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Abstract
We study the computation and communication costs and their
possible trade-offs in various constructions for private infor-
mation retrieval (PIR), including schemes based on homomor-
phic encryption and the Gentry–Ramzan PIR (ICALP’05).

We improve over the construction of SealPIR (S&P’18)
using compression techniques and a new oblivious expansion,
which reduce the communication bandwidth by 80% while
preserving essentially the same computation cost. We then
present MulPIR, a PIR protocol additionally leveraging multi-
plicative homomorphism to implement the recursion steps in
PIR. While using the multiplicative homomorphism has been
considered in prior work, we observe that in combination with
our other techniques, it introduces a meaningful tradeoff by
significantly reducing communication, at the cost of an in-
creased computational cost for the server, when the databases
have large entries. For some applications, we show that this
could reduce the total monetary server cost by up to 35%.

On the other end of the communication–computation spec-
trum, we take a closer look at Gentry–Ramzan PIR, a scheme
with asymptotically optimal communication rate. Here, the
bottleneck is the server’s computation, which we manage to
reduce significantly. Our optimizations enable a tunable trade-
off between communication and computation, which allows
us to reduce server computation by as much as 85%, at the
cost of an increased query size.

Finally, we introduce new ways to handle PIR over sparse
databases (keyword PIR), based on different hashing tech-
niques. We implement all of our constructions, and compare
their communication and computation overheads with respect
to each other for several application scenarios.

1 Introduction

Accessing public databases often brings privacy concerns
for the querier as the query may already reveal sensitive in-
formation. For example, queries of medical data can reveal
sensitive health information, and access patterns of financial

data may leak investment strategies. In settings where such
privacy leakage has significant risk, clients may shy away
from accessing the database. On the flip side, data providers
often do not want access to sensitive client queries, as they
could later become a liability for them.

Private information retrieval (PIR) is a cryptographic prim-
itive that aims to address the above problem by enabling
clients to query a database without revealing any infor-
mation about their queries to the data owner. While the
feasibility of this primitive has been resolved for a long
time [13], the search for concretely efficient constructions
for practical applications has been an active area of re-
search [4, 5, 17, 22, 23, 29, 34, 45, 63]. In this context, there
are several parameters and efficiency measures that character-
ize a PIR setting and determine what solution might be most
suitable for a particular scenario.

In this work, we take a deep dive into the setting of PIR
where data is stored on a single server. This is the relevant PIR
model in practical settings where no additional party is avail-
able to assist with the data storage and query execution and
one does not wish to trust secure hardware. Non-trivial single
server PIR constructions are known to require computational
assumptions [41], and such solutions bring significant over-
heads for both the communication and computation costs com-
pared to information theoretic constructions that are possible
in the multi-server setting [19]. While theoretical construc-
tions for PIR [41] achieve poly-logarithmic communication,
most efficient single server PIR implementations stop short
of this goal and implement only variants of the construction
with higher asymptotic communication costs [4, 5, 34, 45].

We analyze the communication–computation trade-offs
that different PIR construction approaches offer and the hur-
dles towards achieving the optimal asymptotic communica-
tion costs in practice. This includes the two main types of
PIR constructions that rely on conceptually different tech-
niques: PIR leveraging homomorphic encryption, and the
PIR approach of Gentry and Ramzan [30] leveraging groups
with hidden smooth subgroups. The first type of techniques
are used in the majority of existing PIR constructions. While
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fully homomorphic encryption has been proposed as a tool for
building PIR [28], existing PIR implementations [4, 5, 34, 45]
leverage constructions approaches that rely only on additive
homomorphic encryption. Such constructions emulate a re-
stricted form of multiplicative homomorphism with layers
of additive encryption. While this approach allows state-of-
the-art protocols such as SealPIR [3, 5] to perform well in
terms of computation, it incurs a ciphertext expansion that is
exponential in the multiplicative depth of the computation,
and has a large communication overhead in practice even for
small numbers of layered multiplications.

We present a new PIR construction, MulPIR, that improves
on this state of the art in multiple ways. First, we show that
the communication overhead of SealPIR can be significantly
reduced at next to no cost in terms of computation. We further
show that by using the multiplicative homomorphism of the
underlying HE scheme, we can further reduce the communi-
cation overhead for databases with large entries, this time at
an increased computation cost. While using the multiplicative
homomorphism has been considered before, we are the first
to show that, in combination with our other improvements, it
enables a meaningful trade-off between communication and
computation. In our experiments on Google Cloud Platform,
we observed that this can reduce the total monetary server
cost by up to 35%.

We also revisit the Gentry–Ramzan PIR scheme [30],
which achieves optimal communication but has a high com-
putation overhead. We show how to efficiently implement
Gentry–Ramzan PIR even for large databases, and propose
a new client-aided variant that allows for a tunable trade-off
between communication and computation costs. We experi-
mentally show that depending on the database shape, either
MulPIR or client-aided Gentry–Ramzan PIR minimize the
total server cost.

Finally, we turn to keyword PIR [12], a variant where the
database size is much smaller than the query key domain.
While regular PIR constructions assume dense databases and
so their complexity depends on the index domain size, key-
word PIR aims to achieve server computation cost that de-
pends only on the actual database size as opposed to the key
domain size. We present two constructions, based on two dif-
ferent hashing schemes, and show that they enable another
way to trade off communication and computation.

We implement all of our novel PIR schemes, as well as
alternative approaches, and compare them experimentally on
a wide range of applications, including anonymous messaging
(as used in previous work [5]), private file download, and
password checkup [62]. Due to space constraints, we present
related work in Appendix A.

1.1 Our Contributions

Improving SealPIR communication. The most efficient
(secure) single server PIR constructions implemented in

recent years [4, 5, 17, 22, 23, 29, 34, 45, 50, 63] are
based on homomorphic encryption (HE) techniques and
achieve sub-linear communication. Among those, the scheme
that currently provides best implementation performance is
SealPIR [3, 5]. While theoretically this construction supports
sub-linear communication complexity O(d ·n1/d) leveraging
d recursion levels, it comes with a large communication over-
head in practice. This is due to the layered additive homo-
morphic encryption approach: if the encryption scheme has
ciphertext expansion F , the PIR response will include Fd−1

ciphertexts (where F = 10 in [3]). This yields communica-
tion expansion of O(F2), which becomes unacceptable for
databases with large entries.

Our first contribution reduces the communication of
SealPIR by (1) using symmetric key encryption to reduce
the upload size, (2) using modulus switching to reduce the
value of F down to F ≈ 4, and (3) introducing a new oblivious
expansion algorithm which can further halve the upload com-
munication for some parameter sets. Therefore, our optimized
SealPIR reduces by up to 75% the upload communication,
and up to 80% the download communication.

Leveraging Multiplicative Homomorphism. When re-
cursion is used in SealPIR, the download communication
depends exponentially on the recursion level (the previous
contribution reduced the basis of the exponential). Instead,
we propose to use both the additive and multiplicative ho-
momorphisms of the underlying HE scheme by doing one
multiplication of encrypted values per recursion step. This
reduces the size of the upload and download together from
O(dd ·n1/d/Ne+Fd−1) from the previous approach, where F
is the number of plaintexts needed to fit a single HE ciphertext,
to dd · n1/d/Ne · c(d), where c(d) is the size of a ciphertext
that supports d successive multiplications. Together with our
improvements to SealPIR mentioned above, the multiplica-
tive homomorphism enables a highly communication-efficient
PIR scheme, which we call MulPIR. For databases with large
entries, its advantage over (optimized) SealPIR is already
visible with low recursion level (download communication
reduced by 60%), and in fact we observe that d = 2 remains
optimal for the database sizes we are interested in.

Gentry–Ramzan PIR: New Efficiency Trade-offs. The
Gentry–Ramzan PIR construction [30] achieves optimal com-
munication complexity for several settings but it pays with
significant computational cost. Thus, our contributions here
focus on ways to reduce this computation overhead, which
includes new efficient techniques for encoding the server’s
database in CRT form needed for the computation in the
scheme, new techniques for fast modular exponentiation
needed to answer each query, as well as techniques for client-
aided PIR that trade-off between communication and compu-
tation.
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In this PIR protocol, the server database {Di}i∈[n] needs
to be encoded as x = Di mod πi for i ∈ [n], where πi are pair-
wise co-prime integers. A naive application of the Chinese
Remainder Theorem requires computation at least quadratic
in the size of the database. We leverage a divide-and-conquer
modular interpolation algorithm [7] that enables us to achieve
computation complexity Õ(n log2 n). This technique also al-
lows for pre-computation that can be reused for computations
that use the same set of moduli πi.

The main computation cost for each query on the server
side is the modular exponentiation, where the exponent is the
encoded database, and the base and the modulus are chosen
by the client. Our approach is to compute the exponentia-
tion as a product of precomputed powers of the generator
and to use Straus’s algorithm [61] to do this efficiently. This
enables a client-aided technique that allows us to improve
the server’s computation at the price of (small) additional
work at the client. In particular, we observe that powers of the
generator can be precomputed more efficiently by the client,
by using the prime factorization of the modulus to reduce
the exponent modulo the order of the group prior to exponen-
tiating. This gives a new way to trade off computation and
communication complexity for the protocol. In Section 6, we
show evidence that providing several precomputed powers
optimizes the server’s work.

Keyword PIR for Sparse Databases. We consider the set-
ting of sparse databases where the server’s database is sparse
in the index domain, and hence a client query corresponds to a
keyword lookup. We present two constructions, both of which
are based on hashing schemes. The first is based on simple
hashing, where database elements are assigned to buckets us-
ing a public hash function. The client then retrieves the bucket
corresponding to their query. While the size of the buckets
can generally get quite large, this is no concern in schemes
that have a large plaintext size anyway, such as MulPIR. Our
second constructions leverages cuckoo hashing [47] in a novel
way. Unlike previous work [5], where cuckoo hashing was
used to batch multiple client queries into one, we use it to
compress the sparse server database into a dense domain.
Cuckoo hashing guarantees that at most one element gets
hashed to any bucket, at the cost of an increased (but constant)
number of client queries. This variant is especially useful for
Gentry–Ramzan PIR, where we have small plaintexts, and
additionally can use CRT batching [35] to compress multiple
client queries into one.

Comparison and Empirical Evaluation of PIR. We
present a comprehensive comparison of the costs of PIR
based on homomorphic encryption. This includes detailed
concrete efficiency estimates for the ciphertext size and the
computation costs for encryption, decryption and homomor-
phic operations of different HE schemes. We leverage these
estimates to profile the efficiency costs of PIR constructions

using the corresponding schemes when instantiated with and
without recursion. We further present empirical evaluations
of implementations of these PIRs with databases of different
shapes (numbers of records and entry sizes). Our benchmarks
demonstrate that for the majority of the settings constructions
based on lattice based HE constructions, which could also
offer multiplicative homomorphism, outperform in computa-
tion other additive HE schemes. In terms of communication,
additive HE solutions have advantage when the dominant
communication cost is the download, e.g., in solutions with-
out recursion for small databases with large entries, since
these encryption provides best ratio between plaintext and
ciphertext.

We evaluate our new PIR construction, MulPIR, that uses
somewhat-homomorphic encryption (SHE) and enables a
trade-off of computation for communication, and compare it
against SealPIR.

In our experiments, Gentry–Ramzan PIR always achieves
the best communication complexity but comes with a signifi-
cant computation cost that can be prohibitive in some settings.
However, we show that in terms of monetary cost, Gentry–
Ramzan can outperform all other PIR approaches considered
when database elements are small.

Finally, we apply our construction for keyword PIR to a
password checkup problem, where a client aims to check if
their password is contained in a dataset of leaked passwords,
without revealing it to the server. Previous approaches to
this problem [62] first reveal a k-anonymous identifier to
the server to reduce the number of candidate passwords to
compare against to k, and then apply a variant of Private
Set Intersection to compare the current password against the
k candidates. Our implementations of Gentry–Ramzan and
MulPIR enable such lookups with communication sublinear
in k, therefore either enabling better anonymity for the same
bandwidth, or same anonymity and smaller bandwidth.

2 Preliminaries

Throughout the rest of this paper, we assume a server owns a
database D= {D1, . . . ,Dn} of n elements of size l bits.

For any m ∈ Z, m≥ 1, we denote by [m] the interval [1,m].
We denote by δi, j the Kronecker delta function, defined as
δi, j = 0 if i 6= j, and δ j, j = 1. For two party computation
protocols we will use the notation Ja,bK to denote either
inputs or outputs for the two parties, i.e., a is either an input
or output for the first party, and similarly b is either input or
output for the second party.

2.1 Private Information Retrieval (PIR)
Definition 2.1 (Private Information Retrieval [13]). A private
information retrieval protocol addresses the setting where a
server holds a database D= {D1, . . . ,Dn} of n elements, and
a client has an input index i. The goal of the protocol is to

3



Figure 1: A non-interactive PIR protocol. Correctness of the
protocol will ensure that d = Di.
Client Server

q← PIR.Query(i) q

r← PIR.Response(D,q)r
d← PIR.Extract(r)

enable the client to learn Di while guaranteeing that the server
does not learn anything about i. A PIR scheme is specified
with the following two algorithms:
• q← PIR.Query(i) – this is an algorithm that the client

runs on its input index i to generate a corresponding query.
• JDi,⊥K ← PIR.Eval(Jq,DK) – this is a two-party com-

putation protocol with inputs the client’s encoded query
and the server’s database that outputs the corresponding
database items to the client. Most PIR constructions are
non-interactive and we can replace the evaluation protocol
with the following two algorithms (cf. Fig. 1).
– r← PIR.Response(D,q) – an algorithm that the server
runs on the client’s encoded query to compute an encoded
response.
– Di← PIR.Extract(r) – an algorithm that the client runs
on the server’s response to extract the output for the
queried item.

Definition 2.2 (Symmetric Private Information Retrieval
(SPIR)). Symmetric PIR extends the PIR functionality with
privacy requirement also for the database guaranteeing the
client does not learn anything beyond the element Di.

2.2 Homomorphic Encryption

For ease of notation and without loss of generality, re-
call that a homomorphic encryption (HE) scheme H E =
(KeyGen,Enc,Dec) with plaintext space Zt is an encryption
scheme with the following properties:
1. Enc(sk,m1)+Enc(sk,m2) = Enc(sk,(m1 +m2) mod t),
2. Enc(sk,m1)×Enc(sk,m2) = Enc(sk,(m1×m2) mod t),
3. Enc(sk,m1) ·λ = Enc(sk,m1 ·λ mod t),
for every m1,m2,λ ∈ Zt , for some specific operations +, ×,
and · over the ciphertexts. An HE scheme that does not verify
item 2 is called an additive HE scheme.

Below, we recall the Fan–Vercauteren (FV) homomorphic
encryption scheme [24]. For space constraints, ElGamal and
Paillier/Damgård–Jurik are recalled in Appendix D.

Fan–Vercauteren. An FV ciphertext is a pair of polyno-
mials over R/qR, where R = Z[x]/(xN + 1), and encrypts a
message m(x) ∈ R/tR for a t < q. In addition to the standard

operations of an encryption scheme (key generation, encryp-
tion, decryption), FV also supports homomorphic operations:
addition, scalar multiplication, and multiplication.
• Addition: Given two ciphertexts c1 and c2, respectively

encrypting m1(x) and m2(x), the homomorphic addition
of c1 and c2, denoted c1 + c2, results in a ciphertext that
encrypts the sum m1(x)+m2(x) ∈ R/tR.

• Scalar multiplication: Given a ciphertext c∈ (R/qR)2 en-
crypting m(x) ∈ R/tR, and given m′(x) ∈ R/tR, the scalar
multiplication of c by m′(x), denoted m′(x) · c, results in a
ciphertext that encrypts m′(x) ·m(x) ∈ R/tR.

• Multiplication: Given two ciphertexts c1 and c2, respec-
tively encrypting m1(x) and m2(x), the homomorphic mul-
tiplication of c1 and c2, denoted c1 · c2, results in a cipher-
text that encrypts the product m1(x) ·m2(x) ∈ R/tR.

Finally, [5] introduced a specific operation called substitution,
instantiated using the plaintext slot permutation of [31].
• Substitution: Given a ciphertext c ∈ (R/qR)2, that en-

crypts m(x) ∈ R/tR, and an integer k, the substitution op-
eration Subk(·) applied on c results in a ciphertext that
encrypts m(xk) ∈ R/tR.

2.3 PIR Based on Additive HE

The majority of PIR constructions that achieve sub-linear
communication rely on homomorphic encryption and enable
the client to compress its query. More precisely, there are two
flavors of HE-based PIR protocols with sub-linear commu-
nication that exist in the literature, those based on additive
homomorphic encryption (AHE) schemes and those based on
fully homomorphic encryption (FHE) schemes.

In this section, we focus on the former flavor, that captures
schemes based on ElGamal, Paillier/Damgård–Jurik, and cap-
tures the SealPIR protocol proposed by Angel et al. [5] (based
on lattice-based additive homomorphic encryption).

Baseline PIR. We recall the baseline solution for PIR
based on homomorphic encryption [41]. Let l denote the
bit-size of the elements of the database and let H E =
(KeyGen,Enc,Dec) be a homomorphic encryption scheme
with plaintext space Zt for t ≥ 2l . Denote by C the ciphertext
space of H E . Note that we will interpret each element Di as
an element of Zt .

The baseline PIR protocol works as follows (cf. Algo-
rithms 1 to 3). To construct the query for index k, the
client encrypts component by component the selection vec-
tor ~s = (si)i=1...n proportional to the number of elements in
the database n, which verifies si = δi,k = 0 for i 6= k and
sk = δk,k = 1. To answer the query q = (Enc(sk,si))i=1...n,
the server computes the inner product between the query
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Procedure 1 PIR.HE.Query

Input: k ∈ [1,n].
~s = (si)i=1...n = (δi,k)i=1...n.
∀i ∈ [1,n],qi← Enc(sk,si).

Output: ~q = (qi)i=1...n ∈ C n.

Procedure 2 PIR.HE.Response

Input: D ∈ Zn
t ,~q ∈ C n.

r = 〈~q,D〉= Enc
(
sk,〈~s,D〉

)
as in Eq. (1).

Output: r ∈ C .

and the database D (where Di ∈ Zt), eventually yielding

〈q,D〉=
n

∑
i=1

Enc(sk,si) ·Di = Enc
(
sk,

n

∑
i=1

δi,kDi

)
= Enc(sk,Dk).

(1)
In the rest of the paper, we will instantiate this protocol

with the Paillier/Damgård–Jurik cryptosystem [18, 48], the
El-Gamal cryptosystem [26], the FV cryptosystem [5, 24,
45]. In Appendix D and Table 7, we report on the specific
communication and computation costs of these schemes.

Cost of the baseline PIR Denote by c(n) the size of a
ciphertext element that enables n homomorphic scalar multi-
plications followed by n homomorphic additions. The overall
communication cost is n · c(n) + 1 · c(n), hence, is at least
linear in the database size.

Two approaches have been proposed in the literature to
reduce the overall communication cost: either using recursion
(also called folding [29]) using additive homomorphic encryp-
tion, or using fully homomorphic encryption. We survey these
two approaches below.

Recursion/Folding. Kushilevitz, Ostrovsky [41], and later
Stern [60], propose the following modification of Algo-
rithms 1 to 3. Instead of representing the database D as a
vector of size n, one can represent D as a n1/2×n1/2 matrix
M = (Mi, j), where Mi, j := Din1/2+ j. Now, instead of send-
ing (the encryption of) one selection vector ~s = (δi,k) of
dimension n for index k, the client writes k = i′n1/2 + j′

where i′, j′ ∈ [n1/2], and sends two binary selection vectors
~s1 = (s1,i) = (δi,i′) and~s2 = (s2, j) = (δ j, j′) of dimension n1/2.
In particular, it holds that s1,i · s2, j = 1 if and only if i = i′ and
j = j′.
The server then performs three steps:
1. For each of the n1/2 rows Mi = (Mi,1 · · ·Mi,n1/2), the server

computes the response with the (encryption of the) selec-
tion vector~s2 as in Eq. (1), i.e., the server obtains the n1/2

ciphertexts

ci = Enc
(
sk,〈~s2,(Mi, j) j〉

)
= Enc

(
sk,Din1/2+ j′

)
.

Procedure 3 PIR.HE.Extract
Input: r ∈ C .

d :=Dec(sk,r) mod 2l .
Output: d ∈ Z2l .

2. Since the ciphertext expansion is F > 1, for each i ∈
[n1/2], the server represents 1 ci as F plaintext elements
ci,1, . . . ,ci,F .

3. For each of the vectors (c1, f · · ·cn1/2, f ) with f ∈ [F ], the
server computes the response with the (encryption of the)
selection vector~s1 as in Eq. (1), i.e., the server obtains the
F ciphertexts

c′f = Enc
(
sk,〈~s1,(ci, f )i〉

)
= Enc

(
sk,ci′, f

)
.

Upon reception of the response, r = (c′1, . . . ,c
′
F) ∈ C F , the

client finally extracts the desired result as follows.
1. It uses the homomorphic encryption decryption key to

recover ci′, f for all f ∈ [F ].
2. It reconstructs ci′ from the ci′, f ’s elements.
3. It uses the homomorphic encryption decryption key on ci′

to recover Di′n1/2+ j′ = Dk.
This method easily generalizes by representing the database as
a d-dimensional hyperrectangle [n1]×·· ·× [nd ] with n = n1 ·
n2 · · ·nd (the baseline PIR corresponds to d = 1 with n1 = n,
and the recursion above to d = 2 with n1 = n2 = n1/2).

Cost of recursion. When ni = n1/d , we accomplish the
following communication complexity: O

(
c(n) · dn1/d

)
for

the user’s query and O
(
Fd−1c(n)

)
for the server’s response,

where c(n) is the size of the ciphertext. In particular, for small
constant values of d, we will get sub-linear communication.
However, note that for full recursion, i.e., d = logn, commu-
nication becomes super-linear in n.

3 SealPIR: Optimizations and Multiplicative
Homomorphism

SealPIR was proposed by Angel et al. [5], and improves over
the XPIR protocol proposed by Aguilar Melchor et al. [45].
Both SealPIR and XPIR instantiate the recursive PIR de-
scribed above, using the FV homomorphic encryption scheme
viewed as an additive HE scheme.

This section presents three optimizations to SealPIR: com-
pressing the upload using the secret key for encryption (Sec-
tion 3.1), compressing the download with modulus switching

1We assume without loss of generality that F ∈ Z. Note that we do not
ask for any algebraic conditions from the map; for example we could just
break down a binary representation of elements of C into F plaintexts. For
the Paillier cryptosystem, or more precisely the generalization from Damgård
and Jurik [18], we will take a different approach: we will select parameters
so that the ciphertext after the first folding exactly fits in the plaintext space
for the second folding; cf. Appendix D.

5



(Section 3.1), and a new oblivious expansion technique (Sec-
tion 3.2). Next, Section 3.4 investigates the impact of using
both the additive and multiplicative homomorphism of the FV
homomorphic encryption (this variant is called MulPIR), and
show that for some database shapes, the download and total
communication can be reduced compared to (an optimized
version of) SealPIR.

3.1 Halving SealPIR Communication

This section proposes methods to halve “for free” (with minor
computational cost) the communication of SealPIR [5].

Compressing the upload. We remark that the client, who
creates the query ciphertexts, knows the secret key of the
homomorphic encryption scheme. Henceforth, instead of us-
ing the public key encryption algorithm as in SealPIR, the
client can use the secret key encryption algorithm of FV, i.e.,
encrypting with the secret key. Recall that a FV ciphertext
is a tuple (c0,c1) in R/qR. A key observation is that when
using secret key encryption, the first element c0 is sampled
uniformly at random in R/qR, whereas it depends on the pub-
lic key when using public key encryption. Therefore, instead
of sending c0, the client can instead send a seed ρ ∈ {0,1}λ,
and the server can reconstruct c0 from the seed locally. This
reduces the upload by a factor 2x.

Compressing the download. At the end of the server com-
putation, the ciphertext will no longer be processed and will
only be decrypted by the client. Henceforth, we propose
to use modulus switching to compress its size as much as
possible. This operation allows to transform a ciphertext
(c0,c1) ∈ (R/qR)2 with a noise of norm ≈ E into a ciphertext
(c0,c1) ∈ (R/pR)2 with a noise of norm ≈min(t,(p/q) ·E)
where t is the plaintext space [14]. It therefore enables us
to reduce the download communication in PIR as follows.
After finishing to compute the response~r = (ri)i=1...` (Algo-
rithm 2), the server will use modulus switching on each ci-
phertext ri ∈ (R/qR)2 to create a new ciphertext r′i ∈ (R/pR)2,
where p≥ t2 is chosen large enough to ensure decryption. In
practice, this reduces the download size by ≈ log2 q/(2log t);
using SealPIR parameters and using modulus switching to a
prime p≈ 225, this techniques enables to reduce the download
by a factor 60/25 = 2.4x.

Remark 1. We note that, when recursion is used, one can
further reduce the communication requirement at the cost
of increasing the computation cost. Recall that in Step 2 of
the recursion, for each i ∈ [n1/2], the server represents ci as
F plaintext elements ci,1, . . . ,ci,F , where F is the ciphertext
expansion. If the server uses modulus switching on all the ci’s
(i.e., perform n1/2 modulus switching) before parsing them as
ci, j’s, their sizes will be smaller by a factor ≈ log2 p/ log2 q.

Procedure 4 SealPIR.Query

1:Parameters: d ∈ [1, logn], m = n1/d , compression c ∈ [0, log2 N]
Input: Index k ∈ [1,n]

1: Generate~s j = (s j,i)i∈[m] the d selections vectors in {0,1}m.
2: `← dm/2ce
3: ∀ j ∈ [d], parse~s j as~s j,1, . . . ,~s j,` vectors in {0,1}2c

4: ∀ j ∈ [d],∀ j′ ∈ [`],m j, j′ ← ∑i∈[2c]~s j, j′ [i] · xi ∈ R/tR
5: ∀ j ∈ [d],∀ j′ ∈ [`],q j, j′ ← Enc(sk,m j, j′).

Output: ~q = (q j, j′) j∈[d], j′∈[`] ∈ C d·`.

Procedure 5 SealPIR Oblivious Expansion
1:Parameters: d ∈ [1, logn], m = n1/d , compression c ∈ [0, log2 N]

Input: Ciphertexts (q j, j′ = (c0, j, j′ ,c1, j, j′)) j∈[d], j′∈[dm/2ce]
1: `← dm/2ce
2: ciphertexts← []
3: for j = 1 to d do
4: ciphertexts j← []
5: for j′ = 1 to ` do
6: ctxts= [q j, j′ = (c0,c1)] // start the expansion of q j, j′

7: for a = 0 to c−1 do
8: for b = 0 to 2a−1 do
9: c0← ctxts[b]

10: c1← x−2a · c0 // scalar multiplication
11: c′b← c0 +Sub2c−a+1(c0)
12: c′b+2a ← c1 +Sub2c−a+1(c1)
13: end for
14: ctxts= [c′0, . . . ,c

′
2a+1−1]

15: end for
16: ciphertexts j← ciphertexts j‖ctxts
17: end for
18: ciphertexts← ciphertexts‖ciphertexts j[0..m−1]
19: end for
20: for j = 0 to m−1 do
21: o j← (2−c mod t) · ciphertexts[ j] // normalization
22: end for

Output: output= [o0, . . . ,om−1]

3.2 New Oblivious Expansion

SealPIR improves over XPIR by encrypting many bits in a
single ciphertext (one per polynomial coefficient) and shows
how the server can obliviously expand such a ciphertext to
obtain encryptions of each of the bits separately. SealPIR’s
Query algorithm is given in Algorithm 4 and enables to de-
crease the upload cost up to a factor N (the polynomial ring
dimension).2

Now, when the server receives such a compressed query,
it needs to perform an oblivious expansion into the original
query, to then apply Response (Algorithm 2). SealPIR’s obliv-
ious expansion is recalled in Algorithm 5. We note that [5]
only described the inner loop and normalization (Lines 8–16

2Such a compression factor can be obtained for example when the com-
pression c = log2 N, and m = n1/2 = N, then `= 1 and the query consists of
d = 2 ciphertexts instead of 2m = 2N ciphertexts.

6



Procedure 6 New Query

1:Parameters: d ∈ [1, logn], m = n1/d , compression c ∈ [0, log2 N]
Input: Index k ∈ [1,n]

1: Generate~s j = (s j,i)i∈[m] the d selections vectors in {0,1}m.
2: `← dd·m/2ce
3: Parse (~s1, . . . ,~sd) as (~s ′1, . . . ,~s

′
`) vectors in {0,1}2c

4: ∀ j ∈ [`], m j ← ∑i∈[2c] (2−c mod t) ·~s ′j[i] · xi ∈ R/tR
5: ∀ j ∈ [`], q j ← Enc(sk,m j).

Output: ~q = (q j) j∈[`] ∈ C `.

Procedure 7 New Oblivious Expansion
1:Parameters: d ∈ [1, logn], m = n1/d , compression c ∈ [0, log2 N]

Input: Ciphertexts (q j = (c0, j,c1, j)) j∈[dd·m/2ce]
1: `← dd·m/2ce
2: ciphertexts← []
3: for j = 1 to ` do
4: ctxts= [q j = (c0,c1)] // start the expansion of q j
5: for a = 0 to c−1 do
6: for b = 0 to 2a−1 do
7: c0← ctxts[b]
8: c1← x−2a · c0 // scalar multiplication
9: c′k← c0 +Sub2c−a+1(c0)

10: c′k+2a ← c1 +Sub2c−a+1(c1)
11: end for
12: ctxts= [c′0, . . . ,c

′
2a+1−1]

13: end for
14: ciphertexts← ciphertexts‖ctxts
15: end for

Output: output= [o0, . . . ,om−1]

and 21–23), but we provide here the algorithm in full for
better comparison with our new algorithm (Algorithm 7).

We now describe optimized versions of the Query and
oblivious expansion algorithms in Algorithms 6 and 7, which
enable to reduce the upload communication up to a factor
d (the recursion level) compared to Algorithms 6 and 7
(differences are highlighted in blue). For example, when
d = 2,N = 2048 and n = 220 (a parameter setting from [5]),
the upload with Algorithms 4 and 5 consists of 2 ciphertexts,
and with Algorithms 6 and 7 consists of a single ciphertext
(for the same parameters).

The key insight behind our new algorithms is that oblivious
expansion (Algorithm 5) is linear over the plaintext space.
Indeed, all operations used in the algorithms are linear over
the plaintext space: additions, substitutions, and scalar multi-
plications. In particular, it follows that Algorithm 5 enables to
expand encryptions of any vectors: if m = ∑i∈[N] mixi ∈ R/tR,
then the output of the oblivious expansion consists of N cipher-
texts, respectively encrypting each of the mi’s in the constant
coefficient of the plaintexts.

We propose to modify Algorithm 5 as follows. First, as
the algorithm is linear, we propose to perform the normaliza-
tion in the Query algorithm itself (cf. Line 5 of Algorithm 6).
Indeed, in SealPIR [5], the normalization is applied on cipher-

Table 1: Gain from our compression techniques (Sections 3.1
and 3.2), compared to SealPIR, for a database of size n = 220

with different length entries and recursion d = 2.
Entry size 288B 8kB 2MB

Communication (kB) up down down down

SealPIR [5] 61.4 307.2 921 200,294
Ours w/o Remark 1 15.4 128 384 83,456
Ours w/ Remark 1 15.4 64 192 41,728
MulPIR 119 119 119 13,660

For SealPIR, we use the parameters of [5, Fig. 9] with plaintext modulus
t = 212 +1, and we use modulus switching to a prime of 25 bits. For MulPIR,
we use a polynomial of dimension 8192 with 50+2 ·55 bit modulus, modulus
switching to 50 bits, and plaintext modulus t = 220+219+217+216+214+1.

texts which in turn requires to use larger parameters to handle
the noise growth.3 This additionally comes with a minor ef-
ficiency improvement as it is not necessary to compute any
modular product anymore. Second, instead of encrypting the
d selection vectors independently in d · dm/2ce ciphertexts
(Lines 4-6 of Algorithm 4), we parse the concatenation of the
selection vectors as one vector of length d ·m and encrypt it
in dd ·m/2ce ciphertexts (Lines 4-6 of Algorithm 6). This fur-
ther simplifies the implementation of the oblivious expansion
algorithm because each ciphertext in the query gets expanded
individually (compare Line 15 of Algorithm 7 to Lines 5–6,
17–19 of Algorithm 5).

3.3 Communication Costs
We note that the techniques from the previous sections can
be use concurrently. We report in Table 1 the gains obtained
by using these techniques on SealPIR with the exact same
parameters as in [5], with and without the (computation ex-
pensive) optimization Remark 1 for a database of size n = 220

with elements of 288B (as in [5]), but also 20kB and 2MB.

3.4 Using Multiplicative Homomorphism
– Introducing MulPIR

Recursion using additive homomorphism only, as described
in Section 2.3, provides a way to emulate multiplicative ho-
momorphism in one very restricted setting, which suffices
for PIR construction. It was proposed at a time where no
candidate for somewhat/fully homomorphic encryption was
known. Since [27], it is well-known that PIR can be instan-
tiated using homomorphic additions and multiplications; we
overview several approaches in Appendix B.

In practice however, SealPIR (and XPIR) only use the ad-
ditive homomorphism of the underlying scheme. This is ex-
plained in SealPIR by the significantly higher computational

3We note that in the implementation of SealPIR, the normalization step
happens after decryption, which avoids the need for parameter increase.
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Table 2: Communication-Computation Trade-Off of homomorphic encryption based PIR Protocols.
Total Communication Approximate computation cost
in number of ciphertexts Expressed in homomorphic computation unit:

A: addition; S: scalar multiplication; M: multiplication

Recursion 1≤ d ≤ logn d = log(n) 1≤ d ≤ logn
logF

logn
logF < d ≤ logn d = log(n)

Additive HE O
(

dn
1
d +Fd−1

)
O
(
logn+F logn−1) n(A+S) n

1
d Fd−1(A+S) F logn−1(A+S)

Somewhat HE O
(

dn
1
d

)
O(logn) n(A+S)+n

d−1
d M n(A+S)+n

d−1
d M n(A+S+M)

Fully HE – O(logn) – – n lognM+n(A+S)

This tables aims at giving an insight on the overall trend but does not reflect accurately the costs; e.g., the communication in indicated in number of ciphertexts
while the actual size of the ciphertexts may depend on the database size, and similarly the costs of the homomorphic operations differ between each row.

cost of homomorphic multiplications compared to homomor-
phic additions [5, Sec. 3.1]. Indeed, for the databases con-
sidered in [5], the communication complexity O

(
Fd−1c(n)

)
,

where F is the ciphertext expansion, remains suitable for many
applications and offers excellent performance. For databases
with large elements, however, Table 1 shows that the large
PIR expansion yields unacceptable download communication.
This is the setting we focus on in this section.

We introduce MulPIR, a variant of SealPIR with the opti-
mizations above, which further replaces the emulated mul-
tiplications with homomorphic multiplications during recur-
sion (recursion is described in Section 2.3; and we provide
a full description when using homomorphic multiplications
in Appendix B.2). Therefore, MulPIR trades off computa-
tion (higher computational costs for the server) with smaller
communication for databases with large entries (in total com-
munication, and more particularly for the download commu-
nication). In particular,
• The MulPIR.Query algorithm is given in Algorithm 6.
• Upon receipt of the query, the server obliviously expands

the query using Algorithm 7;
• Then the server runs the layered multiplication algorithm

of Appendix B.2;
• Next the server compresses the response using modulus-

switching as in Section 3.2;
• Finally, the client extracts the database elements by de-

crypting the result.
On the communication front only, we report the communica-
tion costs compared to SealPIR in Table 1. Our experiment
sections (Section 6) will quantify the impact of using MulPIR
in practice, by reporting both its concrete communication and
computation costs.

4 Improving Gentry–Ramzan PIR

An alternative to PIR based on homomorphic encryption is
the protocol of Gentry and Ramzan [30], which achieves log-
arithmic communication and a constant communication rate.

While it has been implemented in previous work [15, 16, 49],
it is usually dismissed due to its computational complex-
ity [3, 15].

In this section, we describe several optimizations to Gentry–
Ramzan PIR that allow us to get a practically efficient imple-
mentation. Since the main computation bottleneck for large
databases is the server computation (cf. Algorithm 8), we
focus on optimizing this part of the protocol. We will first
revisit the original protocol [30] (Sec. 4.1). Then, in Sec. 4.2,
we show how to apply existing techniques [7, 58] to speed
up the server setup of Gentry–Ramzan PIR. While this is a
one-time setup, it is non-trivial to implement with complexity
sub-quadratic in the database size. Finally, in Sec. 4.3, we
show how to speed up the response computation with a novel
client-aided variant of Gentry–Ramzan, using the fact that the
client can perform modular exponentiations more efficiently
since she knows the order of the multiplicative group.

4.1 Gentry–Ramzan PIR
The basic PIR protocol of Gentry and Ramzan [30] works by
interpreting the server’s database as a number in a Residue
Number System (RNS). That is, given n co-prime integers
π1, . . . ,πn, with πi ≥ 2l for all i ∈ [n], we encode D as an
integer E, such that

E ≤
n
∏
i=1

πi, and E ≡ Di mod πi for all i ∈ [n]. (2)

The existence and uniqueness of E follows from the Chinese
Remainder Theorem, which can also be used to compute
E given D and all πi. Observe that (2) implies that we can
retrieve the element at index i by reducing E modulo πi. The
idea of [30] is to have the server perform this reduction in the
exponent of a multiplicative group, thus hiding i. We give the
description of the PIR protocol in Algorithms 8 to 10, and
refer the reader to [30] for the details.

4.2 Fast Modular Interpolation
To answer queries, the server must encode the database D
according to Eq. (2). Let M = ∏

n
i=1 πi be the product of all
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Procedure 8 PIR.GR.Query

Parameters: security parameter λ.
Input: k ∈ [n].

Q1 := 2q1 +1 s.t. Q1 and q1 are prime and log2(Q1)≥ λ.
Q2 := 2q2πk +1 s.t. Q2 and q2 are prime and log2(Q2)≥ λ.
m := Q1Q2.
g←$Zm s.t. |〈g〉|= q1q2πk.

Output: (m,g) ∈ Z×Z∗m.

Procedure 9 PIR.GR.Response

Input: D,(m,g) ∈ Z×Z∗m.
Encode D as an integer E as in Eq. (2).
g′ := gE mod m.

Output: g′ ∈ Z∗m.

moduli, and Mk = M/πk = ∏
n
i=1,i6=k πi. A naive application

of the Chinese Remainder Theorem computes E as follows:
1. For each k ∈ [n], use the extended Euclidean algorithm to

compute integers ak,bk such that akMk +bkπk = 1.

2. Compute E =
n
∑

k=1
DkakMk =

n
∑

k=1
Dkak

(
n
∏

i=1,i 6=k
πi

)
.

It is clear that a given modulus πk divides all summands from
Step 2 except the k-th. Then, using the identity from Step
1, we have E ≡ DkakMk ≡ Dk −Dkbkπk ≡ Dk mod πk for
all k ∈ [n]. The problem with that solution is that each Mk
has already size Ω(n). While there are quasi-linear variants
of integer multiplication [58] and the extended Euclidean
algorithm [59], we have to perform each of those at least n
times, and therefore end up with a total running time of Ω(n2).

To avoid the quadratic complexity, we rely on the modular
interpolation algorithm by Borodin and Moenck [7]. Their
main observation is that if we divide our set of moduli πi
evenly into two parts, and call the products of those parts M1
and M2, then the first half of the summands in Step 2 above
contains M2 as a factor, while the other half contains M1.
Thus, M1 and M2 can be factored out of the sum, reducing the
computation to two smaller sums and two multiplications:

E = M2 ·

(
bn/2c

∑
k=1

dkak

(
bn/2c

∏
i=1,i 6=k

πi

))
+

M1 ·

(
n

∑
k=bn/2c+1

dkak

(
n

∏
i=bn/2c+1,i6=k

πi

))
.

Repeating the above transformation recursively leads to
a divide-and-conquer algorithm for modular interpolation,
which, using the Schönhage-Strassen integer multiplica-
tion [58], has a total running time of O(n log2 n log logn) [7].
It relies on the fact that the supermoduli M1, M2 can be pre-
computed, as well as the inverses ak. This is especially useful,
as we can reuse those for multiple interpolations, as long as
the set of moduli πi remains the same. We will make use
of this precomputation when applying our implementation

Procedure 10 PIR.GR.Extract
Input: g′ ∈ Z∗m.

h := gq1q2

h′ := g′q1q2

Solve h′ = hd for d using Pohlig–Hellman algorithm.
Output: d ∈ Zπi .

of Gentry–Ramzan PIR to databases with large entries (Sec-
tion 6.2).

4.3 Client-Aided Gentry–Ramzan
As we can see in Algorithm 9, to compute the response to a
query, the server has to compute a modular exponentiation,
where the exponent encodes the entire database as described
in the previous section. Prior work [16] has shown that in
practice this step is by far the most expensive part in Gentry–
Ramzan PIR.

To speed up the response computation, we rely on the well
known fact that one can use Euler’s Theorem to perform
modular exponentiations of the form gx mod m by first re-
ducing the exponent modulo ϕ(m) = (Q1− 1)(Q2− 1) and
computing

gx mod m = gx mod ϕ(m) mod m. (3)

While we cannot apply this directly to Algorithm 9 because
the server does not know ϕ(m), the client can use Eq. (3) to
perform a part of the server’s computation without knowing
E, by precomputing powers of the generator g.

Concretely, the server rewrites the large exponent E ac-
cording to some base b ≥ 2. Without loss of generality, we
know that E = E0 +E1b+E2b2 + . . .+Elbl . It follows that
gE = gE0 · (gb)E1 · (gb2

)E2 · · ·(gbl
)El . Observe that since b

and l are public, the client can compute the l + 1 values
g,gb,gb2

, . . . ,gbl
without knowing the exponent E. Further-

more, these l exponentiations may be efficiently computed
by the client using the prime factorization of m as shown in
Eq. (3). Note that revealing the additional powers of g to the
server does not leak any information, as they could be com-
puted by the server as well, just not as fast. Given these l +1
values, the server’s task reduces to the problem of computing
the product of multiple parallel exponentiations. To do this
efficiently, one can refer to the survey by Bernstein [6]. For
our implementation, we choose Straus’s algorithm [61], a de-
scription of which can be found in [38, Alg. 14.88]. In our
experiments (Table 5 and Fig. 3), we show how sending more
generators significantly reduces the server computation time.

5 Sparse Databases

The traditional setting for PIR over a database of size n as-
sumes that each database element has a unique index in [n]
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known to the client, which is used to create a query. However,
in some scenarios, such dense indices are not immediately
available, and database elements are instead indexed by key-
words from a much larger domain. This sparse database set-
ting has been considered as keyword PIR by Chor et al. [12].
The latter work builds an efficient search data structure, instan-
tiated with a search tree, over the sparse indices of the database
entries and then use PIR to execute the search queries. This
approach requires logarithmic number of PIR queries on a
database proportional to the number of sparse items. We pro-
pose a new construction based on hashing that reduces the
overhead to a constant number of PIR queries.

A straight-forward way to use hashing for sparse PIR is to
let the server map its n = |D| elements to a set of m bins using
simple hashing. That is, for each pair (i,d) ∈ D, the server
inserts d into the bin number H(i), where H is a public hash
function. For a query index i′, the client then retrieves bucket
H(i′) using PIR. Despite its simplicity, this scheme has the
drawback that the size of the buckets grows asymptotically
with the number of items n. While this works well with PIR
schemes that have a large plaintext size (such as MulPIR), for
other schemes (such as Gentry–Ramzan) we ideally want the
bucket size to be a small constant. To achieve this, we will
instead use cuckoo hashing on the server side, which ensures
that each bucket only contains a single database element.

Cuckoo hashing [47] has been used for private set intersec-
tion [11, 20, 53, 54, 56], in particular asymmetric PSI [11]
and as a multi-query batching technique for PIR [5]. In these
works, the client (i.e., the party holding the smaller set of
elements or queries) uses cuckoo hashing to map its inputs to
a set of buckets held by the server, such that each client input
only needs to be compared against server elements inside
the corresponding bucket. Our approach leverages cuckoo
hashing in a different way that is similar to some of its uses
as a building block for ORAM constructions [40, 52]: we
apply cuckoo hashing on the server side, to compress the do-
main of its indices. Unlike PSI and ORAM, we don’t need to
provide privacy for the server’s database in PIR. This allows
us to guarantee correctness, since the server can just choose
different hash functions in case cuckoo hashing fails. In the
following, we therefore assume that hash functions are chosen
dependent on the database D.

A cuckoo hash table is defined by κ hash functions
H1, . . . ,Hκ and each item with label i is placed in one of
the κ locations H1(i), . . . ,Hκ(i). The cuckoo hash table is ini-
tialized by inserting all items in order, resolving collisions
using a recursive eviction procedure: whenever an element is
hashed to a location that is occupied, the occupying element
is evicted and recursively reinserted using a different hash
function. For each sequence of items, there is a small set of
hash function sets that are incompatible with the sequence
and cannot be used to distribute the items, but this can be
handled by choosing new hash functions. We formalize this

dependence of the hash functions using a data-dependent key
generation procedure Cuckoo.KeyGen(D).

We present a PIR construction which works as follows.
The server generates cuckoo hash functions using the data
dependent key generation Cuckoo.KeyGen(D) and builds a
cuckoo hash table for its sparse database using the insertion
algorithm Cuckoo.Insert, which will be of size proportional to
the number of non-empty entries (with a constant multiplica-
tive overhead). The server provides the cuckoo hash functions
H1, . . . ,Hκ for a κ≥ 2. To query an item i, the client executes
κ PIR queries for items H j(i), j ∈ [κ] for the database that
contains the cuckoo hash table. We stress again that our ap-
proach to compress the server index using cuckoo hashing is
orthogonal to the use of cuckoo hashing to batch multiple PIR
queries described in Appendix E.2 and Angel et al. [5]. We
now present the formal construction for PIR on sparse data.

Construction 1. Let (Cuckoo.KeyGen,Cuckoo.Insert) be
a cuckoo hashing scheme and (PIR.Query,PIR.Eval) be
a PIR protocol. We construct a new PIR protocol
(PIR′.Query,PIR′.Eval) where the indices of the server’s
database are sparse over the whole domain:
• Pre-processing: The server generates parameters for the

cuckoo hash that will fit its input

(H1,H2, . . . ,Hκ,m)← Cuckoo.KeyGen(D) .

It initializes the cuckoo hash table using its input, invoking
Cuckoo.Insert(i,d) for all (i,d) ∈ D. It sends to the client
{H j} j∈[κ].

• qi = (q1
i , . . . ,q

κ
i )← PIR′.Query(i): The client computes

q j
i ← PIR.Query(H j(i)) for j ∈ [κ].

• [D[i],⊥]← PIR′.Eval([qi,D]): The client and the server
run [T j[H j(i)],⊥]← PIR.Eval([q j

i ,T j]) for j ∈ [κ]. The
client checks if any of the T j[H j(i)], j ∈ [κ] contains item
i. If the items is present, the client outputs it and otherwise,
the client outputs ⊥.

Theorem 1. Let (PIR.Query,PIR.Eval) be a PIR protocol
that provides correctness and query privacy. Then Construc-
tion 1 provides correctness and query privacy.

Proof. The correctness of the above scheme is guaranteed
by the correctness of the cuckoo hash, which guarantees that
an item with an index i will be located in one of the posi-
tions determined by the hash functions, and the correctness of
PIR.Query, which returns the respective items. The privacy of
the query is guaranteed by the privacy of PIR.Query and the
fact that we only make a constant number κ of queries.

The query efficiency of the above construction depends
only on the size of the sparse database and the number of
cuckoo hash functions. The latter dependency can be removed
applying multi-query PIR techniques. In Section 6.3, we will
apply our sparse PIR constructions to a secure password
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checkup problem, using cuckoo hashing for Gentry–Ramzan
PIR, and simple hashing for MulPIR. We will see that both ap-
proaches yield different tradeoffs in terms of communication
and computation.

6 Experimental Evaluation

We present experimental results that measure the efficiency
of different PIR protocols and illustrate some of the possible
trade-offs that they enable. These results can inform decision
making of what is the most appropriate PIR instantiation for
a particular application. All our experiments are performed in
a virtual machine with a Intel(R) Xeon(R) CPU E5-2695 v3
@ 2.30GHz and 128GB of RAM, running Debian. Monetary
costs were computed using Google Cloud Platform prices [1],
which at the time of writing were at one cent per CPU-hour
and 8 cents per GB of internet traffic.

6.1 SealPIR and MulPIR

First, we report on the relative costs of SealPIR and MulPIR.
For SealPIR, we use the parameters of [5]: polynomials of
dimension 2048 and a modulus of 60 bits, providing 115
bits of security. The plaintext modulus has a size of 12 bits
(d = 2) / 16 bits (d = 3). For MulPIR, we use polynomials
of dimension 8192 and a modulus of 160 bits, providing 180
bits of security. The plaintext modulus size is set to 21 bits
(d = 2) / 17 bits (d = 3). We use the SealPIR implementation
available on Microsoft’s GitHub [3] based on Seal 3.2.0, and
we implement MulPIR with Seal 3.5.4 [2].

The first database is a “Pung-style” database, as used in [5].
This is a database of n = 218, 220, 222 elements of 288B.
The first step in SealPIR is to reshape the database into a
database of dn/10e entries of 2880B (d = 2) or dn/14e en-
tries of 4032B (d = 3), to fully pack each ciphertext. Similarly,
MulPIR reshapes the database into a database of dn/71e en-
tries of 20448B (for d = 2), or dn/56e entries of 16128B (for
d = 3). We present the communication and computation
comparison in Table 3. As expected, the communication is
smaller than the implementation of SealPIR from [5] for a
slightly larger computational cost. For most database sizes,
this also results in the lowest monetary server cost. Finally,
we observe that d = 3 doesn’t improve either communication
or computation of MulPIR or SealPIR, due to the fact that the
upload for d = 2 already consists of only a single ciphertext.

We note that re-implementing SealPIR with the optimiza-
tions from Section 3.2 and the latest version of Seal should
give better communication than MulPIR (cf. Table 1). This
is due to the fact that the database is long and skinny: it
has many entries that are really short; hence the PIR ex-
pansion factor is not the bottleneck. To better visualize the
communication–computation trade-off, we also benchmark
MulPIR, and estimate the communication and computation

of the optimized version of SealPIR from Section 3.24, for a
database with larger entries: we consider a database of size
100,000 with entries of 40kB. For SealPIR, we consider an
upload of (128+2048∗60)/8 = 15376 bytes, and the down-
load to be⌈

40000
3072

⌉
·
⌈

2 ·60
12

⌉
2 ·2048 ·25/8 = 1,792,000

bytes. We estimate the timings of SealPIR by multiplying
the server response time minus the server expansion time
corresponding to the column where the actual number of rows
is 104858≈ 100,000 by 14 =

⌈ 40000
3072

⌉
and ignore the cost of

the optimizations from Section 3.2. We conclude from Table 4
that, for a similar computation cost, MulPIR enables to reduce
the communication of SealPIR by a factor 7x in that setting,
which also results in a reduction of the monetary server costs
by 35%.

6.2 Comparison with Other PIRs
For completeness, we want to compare the cost of
SealPIR/MulPIR with other additive homomorphic encryp-
tion schemes, and in particular ElGamal and Damgård–Jurik.
Since we expect those schemes to be much slower, and in
particular prohibitively expensive for the client, we first run
a complete benchmark on a very small database of 5000 ele-
ments of length 288B (such database was used for evaluation
in [4]), without using recursion (so as to maximize speed).
We report communication and computation costs when the
database is packed (i.e., when possible, the database is re-
shaped so as to maximize the number of elements in the
response; as done in SealPIR [5] and in the previous section).
We also consider a “private file download” application, that
uses a “short” and “fat” database with 10,000 files of 307,200
bytes (3GB database), and serve it with PIR without recursion.
In this regime, all the PIR protocols are fully packed and need
to replicate their operations over “# chunks” ciphertexts. We
report communication costs and benchmarks in Table 5 and
in Fig. 2.

For ElGamal, we use the NIST P-224r1 curve and the plain-
text size is chosen to be 4 bytes for fast decryption. For Gentry–
Ramzan, we use a 2048-bit modulus and a block size of 500.
For Damgård–Jurik, we use s = 1 and 1160-bit primes, and
a ciphertext encrypts about 290 bytes. For MulPIR, we use a
polynomial of dimension 2048 and a modulus of 60 bits. All
the implementations are standalone and rely only on OpenSSL
for BigNum and elliptic curve operations. Damgård–Jurik
client’s setup includes precomputation to speed up the query
creation. Finally, the table reports the server cost for a single
execution of the experiment on Google’s Cloud Platform [1].
As expected, Damgård–Jurik and ElGamal are significantly

4For a fair comparison, we omit the computation-expensive Remark 1
here, since it could make SealPIR more costly than MulPIR and requires
careful benchmarking.
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Table 3: Communication and CPU costs (in ms) of SealPIR and MulPIR (recursion d = 2) for a database of n elements of 288B.
SealPIR [3] (d = 2) SealPIR [3] (d = 3) MulPIR (d = 2) MulPIR (d = 3)

Database size n 262144 1048576 4194304 262144 1048576 4194304 262144 1048576 4194304 262144 1048576 4194304
Actual number of rows after packing 26215 104858 419431 18725 74899 299594 3693 14769 59075 4682 18725 74899

Client Query 19 19 19 19 19 19 172 192 213 126 128 161
Server Expand 145 294 590 33 55 90 391 783 1610 396 395 841
Server Respond 1020 3520 12891 1136 3519 11554 1919 5213 16307 3268 11677 30501

Upload (kB) 61.4 61.4 61.4 92.2 92.2 92.2 122 122 122 130 130 130
Download (kB) 307 307 307 1966 1966 1966 119 119 119 130 130 130

Server Cost (US cents) 0.0033 0.0040 0.0067 0.017 0.017 0.020 0.0026 0.0036 0.0069 0.0031 0.0054 0.011

Table 4: Communication and CPU costs of SealPIR and
MulPIR for a 4GB database with 100,000 elements of 40kB.

Optimized SealPIR MulPIR

Client Query (ms) 42 263
Server Expand (ms) 357 3560
Server Response (ms) 47712 52280

Upload (kB) 15 119
Download (kB) 1792 238

Server Cost (US cents) 0.028 0.018

slower than MulPIR and Gentry–Ramzan. We also note that
the server computation in client-aided PIR reduces signifi-
cantly as we send more generators.

6.3 Application: Password Checkup
Recent works study the problem of preventing credential stuff-
ing attacks [42, 62] by proposing privacy-preserving proto-
cols where a client queries a centralized breach repository
to determine whether her username and password combina-
tion has been part of breached data, without revealing the
information queried. While this application seems to be a
perfect fit for keyword PIR, the size of leaked credentials (4+
billion credentials [62]) remains prohibitively large for PIR.
Instead, [42, 62] propose protocols where the client and the
server first run an oblivious PRF evaluation (both on user-
names and on the tuple username/password), then use the
first value to retrieve a bucket and the second value to test for
membership after downloading the whole bucket. Precisely,
[62] proposes to use 216 buckets, which we infer to contain
about 60k elements, and downloading a whole bucket is about
1.6MB.

In this section, we propose to replace the download of the
entire bucket with a PIR query. Table 6 shows that using PIR
on each bucket is practical (i.e., is comparable to the median
waiting time of a few seconds for the client, reported in [62,
Tab. 2]) and enables decreasing communication or the number
of buckets (or both).

For Gentry–Ramzan, we propose to perform keyword PIR
over a bucket using cuckoo hashing, as introduced in Sec-

tion 5. We use the parameters from [20, Appendix B] with
3 hash functions. Note that the three client queries can be
batched into a single Gentry–Ramzan query using CRT batch-
ing (see [35] and Appendix E.2). The communication is
extremely small for any bucket size. For buckets of size 50k,
the server computation time is only slightly larger than one
second. Unfortunately, the client needs to generate large safe
prime numbers which has high computation cost and may
impact the applicability of this protocol in practical deploy-
ments, such as the one of [62]. In Fig. 3, we illustrate the
communication-computation trade-off offered in client-aided
Gentry–Ramzan PIR: the larger the messages (i.e., the more
generators are sent by the client), the smaller the computation
time required on the server.

We also propose to use MulPIR, which features low client
and server computation costs. However, with the cuckoo hash-
based keyword PIR as above, MulPIR would perform worse
than Gentry–Ramzan for two reasons. First, the client needs
to query as many locations as the number of hash functions.
While Gentry–Ramzan supports CRT batching, MulPIR does
not support batching natively. Second, a lot of space available
in a MulPIR ciphertext is wasted by using cuckoo hashing,
since each bucket row contains at most one element. There-
fore, we use the approach based on simple hashing (cf. Sec-
tion 5): the server selects a random hash function H of image
size k, and use it to construct k bins by placing each of the m
elements e in the bin of index H(e). The client then performs
a PIR query over a database of size k. In order to minimize
k, we want to make the number of elements in each bucket
as large as possible while still fitting in one MulPIR cipher-
text. Denote m = ck lnk for a constant c. From [57, Th. 1], we
know that with overwhelming probability, the maximum size
of the bucket will be (dc +1) lnk where dc is the unique root
of f (x) = 1+ x(lnc− lnx+ 1)− c larger than c. For every
bucket size, we find experimentally the smallest k such that
the whole bin after hashing fits in one MulPIR ciphertext. We
instantiate MulPIR with parameters polynomials of dimen-
sion 2048, modulus of 60 bits and using modulus switching
to a 35-bit modulus, and plaintext modulus t = 17 to enable
recursion d = 2. Finally, k is respectively equal to 403, 403,
1k, 3k, 8k, 22k, and 58k. We report on the communication
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Table 5: Communication and computation costs for PIR protocols for two databases, without recursion.
Communication (kB) Computation (ms) Server Cost

(US cents)# chunks upload download C.Setup S.Setup C.Create S.Respond C.Process

1MB database: 5000 elements of 288B.

MulPIR 1 14 21 0 39 154 3,910 0 0.0019
Gentry–Ramzan (1 generator) 5 0.5 1.3 0 1,532 3,294 51,803 377 0.0145
Client-Aided Gentry–Ramzan (15 generators) 5 4.1 1.3 0 1,540 2,688 5,495 381 0.0016
Client-Aided Gentry–Ramzan (50 generators) 5 13.1 1.3 0 1,594 3,966 2,988 393 0.0011
Client-Aided Gentry–Ramzan (100 generators) 5 25.8 1.3 0 1,796 7,980 2,904 417 0.0014
Damgård–Jurik (s = 1) 1 1,480 0.6 40,636 2 14,334 20,710 6 0.0382
ElGamal 72 280 8 283 29 893 10,105 26,544 0.0091

Private File Download – 3GB database: 10,000 elements of 307kB.

MulPIR 100 79.4 1,385 0 88,815 198 34,388 23 0.0417
Client-Aided Gentry–Ramzan (50 generators) 4,955 13.1 1,259 6 1,347,036 28,684 5,221,052 355,940 1.4782
Damgård–Jurik (s = 1) 1,060 2,960 614 ≈ 80,000 ≈ 3,200 ≈ 28600 ≈ 42,000,000 ≈ 2,500 11.7451
ElGamal 76,800 280 4,300 ≈ 300 ≈ 88,800 ≈ 2250 ≈ 4,800,000 ≈ 30,715,200 1.4338

Median over 10 computations. The timings indicated with ≈ have been estimated on a smaller number of chunks to finish in a reasonable amount of time.

Figure 2: Server computation with respect to communication for the private file download and password checkup applications.
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Figure 3: Computation time in the Password Checkup appli-
cation when using client-aided Gentry–Ramzan.

and computation costs in Table 6. In particular, we conclude
that for buckets of size 50k, the server computation time less
than 1s for about 50kB of communication (plus the one-time
keys that need to be transferred), making MulPIR a promising
replacement of bucket download in the application of [62].
In terms of total server cost, we observe that MulPIR out-
performs Gentry–Ramzan in our experiments as soon as the
bucket size is 200k or more.

Table 6: Password Checkup application.
Gentry–Ramzan MulPIR

Bucket Com. Client Server Server Com. Client Server Server
size (kB) (ms) (ms) (US ¢) (kB) (ms) (ms) (US ¢)

10k 10.4 24,324 317 0.00017 90.5 156 475 0.00086
20k 10.4 19,888 573 0.00024 90.5 189 515 0.00087
50k 10.4 24,906 1,649 0.00054 90.5 195 810 0.00095
100k 10.4 30,644 2,774 0.00085 90.5 195 830 0.00095
200k 10.4 21,571 5,318 0.0016 90.5 236 1,588 0.0012
500k 10.4 53,137 13,913 0.0039 90.5 285 3,143 0.0016
1M 10.4 49,819 31,055 0.0087 90.5 265 3,742 0.0018

Overall, our protocols respectively can check a single pass-
word with 10.4 KB or 90.5 KB communication. This is in con-
trast with prior work [11], which is optimized for the batched
setting. For the smallest batch size of 256, Chen et al. [11]
report communication of 17.6 MB. See also Appendix A.

7 Conclusion

Similar to other advanced cryptographic primitives, PIR is
on the verge of transitioning from a theoretical to a practical
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tool. Our paper presents significant progress in this direction
including new PIR constructions and optimization techniques,
which provide new ways to trade-off communication and
computation. We implement several PIR constructions using
different HE schemes as well as the Gentry–Ramzan PIR and
a new approach to handle database sparsity. We evaluate our
protocols on various applications ranging from private mes-
saging, file downloads, and password checkup. Our evaluation
shows that our improved MulPIR and client-aided GR imple-
mentations significantly improve the state of the art, resulting
in the lowest dollar cost in most settings.
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A Related Work

Efficient Constructions of Single Server PIR. The most
efficient (secure) single server PIR constructions implemented
in the recent years [4, 5, 17, 22, 23, 29, 34, 45, 63] are based
on homomorphic encryption (HE) techniques and achieve
sub-linear communication. The baseline PIR solution (with
linear communication complexity) has the client send a se-
lection vector proportional to the database size n encrypted
under additive homomorphic encryption, and has the server
return a single encrypted entry by performing n homomorphic
multiplications with a constant and n homomorphic additions.
Sub-linear complexity is achieved by using recursion [60]:
the database is viewed as a d-dimensional database, and the
query complexity becomes O(d ·n1/d). Now, for the recursion
to work with additive homomorphic encryption schemes, the
ciphertext after one level of recursion is viewed as a plaintext
in the next layer. In particular, if the additive homomorphic

encryption scheme has ciphertext expansion F , the PIR re-
sponse will include Fd−1 ciphertexts (where, e.g., F ≥ 6.4
in lattice-based schemes, as per [5]). This has limited the
recursion depth to d ≤ 3 in practice [5, 45].

Along this line of work, there are several papers that present
implementations with various resource trade-offs. Aguilar-
Melchor et al. [45] present XPIR with small computation
costs but quite large communication costs. On the other
hand, another line of work [39, 44] obtain much smaller
(almost optimal) communication at the cost of significantly
larger computation. In a recent work, Angel, Chen, Laine,
and Setty [5], present SealPIR that strikes a better balance in
the communication–computation cost. SealPIR requires only
slightly more computation than XPIR but uses almost 1000
times less communication than XPIR (but does not achieve
the almost optimal rate of the works [39, 44]). SealPIR is
instantiated with the FV (lattice-based) homomorphic encryp-
tion scheme [24]. It builds upon XPIR [45, 60] and adds a
clever query compression technique that reduces the query
communication complexity from O(dn1/d) to O(ddn1/d/Ne),
where N is the number of elements that can be packed in
one query ciphertext. In a work concurrent to ours, Park and
Tibouchi [50] present a construction that uses GSW-style ho-
momorphic encryption that support logarithmic multiplicative
degree and achieves O(logn) communication. Compared to
SealPIR, their approach offers a similar trade-off as ours, i.e.,
a reduction of the communication by 80% at the cost of in-
creased computation time [50, Table 5]. The work of Devet et
al. [21] introduces a hybrid model between computational and
information theoretic PIR, which allows graceful degradation
of query privacy when the database servers are colluding, and
leverages CPIR recursion techniques to improve communica-
tion efficiency.

Another known PIR construction that achieves logarithmic
communication complexity is the construction of Gentry–
Ramzan [30], which does not rely on homomorphic encryp-
tion. This PIR construction extends the idea from the work
of Cachin et al. [9] which proposes to encode the database
{Di}i∈[n] using the Chinese Remainder Theorem (CRT) rep-
resentation as x ∈ Z s.t. x≡ Di mod πi for pairwise coprime
moduli {πi}i∈[n]. The query for an element at position i con-
sists of a group G and a generator g of a subgroup of G
with order q ·πi. The server evaluation of the query computes
h = gx in G, which effectively performs a modular reduction
in the exponent to select the component Di mod πi masked
with the random value q. The client recovers the value Di
by computing the discrete logarithm of h with base gq. The
work of Cachin et al. [9] handled only binary data items, and
the Gentry–Ramzan construction [30] shows how to handle
larger plaintext domains for the database entries and improves
the communication rate to constant. While the resulting con-
struction achieves optimal asymptotic communication rate,
it has significant computation costs in several places: the
generation of prime numbers needed to instantiate different
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groups G at each query, the computation time at the server
exponentiating in the query group G, and the decoding which
requires computing a discrete logarithm. Because of its com-
putational overhead this PIR construction has been rarely
considered as a candidate for implementation and practical
applications [15, 16, 49].

In recent years, single server PIR has also been studied in
slightly different settings. Two works [8, 10] consider doubly-
efficient PIRs that attempt to obtain schemes with sub-linear
computational costs, but require both significant server over-
head and new cryptographic assumptions precluding them
from practical applications. Another work [51] introduces the
notion of private stateful information retrieval where clients
store some state over multiple queries. Assuming clients per-
form enough queries, this scheme obtains both smaller com-
munication and computational costs. In contrast, we build
PIR schemes suitable for all settings where clients are state-
less and our efficiency guarantees will hold regardless of the
number of queries performed by the client.

Specialized PIR Settings. Multi-query PIR considers the
setting where several PIR queries are executed at the same
time. Ishai et al. [36] proposed a construction based on batch
codes, which achieves asymptotic improvements in the com-
munication and computation amortized cost multi-query PIR
but remains impractical. The work on SealPIR [5] presented
a construction based on probabilistic batch codes instanti-
ated with cuckoo hashing in a similar spirit as private set
intersection constructions, which amortizes CPU cost while
introducing a small probability of failure (≈ 2−40).

PIR for sparse databases, also known as keyword PIR [12],
considers the setting where the database size is much smaller
than its index domain. Chor et al. [12] presented a solution
that builds a binary search tree over the items in the database
and reduces the computation to a logarithmic number PIR
queries for the tree levels. In contrast, our approach based on
cuckoo hashing only incurs a constant overhead. Another ap-
proach to PIR on sparse databases is given by PSI protocols.
In particular, Chen et al. [11] present a labeled PSI proto-
col that has communication sublinear in the server’s dataset.
However, they optimize for the multi-query setting, and there-
fore their protocol is not directly suited to the applications we
consider (Section 6.3). For example, the smallest number of
batched queries reported in [11] is 256, where the protocol
uses 17.6 MiB communication. In contrast, our protocol can
handle single queries for as little as 10 KiB (see Table 6).

Symmetric PIR (SPIR) [33] extents PIR with additional
privacy requirement for the database which guarantees that
the querier does not learn anything more than the requested
item. SPIR is also known as 1-out-of-n oblivious transfer.
Naor and Pinkas [46] provided general transformation from
PIR to SPIR using oblivious polynomial evaluation, and there
have also been direct constructions [41, 43].

B PIR using Additive and Multiplicative Ho-
momorphisms

Assume the homomorphic encryption scheme H E is fully ho-
momorphic, i.e., (w.l.o.g. for ease of presentation) there exists
a Eval procedure that takes as input ciphertexts ci for respec-
tive messages mi and any function description f : Zκ

t → Zt ,
and outputs a ciphertext of f (m1, . . . ,mκ), which we denote

Eval({Enc(sk,mi)}i∈[κ], f ) = Enc(sk, f (m1, . . . ,mκ)).

A possible approach to computing the selection vector for
the PIR query using FHE is based on the following observa-
tion [27]: the i-th bit in the PIR query vector is the output of
the equality check between the query index k and i. Hence, in-
stead of sending the selection vector~s, the client can encrypt
each bit k j of the index k and send the resulting κ = logn
ciphertexts to the server. The server then homomorphically
computes the selection vector and proceeds as in the baseline
PIR construction. This construction achieves communication
complexity: O(logn) for the user’s query and O(1) for the
server’s response (note that the ciphertext size is independent
of the database, hence included in the O() notation.).

In practice, for a given database size, the circuit correspond-
ing to the PIR evaluation has bounded multiplicative depth,
and one can use somewhat homomorphic encryption (homo-
morphic encryption that can evaluate multivariate polynomi-
als of bounded degree). Appendices B.1 to B.3 presents three
different methods to implement the PIR homomorphic evalu-
ation: applying successive multiplications, reconstructing the
selection vector using the equality circuit, or reconstructing
the selection vector using tensor products. We note that while
the successive multiplication method has larger multiplica-
tive depth than the other two methods, in practice for d = 2,
the depth is the same and this method is the computationally
most efficient. Table 2 illustrates that homomorphic multi-
plications enable to reduce the communication of recursion,
which becomes a bottleneck for large levels of recursion.

B.1 Equality Circuit
A first approach consists in implementing the protocol de-
scribed for fully homomorphic encryption schemes that lever-
age the observation that, since the values k and i have at most
κ = logn bits, the arithmetic circuit for computing equality
comparison has multiplicative depth logκ = log logn. Indeed,
computing the equality comparison bit for two bit values b1
and b2 is equivalent to computing 1− (b1 +b2−2b1b2) over
the integers. Note that in our case only one of the bits coming
from the query will be encrypted. Thus, bit equality com-
putation will not require any multiplicative homomorphism.
The dominant cost is therefore the multiplication of logn
encrypted bits, which requires log logn multiplicative degree.

Hence, it suffices to use a somewhat homomorphic en-
cryption that supports logκ nested multiplications. Then the
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ciphertext size depends on the size of the database and the
communication complexity becomes O(c(n) logn) for the
user’s query and O(c(n)) for the server’s response.

B.2 PIR with Successive Multiplication

Using the same notation as in Section 2.3, the PIR protocol
becomes as follows. The server performs two steps:
1. For each of the n1/2 rows Mi = (Mi,1 · · ·Mi,n1/2), the server

computes the response with the (encryption of the) selec-
tion vector~s2 as in Eq. (1), i.e., the server obtains the n1/2

ciphertexts

ci = Enc
(
sk,〈~s2,(Mi, j) j〉

)
= Enc

(
sk,Din1/2+ j′

)
.

2. The server now computes the response with the (encryp-
tion of the) selection vector~s1 using homomorphic multi-
plication, i.e., the server obtains the ciphertext

c = Enc
(
sk,〈~s1,{Din1/2+ j′}i〉

)
= Enc

(
sk,Di′n1/2+ j′

)
.

Upon reception of the response, r = c ∈ C , the client directly
uses the HE decryption key to recover Di′n1/2+ j′ = Dk.

Here again, this method easily generalizes by representing
the database as a d-dimensional hyperrectangle [n1]×·· ·×
[nd ] with n = n1 · n2 · · ·nd . When ni = n1/d , we accomplish
the following communication complexity: O

(
c(n) ·dn1/d

)
for

the user’s query and O(c(n)) for the server’s response.

B.3 Selection Vector Reconstruction

Note that the approach of Section B.2 keeps the layered ap-
proach of recursion. In particular, performs sequentially d
homomorphic multiplications, effectively requiring the some-
what homomorphic encryption scheme to support circuits of
multiplicative depth d. In particular, for full recursion, this
means that the SHE scheme needs to support circuits of depth
κ = logn, which increases the size of the ciphertexts com-
pared to the first approach5, where the SHE only required to
handle depth logκ = log logn.

We propose below a method that trades communication for
computation as follows. First, note that

Di′n1/2+ j′ = 〈~s1⊗~s2,{Di}i∈[n]〉 ,

where ~s1⊗~s2 is the tensor product of ~s1 and ~s2. More gen-
erally, if~s1, . . . ,~sd denote the selection vectors of dimension
n1/d , such that the indices of the 1 element in~si is ji, then

D
∑

d−1
j=0 ji·n j/d = 〈~s1⊗·· ·⊗~sd ,{Di}i∈[n]〉 .

5Indeed, the parameters of somewhat homomorphic encryption schemes
scales at least linearly in the multiplicative depth (using techniques called
modulus switching or relinearization); hence reducing the multiplicative
depth exponentially with also reduce the ciphertext size exponentially.

Hence, this hints to a new protocol, where the client sends the
d ·n1/d encryptions of the bits s j,i j for j ∈ [d], i j ∈ [n1/d ], the
server computes homomorphically

Enc(sk,s1,i1 ×·· ·× sd,id ), ∀i1, . . . , id ∈ [n1/d ] ,

and then computes the inner product with the original
database, as in the baseline PIR (cf. Eq. (1)). Now, note that
the latter product can be computed using a binary tree of depth
logd. For full recursion, i.e., d = logn, the dominant cost in
this algorithm is the multiplication of d = logn encrypted bits,
hence requires logd = log logn multiplicative degree.

C Correctness of Query Expansion

Below we prove that the combination of the new query and
oblivious expansion algorithm (Algorithms 6 and 7) correctly
expands the ciphertexts into a vector of n ciphertexts encrypt-
ing the selection vectors.

Theorem 2. Let n be an integer, N be a power of 2, d ∈
[1, logn], c ∈ [0, log2 N]. Let k be an index in [1,n], and
~q = (q j) j∈` the output of the Query algorithm (Algorithm 6).
Denote~s = (si)i∈[n] ∈ {0,1}n the concatenation of the d selec-
tion vectors for index k. The n output ciphertexts o0, . . . ,on−1
of the expansion algorithm (Algorithm 7) on input ~q satisfy,
for all 0≤ i≤ n−1:

oi =

{
Enc(1) if si = 1
Enc(0) otherwise .

Proof. It suffices to prove the claim for the first element of
the query. By construction q0 encrypts m0 = ∑i∈[2c](2−c mod
t)sixi. Now, simplifying the notation for ease of exposition,
since the encryption scheme is homomorphic, we have that

q0 = Enc(sk,m0) = (2−c mod t) ∑
i∈[2c]

Enc(sk,sixi) . (4)

Now, we remark that the addition, subsection, and scalar mul-
tiplications are linear over the plaintext space. Henceforth,
the output of Algorithm 7 is the sum of the outputs of Algo-
rithm 7 over the Enc(sk,sixi)’s. Now, consider such a plaintext
m′ = xi′ : this is exactly the form of a SealPIR query. Now,
observing that the core loop of the expansion is the same as
in Algorithm 5, we can use the exact same arguments as the
proof of correctness of the oblivious expansion in SealPIR
(cf. [5, App. A.2]). It follows that the output of Algorithm 7)
on Enc(sk,m′) is a vector~o′ = (o′0, . . . ,o

′
2c−1) of size 2c such

that

oi =

{
Enc(2c) if i = i′

Enc(0) otherwise .

The result then follows directly from Eq. (4).
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D Application to Existing HE Schemes

In this section, we discuss instantiations of the PIR ap-
proaches from Section 3 with specific homomorphic en-
cryption schemes. In particular, we consider additive ElGa-
mal [26], Paillier/Damgård–Jurik [18], and FV [24], the con-
structions of which we overview next.

Additive ElGamal [26]. Let G = (g) be a cyclic group
of order p. The public key is a group element h = gx,
where the secret key x is a random integer in [p− 1]. To
encrypt m ∈ [p], sample randomly r ← [p− 1] and output
c = (c1,c2) = (gr,gm ·hr). To decrypt, compute the discrete
logarithm of c2/cx

1. This scheme is additively homomorphic:
let c = (c1,c2) encryption m and c′ = (c′1,c

′
2) encrypting m′,

then (c1c′1,c2c′2) encrypts m1 +m2 mod p. Note that decrypt-
ing requires to compute the discrete logarithm in base g, i.e.,
we can only decrypt small messages. In particular, an ElGa-
mal ciphertext will have expansion at least F ≥ 2.

Paillier/Damgård–Jurik [18]. Let N = pq be an RSA mod-
ulus. The Damgård–Jurik generalization of the Paillier cryp-
tosystem [48] is an additive homomorphic encryption scheme
parametrized by an integer s, such that the plaintext space
is ZNs and the ciphertext space is ZNs+1 . In particular, the
ciphertext expansion F can be made as small as desired and
F > 1. This unusual property enables to simplify the recur-
sion in PIR (cf. Section 3). Using the notation of Section 3,
after Step (1), the server obtained n1/2 ciphertexts ci ∈ ZNs+1 .
It can then parse this ciphertext as a plaintext element for a
Damgård–Jurik scheme with parameter s+1; assuming the se-
lection vector~s1 is encrypted under such a scheme, it can then
compute c′ = Encs+1(sk,〈~s1,{ci}i〉) ∈ ZNs+2 . In particular,
assume a database with elements in Nk. The communication
after d levels of recursion, where 1≤ d ≤ logn, is:
• n1/d(dk + d(d + 1)/2) logN bits from the client to the

server, since each selection vector is encrypted with a mod-
ulus logN bits larger than the previous one,

• (d + k) logN bits from the server to the client to send the
response.

FV [24]. The description of FV is given in Section 2.2; we
use the notation of that section. Since FV is additively ho-
momorphic, we can apply the baseline PIR and the recursive
PIR protocol of Section 3. The size of a ciphertext is given
by |ct| = 2N logq. In particular, the communication after d
levels of recursion, for 1≤ d ≤ logn is
• (d ·n1/d +d2logq/ log ted) ·(2N logq) bits, from the client

to the server where the expansion F = 2logq/ log t > 2,
• d2logq/ log ted−1 · (2N logq) bits from the server to the

client to send the response.

Table 7: Bounds on plaintext size, expansion, and decryption
cost.
Scheme Plaintext size Expansion Decryption cost

ElGamal pt small ≥ 2 2pt mults of
2λ

EG-bit nums

Damgård–Jurik pt≤ s ·λDJ bits ≥ 1+1/s 1 exponentiation
with λDJ-bit exp

FV pt< log(q) ·λFV ≥ 2 add and mult in
bits Zq[x]/(xλFV +1)

Gentry–Ramzan pt< λGR/4 > 4 4pt
√

n

Here, s is an integer parameter, and λDJ, λEG, λFV, and λGR are the security
parameters for the different encryption schemes, the size of which is
determined by the underlying hardness assumptions. Although not exactly
an encryption scheme, we include Gentry–Ramzan here. In this case,
Decryption corresponds to solving a discrete logarithm, for which the
running time depends on the database size n [30, p. 808].

However, since FV is also somewhat (and fully) homomor-
phic, we can apply the PIR protocols of Appendix B. This
enables to reduce the communication to
• (d ·n1/d) · (2N logq) bits, from the client to the server,
• 2N logq bits from the server to the client to send the re-

sponse.

E Beyond PIR: Sparsity and Database Privacy

In this section we consider functionalities beyond the tradi-
tional setup for PIR that bring extended computation capabil-
ity, efficiency and security properties, which can be advanta-
geous in different application scenarios.

E.1 Symmetric PIR from OPRFs
The security requirements of a PIR protocol pertain only to
the privacy of the query. Symmetric private information re-
trieval (SPIR) [32] considers also database privacy in addition
to query privacy. While some PIR solutions based on homo-
morphic encryption do effectively provide SPIR guarantees
in the case when the server returns a single ciphertext that
encrypts only the retrieved database entry, other approaches
do provide more information about the database to the client.
We provide a simple transformation that enables SPIR given
any PIR scheme. Our idea is to encrypt each database en-
try using a symmetric encryption under a key that is derived
in a pseudorandom manner from the index of the data item.
In particular, the server derives the encryption keys using
pseudorandom function that also offers oblivious evaluation
mechanism (OPRF) [25, 37]. To execute a SPIR query the
client and the server execute the corresponding PIR query on
the database of encrypted entries and in addition to this they
run an oblivious PRF evaluation that enables the client to get
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Table 8: Baseline PIR communication and computation complexities for with different recursion levels and different homomorphic
encryption instantiations on a database of size n.

PIR protocol PIR PIR PIR
Baseline Recursion d = 2 Recursion d = logn

Additive ElGamal Comm: (n+1) ·λEG bits Comm: (2n1/2 + dFe) ·λEG bits Comm: (logn+dFelogn−1) ·λEG
bits

Comp: n mults of λEG-bit nums Comp: n+n1/2 ·F mults of λEG-
bit nums

Comp: F logn−1 mults of λEG-bit
nums

Damgård–Jurik (pt = Nk

with N = 2λDJ )
Comm: (n+1) ·(k+1) logN bits Comm: n1/2(2k+3) logN+(2+

k) logN bits
Comm:≈ (k+ logn(1+k logn+
logn2)) logN bits

Comp: n mults of (k+1)λDJ-bit
nums

Comp: n mults of (k+1)λDJ-bit
nums + n1/2 mults of (k+2)λDJ-
bit nums

Comp: ni/ logn mults of (k+ 1+
i)λDJ-bit nums for all i ∈ [logn].

Gentry–Ramzan Comm: 3λGR bits N/A N/A
Comp: 2 ·n ·pt multiplications of
λGR-bit numbers.

FV Comm: 2(n+1) log(q) ·λFV bits Comm: 2(2n1/2 + dFe) log(q) ·
λFV bits

Comm: 2logn +
dFelogn−1) log(q) ·λFV bits

Comp: n scalar mults + additions
in Zq[x]/(xλFV +1)

Comp: n+n1/2dFe scalar mults
+ additions in Zq[x]/(xλFV +1)

Comp: F logn−1 scalar mults + ad-
ditions in Zq[x]/(xλFV +1)

a single decryption key corresponding to the query entry. We
present our protocol next.

Construction 2. Let (Gen,Enc,Dec) be a semantically se-
cure encryption scheme, (PIR.Query,PIR.Eval) be a PIR
scheme and
(PRF.KeyGen,PRF.Eval,PIR.OblivEvaluate) be an oblivi-
ous PRF function. We construct an SPIR protocol as follows:
• Pre-processing: The server encrypts its database D of size

n as follows. It samples a PRF key K← PRF.KeyGen(1λ)
and for each i ∈ [n], it computes Ki← PRF.Eval(K, i) and
sets D̃[i] = Enc(Ki,D[i]).

• qi← SPIR.Query(i): Output PIR.Query(i).
• [D[i],⊥]← SPIR.Eval([qi,D]):

1. The client and the server run [D̃[i],⊥] ←
PIR.Eval([qi, D̃]).

2. The client and the server evaluate

[Ki,⊥]← PRF.OblivEvaluate([i,K]) .

3. The client retrieves its output D[i] = Dec(Ki, D̃[i]).

We note that this approach also works together with our
techniques for handling sparsity from Section 5, even if the
cuckoo hashing parameters depend on the server’s database.
The reason is that the client can only evaluate the OPRF on
values used as a query. Thus, any leakage of OPRF values
of other database elements can be simulated due to the fact
that OPRF values look pseudorandom to the client. This is
in contrast to uses of cuckoo hashing on the client side [5],
where data-dependent hash functions leak information to the

server, and therefore the failure probability of cuckoo hashing
must be considered in the security analysis.

E.2 Multi-Query PIR
The traditional definition of PIR considers a setting where
queries are executed independently one by one. However,
there are scenarios where several queries may be available to
be executed at the same time. Multi-query PIR solutions aim
to leverage the capability for parallel execution of such queries
in order to amortize the complexity. Our constructions are
compatible with the multi-query techniques available in the
literature. In our implementation, we leverage probabilistic
batch codes based on cuckoo hashing [47], which have been
used in the context of PIR [5] and private set intersection [20,
55], as well as a CRT batching technique introduced by Groth
et al. [35] for Gentry–Ramzan.

E.3 Private Set + Functionalities
In this section we discuss functionalities which can be solved
using specific PIR instantiations. Two such functionalities are
private set membership (PSM) and private set intersection
(PSI). Private set membership considers the question how to
check whether an element held by one party is in the set held
by another party. This problem can be viewed as sparse PIR
where the database content is the indices themselves. Private
set intersection aims to compute the intersection of two pri-
vate sets. This problem is a generalization of PSM from a
single query to multiple queries. Thus, the PSI problem can be
phrased as a multi-query symmetric PIR on a sparse database.
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In setting where the two intersection sets have asymmetric
sizes, i.e., one of the sets is much smaller, solving PSI using
multi-query PIR using the smaller set as queries could pro-
vide better asymptotic communication complexity than PSI
solutions that require communication linear in the size of the
sets.
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