 40 10 11 11 12
Client Query / Client Extract 1 1 1 1 1 1 1 1
Server Setup 324 1245 4792 19063 768 2982 11772 47819
Server Expand 70 140 279 553 165 330 653 1325
Server Respond 300 907 3087 11513 626 1873 6016 21705

For this comparison only, we reimplemented MulPIR using the Seal library [sea19a] (Seal-MulPIR) and used SealPIR’s implementation
from Github without modification [sea19b]. Here, because of the noise growth in the Seal library, Seal-MulPIR uses a polynomial dimension
of 4096, a 120-bit modulus (product of 2 60-bit moduli), and a plaintext modulus t = 26 + 1.

reshaped so as to maximize the number of elements in the response; as done in SealPIR [ACLS18]). For comparison
we also report the costs without packing.

The table also reports on the gain of sending several generators for Gentry–Ramzan. Recall that in Section V-B,
we proposed to use Straus’s algorithm to compute the exponentiation at the core of the Gentry–Ramzan PIR
protocol. Note that the cost of Straus’s algorithm (expressed in number of multiplications in [Ber] for example),
for which one could derive an optimal number of generators to send, does not account for the precomputation cost.
However, in Gentry–Ramzan, the server does not know the modulus m before receiving the client’s request, hence
this cost is factored in the server response. In practice, we have determined that about 15 generators was the best
communication-computation trade-off one could obtain in Gentry–Ramzan.

Finally, the table shows the price one would have to pay for a single execution of the experiment on Google’s
Cloud Platform [gcp], using a preemptible general-purpose VM with a single CPU core.

C. Application: Private File Download

Our first application is that of a private file download service. We consider a “fat” database 10, 000 files of
307, 200 bytes. The total size of the database is therefore 3GB. In this regime, all the PIR protocols are fully
packed and need to replicate their operations over “# chunks” ciphertexts. We report communication costs and
benchmarks in Table IV.

As expected, Damgård–Jurik and ElGamal are significantly slower than the (packed) variant of SealPIR/MulPIR
and Gentry–Ramzan, and will not be considered further in the rest of the section. Furthermore, we can see that
Expand enables to reduce the communication requirements of SealPIR/MulPIR significantly. If it remains far from
the efficient communication cost of Gentry–Ramzan, it offers much better performance.

D. Application: Comparison With SealPIR Example Database

This section revisits the application of SealPIR [ACLS18], i.e., serving a database of 288B messages. We use
this section to further compare the open-source implementation of SealPIR (without modification) available on

17

GitHub [sea19b] against an implementation of MulPIR that uses one homomorphic multiplication (Section IV-E).
For this experiment only, and to facilitate comparison, both implementations rely on the SEAL homomorphic
encryption library [sea19a]—we refer to this MulPIR implementation by “Seal-MulPIR”. We use the same database
sizes as in [ACLS18] and report the costs in Table V. The experiment results reflects the use of the more costly
homomorphic multiplication in Seal-MulPIR. Note that our custom made implementation of MulPIR (as used in
the other sections) will feature a smaller noise growth and hence will enable to select smaller parameters in the
Password checkup experiment (Section VI-E).

E. Application: Password Checkup

Recent works study the problem of preventing credential stuffing attacks [TPY+19], [LPA+19] by proposing
privacy-preserving protocols where a client queries a centralized breach repository to determine whether her
username and password combination has been part of breached data, without revealing the information queried.
While this application seems to be a perfect fit for keyword PIR, the size of leaked credentials (4+ billion creden-
tials [TPY+19]) remains prohibitively large for PIR. Instead, [TPY+19], [LPA+19] propose protocols where the
client and the server first run an oblivious PRF evaluation (both on usernames and on the tuple username/password),
then use the first value to retrieve a bucket and the second value to test for membership after downloading the
whole bucket. Precisely, [TPY+19] proposes to use 216 buckets, which we infer to contain about 60k elements,
and downloading a whole bucket is about 1.6MB of communication.

In this section, we propose to replace the download of the entire bucket with a PIR query. Table VI shows that
using PIR on each bucket is practical (i.e., is comparable to the median waiting time of a few seconds for the client,
reported in [TPY+19, Tab. 2]) and enables decrease of the communication bandwidth or the number of buckets (or
even both).

For Gentry–Ramzan, we propose to perform keyword PIR over a bucket using Cuckoo hashing, as introduced
in Appendix C1. The communication is extremely small for any bucket size. For buckets of size 50k, the server
computation time is only slightly larger than one second. Unfortunately, the client needs to generate large safe
prime numbers which has high computation cost and may impact the applicability of this protocol in practical
deployments, such as the one of [TPY+19].

Instead, we propose to use MulPIR, which features really low client’s computation costs and low server com-
putation costs. While we could use the Cuckoo hash-based keyword PIR as above, MulPIR would perform worse
than Gentry–Ramzan for two reasons. First, the client needs to query as many locations as the number of hash
functions. While Gentry–Ramzan supports CRT batching, MulPIR does not support batching natively and its server
costs are multiplied by the number of hash functions. Second, a lot of space available in a MulPIR ciphertext is
wasted by using Cuckoo hashing, since each bucket row contains at most one element.

Therefore, we propose to use a simpler solution: the server selects a random hash function h of image size k, and
use it to construct k bins by placing each of the m elements e in the bin of index h(e). The client then performs
a PIR query over a database of size k. In order to minimize k, we want to make the number of elements in each
bucket as large as possible while still fitting in one MulPIR ciphertext. Denote m = ck ln k for a constant c. From
[RS98, Th. 1], we know that with overwhelming probability, the maximum size of the bucket will be (dc + 1) ln k
where dc is the unique root of f(x) = 1 + x(ln c − lnx + 1) − c larger than c. For every bucket size, we find
experimentally the smallest k such that the whole bin after hashing fits in one MulPIR ciphertext. We report on
the communication and computation costs in Table VI. In particular, we conclude that for buckets of size 50k, the
server computation time is less than 100ms for about 1MB of communication, and about 1s for about 50kB of
communication (plus the one-time keys that need to be transferred), making MulPIR a promising replacement of
bucket download in the application of [TPY+19].

In Appendix E we present experimental results from the first implementation of full-recursion PIR.

VII. CONCLUSION

Similarly to other advanced cryptographic primitives PIR is on the verge of transitioning from a theoretical
to a practical tool. Our paper presents significant progress in this direction including new PIR constructions and
optimization techniques, which provide new ways to trade-off communication and computation. We implement

18

TABLE VI
PASSWORD CHECKUP: SERVER COMPUTATION AND COMMUNICATION.

Gentry–Ramzan MulPIR MulPIR wo/ Expand

Comm. Time Comm. Time Comm. Time
Bucket size (kB) (ms) (kB) (ms) (kB) (ms)

10k 10 254 49 540 612 34
20k 10 508 49 540 612 34
50k 10 1308 49 1020 979 69
100k 10 2428 49 1078 1571 146
200k 10 4807 49 2133 2586 334
500k 10 13161 49 4335 4221 807
1M 10 27788 49 5450 6928 2074

The plaintext modulus of MulPIR is t = 17 to enable recursion d = 2, and k is respectively equal to 403, 403, 1k, 3k, 8k, 22k, and 58k.

several PIR constructions using different HE schemes as well as the Gentry–Ramzan PIR, and present a compre-
hensive evaluation of their costs in different settings. Our results demonstrate that the lattice-based FV homomorphic
encryption outperforms Paillier and ElGamal in HE-based PIR constructions, while Gentry-Ramzan provides best
communication overhead as well as dollar cost for some databases. Our new SHE-based PIR enables for the first time
experimental evaluation of full recursion PIR. Overall our results show competitive efficiency for PIR applications
(e.g., file download, password checkup), and we hope they will serve as a useful reference to inform the choices
of PIR construction and parameters for different applications.

REFERENCES

[ACLS18] S. Angel, H. Chen, K. Laine, and S. T. V. Setty, “PIR with compressed queries and amortized query processing,” in IEEE
Symposium on Security and Privacy. IEEE Computer Society, 2018, pp. 962–979.

[ADPS16] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum key exchange - A new hope,” in USENIX Security
Symposium. USENIX Association, 2016, pp. 327–343.

[AS16] S. Angel and S. T. V. Setty, “Unobservable communication over fully untrusted infrastructure,” in OSDI. USENIX Association,
2016, pp. 551–569.

[BDK+18] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS
- kyber: A cca-secure module-lattice-based KEM,” in EuroS&P. IEEE, 2018, pp. 353–367.

[Ber] D. J. Bernstein, “Pippenger’s exponentiation algorithm.”
[BGV14] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic encryption without bootstrapping,” TOCT, vol. 6,

no. 3, pp. 13:1–13:36, 2014.
[BIPW17] E. Boyle, Y. Ishai, R. Pass, and M. Wootters, “Can we access a database both locally and privately?” in Theory of Cryptography

Conference. Springer, 2017, pp. 662–693.
[BM74] A. Borodin and R. Moenck, “Fast modular transforms,” J. Comput. Syst. Sci., vol. 8, no. 3, pp. 366–386, 1974.
[CGN97] B. Chor, N. Gilboa, and M. Naor, “Private information retrieval by keywords,” 1997.
[CGN98] ——, “Private information retrieval by keywords,” IACR Cryptology ePrint Archive, vol. 1998, p. 3, 1998.
[CHLR18] H. Chen, Z. Huang, K. Laine, and P. Rindal, “Labeled PSI from fully homomorphic encryption with malicious security,” in

ACM Conference on Computer and Communications Security. ACM, 2018, pp. 1223–1237.
[CHR17] R. Canetti, J. Holmgren, and S. Richelson, “Towards doubly efficient private information retrieval,” in Theory of Cryptography

Conference. Springer, 2017, pp. 694–726.
[CKGS98] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981,

1998.
[CLP19] A. Costache, K. Laine, and R. Player, “Homomorphic noise growth in practice: comparing BGV and FV,” IACR Cryptology

ePrint Archive, vol. 2019, p. 493, 2019.
[CLR17] H. Chen, K. Laine, and P. Rindal, “Fast private set intersection from homomorphic encryption,” in ACM Conference on

Computer and Communications Security, ser. CCS ’17, 2017.
[CMS99] C. Cachin, S. Micali, and M. Stadler, “Computationally private information retrieval with polylogarithmic communication,”

in Proceedings of the 17th International Conference on Theory and Application of Cryptographic Techniques, ser. EURO-
CRYPT’99, 1999.

[CO18] M. Ciampi and C. Orlandi, “Combining private set-intersection with secure two-party computation,” in SCN, ser. Lecture Notes
in Computer Science, vol. 11035. Springer, 2018, pp. 464–482.

[DC14] C. Dong and L. Chen, “A fast single server private information retrieval protocol with low communication cost,” in ESORICS
(1), ser. Lecture Notes in Computer Science, vol. 8712. Springer, 2014, pp. 380–399.

[DDS15] W. Dai, Y. Doröz, and B. Sunar, “Accelerating SWHE based pirs using gpus,” in Financial Cryptography Workshops, ser.
Lecture Notes in Computer Science, vol. 8976. Springer, 2015, pp. 160–171.

19

[DHS14] D. Demmler, A. Herzberg, and T. Schneider, “Raid-pir: Practical multi-server pir,” in Proceedings of the 6th Edition of the
ACM Workshop on Cloud Computing Security, ser. CCSW ’14, 2014.

[DJ01] I. Damgård and M. Jurik, “A generalisation, a simplification and some applications of paillier’s probabilistic public-key system,”
in Public Key Cryptography, ser. Lecture Notes in Computer Science, vol. 1992. Springer, 2001, pp. 119–136.

[DRRT18a] D. Demmler, P. Rindal, M. Rosulek, and N. Trieu, “PIR-PSI: scaling private contact discovery,” PoPETs, vol. 2018, no. 4, pp.
159–178, 2018.

[DRRT18b] ——, “Pir-psi: Scaling private contact discovery,” Proceedings on Privacy Enhancing Technologies, vol. 2018, no. 4, pp.
159–178, 2018.

[DSH14] Y. Doröz, B. Sunar, and G. Hammouri, “Bandwidth efficient PIR from NTRU,” in Financial Cryptography Workshops, ser.
Lecture Notes in Computer Science, vol. 8438. Springer, 2014, pp. 195–207.

[FIPR05] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold, “Keyword search and oblivious pseudorandom functions,” in Proceedings
of the Second International Conference on Theory of Cryptography, ser. TCC’05, 2005.

[FPSS05] D. Fotakis, R. Pagh, P. Sanders, and P. G. Spirakis, “Space efficient hash tables with worst case constant access time,” Theory
Comput. Syst., vol. 38, no. 2, pp. 229–248, 2005.

[FV12] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,” IACR Cryptology ePrint Archive, vol. 2012,
p. 144, 2012.

[Gam85] T. E. Gamal, “A public key cryptosystem and a signature scheme based on discrete logarithms,” IEEE Trans. Information
Theory, vol. 31, no. 4, pp. 469–472, 1985.

[gcp] “All prices — google compute engine documentation,” https://cloud.google.com/compute/all-pricing. Accessed 2019-11-01.
[GH19] C. Gentry and S. Halevi, “Compressible fhe with applications to pir,” Cryptology ePrint Archive, Report 2019/733, 2019,

https://eprint.iacr.org/2019/733.
[GHS12] C. Gentry, S. Halevi, and N. P. Smart, “Fully homomorphic encryption with polylog overhead,” in EUROCRYPT, ser. Lecture

Notes in Computer Science, vol. 7237. Springer, 2012, pp. 465–482.
[GIKM98] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, “Protecting data privacy in private information retrieval schemes,” in

Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, ser. STOC ’98, 1998.
[GIKM00] ——, “Protecting data privacy in private information retrieval schemes,” J. Comput. Syst. Sci., vol. 60, no. 3, Jun. 2000.
[GKL10] J. Groth, A. Kiayias, and H. Lipmaa, “Multi-query computationally-private information retrieval with constant communication

rate,” in Public Key Cryptography, ser. Lecture Notes in Computer Science, vol. 6056. Springer, 2010, pp. 107–123.
[GLM16] M. Green, W. Ladd, and I. Miers, “A protocol for privately reporting ad impressions at scale,” in ACM Conference on Computer

and Communications Security. ACM, 2016, pp. 1591–1601.
[GMOT12] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia, “Privacy-preserving group data access via stateless

oblivious ram simulation,” in Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms. Society
for Industrial and Applied Mathematics, 2012, pp. 157–167.

[GR05] C. Gentry and Z. Ramzan, “Single-database private information retrieval with constant communication rate,” in ICALP, ser.
Lecture Notes in Computer Science, vol. 3580. Springer, 2005, pp. 803–815.

[IKOS04] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and their applications,” in Proceedings of the Thirty-sixth
Annual ACM Symposium on Theory of Computing, ser. STOC ’04, 2004.

[JL09] S. Jarecki and X. Liu, “Efficient oblivious pseudorandom function with applications to adaptive ot and secure computation
of set intersection,” in Proceedings of the 6th Theory of Cryptography Conference on Theory of Cryptography, ser. TCC ’09,
2009.

[KLL+15] A. Kiayias, N. Leonardos, H. Lipmaa, K. Pavlyk, and Q. Tang, “Optimal rate private information retrieval from homomorphic
encryption,” Proceedings on Privacy Enhancing Technologies, vol. 2015, no. 2, pp. 222–243, 2015.

[KMVOV96] J. Katz, A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied cryptography. CRC press, 1996.
[KMW09] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More robust hashing: Cuckoo hashing with a stash,” SIAM J. Comput., vol. 39,

no. 4, Dec. 2009.
[KO97a] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: Single database, computationally-private information retrieval,”

in Proceedings of the 38th Annual Symposium on Foundations of Computer Science, ser. FOCS ’97, 1997.
[KO97b] ——, “Replication is NOT needed: SINGLE database, computationally-private information retrieval,” in FOCS. IEEE

Computer Society, 1997, pp. 364–373.
[KRS+19] D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert, “Mobile private contact discovery at scale,” in USENIX

Security Symposium. USENIX Association, 2019, pp. 1447–1464.
[Lip05] H. Lipmaa, “An oblivious transfer protocol with log-squared communication,” in Proceedings of the 8th International

Conference on Information Security, ser. ISC’05, 2005.
[LP17] H. Lipmaa and K. Pavlyk, “A simpler rate-optimal cpir protocol,” in International Conference on Financial Cryptography and

Data Security. Springer, 2017, pp. 621–638.
[LPA+19] L. Li, B. Pal, J. Ali, N. Sullivan, R. Chatterjee, and T. Ristenpart, “Protocols for checking compromised credentials,” in ACM

Conference on Computer and Communications Security. ACM, 2019.
[MBFK16] C. A. Melchor, J. Barrier, L. Fousse, and M. Killijian, “XPIR : Private information retrieval for everyone,” PoPETs, vol. 2016,

no. 2, pp. 155–174, 2016.
[NPP99] M. Naor, B. Pinkas, and B. Pinkas, “Oblivious transfer and polynomial evaluation,” in Proceedings of the Thirty-first Annual

ACM Symposium on Theory of Computing, ser. STOC ’99, 1999.
[Pai99] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in EUROCRYPT, ser. Lecture Notes in

Computer Science, vol. 1592. Springer, 1999, pp. 223–238.

20

https://cloud.google.com/compute/all-pricing
https://eprint.iacr.org/2019/733

[PBP12] S. Papadopoulos, S. Bakiras, and D. Papadias, “pcloud: A distributed system for practical PIR,” IEEE Trans. Dependable Sec.
Comput., vol. 9, no. 1, pp. 115–127, 2012.

[PPRY18] S. Patel, G. Persiano, M. Raykova, and K. Yeo, “Panorama: Oblivious ram with logarithmic overhead,” in 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2018, pp. 871–882.

[PPY18] S. Patel, G. Persiano, and K. Yeo, “Private stateful information retrieval,” in ACM Conference on Computer and Communications
Security. ACM, 2018, pp. 1002–1019.

[PR04] R. Pagh and F. F. Rodler, “Cuckoo hashing,” J. Algorithms, vol. 51, no. 2, May 2004.
[PR10] B. Pinkas and T. Reinman, “Oblivious ram revisited,” in Annual Cryptology Conference. Springer, 2010, pp. 502–519.
[PSSZ15] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: Private set intersection using permutation-based hashing,” in

24th {USENIX} Security Symposium ({USENIX} Security 15), 2015, pp. 515–530.
[PSTY19] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai, “Efficient circuit-based PSI with linear communication,” in EUROCRYPT

(3), ser. Lecture Notes in Computer Science, vol. 11478. Springer, 2019, pp. 122–153.
[PSWW18] B. Pinkas, T. Schneider, C. Weinert, and U. Wieder, “Efficient circuit-based psi via cuckoo hashing,” in Annual International

Conference on the Theory and Applications of Cryptographic Techniques. Springer, 2018, pp. 125–157.
[PSZ18] B. Pinkas, T. Schneider, and M. Zohner, “Scalable private set intersection based on ot extension,” ACM Trans. Priv. Secur.,

vol. 21, no. 2, Jan. 2018.
[RS98] M. Raab and A. Steger, “”balls into bins” - A simple and tight analysis,” in RANDOM, ser. Lecture Notes in Computer

Science, vol. 1518. Springer, 1998, pp. 159–170.
[sea19a] “Microsoft SEAL,” 2019, https://github.com/microsoft/SEAL. Accessed 2019-10-30.
[sea19b] “SealPIR: A computational PIR library that achieves low communication costs and high performance,” 2019, https://github.

com/microsoft/SealPIR. Accessed 2019-10-30.
[SS71] A. Schönhage and V. Strassen, “Schnelle multiplikation großer zahlen,” Computing, vol. 7, no. 3-4, pp. 281–292, 1971.
[Ste98] J. P. Stern, “A new efficient all-or-nothing disclosure of secrets protocol,” in ASIACRYPT, ser. Lecture Notes in Computer

Science, vol. 1514. Springer, 1998, pp. 357–371.
[Str64] E. G. Straus, “Addition chains of vectors (problem 5125),” in American Mathematical Monthly, vol. 70, 1964, pp. 806–808.
[SZ04] D. Stehlé and P. Zimmermann, “A binary recursive gcd algorithm,” in ANTS, ser. Lecture Notes in Computer Science, vol.

3076. Springer, 2004, pp. 411–425.
[TPY+19] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Invernizzi, B. Benko, T. Pietraszek, S. Patel, D. Boneh, and

E. Bursztein, “Protecting accounts from credential stuffing with password breach alerting,” in USENIX Security Symposium.
USENIX Association, 2019, pp. 1556–1571.

[YKPB13] X. Yi, M. G. Kaosar, R. Paulet, and E. Bertino, “Single-database private information retrieval from fully homomorphic
encryption,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 5, pp. 1125–1134, 2013.

APPENDIX

A. Application to Existing HE Schemes

In this section, we discuss instantiations of the PIR approaches from Section III with specific homomorphic
encryption schemes. In particular, we consider additive ElGamal [Gam85], Paillier/Damgård–Jurik [DJ01], and
FV [FV12], the constructions of which we overview next.

a) Additive ElGamal [Gam85]: Let G = (g) be a cyclic group of order p. The public key is a group element
h = gx, where the secret key x is a random integer in [p− 1]. To encrypt m ∈ [p], sample randomly r ← [p− 1]
and output c = (c1, c2) = (gr, gm · hr). To decrypt, compute the discrete logarithm of c2/cx1 . This scheme is
additively homomorphic: let c = (c1, c2) encryption m and c′ = (c′1, c

′
2) encrypting m′, then (c1c

′
1, c2c

′
2) encrypts

m1+m2 mod p. Note that decrypting requires to compute the discrete logarithm in base g, i.e., we can only decrypt
small messages. In particular, an ElGamal ciphertext will have expansion at least F ≥ 2.

b) Paillier/Damgård–Jurik [DJ01]: Let N = pq be an RSA modulus. The Damgård–Jurik generalization of the
Paillier cryptosystem [Pai99] is an additive homomorphic encryption scheme parametrized by an integer s, such that
the plaintext space is ZNs and the ciphertext space is ZNs+1 . In particular, the ciphertext expansion F can be made
as small as desired and F > 1. This unusual property enables to simplify the recursion in PIR (cf. Section III-B).
Using the notation of Section III-B, after Step (1), the server obtained n1/2 ciphertexts ci ∈ ZNs+1 . It can then parse
this ciphertext as a plaintext element for a Damgård–Jurik scheme with parameter s + 1; assuming the selection
vector ~s1 is encrypted under such a scheme, it can then compute c′ = Encs+1(sk, 〈~s1, {ci}i〉) ∈ ZNs+2 . In particular,
assume a database with elements in Nk. The communication after d levels of recursion, where 1 ≤ d ≤ log n, is:
• n1/d(dk + d(d + 1)/2) logN bits from the client to the server, since each selection vector is encrypted with

a modulus logN bits larger than the previous one,
• (d+ k) logN bits from the server to the client to send the response.

21

https://github.com/microsoft/SEAL
https://github.com/microsoft/SealPIR
https://github.com/microsoft/SealPIR

TABLE VII
BOUNDS ON PLAINTEXT SIZE, EXPANSION, AND DECRYPTION COST.

Scheme Plaintext size Expansion F Decryption cost

ElGamal pt small F ≥ 2 2pt mults of
2λEG-bit nums

Damgård pt ≤ s · λDJ bits F ≥ 1 + 1/s 1 exponentiation
–Jurik with λDJ-bit exp

FV pt < log(q) · λFV F ≥ 2 one add and one mult
bits in Zq[x]/(xλFV + 1)

Gentry–Ramzan pt < λGR/4 F > 4 4pt
√
n

Here, s is an integer parameter, and λDJ, λEG, λFV, and λGR are the security parameters for the different encryption schemes, the size of
which is determined by the underlying hardness assumptions. Although not exactly an encryption scheme, we include Gentry–Ramzan here.
In this case, Decryption corresponds to solving a discrete logarithm, for which the running time depends on the database size n [GR05, p.
808].

c) FV [FV12]: The description of FV is given in Section IV-A; we use the notation of that section. Since FV
is additively homomorphic, we can apply the baseline PIR and the recursive PIR protocol of Section III-B. The
size of a ciphertext is given by |ct| = 2N log q. In particular, the communication after d levels of recursion, for
1 ≤ d ≤ log n is
• (d·n1/d+d2 log q/ log ted)·(2N log q) bits, from the client to the server where the expansion F = 2 log q/ log t >

2,
• d2 log q/ log ted−1 · (2N log q) bits from the server to the client to send the response.
However, since FV is also somewhat (and fully) homomorphic, we can apply the PIR protocols of Sections III-C

and III-D. This enables to reduce the communication to
• (d · n1/d) · (2N log q) bits, from the client to the server,
• 2N log q bits from the server to the client to send the response.

B. (One-Time) Key Information Size

The communication costs both in Table II as well as the SealPIR paper are the communication costs per query,
assuming the server knows the Galois Keys that will be required to perform the Substitute algorithm that is used
in the oblivious expansion algorithm. Similarly for MulPIR, we also require the client to send one additional key-
switching key to perform the homomorphic multiplication. Note that all this key information does not depend on
the index that is queried, and can be generated beforehand/offline by the client, and reused for multiple query. The
communication cost of such key information are provided in Table IX.

Note that SealPIR requires to send logN Galois keys, where each Galois key is consists of log2 q/3 ciphertexts;
hence it is possible to use two of the optimizations from Section IV-D: sending a seed rather than a random
polynomial, and bit-dropping (in practice b = 5 bits are dropped). Note that the size of the Galois keys in MulPIR
may be higher than in SealPIR. Indeed, as explained in Table II, the number of coefficients and size of moduli
depends on the recursion depth.

We propose an optimization that trades computation for communication, as follows. Instead of sending logN
Galois keys, it is possible to send one Galois keys only (a generator of the Galois group) and apply it repeatedly. For
example, for any substitution m(x) 7→ m(x2

j+1), j ≤ logN that we need to perform during oblivious expansion,
the substitution m(x) 7→ m(x5) can be applied repeatedly to get all possible substitution powers. This enables to
reduce the number of keys to send from logN to 1 Galois key.

C. Beyond PIR: Sparsity and Database Privacy

In this section we consider functionalities beyond the traditional setup for PIR that bring extended computation
capability, efficiency and security properties, which can be advantageous in different application scenarios.

22

TABLE VIII
BASELINE PIR COMMUNICATION AND COMPUTATION COMPLEXITIES FOR WITH DIFFERENT RECURSION LEVELS AND DIFFERENT

HOMOMORPHIC ENCRYPTION INSTANTIATIONS ON A DATABASE OF SIZE n.

PIR protocol PIR PIR PIR
Baseline Recursion d = 2 Recursion d = logn

Additive ElGamal Comm: (n+ 1) · λEG bits Comm: (2n1/2+dF e)·λEG bits Comm: (logn + dF elogn−1) ·
λEG bits

Comp: n mults of λEG-bit nums Comp: n + n1/2 · F mults of
λEG-bit nums

Comp: F logn−1 mults of λEG-
bit nums

Damgård–Jurik (pt = Nk with
N = 2λDJ)

Comm: (n+1) · (k+1) logN
bits

Comm: n1/2(2k + 3) logN +
(2 + k) logN bits

Comm: ≈ (k + logn(1 +
k logn+ logn2)) logN bits

Comp: n mults of (k+1)λDJ -
bit nums

Comp: n mults of (k+1)λDJ -
bit nums + n1/2 mults of (k+
2)λDJ -bit nums

Comp: ni/ logn mults of (k +
1 + i)λDJ -bit nums for all i ∈
[logn].

Gentry–Ramzan Comm: 3λGR bits N/A N/A
Comp: 2 · n · pt multiplications
of λGR-bit numbers.

FV Comm: 2(n+1) log(q)·λFV bits Comm: 2(2n1/2+dF e) log(q)·
λFV bits

Comm: 2 logn +
dF elogn−1) log(q) · λFV
bits

Comp: n scalar
mults+additions in
Zq[x]/(xλFV + 1)

Comp: n + n1/2dF e
scalar mults+additions in
Zq[x]/(xλFV + 1)

Comp: F logn−1 scalar
mults+additions in
Zq[x]/(xλFV + 1)

TABLE IX
SIZE OF ONE-TIME KEYS REQUIRED FOR SEALPIR AND MULPIR.

Keys Recursion Size (kB)

SealPIR Galois keys 2, 3 6758

MulPIR Galois keys 2 5707
MulPIR Galois keys 3 28270

MulPIR Galois key generator 2 518
MulPIR Galois key generator 3 2356

MulPIR Switching key 2 19
MulPIR Switching key 3 59

1) Keyword PIR using Cuckoo Hashing: The traditional setup for PIR constructions assumes that the database
entries have public indices which are known to the client submitting queries. In particular, these indices coincide
with the domain of all possible queries for the client. Under this assumption the size of the database is equal to
the query domain size, which directly affects the computation and communication costs of the constructions which
depend on the database size. In cases when the server database is sparse and only a small fraction of the domain
indices correspond to actual entries, using a PIR solution directly will incur a large overhead forcing dependence on
the whole domain size. This sparse database setting has been considered as keyword PIR by Chor et al. [CGN98].
The idea of this work is to build an efficiently searchable structure, instantiated with a search tree, over the sparse
indices of the database entries and then use PIR to execute the search queries. This approach requires logarithmic
number of PIR queries on a database of proportional to the number of sparse items. We propose a new construction
which leverages Cuckoo hashing and reduces the overhead to a constant number of PIR queries on a database
proportional to the number of data entries.

23

The idea of our approach is to use Cuckoo hashing to compress the index on the server side. Cuckoo hash-
ing [PR04], [FPSS05] is a dictionary with worst case constant look-up time, which has size linear in the number
of inserted items. A Cuckoo hash table is defined by κ hash functions H1, . . . ,Hκ and each item with label i is
placed in one of the κ locations H1(i), . . . ,Hκ(i). The Cuckoo hash table is initialized by inserting all items in
order, resolving collisions using a recursive eviction procedure: whenever an element is hashed to a location that
is occupied, the occupying element is evicted and recursively reinserted using a different hash function. For each
sequence of items, there is a small set of hash function sets that are incompatible with the sequence and cannot be
used to distribute the items, but this can be handled by choosing new hash functions. Overall, inserting n elements
into a cuckoo hash table can be performed in expected O(n) time [PR04]. Note that with this procedure the hash
functions are dependent on the items placed in the Cuckoo hash table but—unlike in PSI protocols based on Cuckoo
hashing [CHLR18], [PSSZ15], [PSWW18], [DRRT18b]—this is not an issue for our use of Cuckoo hashing in the
context of PIR where the data is considered public and we do not need to provide any privacy guarantees for it.

Our construction works as follows. The server builds a Cuckoo hash table for its sparse database, which will be
of size proportional to the number of non-empty entries (with a constant multiplicative overhead), and provides the
Cuckoo hash functions H1, . . . ,Hκ for a κ ≥ 2. In order to query an item i, the client executes κ PIR queries for
items Hj(i), j ∈ [κ] for the database that contains the Cuckoo hash table.

We note that our approach to compress the server index using Cuckoo hashing is orthogonal to the use of Cuckoo
hashing to batch multiple PIR queries described in Appendix C3. Combining these two techniques we optimize on
two different axis of the PIR construction. Next we present the formal construction for PIR on sparse data.

Construction 1. Let (Cuckoo.KeyGen, Cuckoo.Query, Cuckoo.Insert) be a Cuckoo hash scheme and (PIR.Query,PIR.Eval)
be a PIR scheme. We construct a new PIR scheme (PIR′.Query,PIR′.Eval) where the indices of the server’s database
are sparse over the whole domain:
• Preprocessing: The server generates parameters for the Cuckoo hash that will fit its input (H1,H2, . . . ,Hκ,m)←
Cuckoo.KeyGen(|D|). It initializes the Cuckoo hash table using its input, invoking Cuckoo.Insert(i, d) for all
(i, d) ∈ D. It sends to the client {Hj}j∈[κ].

• qi = (q1i , . . . , q
κ
i)← PIR′.Query(i): The client computes qji ← PIR.Query(Hj(i)) for j ∈ [κ].

• [D[i],⊥]← PIR′.Eval([qi,D]): The client and the server run [Tj [Hj(i)],⊥]← SPIR.Eval([qji ,Tj]) for j ∈ [κ].
The client checks if any of the Tj [Hj(i)], j ∈ [κ] contains item i. If the items is present, the client outputs it
and otherwise, the client outputs ⊥.

2) Symmetric PIR from OPRFs: The security requirements of a PIR protocol pertain only to the privacy of the
query. Symmetric private information retrieval (SPIR) [GIKM98] considers also database privacy in addition to query
privacy. While some PIR solutions based on homomorphic encryption do effectively provide SPIR guarantees in the
case when the server returns a single ciphertext that encrypts only the retrieved database entry, other approaches do
provide more information about the database to the client. We provide a simple transformation that enables SPIR
given any PIR scheme. Our idea is to encrypt each database entry using a symmetric encryption under a key that is
derived in a pseudorandom manner from the index of the data item. In particular, the server derives the encryption
keys using pseudorandom function that also offers oblivious evaluation mechanism (OPRF) [FIPR05], [JL09]. To
execute a SPIR query the client and the server execute the corresponding PIR query on the database of encrypted
entries and in addition to this they run an oblivious PRF evaluation that enables the client to get a single decryption
key corresponding to the query entry. We present our protocol next.

Construction 2. Let (Gen,Enc,Dec) be a semantically secure encryption scheme, (PIR.Query,PIR.Eval) be a PIR
scheme and (PRF.KeyGen,PRF.Eval,PIR.OblivEvaluate) be an oblivious PRF function. We construct an SPIR
protocol as follows:
• Preprocessing: The server encrypts its database D of size n as follows. It samples a PRF key K← PRF.KeyGen(1λ)

and for each i ∈ [n], it computes Ki ← PRF.Eval(K, i) and sets D̃[i] = Enc(Ki,D[i]).
• qi ← SPIR.Query(i): Output PIR.Query(i).
• [D[i],⊥]← SPIR.Eval([qi,D]):

1) The client and the server run [D̃[i],⊥]← PIR.Eval([qi, D̃]).

24

2) The client and the server evaluate [Ki,⊥]← PRF.OblivEvaluate([i,K]).
3) The client retrieves its output D[i] = Dec(Ki, D̃[i]).

We note that handling sparse data in the setting of SPIR, requires to use oblivious Cuckoo hashing where the
hash function parameters are independent of the data inserted in the hash table. Achieving oblivious Cuckoo hashing
requires addition a of stash of size O(log n) that stores items which could not be allocated in the hash table due to
collisions [KMW09]. The SPIR construction for sparse data proceeds as follows: the server generates a PRF key K
and hash functions for oblivious Cuckoo hashing, it encrypts each item i in its database with key PRF.Eval(K, i),
the server initializes the oblivious Cuckoo hash with the encrypted data. The server sends the Cuckoo hash functions
and the encrypted stash to the client. The client executes a query for item i by running two SPIR queries for H1(i)
and H2(i) using the SPIR construction above. It uses the decryption key PRF.Eval(K, i) it has obtained to try to
decrypt both the answers in the SPIR queries as well as the encrypted items in the stash. The communication
related to the stash can be amortized across different queries.

3) Multi-Query PIR: The traditional definition of PIR considers a setting where queries are executed indepen-
dently one by one. However, there are scenarios where several queries may be available to be executed at the same
time. Multi-query PIR solutions aim to leverage the capability for parallel execution of such queries in order to
amortize the complexity. We leverage two main types of techniques for batching: probabilistic batch codes based on
Cuckoo hashing [PR04], which have been used in the context of PIR [ACLS18] and private set intersection [PSZ18],
[DRRT18a], as well as a CRT batching technique introduced by Groth et al. [GKL10] for Gentry–Ramzan.

D. Private Set + Functionalities

In this section we discuss functionalities which can be solved using specific PIR instantiations. Two such
functionalities are private set membership (PSM) and private set intersection (PSI). Private set membership considers
the question how to check whether an element held by one party is in the set held by another party. This problem
can be viewed as sparse PIR where the database content is the indices themselves. Private set intersection aims
to compute the intersection of two private sets. This problem is a generalization of PSM from a single query to
multiple queries. Thus, the PSI problem can be phrased as a multi-query PIR on a sparse database. In setting where
the two intersection sets have asymmetric sizes, i.e., one of the sets is much smaller, solving PSI using multi-query
PIR using the smaller set as queries could provide better asymptotic communication complexity than PSI solutions
that require communication linear in the size of the sets.

E. Implementation of Full Recursion

In this section, we report on an implementation of full recursion d = log n, using the technique from Section III-D-
c. We use the Seal library [sea19a] with polynomials of degree 8192 and a modulus q of 147 bits (product of three
49-bit moduli), and plaintext space t = 2. We implemented full recursion for a Pung-style databases of n elements
of 288B (in particular, we will have one element per ciphertext) [AS16] and provide benchmarks for databases of
size 214 to 217 in Table X.1 While this approach does not bring any benefit in practice compared to recursion d = 2
using one homomorphic multiplication, we report for the first time benchmarks for PIR with full recursion.

TABLE X
FULL RECURSION USING SEAL-MULPIR.

n Communication (kB) Server computation (s)

214 14 · 150 + 150 167
215 15 · 150 + 150 324
216 16 · 150 + 150 658
217 17 · 150 + 150 2109

1We ran out of RAM for n = 218 with our tree-based implementation of the tensor product. Careful optimizations of the tensor product
computation and regular folding would enable to reduce the memory usage of the program at the cost of increasing computation.

25

	Introduction
	Background
	Our Contributions

	Background
	Private Information Retrieval (PIR)
	Homomorphic-Encryption-based PIR
	Gentry–Ramzan PIR

	Homomorphic Encryption-Based PIR
	Baseline PIR
	Recursion with Additive HE
	Polylogarithmic Communication with FHE
	Computation-Communication Trade-Offs using SHE

	Optimizations and Trade-Offs for SealPIR
	The Fan–Vercauteren Cryptosystem
	SealPIR
	Compression and Expansion Beyond Selection Vector
	Compressing the ciphertexts
	MulPIR: Leveraging Homomorphic Multiplication

	Efficiently Implementing Gentry–Ramzan PIR
	Fast Modular Interpolation
	Fast Modular Exponentiation

	Experimental Evaluation
	Experimental Setup
	Baseline Computation Costs
	Application: Private File Download
	Application: Comparison With SealPIR Example Database
	Application: Password Checkup

	Conclusion
	References
	Appendix
	Application to Existing HE Schemes
	(One-Time) Key Information Size
	Beyond PIR: Sparsity and Database Privacy
	Keyword PIR using Cuckoo Hashing
	Symmetric PIR from OPRFs
	Multi-Query PIR

	Private Set + Functionalities
	Implementation of Full Recursion

