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ABSTRACT
In this work, we study the computation and communication costs

and their possible trade-offs in various constructions for private in-

formation retrieval (PIR), including schemes based on homomorphic

encryption (HE) and the Gentry–Ramzan PIR (ICALP’05). First, we

introduce new packing and compression techniques which extend

the construction of SealPIR (S&P’18), and reduce the communi-

cation bandwidth by 70% while preserving essentially the same

computation cost. We then present MulPIR, a PIR construction

based on homomorphic encryption, which leverages multiplicative

homomorphism rather than layered additive homomorphism to

implement the recursion steps in PIR. This reduces communica-

tion even further, at the cost of an increased computational cost

for the server. In particular it eliminates the exponential depen-

dence of PIR communication on the recursion depth due to the

ciphertext expansion. Therefore, as a side result, we obtain the first

implementation of PIR with full recursion. On the other end of the

communication–computation spectrum, we take a closer look at

Gentry–Ramzan PIR, a scheme with asymptotically optimal com-

munication rate. Here, the bottleneck is the server’s computation,

which we manage to reduce significantly. Our optimizations en-

able a tunable trade-off between communication and computation,

which allows us to reduce server computation by as much as 85%,

at the cost of an increased query size. We further show how to

efficiently construct PIR for sparse databases. Our constructions

support batched queries, as well as symmetric PIR. We implement

all of our PIR constructions, and compare their communication and

computation overheads with respect to each other and previous

work for several application scenarios.

1 INTRODUCTION
Accessing public databases often brings privacy concerns for the

querier as the query may already reveal sensitive information. For

example, queries of medical data can reveal sensitive health infor-

mation, and access patterns of financial data may leak investment

strategies. In settings where such privacy leakage has significant

risk, clients may shy away from accessing the database. On the

flip side, data providers often do not want access to sensitive client

queries, as they could later become a liability for them.

Private information retrieval (PIR) is a cryptographic primitive

that aims to address the above question by enabling clients to query

a database without revealing any information about their queries

to the data owner. While the feasibility of this primitive has been

resolved for a long time [16], the search for concretely efficient

constructions for practical applications has been an active area of

research [5, 6, 21, 26, 27, 32, 38, 50, 68]. In this context, there are

several parameters and efficiency measures that characterize a PIR

setting and determine what solution might be most suitable for a

particular scenario. However, a baseline solution that candidate

PIR solutions should improve on is the trivial PIR that returns the

whole database to the client.

In this work, we take a deep dive into the setting of PIR where

data is stored on a single server. This is the relevant PIR model in

practical settings where no additional party is available to assist

with the data storage and query execution and one does not wish to

trust secure hardware. Non-trivial single server PIR constructions

are known to require computational assumptions [45], and such so-

lutions bring significant overheads for both the communication and

computation costs compared to information theoretic constructions

that are possible in the multi-server setting [23]. While theoretical

constructions for PIR [45] achieve poly-logarithmic communica-

tion, most efficient single server PIR implementations stop short

of this goal and implement only variants of the construction with

higher asymptotic communication costs [5, 6, 38, 50].

In this paper, we analyze the communication–computation trade-

offs that different PIR construction approaches offer and the hurdles

towards achieving the optimal asymptotic communication costs

in practice. We present a new PIR construction using somewhat-

homomorphic encryption, which leverages multiplicative homo-

morphism as opposed to layers of additive HE, and improves the

communication and computation costs of recursion in existing PIR

schemes, enabling for the first time measurements with recursion

level beyond three. As an alternative to HE-based PIR, we con-

sider the Gentry-Ramzan PIR construction, which achieves optimal

communication but has a high computation overhead. Here, we

propose a new client-aided model of computation that allows for a

tunable trade-off between communication and computation costs.

Our constructions support the asymmetric variant of PIR as well as

multi-queries using probabilistic batch codes (PBC).We also provide

a new construction for sparse databases, a.k.a, keyword PIR [14],
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where the number of database entries is much smaller than the

query key domain, and the server’s cost depends only on the actual

database size as opposed to the key domain size. We implement our

new PIR constructions and compare the communication/computa-

tion trade-offs they offer against existing constructions instantiated

with different HE schemes. We evaluate the PIR schemes using

different database shapes motivated by three applications.

1.1 Background
Efficient Constructions of Single Server PIR. The most efficient

(secure) single server PIR constructions implemented in the recent

years [5, 6, 21, 26, 27, 32, 38, 50, 68] are based on homomorphic

encryption (HE) techniques and achieve sub-linear communication.

The baseline PIR solution (with linear communication complexity)

has the client send a selection vector proportional to the database

size n encrypted under additive homomorphic encryption, and

has the server return a single encrypted entry by performing n
homomorphic multiplications with a constant and n homomorphic

additions. Sub-linear complexity is achieved by using recursion [65]:

the database is viewed as a d-dimensional database, and the query

complexity becomes O(d · n1/d ). Now, for the recursion to work

with additive homomorphic encryption schemes, the ciphertext

after one level of recursion is viewed as a plaintext in the next

layer. In particular, if the additive homomorphic encryption scheme

has ciphertext expansion F , the PIR response will include Fd−1

ciphertexts (where, e.g., F ≥ 6.4 in lattice-based schemes, as per [5]).

This has limited the recursion depth to d ≤ 3 in practice [5, 50].

Along this line of work, there are several papers that present

implementations with various resource tradeoffs. Aguilar-Melchor

et al. [50] present XPIR with small computation costs but quite

large communication costs. On the other hand, another line of

work [43, 49] obtain much smaller (almost optimal) communication

at the cost of significantly larger computation. In a recent work,

Angel, Chen, Laine, and Setty [5], present SealPIR that strikes a

better balance in the communication–computation cost. SealPIR

requires only slightly more computation than XPIR but uses almost

1000 times less communication than XPIR (but does not achieve the

almost optimal rate of the works [43, 49]). SealPIR is instantiated

with the FV (lattice-based) homomorphic encryption scheme [28].

It builds upon XPIR [50, 65] and adds a clever query compression

technique that reduces the query communication complexity from

O(dn1/d ) toO(d ⌈n1/d/N ⌉), whereN is the number of elements that

can be packed in one query ciphertext.

Another known PIR construction that achieves logarithmic com-

munication complexity is the construction of Gentry–Ramzan [34],

which does not rely on homomorphic encryption. This PIR con-

struction extends the idea from the work of Cachin et al. [11] which

proposes to encode the database {Di }i ∈[n] using the Chinese Re-

mainder Theorem (CRT) representation as x ∈ [n] s.t. x ≡ Di
mod πi for pairwise coprime moduli {πi }i ∈[n]. The query for an

element at position i consists of a group G and a generator д of a

subgroup of G with order qπi . The server evaluation of the query

computes h = дx in G, which effectively performs a modular reduc-

tion in the exponent to select the component Di mod πi masked

with the random value q. The client recovers the value Di by com-

puting the discrete logarithm of h with base дq . The work of Cachin

et al. [11] handled only binary data items, and the Gentry–Ramzan

construction [34] shows how to handle larger plaintext domains for

the database entries and improves the communication rate to con-

stant. While the resulting construction achieves optimal asymptotic

communication rate, it has significant computation costs in several

places: the generation of prime numbers needed to instantiate dif-

ferent groups G at each query, the computation time at the server

exponentiating in the query group G, and the decoding which re-

quires computing a discrete logarithm. Because of its computational

overhead this PIR construction has been rarely considered as a can-

didate for implementation and practical applications [19, 20, 54].

In recent years, single server PIR has also been studied in slightly

different settings. Two works [10, 12] consider doubly-efficient PIRs
that attempt to obtain schemes with sub-linear computational costs,

but require both significant server overhead and new cryptographic

assumptions precluding them from practical applications. Another

work [56] introduces the notion of private stateful information re-
trieval where clients store some state over multiple queries. As-

suming clients perform enough queries, this scheme obtains both

smaller communication and computational costs. In contrast, we

build PIR schemes suitable for all settings where clients are stateless

and our efficiency guarantees will hold regardless of the number of

queries performed by the client.

Specialized PIR Settings. Multi-query PIR considers the setting

where several PIR queries are executed at the same time. Ishai

et al. [40] proposed a construction based on batch codes, which

achieves asymptotic improvements in the communication and com-

putation amortized cost multi-query PIR but remains impractical.

The work on SealPIR [5] presented a construction based on proba-

bilistic batch codes instantiated with Cuckoo hashing in a similar

spirit as private set intersection constructions, which amortizes

CPU cost while introducing a small probability of failure (≈ 2
−40

).

PIR for sparse databases, also known as keyword PIR [14], con-

siders the setting where the database size is much smaller than its

index domain. Chor et al. [14] presented a solution that builds a

binary search tree over the items in the database and reduces the

computation to a logarithmic number PIR queries for the tree levels.

Amortized multi-query PSI techniques [13, 17, 59] could also be

viewed as solutions in this setting.

Symmetric PIR (SPIR) [36] extents PIR with additional privacy

requirement for the databasewhich guarantees that the querier does

not learn anythingmore than the requested item. SPIR is also known

as 1-out-of-n oblivious transfer. Naor and Pinkas [51] provided

general transformation from PIR to SPIR using oblivious polynomial

evaluation, and there have also been direct constructions [46, 48].

1.2 Our Contributions
In this paper, we analyze the exact trade-offs between communica-

tion and computation in the context of PIR, and we study the best

communication complexity that we can achieve in practice. We

present a new PIR construction approach that leverages multiplica-

tive homomorphism and enables new communication–computation

trade-offs in HE-based PIR that improve the communication costs in

existing implementation. We also consider the PIR protocol of Gen-

try and Ramzan [34], which has opposite cost characteristics with

optimal communication and heavy computation, and present new
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techniques that drive the communication-computation trade-off for

that construction providing the first implementation of this proto-

col that scales to databases with millions of elements. Together, our

protocols provide various practical tradeoffs between computation

and communication, which we experimentally evaluate using three

application scenarios.

MulPIR: Leveraging Multiplicative Homomorphism. As we dis-

cussed above, the work of Angel at al. [5] proposed compression

techniques that enable them to pack selection vectors in the slots

of a homomorphic ciphertext and thus they achieve upload com-

munication ofO(d ⌈n1/d/N ⌉) for a database of size n using HE with

modulus size N and PIR recursion level d . While this allows to

decrease the upload cost by increasing the recursion level d , the
download communication depends exponentially on the recursion

level. The reason for this is the PIR selection algorithm used in this

work, which uses layers of HE to implement the partial database

selection in different recursion layers. This leads to an explosion of

the parameter sizes needed for the outermost encryption.

We propose a different approach (MulPIR) that uses both additive

and the multiplicative homomorphisms of HE to implement the

recursive selection by doing one multiplication of encrypted values

per recursion step. This reduces the size of the upload and download

together fromO(d ⌈n1/d/N ⌉ + Fd−1) in existing approaches, where

F is the number of plaintexts needed to fit a single HE ciphertext,

to d · ⌈n1/d/N ⌉ · c(d), where c(d) is the size of a ciphertext that

supports d multiplications (hence, a depth of logd).
We further present new compression techniques that allow us to

reduce both the upload and download communication cost leverag-

ing packing multiple selection vectors in the same ciphertext and

modulus switching. Inspired by optimization techniques in recent

proposals of post-quantum secure encryption schemes [4, 9], we

apply “bit dropping" techniques, which guarantee that a ciphertext

can decrypt correctly even when omitting some of the least signifi-

cant bits that account for the noise, to further optimize the concrete

communication of our scheme. Our new techniques also allow us to

achieve the ideal asymptotic communication complexities for PIR in

practice and enable for the first time implementation experiments

with recursion level beyond three.

Gentry–Ramzan PIR: New Efficiency Trade-offs. TheGentry–Ramzan

PIR construction [34] achieves optimal communication complexity

for several settings but it pays with significant computational cost.

Thus, our contributions focus on ways to reduce this computation

overhead, which includes new efficient techniques for encoding the

server’s database in CRT form needed for the computation in the

scheme, new techniques for fast modular exponentiation needed to

answer each query, as well as techniques for client-aided PIR that

trade-off between communication and computation.

In this PIR protocol, the server database {Di }i ∈[n] needs to be

encoded as x = Di mod πi for i ∈ [n], where πi are pairwise

coprime integers. A naive application of the Chinese Remainder

Theorem requires computation at least quadratic in the size of the

database. We leverage a divide-and-conquer modular interpolation

algorithm [8] that enables us to achieve computation complexity

Õ(n log2 n). This technique also allows for pre-computation that

can be reused for computations that use the same set of moduli πi .

The main computation cost on the server side is the modular

exponentiation, where the server cannot know the prime factor-

ization of the modulus and thus we cannot use techniques that

leverage the factorization to speed-up the computation of the ex-

ponentiation. Our approach is to compute the exponentiation as a

product of precomputed powers of the generator and to use Straus’s

algorithm [66] to do this efficiently. This enables a client-aided tech-

nique that allows to improve the server’s computation at the price

of additional work at the client. In particular since the precomputed

powers of the generator are independent of the exponent, they can

be computed at the client who knows the order of the group that it

is using for the PIR query and thus can compute exponentiation in

this group faster by first reducing the exponent modulo the order

of the group. This gives a new way to trade-off computation and

communication complexity for the protocol. In Section 6, we show

evidence that providing several precomputed powers optimizes the

server’s work.

We also apply batching techniques leveraging probabilistic batch

codes fromCuckoo hashing [52] for a multi-query setting of Gentry-

Ramzan PIR, which provide better scalability for broader sets of the

database parameters compared to previous batching approaches [39].

New Construction for Sparse PIR. We present a new PIR construc-

tion for sparse databases, which provides the client with an answer

that either contains the corresponding data if the element is present

in the database or is empty, otherwise (see Appendix C). Our con-

struction leverages Cuckoo hashing [52] in a new way inspired

by ideas from private set intersection [13, 24, 58, 60] and oblivious

RAM [37, 55, 57]. In particular, we observe that we can compress

the domain of the database from a large sparse domain to a small

dense domain using Cuckoo hashing, which in comparison to regu-

lar hashing distributes the items in the hash tables guaranteeing

that no collisions occur.

Comparison and Empirical Evaluation of PIR. We present a com-

prehensive comparison of the costs of PIR based on homomorphic

encryption. This includes detailed concrete efficiency estimates for

the ciphertext size and the computation costs for encryption, de-

cryption and homomorphic operations of different HE schemes. We

leverage these estimates to profile the efficiency costs of PIR con-

structions using the corresponding schemes when instantiated with

and without recursion. We further present empirical evaluations of

implementations of these PIRs with databases of different shapes

(numbers of records and entry sizes). Our benchmarks demonstrate

that for the majority of the settings constructions based on lattice

based HE constructions, which could also offer multiplicative homo-

morphism, outperform in computation other additive HE schemes.

In terms of communication, additive HE solutions have advantage

when the dominant communication cost is the download, e.g., in

solutions without recursion for small databases with large entries,

since these encryption provides best ratio between plaintext and

ciphertext.

We evaluate our newPIR construction,MulPIR, that uses somewhat-

homomorphic encryption (SHE) and compare it against SealPIR.

MulPIR enables a trade-off of computation for communication,
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which reduces the communication of SealPIR by 80% while increas-

ing the computation roughly twice. We also provide the first empir-

ical evaluation of PIR with recursive level beyond three (see Appen-

dix D). Surprisingly, we observe that higher recursion level does

not necessarily improve communication. This is due to the fact that

lattice-based HE encryptions have a complex relationship between

parameters sizes, support for homomorphic operations and number

of encryption slots. While recursion improves complexity when the

database size increases beyond the number of encryption slots in a

ciphertext, increasing the database size requires support for more

homomorphic operations, which leads to larger parameters and

more slots.In our experiments, the Gentry–Ramzan construction

always achieves the best communication complexity but comes

with a significant computation cost that can be prohibitive in some

settings. However, we show that in terms ofmonetary cost, Gentry–

Ramzan can outperform all other PIR approaches considered when

database elements are small.

Finally, we apply our construction for keyword PIR to a password
checkup problem, where a client aims to check if their password is

contained in a dataset of leaked passwords, without revealing it to

the server. Previous approaches to this problem [67] first reveal a

k-anonymous identifier to the server to reduce the number of can-

didate passwords to compare against to k , and then apply a variant

of Private Set Intersection to compare the current password against

the k candidates. Our implementations of Gentry–Ramzan and

MulPIR enable such lookups with communication sub-linear in k ,
therefore either enabling better anonymity for the same bandwidth,

or same anonymity and smaller bandwidth.

2 PRELIMINARIES
Throughout the rest of this paper, we assume a server owns a

database D = {D1, . . . ,Dn } of n elements, each at most l bits long.
For anym ∈ Z,m ≥ 1, we denote by [m] the interval [1,m]. We

denote by δi, j the Kronecker delta function, defined as δi, j = 0 if

i , j, and δj, j = 1. For two party computation protocols we will

use the notation Ja,bK to denote either inputs or outputs for the

two parties, i.e., a is either an input or output for the first party,

and similarly b is either input or output for the second party.

2.1 Private Information Retrieval (PIR)
Definition 2.1 (Private Information Retrieval [16]). A private in-

formation retrieval protocol addresses the setting where a server

holds a database D = {D1, . . . ,Dn } of n elements, and a client has

an input index i . The goal of the protocol is to enable the client

to learn Di while guaranteeing that the server does not learn any-

thing about i . A PIR scheme is specified with the following two

algorithms:

• q ← PIR.Query(i) – this is an algorithm that the client runs

on its input index i to generate a corresponding query.

• JDi ,⊥K← PIR.Eval(Jq,DK) – this is a two-party computation

protocol with inputs the client’s encoded query and the server’s

database that outputs the corresponding database items to the

client. Most PIR constructions are non-interactive and we can

replace the evaluation protocol with the following two algo-

rithms (cf. Fig. 1).

– r ← PIR.Response(D,q) – an algorithm that the server runs

Client Server

q ← PIR.Query(i) q

r ← PIR.Response(D, q).
r

d ← PIR.Extract(r )

Figure 1: A non-interactive PIR protocol. Correctness of the
protocol will ensure that d = Di .

on the client’s encoded query to compute an encoded response.

– Di ← PIR.Extract(r ) – an algorithm that the client runs on

the server’s response to extract the output for the queried item.

Definition 2.2 (Symmetric Private Information Retrieval (SPIR)).
Symmetric PIR extends the PIR functionality with privacy require-

ment also for the database guaranteeing the client does not learn

anything beyond the element Di .

2.2 Homomorphic Encryption
For ease of notation and without loss of generality, recall that an ad-

ditive homomorphic encryption schemeHE = (KeyGen, Enc,Dec)
with plaintext space Zt is an encryption scheme with the following

properties:

• Enc(sk,m1) + Enc(sk,m2) = Enc(sk, (m1 +m2) mod t),
• Enc(sk,m1) · λ = Enc(sk,m1 · λ mod t),

for everym1,m2, λ ∈ Zt , for some specific operations + and · over

the ciphertexts.

Below, we recall the Fan–Vercauteren (FV) homomorphic en-

cryption scheme [28]. For space constraints, the El Gamal and

Paillier/Damgård–Jurik cryptosystems are recalled in Appendix A.

Fan–Vercauteren. An FV ciphertext is a pair of polynomials over

R/qR, where R = Z[x]/(xN + 1), and encrypts a messagem(x) ∈
R/tR for a t < q. In addition to the standard operations of an en-

cryption scheme (key generation, encryption, decryption), FV also

supports homomorphic operations: addition, scalar multiplication,

and multiplication.

• Addition: Given two ciphertexts c1 and c2, respectively en-

cryptingm1(x) andm2(x), the homomorphic addition of c1 and
c2, denoted c1+c2, results in a ciphertext that encrypts the sum

m1(x) +m2(x) ∈ R/tR.
• Scalar multiplication: Given a ciphertext c ∈ (R/qR)2 en-

crypting m(x) ∈ R/tR, and given m′(x) ∈ R/tR, the scalar

multiplication of c by m′(x), denoted m′(x) · c , results in a

ciphertext that encryptsm′(x) ·m(x) ∈ R/tR.
• Multiplication: Given two ciphertexts c1 and c2, respectively

encryptingm1(x) andm2(x), the homomorphic multiplication

of c1 and c2, denoted c1 ·c2, results in a ciphertext that encrypts

the productm1(x) ·m2(x) ∈ R/tR.

Finally, [5] introduced a specific operation called substitution, in-

stantiated using the plaintext slot permutation of [33].

• Substitution: Given a ciphertext c ∈ (R/qR)2, that encrypts
m(x) ∈ R/tR, and an integer k , the substitution operation
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Subk (·) applied on c results in a ciphertext that encryptsm(x
k ) ∈

R/tR.

3 PIR BASED ON ADDITIVE HE
The majority of private information retrieval constructions that

achieve sub-linear communication rely on homomorphic encryp-

tion and enable the client to compress its query. More precisely,

there are two flavors of homomorphic encryption-based PIR pro-

tocols with sub-linear communication that exist in the literature,

those based on additive homomorphic encryption (AHE) schemes

and those based on fully homomorphic encryption (FHE) schemes.

In this section, we focus on the former flavor, that captures

schemes based on El Gamal, Paillier/Damgård–Jurik, and captures

the SealPIR protocol proposed by Angel et al. [5] (based on lattice-

based additively homomorphic encryption).

We begin by recalling the baseline PIR and the recursion tech-

nique in Section 3.1. Then, we recall the SealPIR protocol in Sec-

tion 3.2. Finally, Section 3.3 presents our contribution and explains

how to optimize SealPIR to further reduce the communication by a

factor 3 for essentially the same computation cost.

3.1 Background
Baseline PIR. We recall the baseline solution for PIR based on ho-

momorphic encryption [45]. Let l denote the bit-size of the elements

of the database and letHE = (KeyGen, Enc,Dec) be a homomor-

phic encryption scheme with plaintext space Zt for t ≥ 2
l
. Denote

by C the ciphertext space ofHE. Note that we will interpret each

element Di as an element of Zt .
The baseline PIR protocol works as follows (cf. Algorithms 1 to 3).

To construct the query for index k , the client encrypts component

by component the selection vector ®s = (si )i=1...n proportional to

the size of the database n, which verifies si = δi,k = 0 for i , k
and sk = δk,k = 1. To answer the query q = (Enc(sk, si ))i=1...n ,
the server computes the inner product between the query and the

database D (where Di ∈ Zt ), eventually yielding

⟨q,D⟩ =
n∑
i=1

Enc(sk, si ) · Di = Enc
(
sk,

n∑
i=1

δi,kDi

)
= Enc(sk,Dk ).

(1)

In the rest of the paper, we will instantiate this protocol with

the Paillier/Damgård–Jurik cryptosystem [22, 53], the El-Gamal

cryptosystem [31], and an RLWE-based homomorphic cryptosys-

tem [5, 28, 50]. In Appendix A and Table 7, we report on the specific

communication and computation costs for the latter schemes.

Procedure 1 PIR.HE.Query

Input: k ∈ [1, n].
®s = (si )i=1. . .n = (δi,k )i=1. . .n .
∀i ∈ [1, n], qi ← Enc(sk, si ).

Output: ®q = (qi )i=1. . .n ∈ Cn .

Procedure 2 PIR.HE.Response

Input: D ∈ Znt , ®q ∈ C
n
.

r = ⟨ ®q, D⟩ = Enc
(
sk, ⟨®s, D⟩

)
as in Eq. (1).

Output: r ∈ C.

Cost of the baseline PIR. Denote by c(n) the size of a ciphertext el-
ement that enables n homomorphic scalar multiplications followed

by n homomorphic additions. The overall communication cost is

n · c(n) + 1 · c(n), hence, is at least linear in the database size. A

direct way to trade-off communication of upload and download

is by reducing the length k of the selection vector and returning

n/k database items (assuming t > 2
kl
). This PIR construction could

reduce the communication to O(n1/2) ciphertexts, by sending a se-

lection vector of sizen1/2 and returningO(n1/2) encrypted database
entries.

Two approaches have been proposed in the literature to reduce

the overall communication cost: either using recursion (also called

folding [32]) using additive homomorphic encryption, or a trivial

solution using fully homomorphic encryption. We survey these two

approaches below.

Recursion/Folding. Kushilevitz, Ostrovsky [45], and later Stern [65],
propose the following modification of Algorithms 1 to 3. Instead

of representing the database D as a vector of size n, one can rep-

resent D as a n1/2 × n1/2 matrix M = (Mi, j ), where (say) Mi, j B
Din1/2+j . Now, instead of sending (the encryption of) one selec-

tion vector ®s = (δi,k ) of dimension n for index k , the client writes

k = i ′n1/2 + j ′ where i ′, j ′ ∈ [n1/2], and sends two binary selection

vectors ®s1 = (s1,i ) = (δi,i′) and ®s2 = (s2,i ) = (δj, j′) of dimension

n1/2. In particular, it holds that s1,i · s2, j = δi,i′ · δj, j′ = δin1/2+j,k ,

for all i, j.
The server then performs three steps:

(1) For each of the n1/2 rows Mi = (Mi,1 · · ·Mi,n1/2 ), the server

computes the response with the (encryption of the) selection

vector ®s2 as in Eq. (1), i.e., the server obtains then
1/2

ciphertexts

ci = Enc
(
sk, ⟨®s2, (Mi, j )j ⟩

)
= Enc

(
sk,Din1/2+j′

)
.

(2) Since the ciphertext expansion is F > 1, for each i ∈ [n1/2], the
server represents

1 ci as F plaintext elements ci,1, . . . , ci,F .
(3) For each of the vectors (c

1,f · · · cn1/2,f )with f ∈ [F ], the server

computes the response with the (encryption of the) selection

vector ®s1 as in Eq. (1), i.e., the server obtains the F ciphertexts

c ′f = Enc
(
sk, ⟨®s1, (ci,f )i ⟩

)
= Enc

(
sk, ci′,f

)
.

Upon reception of the response, r = (c ′
1
, . . . , c ′F ) ∈ C

F
, the client

finally extracts the desired result as follows.

(1) It uses the homomorphic encryption decryption key to recover

ci′,f for all f ∈ [F ].
(2) It reconstructs ci′ from the ci′,f ’s elements.

Procedure 3 PIR.HE.Extract
Input: r ∈ C.
d B Dec(sk, r ) mod 2

l
.

Output: d ∈ Z
2
l .

1
We assume without loss of generality that F ∈ Z. Note that we do not ask for

any algebraic conditions from the map; for example we could just break down a binary

representation of elements of C into F plaintexts. For the Paillier cryptosystem, or

more precisely the generalization from Damgård and Jurik [22], we will take a different

approach: we will select parameters so that the ciphertext after the first folding exactly

fits in the plaintext space for the second folding; cf. Appendix A.
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Procedure 4 SealPIR.Query

Input: k ∈ [1, n].
Generate ®sj = (sj,i )i∈[m] the d selections vectors in {0, 1}m .

∀j ∈ [d ],mj ←
∑
i∈[m] sj,ix i ∈ R/tR .

∀j ∈ [d ], qj ← Enc(sk,mj ).

Output: ®q = (qj )j∈[d ] ∈ Cd .

(3) It uses the homomorphic encryption decryption key on ci′ to
recover Di′n1/2+j′ = Dk .

Recursion provides a way to emulate multiplicative homomorphism

in one very restricted setting, which, however, suffices for PIR con-

struction. The computation that is enabled by the layering approach

for multiplication is inner product with a selection vector that has

exactly one non-zero entry which is equal to one. This method

easily generalizes by representing the database as a d-dimensional

hyperrectangle [n1]× · · · × [nd ]with n = n1 ·n2 · · ·nd (the baseline

PIR corresponds to d = 1 with n1 = n, and the recursion above to

d = 2 with n1 = n2 = n
1/2

).

Cost of recursion. When ni = n1/d , we accomplish the following

communication complexity: O
(
c(n) · dn1/d

)
for the user’s query

and O
(
Fd−1c(n)

)
for the server’s response. In particular, for small

values of d , we will get sub-linear communication. However, note

that for full recursion, i.e., d = logn, communication becomes

polynomial in n.

3.2 SealPIR
The SealPIR protocol was proposed by Angel et al. [5], and im-

proves over the XPIR protocol proposed by Aguilar Melchor et

al. [50]. Both SealPIR and XPIR instantiate the recursive PIR using

the FV homomorphic encryption scheme viewed as an additive
homomorphic encryption scheme.

In the recursion protocol, the query consists of encryptions of

the bits of the selection vectors. The work of [5] starts with the

natural observation that many bits can be encrypted in a single

ciphertext (and, in particular, at least one per polynomial coefficient)

and shows how an encryption with one bit per coefficient can be

obliviously expanded by the server to obtain encryptions of each

of the bits in the constant coefficient of the plaintext polynomial.

SealPIR’s Query algorithm is given in Algorithm 4 and enables

to decrease the upload cost by a factor ≈ N (the polynomial ring

dimension).
2

Now, when the server receives such a compressed query, it needs

to perform an oblivious expansion into the original query, to then

apply Response (Algorithm 2). SealPIR’s oblivious expansion is

recalled in Algorithm 5.

3.3 Optimizing SealPIR
This section explains how to optimize SealPIR. Our techniques yield

a reduction of the communication bandwidth by a factor 3x for the

same parameters as in [5].

2
Without loss of generality, assumem ≤ N , otherwise the selection vector can

be additionally split into ⌈m/N ⌉ different selection vectors. In practice, the selection

vectors will be of size ≤ n1/2
, which will be below N = 2048 when the database size

is n ≤ 2
24
.

Procedure 5 SealPIR Oblivious Expansion

Input: Query q = Enc(
∑k−1
i=0 six

i ), k ∈ [N ]
Find smallerm = 2

ℓ ≥ k
ciphertexts = [q]
for j = 0 to ℓ − 1 do

for k = 0 to 2
j − 1 do

c0 ← ciphertexts[k ]
c1 ← x−2

j
· c0 // scalar multiplication

c′k ← c0 + SubN /2j+1(c0)
c′
k+2j

← c1 + SubN /2j+1(c1)
end for
ciphertexts = [c′

0
, . . . , c′

2
j+1−1
]

end for
inverse←m−1 mod t // normalization

for j = 0 to k − 1 do
oj ← inverse · ciphertexts[j]

end for
Output: output = [o0, . . . , ok−1]

Compressing the upload. Our first contribution comes from the

following observation: oblivious expansion (Algorithm 5) is linear
over the plaintext space. Indeed, all operations used in the algo-

rithms are linear over the plaintext space: additions, substitutions,

and scalar multiplications. Hence, it follows that SealPIR’s oblivious

expansion algorithm enables to expand encryptions of any vectors:

ifm =
∑
i ∈[N ]mix

i ∈ R/tR, then the output of the oblivious ex-

pansion consists of N ciphertexts, respectively encrypting each of

themi ’s in the constant coefficient of the plaintexts.

We use the above observation to further compress the size of

the query in SealPIR and remark that it could also be applicable

in other contexts as well. In SealPIR with recursion d , the upload

consists of d · ⌈n1/d/N ⌉ ciphertexts, where the factor d comes from

the fact that we have d selection vectors, and ⌈n1/d/N ⌉ comes from

the fact that one selection vector of size n1/d can be embedded in

⌈n1/d/N ⌉ plaintext polynomials in R/tR. Now we can consider the

concatenation of the d selections vectors of size n1/d as one vector

of size d · n1/d and use the compression technique over that vector.

It follows that the upload size becomes ⌈d · n1/d/N ⌉ ciphertexts. In

practice, for d ≥ 2, we usually have d · n1/d < N , which enables to

reduce the upload to a unique ciphertext in SealPIR.

Compressing the download (and upload). Our second contribution
is to use three compression techniques for homomorphic encryption

ciphertexts that will enable to reduce further the communication:

secret key encryption, modulus switching, and bit dropping.

• The first optimization comes from the fact that the client, who

creates the query ciphertexts, knows the secret key of the ho-

momorphic encryption scheme. In particular, instead of using

the public key encryption algorithm, it can use the secret key

encryption algorithm of FV. Recall that a FV ciphertext is a

tuple (c0, c1) in R/qR. We briefly describe below the public key

and secret key encryption algorithms of FV:

– Secret Key Encryption. The secret key is a small polynomial

s ∈ R/qR. To encryptm ∈ R/tR, sample c0 uniformly at

random in R/qR and e ∈ R/qR a small polynomial, and

define c1 = c0 · s + e + ⌈q/t⌉m.
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– Public Key Encryption. The secret key is a small polynomial

s ∈ R/qR and the public key (a,b = as +e) is an encryption

of 0 using the algorithm above. To encrypt m ∈ R/tR,
sample r , e1, e2 ∈ R/qR small polynomials, and define c0 =
a · r + e1, c2 = b · r + e2 + ⌈q/t⌉m.

A key observation is that when using secret key encryption,

the first element c0 is sampled uniformly at random in R/qR,
whereas it depends on the public key when using public key

encryption. Therefore, instead of sending c0, the client can

instead send a seed ρ ∈ {0, 1}λ , and the server can reconstruct

c0 from the seed locally. This saves roughly a factor two in size

for the upload ciphertexts.

• The second optimization is to use modulus switching. This op-
eration allows to transform a ciphertext (c0, c1) ∈ (R/qR)

2
with

a noise of norm ≈ E into a ciphertext (c0, c1) ∈ (R/pR)
2
with

a noise of norm ≈ min(t , (p/q) · E) where t is the plaintext

space [18]. It therefore enables us to reduce the download com-

munication in PIR as follows. After finishing to compute the

response ®r = (ri )i=1...ℓ (Algorithm 2), the server will use mod-

ulus switching on each ciphertext ri ∈ (R/qR)
2
to create a new

ciphertext r ′i ∈ (R/pR)
2
, where p ≥ t2 is chosen large enough

to ensure decryption. In practice, this reduces the download

size by ≈ log
2
q/(2 log t); using SealPIR parameters and using

modulus switching to a prime p ≈ 2
25
, this techniques enables

to reduce the download by a factor 60/25 = 2.4.

• Finally, we propose to use a technique used in most post-

quantum lattice-based encryption schemes proposed for stan-

dardization to NIST, such as NewHope [4] and CRYSTAL-

Kyber [9], that we call bit-dropping. Essentially, this technique

enables to drop the least significant bits of the ciphertext as

they carry no information about the message. Indeed, at the

end of the PIR computation, each of the ciphertext ri in the

response if a tuple (c0, c1) ∈ (R/qR)
2
such that

c1 − c0 · s mod q = ⌈q/t⌉ ·m + e ∈ Z ,

where ∥e ∥ is small (and in particular, ∥e∥∞ ≤ ⌈q/t⌉) andm is

the plaintext. Now, assume that instead of c0 and c1, the server
sends the log

2
q −b most significant bits from c ′′

0
, c ′′
1
only. This

essentially corresponds to defining c ′i = ci + ei where ei is a
small noise such that the b least significant bits of c ′i are 0, and

send c ′′i = c
′
i/2

b
to the client. Then, the client can reconstruct

the c ′i and compute

c ′
1
− c ′

0
· s mod q = ⌈q/t⌉ ·m + (e + e1 − e0) mod q .

Now, if e + e1 − e0 is small enough, the last equality will hold

over Z and the client will be able to decrypt the ciphertext

and recoverm. This compression technique can be used both

for upload and download, and enable saving a few bits per

polynomial coefficient.

Costs and gains. All the techniques described above can be use

concurrently. We report in Table 1 the gains obtained by using

these techniques on SealPIR, where the parameters are chosen so

as not to affect security. Additionally, the techniques compressing

the ciphertexts need only to be performed on the input and output

ciphertexts, effectively adding a negligible computational cost to

SealPIR.

4 USING HOMOMORPHIC MULTIPLICATION
When PIR was introduced, only additively homomorphic encryp-

tion schemes were known. Now, fully (resp. somewhat) homomor-

phic encryption provides an unbounded (resp. bounded) level of

multiplicative homomorphism.

In this section, we first recall in Section 4.1 the generic technique

that uses fully homomorphic encryption to construct PIR with op-

timal communication complexity. Our contributions are presented

in the following sections. Sections 4.2 to 4.4 present three flavors of

PIR that leverages somewhat homomorphic encryption to achieve

new computation-communication trade-offs. Finally, Section 4.5

presents MulPIR, a variant of SealPIR that trades off computation

for better communication, especially for higher levels of recursion.

In Table 2, we overview the communication-computation trade-

offs in homomorphic encryption based PIR protocols.

4.1 Fully Homomorphic Encryption Approach
Assume the homomorphic encryption schemeHE is fully homo-

morphic, i.e., (w.l.o.g. for ease of presentation) there exists a Eval
procedure that takes as input ciphertexts ci for respective mes-

sagesmi and any function description f : Zκt → Zt , and outputs a

ciphertext of f (m1, . . . ,mκ ), which we denote

Eval({Enc(sk,mi )}i ∈[κ], f ) = Enc(sk, f (m1, . . . ,mκ )).

A possible approach to computing the selection vector for the PIR

query using FHE is based on the following observation: the i-th
bit in the PIR query vector is the output of the equality check

between the query index k and i . Hence, instead of sending the

selection vector ®s , the client can encrypt each bit kj of the index
k and send the resulting κ = logn ciphertexts to the server. The

server then homomorphically computes the selection vector and

proceeds as in the baseline PIR construction. This construction

achieves communication complexity: O(logn ) for the user’s query
and O(1) for the server’s response (note that the ciphertext size is

independent of the database, hence included in the O notation.).

4.2 SHE-based solution: Equality Circuit
A first approach consists in implementing the protocol described

for fully homomorphic encryption schemes that leverage the ob-

servation that, since the values k and i have at most κ = logn bits,

the arithmetic circuit for computing equality comparison has mul-

tiplicative depth logκ = log logn. Indeed, computing the equality

comparison bit for two bit values b1 and b2 is equivalent to comput-

ing 1−(b1+b2−2b1b2) over the integers. Note that in our case only

one of the bits coming from the query will be encrypted. Thus, bit

equality computation will not require any multiplicative homomor-

phism. The dominant cost is therefore the multiplication of logn
encrypted bits, which requires log logn multiplicative degree.

Hence, it suffices to use a somewhat homomorphic encryption

that supports logκ nested multiplications. Then the ciphertext size

depends on the size of the database and the communication com-

plexity becomes O(c(n) logn ) for the user’s query and O(c(n)) for
the server’s response.
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Table 1: Gain from our compression techniques (Section 3.3), and of MulPIR (Section 4.5), compared to SealPIR.

Database size n = 2
18 n = 2

20

Recursion d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

SealPIR upload (kB) 416 64 96 1664 64 96

SealPIR download (kB) 32 256 2048 32 256 2048

Optimized SealPIR upload (kB) 183 14 14 733 14 14

Optimized SealPIR download (kB) 10 82 655 10 82 655

Total communication wrt SealPIR 0.43× 0.30× 0.31× 0.44× 0.30× 0.31×

MulPIR upload (kB) 183 19 59 733 19 59
MulPIR download (kB) 10 21 43 10 21 43
Total communication wrt SealPIR 0.43× 0.13× 0.04× 0.44× 0.13× 0.04×

For SealPIR, we use the same parameters as in [5, Fig. 9]. The plaintext modulus is fixed to t = 2
12 + 1. For the optimizations, we use modulus switching to a prime

of 25 bits for SealPIR, drop respectively 5 and 8 bits for upload and download ciphertexts. For MulPIR, the parameters depend on the recursion: for d = 2, we use
N = 2048 and log

2
(q) = 80, log

2
(p) = 48; for d = 3, we use N = 4096 and log

2
(q) = 120, log

2
(p) = 50.

Table 2: Communication-Computation Trade-Off of homomorphic encryption based PIR Protocols.

Total Communication Approximate computation cost
in number of ciphertexts Expressed in homomorphic computation unit:

A: addition; S : scalar multiplication; M : multiplication

Recursion 1 ≤ d ≤ logn d = log(n) 1 ≤ d ≤ logn
log F

logn
log F < d ≤ logn d = log(n)

Additive HE O

(
dn

1

d + Fd−1
)
O

(
logn + F logn−1

)
n(A + S ) n

1

d Fd−1(A + S ) F logn−1(A + S )

Somewhat HE O

(
dn

1

d
)

O(logn ) n(A + S ) + n
d−1
d M n(A + S ) + n

d−1
d M n(A + S +M )

Fully HE – O(logn ) – – n lognM + n(A + S )

This tables aims at giving an insight on the overall trend but does not reflect accurately the costs; e.g., the communication in indicated in number of ciphertexts
while the actual size of the ciphertexts may depend on the database size, and similarly the costs of the homomorphic operations differ between each row.

4.3 SHE-based solution: Layered Multiplication
A second approach consists in using recursion, but instead of “em-

ulating” multiplications using additions, use the multiplicatibve

homomorphism of SHE. Using the same notation as in Section 3.1,

the PIR protocol becomes as follows. The server performs two steps:

(1) For each of the n1/2 rows Mi = (Mi,1 · · ·Mi,n1/2 ), the server

computes the response with the (encryption of the) selection

vector ®s2 as in Eq. (1), i.e., the server obtains then
1/2

ciphertexts

ci = Enc
(
sk, ⟨®s2, (Mi, j )j ⟩

)
= Enc

(
sk,Din1/2+j′

)
.

(2) The server now computes the response with the (encryption

of the) selection vector ®s1 using homomorphic multiplication,

i.e., the server obtains the ciphertext

c = Enc
(
sk, ⟨®s1, {Din1/2+j′}i ⟩

)
= Enc

(
sk,Di′n1/2+j′

)
.

Upon reception of the response, r = c ∈ C, the client directly uses

the HE decryption key to recover Di′n1/2+j′ = Dk .

Here again, this method easily generalizes by representing the

database as a d-dimensional hyperrectangle [n1] × · · · × [nd ] with

n = n1 · n2 · · ·nd . When ni = n1/d , we accomplish the following

communication complexity: O
(
c(n) · dn1/d

)
for the user’s query

and O(c(n)) for the server’s response.

4.4 SHE-based solution: Selection Vector
Reconstruction

Note that the approach of Section 4.3 keeps the layered approach

of recursion. In particular, performs sequentially d homomorphic

multiplications, effectively requiring the somewhat homomorphic

encryption scheme to support circuits of multiplicative depth d . In
particular, for full recursion, this means that the SHE scheme needs

to support circuits of depth κ = logn, which increases the size of

the ciphertexts compared to the first approach
3
, where the SHE

only required to handle depth logκ = log logn.
We propose below a method that trades communication for

computation as follows. First, note that

Di′n1/2+j′ = ⟨®s1 ⊗ ®s2, {Di }i ∈[n]⟩ ,

where ®s1 ⊗ ®s2 is the tensor product of ®s1 and ®s2. More generally, if

®s1, . . . , ®sd denote the selection vectors of dimension n1/d , such that

the indices of the 1 element in ®si is ji , then

D∑d−1
j=0 ji ·n j/d

= ⟨®s1 ⊗ · · · ⊗ ®sd , {Di }i ∈[n]⟩ .

Hence, this hints to a new protocol, where the client sends the

d · n1/d encryptions of the bits sj,i j for j ∈ [d], i j ∈ [n
1/d ], the

3
Indeed, the parameters of somewhat homomorphic encryption schemes scales at

least linearly in the multiplicative depth (using techniques called modulus switching

or relinearization); hence reducing the multiplicative depth exponentially with also

reduce the ciphertext size exponentially.
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server computes homomorphically

Enc(sk, s1,i1 × · · · × sd,id ), ∀i1, . . . , id ∈ [n1/d ] ,
and then computes the inner product with the original database, as

in the baseline PIR (cf. Eq. (1)). Now, note that the latter product can

be computed using a binary tree of depth logd . For full recursion,
i.e., d = logn, the dominant cost in this algorithm is the multipli-

cation of d = logn encrypted bits, hence requires logd = log logn
multiplicative degree.

4.5 MulPIR: Putting Everything Together
Sections 4.2 to 4.4 and Table 2 illustrate that homomorphic multi-

plications enable to reduce the communication of recursion, which

becomes a bottleneck for large levels of recursion. We note that

the FV homomorphic encryption scheme, that is used in SealPIR,

is actually a somewhat homomorphic encryption scheme, and the

parameters can be chosen to handle an a priori bounded number of

multiplications.

We therefore propose MulPIR, which combines the layered mul-

tiplication approach from Section 4.3 with the optimizations from

Sections 3.2 and 3.3. In particular,

• TheQuery algorithm is the same as in our optimized variant

of SealPIR, described in Section 3.3.

• Upon reception of the query, the server obliviously expand the

query using SealPIR’s oblivious expansion algorithm;

• Then the server runs the layered multiplication algorithm of

Section 4.3;

• Next the server compress the response usingmodulus-switching

and bit-dropping Section 3.3;

• Finally, the client extract the database elements as in SealPIR.

MulPIR trades off computation (higher computational costs for

the server) for smaller communication (in total communication, and

more particularly for the download communication). We report the

communication costs in Table 1 and report the computation costs

in Section 6. Finally, in Appendix B, we discuss the one-time com-

munication costs for SealPIR and MulPIR associated with sending

the Galois Keys required to perform the Substitute algorithm.

5 IMPROVING GENTRY–RAMZAN PIR
An alternative to PIR based on homomorphic encryption is the

protocol of Gentry and Ramzan [34], which achieves logarithmic

communication and a constant communication rate. While it has

been implemented in previous work [19, 20, 54], it is usually dis-

missed due to its computational complexity [3, 19].

In this section, we describe several optimizations to Gentry–

Ramzan PIR that allow us to get a practically efficient implementa-

tion. Since the main computation bottleneck for large databases is

the server computation (cf. Algorithm 6), we focus on optimizing

this part of the protocol. We will first revisit the original proto-

col [34] (Section 5.1). Then, in Section 5.2, we show how to apply

existing techniques [8, 63] to speed up the server setup of Gentry–

Ramzan PIR. While this is a one-time setup, it is non-trivial to im-

plement with complexity sub-quadratic in the database size. Finally,

in Section 5.3, we show how to speed up the response computation

with a novel client-aided variant of Gentry–Ramzan PIR, using the

fact that the client can perform modular exponentiations more effi-

ciently since he knows the order of the multiplicative group. This

results in an interesting communication–computation trade-off,

which we explore in Section 6.

5.1 Gentry–Ramzan PIR
The basic PIR protocol of Gentry and Ramzan [34] works by in-

terpreting the server’s database as a number in a Residue Number

System (RNS). That is, given n coprime integers π1, . . . ,πn , with

πi ≥ 2
l
for all i ∈ [n], we encode D as an integer E, such that

E ≤
n∏
i=1

πi , and E ≡ Di mod πi for all i ∈ [n]. (2)

The existence and uniqueness of E follows from the Chinese Re-

mainder Theorem, which can also be used to compute E given D
and all πi . Observe that (2) implies that we can retrieve the element

at index i by reducing E modulo πi . The idea of [34] is to have the

server perform this reduction in the exponent of a multiplicative

group, thus hiding i . We give the description of the PIR protocol in

Algorithms 6 to 8, and refer the reader to [34] for the details.

Procedure 6 PIR.GR.Query

Input: i ∈ [n], security parameter λ.
Q1 B 2q1 + 1 s.t. Q1 and q1 are prime and log

2
(Q1) ≥ λ.

Q2 B 2q2πi + 1 s.t. Q2 and q2 are prime and log
2
(Q2) ≥ λ.

m B Q1Q2.

д ←$Zm s.t. | ⟨д ⟩ | = q1q2πi .
Output: (m, д) ∈ Z × Z∗m .

Procedure 7 PIR.GR.Response

Input: D, (m, д) ∈ Z × Z∗m .

Encode D as an integer E as in Eq. (2).

д′ B дE modm.

Output: д′ ∈ Z∗m .

Procedure 8 PIR.GR.Extract
Input: д′ ∈ Z∗m .

h B дq1q2
h′ B д′q1q2
Solve h′ = hd for d using Pohlig–Hellman algorithm.

Output: d ∈ Zπi .

5.2 Fast Modular Interpolation
Before being able to answer queries, the server must encode the

database D according to Eq. (2). LetM =
∏n

i=1 πi be the product of
all moduli, andMk = M/πk =

∏n
i=1,i,k πi . A naive application of

the Chinese Remainder Theorem computes E as follows:

(1) For each k ∈ [n], use the extended Euclidean algorithm to

compute integers ak ,bk such that akMk + bkπk = 1.

(2) Compute E =
n∑

k=1
DkakMk =

n∑
k=1

Dkak

(
n∏

i=1,i,k
πi

)
.
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It is clear that a given modulus πk divides all summands from Step

2 except the k-th. Then, using the identity from Step 1, we have

E ≡ DkakMk ≡ Dk − Dkbkπk ≡ Dk mod πk for all k ∈ [n]. The
problem with that solution is that eachMk has already size Ω(n).
While there are quasi-linear variants of integer multiplication [63]

and the extended Euclidean algorithm [64], we have to perform

each of those at least n times, and therefore end up with a total

running time of Ω(n2).
To avoid the quadratic complexity, we rely on the modular in-

terpolation algorithm by Borodin and Moenck [8]. Their main ob-

servation is that if we divide our set of moduli πi evenly into two

parts, and call the products of those partsM1 andM2, then the first

half of the summands in Step 2 above containsM2 as a factor, while

the other half contains M1. Thus, M1 and M2 can be factored out

of the sum, reducing the computation to two smaller sums and two

multiplications:

E = M2 ·

(
⌊n/2⌋∑
k=1

dkak

(
⌊n/2⌋∏

i=1,i,k

πi

))
+

M1 ·

( n∑
k= ⌊n/2⌋+1

dkak

( n∏
i= ⌊n/2⌋+1,i,k

πi

))
.

Repeating the above transformation recursively leads to a divide-

and-conquer algorithm for modular interpolation, which, using

the Schönhage-Strassen integer multiplication [63], has a total run-

ning time of O(n log2 n log logn) [8]. It relies on the fact that the

supermoduli M1,M2 can be pre-computed, as well as the inverses

ak . This is especially useful, as we can reuse those for multiple

interpolations, as long as the set of moduli πi remains the same.

We will make use of this precomputation when applying our imple-

mentation of Gentry–Ramzan PIR to databases with large entries

(Section 6.3).

5.3 Client-Aided Gentry–Ramzan
As we can see in Algorithm 7, to compute the response to a query,

the server has to compute a modular exponentiation, where the

exponent encodes the entire database as described in the previous

section. Prior work [20] has shown that in practice this step is by

far the most expensive part in Gentry–Ramzan PIR.

To speed up the response computation, we rely on the well

known fact that one can use Euler’s Theorem to perform modu-

lar exponentiations of the form дx mod m by first reducing the

exponent modulo φ(m) = (Q1 − 1)(Q2 − 1) and computing

дx mod m = дx mod φ(m)
mod m. (3)

While we cannot apply this directly to Algorithm 7 because the

server does not (and may not) know φ(m), the client can use Eq. (3)

to perform a part of the server’s computation without knowing E,
by pre-computing powers of the generator д.

Concretely, the server rewrites the large exponent E according

to some base b ≥ 2. Without loss of generality, we know that

E = E0 + E1b + E2b
2 + . . . + Elb

l
. It follows that дE = дE0 · (дb )E1 ·

(дb
2

)E2 · · · (дb
l
)El . Observe that since b and l are public, the client

can compute the l+1 valuesд,дb ,дb
2

, . . . ,дb
l
without knowing the

exponent E. Furthermore, these l exponentiations may be efficiently

computed by the client using the prime factorization ofm as shown

in Eq. (3). Note that revealing the additional powers of д to the

server does not leak any information, as they could be computed

by the server as well, just not as fast. Given these l + 1 values, the
server’s task reduces to the problem of computing the product of

multiple parallel exponentiations. To do this efficiently, one can

refer to the survey by Bernstein [7]. For our implementation, we

choose Straus’s algorithm [66], a description of which can be found

in [42, Alg. 14.88]. In our experiments in Section 6.2, we show

that in practice the additional workload on the client insignificant

compared to the time needed to generate the prime factors ofm.

6 EXPERIMENTAL EVALUATION
In this section, we present experimental results that measure the

efficiency of different PIR protocols and illustrate some of the pos-

sible tradeoffs that they enable. These results can inform decision

making of what is the most appropriate PIR instantiation for a

particular application.

6.1 Experimental Setup
All our experiments are performed on a desktop computer with

a Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz, 64GB of RAM,

running Ubuntu. The parameters of the PIR protocols target 112

bits of security. Unless specified otherwise, the parameters are as

follows:

• El Gamal PIR with the NIST P-224r1 curve. The plaintext size

is chosen to be 4 bytes for fast decryption.

• Damgård–Jurik PIR: 1160-bit primes. One ciphertext will

therefore encrypt about 290s bytes, for s ≥ 1 the Damgård–

Jurik parameter.

• MulPIR: Polynomials of dimension 2048 and a modulus of 60

bits. The plaintext modulus set to t = 2
12 + 1. One ciphertext

will therefore encrypt 12 · 2048/8 = 3072 bytes.

• Gentry–Ramzan: 2048-bit modulus and plaintext block size

of 500 ≤ 2048/4 bits, i.e., 62.5 bytes. When specified as “client-

aided”, the client sends 15 generators to the server (cf. Sec-

tion 5.3).

All the implementations are standalone and rely only on OpenSSL

for BigNum and elliptic curve operations.

6.2 Baseline Computation Costs
We start with an evaluation of the baseline computation cost of

the PIR protocols from Sections 3 and 5.1. Note that in this setting,

since we do not use recursion (hence no homomorphic multiplica-

tion is performed), SealPIR and MulPIR offer essentially the same

performance.

In Table 3, we consider a database of 5000 elements of length

288B (such database was used for evaluation in [6]) and evaluate

the client and server costs to setup, create a request, respond to this

request, and extract the response. We report communication and

computation costs when the database is packed (i.e., the database is

reshaped so as to maximize the number of elements in the response;

as done in SealPIR [5]). For comparison we also report the costs

without packing.

The table also reports on the gain of sending several generators

for Gentry–Ramzan. Recall that in Section 5.3, we proposed to use

Straus’s algorithm to compute the exponentiation at the core of
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Table 3: Small elements database: 5000 elements of 288B, for a total size of ≈ 1MB.

Communication (kB) Computation (ms)

Server Cost

packed upload download C.Setup S.Setup C.Create S.Respond C.Process (US cents)

SealPIR/MulPIR ✗ 70480 21 0 522 5474 2803 0.3 0.54

SealPIR/MulPIR with Expand ✗ 43 21 0 512 247 15437 0.3 0.0048

SealPIR/MulPIR ✓ 7048 21 0 52 550 278 0.3 0.054

SealPIR/MulPIR with Expand ✓ 14 21 0 53 242 5136 0.3 0.0017

Damgård–Jurik (s = 1) ✓ 2900 0.6 62806 1 29148 26418 6 0.030

Damgård–Jurik (s = 2) ✓ 2175 0.9 168273 1 32681 45210 14 0.030

Gentry–Ramzan ✓ 0.5 1.3 0 1278 12037 49991 361 0.014

Gentry–Ramzan (Client-Aided) ✓ 4.1 1.3 0 1280 11327 5631 367 0.0016

ElGamal ✓ 280 8 560 22 736 9428 11586 0.0048

Average over 10 computations. “Packed” indicates that the database was reduced to store as many elements as possible per ciphertext. Since Gentry–Ramzan and El
Gamal plaintext block sizes are smaller than the size of the entries, respectively 5 and 72 ciphertexts are needed to store a database element. Damgård–Jurik client’s
setup includes precomputation to speed up the query creation. Total server costs were computed using Google Cloud Platform prices [1], which were at the time of

writing at one cent per CPU-hour and 8 cents per GB of network traffic.

Figure 2: Trade-off of our PIR implementations, based on data from Table 3 (left), Table 4 (middle), and Table 6 (right).
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the Gentry–Ramzan PIR protocol. Note that the cost of Straus’s

algorithm (expressed in number of multiplications in [7] for exam-

ple), for which one could derive an optimal number of generators

to send, does not account for the precomputation cost. However,

in Gentry–Ramzan, the server does not know the modulusm be-

fore receiving the client’s request, hence this cost is factored in

the server response. In practice, we have determined that about 15

generators was the best communication-computation trade-off one

could obtain in Gentry–Ramzan.

Finally, the table shows the price one would have to pay for a

single execution of the experiment on Google’s Cloud Platform [1],

using a preemptible general-purpose VM with a single CPU core.

6.3 Application: Private File Download
Our first application is that of a private file download service. We

consider a “fat” database 10, 000 files of 307, 200 bytes. The total

size of the database is therefore 3GB. In this regime, all the PIR

protocols are fully packed and need to replicate their operations

over “# chunks” ciphertexts. We report communication costs and

benchmarks in Table 4.

As expected, Damgård–Jurik and ElGamal are significantly slower

than the (packed) variant of SealPIR/MulPIR and Gentry–Ramzan,

respectively for the server and for the client, and will not be con-

sidered further in the rest of the section. Additionally, we can see

that Expand enables to reduce the communication requirements

of SealPIR/MulPIR significantly. While it remains far from the effi-

cient communication cost of Gentry–Ramzan, it offers much better

performance.

6.4 Application: SealPIR Example Database
This section revisits the application of SealPIR [5], i.e., serving a

database of 288B messages. We use this section to further compare

the open-source implementation of SealPIR (without modification)

available on GitHub [3] against an implementation of MulPIR that

uses one homomorphic multiplication (Section 4.5). For this experi-

ment only, and to facilitate comparison, both implementations rely

on the SEAL homomorphic encryption library [2]—we refer to this

MulPIR implementation by “Seal-MulPIR”. We use the same data-

base sizes as in [5] and report the costs in Table 5. The experiment

results reflects the use of the more costly homomorphic multiplica-

tion in Seal-MulPIR. Note that our custom made implementation of

MulPIR (as used in the other sections) will feature a smaller noise

growth and hence will enable to select smaller parameters in the

Password checkup experiment (Section 6.5).
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Table 4: Private File Download: 10,000 elements of 307kB, for a total database size of ≈ 3GB.

Communication (kB) Computation (ms) Total Server Cost

(US cents)
# chunks upload download C.Setup S.Setup C.Create S.Respond C.Process

SealPIR/MulPIR 100 140960 2048 0 105670 11063 36270 25 1.1

SealPIR/MulPIR with Expand 100 71 2048 0 105594 248 56656 25 0.032

Gentry–Ramzan (Client-Aided) 4955 4.1 1259 0 1262133 9676 8848360 344518 2.5

Damgård–Jurik (s = 1) 1060 5800 614 ≈ 60000 ≈ 2500 ≈ 250000 ≈ 57000000 ≈ 7000 16

ElGamal 76800 280 4300 ≈ 128 ≈ 41000 ≈ 1500 ≈ 4400000 ≈ 12500000 1.2

Average over 10 computations. The number of chunks indicates how many ciphertexts are needed to store a database element. The timings indicated with ≈ have
been estimated on a smaller number of chunks to finish in a reasonable amount of time. Total server costs were computed as in Table 3.

Table 5: CPU costs (in ms) of SealPIR and Seal-MulPIR (recursion d = 2) for a database of n elements of 288B.

SealPIR (d = 2) [3] Seal-MulPIR (d = 2)

Database size n 65536 262144 1048576 4194304 65536 262144 1048576 4194304

Actual number of rows after packing 6554 26215 104858 419431 6554 26215 104858 419431

Client Setup 40 40 40 40 10 11 11 12

Client Query / Client Extract 1 1 1 1 1 1 1 1

Server Setup 324 1245 4792 19063 768 2982 11772 47819

Server Expand 70 140 279 553 165 330 653 1325

Server Respond 300 907 3087 11513 626 1873 6016 21705

For this comparison only, we re-implemented MulPIR using the Seal library [2] (Seal-MulPIR) and used SealPIR’s implementation from GitHub without
modification [3]. Here, because of the noise growth in the Seal library, Seal-MulPIR uses a polynomial dimension of 4096, a 120-bit modulus (product of 2 60-bit

moduli), and a plaintext modulus t = 2
6 + 1. Note that the increased running-time of MulPIR enables the bandwidth savings we reported in Table 1.

6.5 Application: Password Checkup
Recent works study the problem of preventing credential stuffing

attacks [47, 67] by proposing privacy-preserving protocols where a

client queries a centralized breach repository to determine whether

her username and password combination has been part of breached

data, without revealing the information queried. While this appli-

cation seems to be a perfect fit for keyword PIR, the size of leaked

credentials (4+ billion credentials [67]) remains prohibitively large

for PIR. Instead, [47, 67] propose protocols where the client and the

server first run an oblivious PRF evaluation (both on usernames

and on the tuple username/password), then use the first value to

retrieve a bucket and the second value to test for membership af-

ter downloading the whole bucket. Precisely, [67] proposes to use

2
16

buckets, which we infer to contain about 60k elements, and

downloading a whole bucket is about 1.6MB of communication.

In this section, we propose to replace the download of the entire

bucket with a PIR query. Table 6 shows that using PIR on each

bucket is practical (i.e., is comparable to the median waiting time

of a few seconds for the client, reported in [67, Tab. 2]) and enables

decreasing communication or the number of buckets (or both).

For Gentry–Ramzan, we propose to perform keyword PIR over a

bucket using Cuckoo hashing, as introduced in Appendix C.1. The

communication is extremely small for any bucket size. For buckets

of size 50k, the server computation time is only slightly larger than

one second. Unfortunately, the client needs to generate large safe

prime numbers which has high computation cost and may impact

the applicability of this protocol in practical deployments, such as

the one of [67].

Instead, we propose to use MulPIR, which features really low

client’s computation costs and low server computation costs. While

we could use the Cuckoo hash-based keyword PIR as above, MulPIR

would perform worse than Gentry–Ramzan for two reasons. First,

the client needs to query as many locations as the number of hash

functions. While Gentry–Ramzan supports CRT batching, MulPIR

does not support batching natively and its server costs are mul-

tiplied by the number of hash functions. Second, a lot of space

available in a MulPIR ciphertext is wasted by using Cuckoo hash-

ing, since each bucket row contains at most one element.

Therefore, we propose to use a simpler solution: the server selects

a random hash function h of image size k , and use it to construct k
bins by placing each of them elements e in the bin of index h(e).
The client then performs a PIR query over a database of size k . In
order to minimize k , we want to make the number of elements in

each bucket as large as possible while still fitting in one MulPIR

ciphertext. Denotem = ck lnk for a constant c . From [62, Th. 1],

we know that with overwhelming probability, the maximum size

of the bucket will be (dc + 1) lnk where dc is the unique root of

f (x) = 1 + x(ln c − lnx + 1) − c larger than c . For every bucket

size, we find experimentally the smallest k such that the whole

bin after hashing fits in one MulPIR ciphertext. We report on the

communication and computation costs in Table 6. In particular, we

conclude that for buckets of size 50k, the server computation time

is less than 100ms for about 1MB of communication, and about

1s for about 50kB of communication (plus the one-time keys that

need to be transferred), making MulPIR a promising replacement

of bucket download in the application of [67].
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Table 6: Password Checkup: Server cost.

Gentry–Ramzan MulPIR MulPIR wo/ Expand

Comm. Time Comm. Time Comm. Time

Bucket

size

(kB) (ms) (kB) (ms) (kB) (ms)

10k 10 254 49 540 612 34
20k 10 508 49 540 612 34
50k 10 1308 49 1020 979 69
100k 10 2428 49 1078 1571 146
200k 10 4807 49 2133 2586 334
500k 10 13161 49 4335 4221 807
1M 10 27788 49 5450 6928 2074

The plaintext modulus of MulPIR is t = 17 to enable recursion d = 2, and k is
respectively equal to 403, 403, 1k, 3k, 8k, 22k, and 58k.

7 CONCLUSION
Similar to other advanced cryptographic primitives, PIR is on the

verge of transitioning from a theoretical to a practical tool. Our

paper presents significant progress in this direction including new

PIR constructions and optimization techniques, which provide new

ways to trade-off communication and computation. We implement

several PIR constructions using different HE schemes as well as

the Gentry–Ramzan PIR, and present a comprehensive evaluation

of their costs in different settings. Our results demonstrate that

the lattice-based FV homomorphic encryption outperforms Paillier

and ElGamal in HE-based PIR constructions, while Gentry-Ramzan

provides best communication overhead as well as dollar cost for

some databases. Our new SHE-based MulPIR enables for the first

time an experimental evaluation of full recursion PIR. Overall, our

constructions show competitive efficiency for various applications,

and we hope our results will serve as a useful reference to inform

the choices of PIR construction and parameters in practice.
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A APPLICATION TO EXISTING HE SCHEMES
In this section, we discuss instantiations of the PIR approaches

from Section 3 with specific homomorphic encryption schemes. In

particular, we consider additive ElGamal [31], Paillier/Damgård–

Jurik [22], and FV [28], the constructions of which we overview

next.

Additive ElGamal [31]. Let G = (д) be a cyclic group of order

p. The public key is a group element h = дx , where the secret

key x is a random integer in [p − 1]. To encryptm ∈ [p], sample

randomly r ← [p − 1] and output c = (c1, c2) = (д
r ,дm · hr ). To

decrypt, compute the discrete logarithm of c2/c
x
1
. This scheme is

additively homomorphic: let c = (c1, c2) encryption m and c ′ =
(c ′
1
, c ′
2
) encrypting m′, then (c1c

′
1
, c2c

′
2
) encrypts m1 +m2 mod p.

Note that decrypting requires to compute the discrete logarithm in

base д, i.e., we can only decrypt small messages. In particular, an

ElGamal ciphertext will have expansion at least F ≥ 2.

Paillier/Damgård–Jurik [22]. Let N = pq be an RSA modulus.

The Damgård–Jurik generalization of the Paillier cryptosystem [53]

is an additive homomorphic encryption scheme parametrized by

an integer s , such that the plaintext space is ZN s and the ciphertext

space is ZN s+1 . In particular, the ciphertext expansion F can be

made as small as desired and F > 1. This unusual property enables

to simplify the recursion in PIR (cf. Section 3). Using the notation

of Section 3, after Step (1), the server obtained n1/2 ciphertexts

ci ∈ ZN s+1 . It can then parse this ciphertext as a plaintext element

for a Damgård–Jurik scheme with parameter s + 1; assuming the

selection vector ®s1 is encrypted under such a scheme, it can then

compute c ′ = Encs+1(sk, ⟨®s1, {ci }i ⟩) ∈ ZN s+2 . In particular, assume

a database with elements in N k
. The communication after d levels

of recursion, where 1 ≤ d ≤ logn, is:

• n1/d (dk + d(d + 1)/2) logN bits from the client to the server,

since each selection vector is encrypted with a modulus logN
bits larger than the previous one,

• (d + k) logN bits from the server to the client to send the

response.

FV [28]. The description of FV is given in Section 2.2; we use the

notation of that section. Since FV is additively homomorphic, we

can apply the baseline PIR and the recursive PIR protocol of Sec-

tion 3. The size of a ciphertext is given by |ct | = 2N logq. In particu-
lar, the communication after d levels of recursion, for 1 ≤ d ≤ logn
is

• (d · n1/d + ⌈2 logq/log t⌉d ) · (2N logq) bits, from the client to

the server where the expansion F = 2 logq/log t > 2,

• ⌈2 logq/log t⌉d−1 · (2N logq) bits from the server to the client

to send the response.
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Table 7: Bounds on plaintext size, expansion, and decryption
cost.

Scheme Plaintext size Expansion F Decryption cost

ElGamal pt small F ≥ 2 2
pt
mults of

2
λ
EG -bit nums

Damgård pt ≤ s · λDJ bits F ≥ 1 + 1/s 1 exponentiation

–Jurik with λDJ-bit exp

FV pt < log(q) · λFV F ≥ 2 one add and one mult

bits in Zq [x ]/(xλFV + 1)

Gentry–

Ramzan

pt < λGR/4 F > 4 4pt
√
n

Here, s is an integer parameter, and λDJ, λEG, λFV, and λGR are the security
parameters for the different encryption schemes, the size of which is

determined by the underlying hardness assumptions. Although not exactly an
encryption scheme, we include Gentry–Ramzan here. In this case, Decryption

corresponds to solving a discrete logarithm, for which the running time
depends on the database size n [34, p. 808].

However, since FV is also somewhat (and fully) homomorphic,

we can apply the PIR protocols of Section 4.1. This enables to reduce

the communication to

• (d · n1/d ) · (2N logq) bits, from the client to the server,

• 2N logq bits from the server to the client to send the response.

B (ONE-TIME) KEY INFORMATION SIZE
The communication costs both in Table 1 as well as the SealPIR

paper are the communication costs per query, assuming the server

knows theGalois Keys thatwill be required to perform the Substitute
algorithm that is used in the oblivious expansion algorithm. Simi-

larly for MulPIR, we also require the client to send one additional

key-switching key to perform the homomorphic multiplication.

Note that all this key information does not depend on the index

that is queried, and can be generated beforehand/offline by the

client, and reused for multiple query. The communication cost of

such key information are provided in Table 9.

Note that SealPIR requires to send logN Galois keys, where each

Galois key is consists of log
2
q/3 ciphertexts; hence it is possible to

use two of the optimizations from Section 3.3: sending a seed rather

than a random polynomial, and bit-dropping (in practice b = 5

bits are dropped). Note that the size of the Galois keys in MulPIR

may be higher than in SealPIR. Indeed, as explained in Table 1, the

number of coefficients and size of moduli depends on the recursion

depth.

We propose an optimization that trades computation for com-

munication, as follows. Instead of sending logN Galois keys, it is

possible to send one Galois keys only (a generator of the Galois

group) and apply it repeatedly. For example, for any substitution

m(x) 7→m(x2
j+1), j ≤ logN that we need to perform during obliv-

ious expansion, the substitution m(x) 7→ m(x5) can be applied

repeatedly to get all possible substitution powers. This enables to

reduce the number of keys to send from logN to 1 Galois key.

C BEYOND PIR: SPARSITY AND DATABASE
PRIVACY

In this section we consider functionalities beyond the traditional

setup for PIR that bring extended computation capability, efficiency

and security properties, which can be advantageous in different

application scenarios.

C.1 Keyword PIR using Cuckoo Hashing
The traditional setup for PIR constructions assumes that the data-

base entries have public indices which are known to the client

submitting queries. In particular, these indices coincide with the

domain of all possible queries for the client. Under this assump-

tion the size of the database is equal to the query domain size,

which directly affects the computation and communication costs

of the constructions which depend on the database size. In cases

when the server database is sparse and only a small fraction of the

domain indices correspond to actual entries, using a PIR solution di-

rectly will incur a large overhead forcing dependence on the whole

domain size. This sparse database setting has been considered as

keyword PIR by Chor et al. [15]. The idea of this work is to build

an efficiently searchable structure, instantiated with a search tree,

over the sparse indices of the database entries and then use PIR

to execute the search queries. This approach requires logarithmic

number of PIR queries on a database of proportional to the number

of sparse items. We propose a new construction which leverages

Cuckoo hashing and reduces the overhead to a constant number

of PIR queries on a database proportional to the number of data

entries.

The idea of our approach is to use Cuckoo hashing to compress

the index on the server side. Cuckoo hashing [29, 52] is a dictionary

with worst case constant look-up time, which has size linear in

the number of inserted items. A Cuckoo hash table is defined by κ
hash functions H1, . . . ,Hκ and each item with label i is placed in

one of the κ locations H1(i), . . . ,Hκ (i). The Cuckoo hash table is

initialized by inserting all items in order, resolving collisions using

a recursive eviction procedure: whenever an element is hashed to

a location that is occupied, the occupying element is evicted and

recursively reinserted using a different hash function. For each

sequence of items, there is a small set of hash function sets that are

incompatible with the sequence and cannot be used to distribute

the items, but this can be handled by choosing new hash func-

tions. Overall, inserting n elements into a cuckoo hash table can be

performed in expected O(n) time [52]. Note that with this proce-

dure the hash functions are dependent on the items placed in the

Cuckoo hash table but—unlike in PSI protocols based on Cuckoo

hashing [13, 24, 58, 60]—this is not an issue for our use of Cuckoo

hashing in the context of PIR where the data is considered public

and we do not need to provide any privacy guarantees for it.

Our construction works as follows. The server builds a Cuckoo

hash table for its sparse database, which will be of size proportional

to the number of non-empty entries (with a constant multiplicative

overhead), and provides the Cuckoo hash functions H1, . . . ,Hκ for

a κ ≥ 2. In order to query an item i , the client executesκ PIR queries

for items Hj (i), j ∈ [κ] for the database that contains the Cuckoo
hash table.
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Table 8: Baseline PIR communication and computation complexities for with different recursion levels and different homo-
morphic encryption instantiations on a database of size n.

PIR protocol PIR PIR PIR
Baseline Recursion d = 2 Recursion d = logn

Additive ElGamal Comm: (n + 1) · λEG bits Comm: (2n1/2 + ⌈F ⌉) · λEG bits Comm: (logn+ ⌈F ⌉logn−1) ·λEG bits

Comp: n mults of λEG-bit nums Comp: n + n1/2 · F mults of λEG-bit
nums

Comp: F logn−1
mults of λEG-bit

nums

Damgård–Jurik (pt = N k
with

N = 2
λDJ

)

Comm: (n + 1) · (k + 1) logN bits Comm: n1/2(2k + 3) logN + (2 +
k ) logN bits

Comm: ≈ (k + logn(1 + k logn +
logn2)) logN bits

Comp: n mults of (k + 1)λDJ -bit

nums

Comp: n mults of (k + 1)λDJ -bit

nums + n1/2
mults of (k + 2)λDJ -bit

nums

Comp:ni/logn mults of (k+1+i)λDJ -

bit nums for all i ∈ [logn].

Gentry–Ramzan Comm: 3λGR bits N/A N/A

Comp: 2 ·n ·ptmultiplications of λGR-
bit numbers.

FV Comm: 2(n + 1) log(q) · λFV bits Comm: 2(2n1/2 + ⌈F ⌉) log(q) · λFV
bits

Comm: 2 logn + ⌈F ⌉logn−1) log(q) ·
λFV bits

Comp: n scalar mults + additions in

Zq [x ]/(xλFV + 1)
Comp: n+n1/2 ⌈F ⌉ scalar mults + ad-

ditions in Zq [x ]/(xλFV + 1)
Comp: F logn−1

scalar mults + addi-

tions in Zq [x ]/(xλFV + 1)

Table 9: Size of one-time keys required for SealPIR and
MulPIR.

Keys Recursion Size (kB)

SealPIR Galois keys 2, 3 6758

MulPIR Galois keys 2 5707

MulPIR Galois keys 3 28270

MulPIR Galois key generator 2 518

MulPIR Galois key generator 3 2356

MulPIR Switching key 2 19

MulPIR Switching key 3 59

We note that our approach to compress the server index using

Cuckoo hashing is orthogonal to the use of Cuckoo hashing to

batch multiple PIR queries described in Appendix C.3. Combining

these two techniques we optimize on two different axis of the PIR

construction. Next we present the formal construction for PIR on

sparse data.

Construction 1. Let

(Cuckoo.KeyGen,Cuckoo.Query,Cuckoo.Insert)

be a Cuckoo hash scheme and (PIR.Query,PIR.Eval) be a PIR protocol.
We construct a new PIR protocol (PIR′.Query,PIR′.Eval) where the
indices of the server’s database are sparse over the whole domain:
• Pre-processing: The server generates parameters for the Cuckoo

hash that will fit its input

(H1,H2, . . . ,Hκ ,m) ← Cuckoo.KeyGen(|D|) .

It initializes the Cuckoo hash table using its input, invoking
Cuckoo.Insert(i,d) for all (i,d) ∈ D. It sends to the client {Hj }j ∈[κ].

• qi = (q
1

i , . . . ,q
κ
i ) ← PIR′.Query(i): The client computes qji ←

PIR.Query(Hj (i)) for j ∈ [κ].

• [D[i],⊥] ← PIR′.Eval([qi ,D]): The client and the server run
[Tj [Hj (i)],⊥] ← SPIR.Eval([qji , Tj ]) for j ∈ [κ]. The client
checks if any of the Tj [Hj (i)], j ∈ [κ] contains item i . If the
items is present, the client outputs it and otherwise, the client
outputs ⊥.

C.2 Symmetric PIR from OPRFs
The security requirements of a PIR protocol pertain only to the pri-

vacy of the query. Symmetric private information retrieval (SPIR) [35]

considers also database privacy in addition to query privacy. While

some PIR solutions based on homomorphic encryption do effec-

tively provide SPIR guarantees in the case when the server returns

a single ciphertext that encrypts only the retrieved database entry,

other approaches do provide more information about the database

to the client. We provide a simple transformation that enables SPIR

given any PIR scheme. Our idea is to encrypt each database entry

using a symmetric encryption under a key that is derived in a pseu-

dorandommanner from the index of the data item. In particular, the

server derives the encryption keys using pseudorandom function

that also offers oblivious evaluation mechanism (OPRF) [30, 41]. To

execute a SPIR query the client and the server execute the corre-

sponding PIR query on the database of encrypted entries and in

addition to this they run an oblivious PRF evaluation that enables

the client to get a single decryption key corresponding to the query

entry. We present our protocol next.

Construction 2. Let (Gen, Enc,Dec) be a semantically secure
encryption scheme, (PIR.Query,PIR.Eval) be a PIR scheme and
(PRF.KeyGen,PRF.Eval,PIR.OblivEvaluate) be an oblivious PRF func-
tion. We construct an SPIR protocol as follows:
• Pre-processing: The server encrypts its database D of size n as

follows. It samples a PRF key K ← PRF.KeyGen(1λ) and for
each i ∈ [n], it computes Ki ← PRF.Eval(K, i) and sets D̃[i] =
Enc(Ki ,D[i]).

• qi ← SPIR.Query(i): Output PIR.Query(i).
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• [D[i],⊥] ← SPIR.Eval([qi ,D]):
(1) The client and the server run [D̃[i],⊥] ← PIR.Eval([qi , D̃]).
(2) The client and the server evaluate

[Ki ,⊥] ← PRF.OblivEvaluate([i,K]) .

(3) The client retrieves its output D[i] = Dec(Ki , D̃[i]).

We note that handling sparse data in the setting of SPIR, re-

quires to use oblivious Cuckoo hashing where the hash function

parameters are independent of the data inserted in the hash table.

Achieving oblivious Cuckoo hashing requires addition a of stash of

size O(logn) that stores items which could not be allocated in the

hash table due to collisions [44]. The SPIR construction for sparse

data proceeds as follows: the server generates a PRF key K and

hash functions for oblivious Cuckoo hashing, it encrypts each item

i in its database with key PRF.Eval(K, i), the server initializes the
oblivious Cuckoo hash with the encrypted data. The server sends

the Cuckoo hash functions and the encrypted stash to the client.

The client executes a query for item i by running two SPIR queries

for H1(i) and H2(i) using the SPIR construction above. It uses the

decryption key PRF.Eval(K, i) it has obtained to try to decrypt both
the answers in the SPIR queries as well as the encrypted items in

the stash. The communication related to the stash can be amortized

across different queries.

C.3 Multi-Query PIR
The traditional definition of PIR considers a setting where queries

are executed independently one by one. However, there are scenar-

ios where several queries may be available to be executed at the

same time. Multi-query PIR solutions aim to leverage the capabil-

ity for parallel execution of such queries in order to amortize the

complexity. We leverage two main types of techniques for batching:

probabilistic batch codes based on Cuckoo hashing [52], which

have been used in the context of PIR [5] and private set intersec-

tion [25, 61], as well as a CRT batching technique introduced by

Groth et al. [39] for Gentry–Ramzan.

C.4 Private Set + Functionalities
In this section we discuss functionalities which can be solved using

specific PIR instantiations. Two such functionalities are private

set membership (PSM) and private set intersection (PSI). Private

set membership considers the question how to check whether an

element held by one party is in the set held by another party. This

problem can be viewed as sparse PIR where the database content is

the indices themselves. Private set intersection aims to compute the

intersection of two private sets. This problem is a generalization of

PSM from a single query to multiple queries. Thus, the PSI problem

can be phrased as a multi-query PIR on a sparse database. In setting

where the two intersection sets have asymmetric sizes, i.e., one of

the sets is much smaller, solving PSI using multi-query PIR using

the smaller set as queries could provide better asymptotic commu-

nication complexity than PSI solutions that require communication

linear in the size of the sets.

D FULL RECURSIONWITH LEVELED
HOMOMORPHIC ENCRYPTION

In this section, we report on an implementation of full recursion
d = logn, using the technique from Section 4.3. We use the SEAL

library [2] with polynomials of degree 8192 and a modulus q of 147

bits (product of three 49-bit moduli), and plaintext space t = 2. We

implemented full recursion for a Pung-style databases of n elements

of 288B (in particular, we will have one element per ciphertext) [6]

and provide benchmarks for databases of size 2
14

to 2
17

in Table 10.
4

While this approach does not bring any benefit in practice compared

to recursion d = 2 using one homomorphic multiplication, we

report for the first time benchmarks for PIR with full recursion.

Table 10: Full Recursion using Seal-MulPIR.

n Communication (kB) Server computation (s)

2
14

14 · 150 + 150 167

2
15

15 · 150 + 150 324

2
16

16 · 150 + 150 658

2
17

17 · 150 + 150 2109

4
We ran out of RAM for n = 2

18
with our tree-based implementation of the tensor

product. Careful optimizations of the tensor product computation and regular folding

would enable to reduce the memory usage of the program at the cost of increasing

computation.
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