
Cryptanalysis of The Lifted Unbalanced Oil
Vinegar Signature Scheme

Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha and Zheng Zhang

University of Cincinnati

Abstract. In 2017, Ward Beullens et al. submitted Lifted Unbalanced Oil and
Vinegar (LUOV)[1], a signature scheme based on the famous multivariate pub-
lic key cryptosystem (MPKC) called Unbalanced Oil and Vinegar (UOV), to
NIST for the competition for post-quantum public key scheme standardiza-
tion. The defining feature of LUOV is that, though the public key P works in
the extension field of degree r of F2, the coefficients of P come from F2. This
is done to significantly reduce the size of P . The LUOV scheme is now in the
second round of the NIST PQC standardization process.
In this paper we introduce a new attack on LUOV. It exploits the "lifted" struc-
ture of LUOV to reduce direct attacks on it to those over a subfield.

1 Introduction

1.1 Background and Post-Quantum Cryptography Standardization

A crucial building block for any free, secure, and digital society is the ability to
authenticate digital messages. In their seminal 1976 paper [24], Whitfield Diffie and
Martin Hellman described the mathematical framework to do such, which is now
called a digital signature scheme. They proposed the existence of a function F so that
for any given message D any party can easily check whether for any X that F (X ) = D ,
i.e. verify a signature. However, only one party, who has a secret key, can find such
an X , i.e. sign a document. Such a function F is called a trapdoor function. Following
this idea, Rivest, Shamir, and Adleman proposed the first proof of concept of a signa-
ture scheme based on their now famous RSA public key encryption scheme, which
relies on the difficulty of integer factorization [22].

Up to 2013, the National Institute of Standards and Technology (NIST)’s guidlines
allowed for three different types of signature schemes: the Digital Signature Algo-
rithm (DSA), RSA Digital Signature Algorithm, and The Elliptic Curve Digital Signa-
ture Algorithm [13]. However, a major drawback to these signature schemes is that
in 1999 Peter Shor showed that they were weak to a sufficiently powerful quantum
computer [23]. As research towards developing a fully fledged quantum computer
continues, it has become increasingly clear that there is a significant need to prepare
our current communication infrastructure for a post-quantum world. For it is not
easy nor quick undergoing to transition our current infrastructure into a post quan-
tum one. Thus, a significant effort will be required in order to develop, standardize,
and deploy new post-quantum signature schemes.
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NIST Level Security Description Complexity
II At least as hard to break as SHA256 (collision search) 146
IV At least as hard to break as SHA384 (collision search) 210
V At least as hard to break as AES256 (exhaustive key search) 272

Table 1. Description of different NIST security strength categories.

As such in December 2016, NIST, under the direction of the NSA, put out a call for
proposals of new post-quantum cryptosystems. NIST expects to perform multiple
rounds of evaluations over a period of three to five years. The goal of this process is
to select a number of acceptable candidate cryptosystems for standardization. These
new standards will be used as quantum resistant counterparts to existing standards.
The evaluation will be based on the following three criteria: Security, Cost, and Algo-
rithm and Implementation Characteristics. We are currently in the second round of
this process, and out of the original twenty-three signature schemes there are only
nine left. LUOV is one of these remaining.

An additional complication to designing a post-quantum cryptosystem is quanti-
fying security levels in a post quantum world for the exact capabilities of a quantum
computer is not fully understood. In [18], NIST addresses this issue and quantifies
the security strength of a given cryptosystem by comparing it to existing NIST stan-
dards in symmetric cryptography, which NIST expects to offer significant resistance
to quantum cryptanalysis. Below are the relevant NIST security strength categories
which we present the log base 2 of the complexity.

1.2 Multivariate Public Key Cryptosystems

Since the work of Diffie and Hellman, mathematicians have found many other
groups of cryptosystems that do not rely on Number Theory based problems. Some
of these seem to be good candidates for a post-quantum system. One such group
is Multivariate Public Key Cryptosystems (MPKC)[7][8]. The security of MPKC de-
pends on the difficulty of solving a system of m multivariate polynomials in n vari-
ables over a finite field. Usually, these polynomials are of degree two. Solving a set
of random multivariate polynomial equations over a finite field is proven to be an
NP-hard problem [14], thus lending a solid foundation for a post-quantum signa-
ture scheme. Furthermore, MPKCs in general can be computationally much more
efficient than many other systems. However, as these systems need to be made into
a trapdoor function they cannot be truly random. They must be of a special form,
which is generally hidden by composition with invertible linear maps. The difficulty
lies in creating a hidden structure which does not impact the difficulty of solving the
system.

A breakthrough in MPKC was proposed by Matsumoto and Imai in 1988 which
is called either the MI cryptoscheme or C∗. They worked with a finite field k, but
they did not work with the vector space kn directly. Instead, they looked to a degree
n extension of k where an inverse map can be constructed which is still a trapdoor
function. As such this can be used to both encrypt and sign documents [17]. This
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scheme was broken by Patarin using the Linearization Equation Attack which is the
inspiration for all Oil and Vinegar Schemes [19]. To be brief, Patarin discovered that
plaintext/ciphertext pairs (x,y) will satisfy equations (called the linearization equa-
tions) of the form ∑

αi j xi y j +
∑
βi xi +

∑
γi yi +δ= 0

Collecting enough such pairs and plugging them into above equations produces
linear equations in the αi j ’s, βi ’s, γi ’s, and δ which then can be solved for. Then
for any ciphertext y, its corresponding plaintext x will satisfy the linear equations
found by plugging in y into the linearization equations. This will either solve for the
x directly if enough linear equations were found or at least massively increase the
efficiency of other direct attacks of solving for x. Inspired by the attack, Patarin in-
troduced the Oil and Vinegar scheme [20]. This has been one of the most studied
schemes for multivariate cryptography.

1.3 A Brief Sketch and History of Oil and Vinegar Schemes

One of the most well known multivariate public key signature schemes is the Oil
and Vinegar scheme. The key idea of the Oil and Vinegar signature scheme is to re-
duce signing a document into solving a linear system. This is done by separating the
variables into two collections, the vinegar variables and the oil variables. Let F be a
(generally small) finite field, o and v be two integers, and n = o + v . The central map
F : Fn → Fo is a quadratic map whose components f1, . . . , fo are in the form

fk (x) =
v∑

i=1

n∑
j=i

αi , j ,k xi x j +
n∑

i=1
βi ,k xi +γk

where each coefficient is in F. Here, x1, . . . , xv (which are called the vinegar variables)
are potentially multiplied to all the other variables including themselves. However,
the variables xv+1, . . . , xn (which are called the oil variables) are never multiplied to
one another. Hence, if one guesses for all the vinegar variables, one is left with a sys-
tem of o linear polynomials in o variables. This has a high probability of being invert-
ible, and if it is not one can just take another guess for the vinegar variables. Hence to
find pre-images for F , one repeatedly guesses values for the vinegar variables until
the resulting linear system is invertible. The public key P is the composition of F

with an invertible affine map T : Fn → Fn .

P =F ◦T .

The private key pair is (F , T ). To find a signature for a message y, one first finds an
element z in F−1(y), and then simply computes a signature by finding T −1(z).

The security of Oil and Vinegar schemes relies on the fact that P is essentially
as hard to find pre-images for as a random system (when one does not know the
decomposition).

Patarin originally proposed that the number of oil variables would equal the num-
ber of vinegar variables. Hence the the original scheme is now called Balanced Oil
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and Vinegar. However, Balanced Oil Vinegar was broken by Kipnis and Shamir using
the method of invariant subspaces [15]. This attack, however, is thwarted by making
the number of vinegar variables sufficiently greater then the number of oil variables.
The other major attack using the structure of UOV is the Oil and Vinegar Reconcilia-
tion attack proposed by Ding et al. However, with appropriate parameters this attack
can be avoided as well [10].

Proposed nearly twenty years ago, the Unbalanced Oil and Vinegar (UOV) scheme
still remains unbroken. Further, this simple and elegant signature scheme boasts
small signatures and fast signing times. Arguably, the only drawback to UOV is its
rather large public key size. The work of Petzoldt mitigates this by generating the pair
((F ,T ),P ) from a portion of the public key’s Macaulay matrix and the map T . By
choosing this portion to be easy to store, i.e. if it is a cyclic matrix or generated from
a pseudo-random number generator, the public key’s bit size can be much reduced
[21].

A large number of modern schemes are modifications to UOV that are designed
to increase efficiency. This is in general hard to do as can be seen from the singu-
larity attack by Ding et al. on HIMQ-3, which takes a large amount of its core de-
sign from UOV [12]. Out of the nine signature schemes that were accepted to round
two of the NIST standardization program, two (LUOV and Rainbow) are based on
UOV. Rainbow, originally proposed in 2005, reduces its keysize by forming multiple
layers of UOV schemes, where oil variables in a higher layer become vinegar vari-
ables in the lower layers [9, 11]. LUOV achieved a reduction in key size by forcing all
the coefficients of the public key to either be 0 or 1. In this paper, we will show that
such modifications used by LUOV allow for algebraic manipulations that result in an
underdetermined quadratic system over a much smaller finite field. We will further
show that Rainbow and other UOV schemes are immune to such attacks.

1.4 Lifted Unbalanced Oil Vinegar Scheme(LUOV)

The LUOV scheme, as clear from its name, is a modification of the original UOV
scheme. Its design was first proposed by Beullens et al. in [2]. The core design of
LUOV is as follows:

Let F2r be a degree r extension of F2. Let o and v be two positive integers such
that o < v and n = o + v . The central map F : Fn

2r → Fo
2r is a quadratic map whose

components f1, . . . , fo are in the form:

fk (x) =
v∑

i=1

n∑
j=i

αi , j ,k xi x j +
n∑

i=1
βi ,k xi +γk ,

where the coefficients αi , j ,k
′s, βi ,k

′s and γk
′s are chosen randomly from the base

field F2. As in standard UOV, To hide the Oil and Vinegar structure of these polyno-
mials an invertible linear map T : Fn

2r → Fn
2r is used to mix the variables. In particular,

the authors of LUOV choose T in the form:[
1v T
0 1o

]
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where T is a v ×o matrix whose entries are from the field F2. The public key is P =
F ◦T , where T and F are the private keys.

This choice of T , first proposed by Czypek[6], speeds up the key generation and
signing process as well as decreases storage requirements. This specific choice of T

does not affect the security of the scheme in comparison to standard UOV due to the
fact that for any UOV private key (F ,T ) key, there exists a with high probability an
equivalent key (F ′,T ′) such that T ′ is in the form chosen by above [26].

The third major modification is the use of the Petzoldt’s aforementioned tech-
nique to use a psuedo-random number generator to generate both the private key
and the public key. This modified key generation algorithm still produces the same
distribution of key pairs, and thus the security of the scheme remains unaffected by
this modication (assuming that the output of the PRNG is indistinguishable from
true randomness). The keys, both public and private, are never directly stored. Each
time are wishes to either generate or verify a signature, they are generated from the
PRNG.

For the purpose of this paper, much of the details of LUOV are not important. In
fact, we will ignore essentially most the specified structure and focus purely on the
"lifted" aspect of the design.

1.5 Our Contributions

We will present a new attack method called the Subfield Differential Attack (SDA).
This attack does not rely on the Oil and Vinegar structure of LUOV but merely that
the coefficients of the quadratic terms are contained in a small subfield. We will show
that the attack will make it impossible for LUOV, as originally presented in the sec-
ond round of the NIST competition, to fulfill NIST’s security level requirements. The
authors of LUOV agree with us that the parameters originally were chosen were sus-
ceptible to the attack and have since made modifications to the design.

For public key P : Fn
2r → Fo

2r , we assert that with extremely high probability that
for a randomly chosen x′ ∈ Fn

2r and y ∈ Fo
2r there exists x̄ ∈ Fn

2d such that P (x′+ x̄) = y,
where F2d is a subfield of F2r . By the fact that the coefficients of P are either 0 or 1 and

by viewing P (x̄) =P (x′+x̄) as a system of equations over the smaller field F2d , we will
reduce the forging a signature to solving an underdetermined quadratic system over
F2d . The complexity required for such is well under our target. For each proposed set
of parameters, we will explicitly apply our attack. We will provide a small toy example.
Finally, we will explain how UOV and Rainbow are unaffected by our attack.

2 The Subfield Differential Attack on LUOV

2.1 Transforming a LUOV Public by a Differential

The key idea of the attack is to transform the public key, P , into a map over a
subfield which is more efficient to work over but still contains a signature for a given
message. Namely, maps of the form P : Fn

2d → Fo
2r defined by

P (x̄) =P (x′+ x̄)
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where x′ is a random point Fn
2r . We note that for any irreducible polynomial g (t ) of

degree r /d = s,

F2d [t ]/(g (t )) ∼= F2r .

Henceforth, we will represent F2r by this quotient ring. Here, F2d is embedded as the
set of constant polynomials. For more details see [16].

Consider a LUOV public key P =F ◦T : Fn
2r → Fo

2r . Then following the construc-
tion of all Oil Vinegar Schemes, P appears to be a random quadratic system except
that all the coefficients are either 0 or 1.

P (x) =



f̃1(x) =
n∑

i=1

n∑
j=i

αi , j ,1xi x j +
n∑

i=1
βi ,1xi +γ1

f̃2(x) =
n∑

i=1

n∑
j=i

αi , j ,2xi x j +
n∑

i=1
βi ,2xi +γ2

...

f̃o(x) =
n∑

i=1

n∑
j=i

αi , j ,o xi x j +
n∑

i=1
βi ,o xi +γo .

Randomly chose x′ ∈ Fn
2r and define P (x̄) =P (x′+ x̄). We see that the k th compo-

nent of P is of the form:

f̃k (x′+ x̄) =
n∑

i=1

n∑
j=i

αi , j ,k (x ′
i + x̄i )(x ′

j + x̄ j )+
n∑

i=1
βi ,k (x ′

i + x̄i )+γk .

Expanding the above and separating the quadratic terms leads to

f̃k (x′+ x̄) =
n∑

i=1

n∑
j=i

αi , j ,k (x ′
i x ′

j +x ′
i x̄i +x ′

j x̄ j )+
n∑

i=1
βi ,k (x ′

i + x̄i )+γk

+
n∑

i=1

n∑
j=i

αi , j ,k x̄i x̄ j .

On one hand, the coefficients of the quadratic terms in the variables x̄ = (x̄1, . . . , x̄n)
are still contained in F2. On the other hand, the x ′

i are arbitrary elements of F2r , and
so the linear terms will have coefficients containing all the powers of t . We can thus
regroup the above equation in terms of the powers of t , where the quadratic part is
confined in the constant term. Meaning, for some linear polynomials Li ,k (x̄1, . . . , x̄n) ∈
F2d [x̄1, . . . , x̄n], and quadratic polynomials Qk (x̄1, . . . , x̄n) ∈ F2d [x̄1, . . . , x̄n], we have that

f̃k (x′+ x̄) =
s−1∑
i=1

Li ,k (x̄1, . . . , x̄n)t i +Qk (x̄1, . . . , x̄n).
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2.2 Forging a Signature

Now suppose we want to forge a signature for a message y ∈ Fo
2r where y = (y1, . . . , ym).

Here yk = ∑s−1
i=0 wi ,k t i where each wi ,k ∈ F2d . We will achieve this by solving the sys-

tem of equations
P (x̄) = y.

This is solving the set of (s −1)o linear equations

A = {
Li ,k (x̄1, . . . , x̄n) = wi ,k : 1 ≤ i ≤ s −1,1 ≤ k ≤ o

}
and the set o quadratic equations

B = {
Qk (x̄1, . . . , x̄n) = w0,k : 1 ≤ k ≤ o

}
.

As A is a random system of linear equations, its has high probability to have rank
(s−1)o (or dimension n if (s−1)o ≥ n). Let S be the solutions space to A. By the Rank
Nullity Theorem, the dimension of S is n − (s − 1)o. We see that our problem thus
reduces to solving B over S. That is o quadratic equations in n − (s − 1)o variables
over the subfield F2d . Once we find a solution for x̄, the signature is then x′+ x̄ as

P (x′+ x̄) =P (x̄) = y.

2.3 The Choice of the Intermediate Field

Now that we know the method of the attack, we need to find the intermediate
fields that ensures that P (x̄) = y has at least one solution. We wish to compute the
probability that, when we define the map P : Fn

2d → Fo
2r as in the prior section, that

P
−1

(y) is non-empty. We will achieve this by heuristically arguing that the quadratic
map P acts as a random map. So, we derive the following short lemma:

Lemma 1. Let A and B be two finite sets and Q : A → B be a random map. For each
b ∈ B, the probability that Q−1(b) is non-empty is approximately 1−e−|A|/|B |.

Proof. As the output of each element of A is independent, it is elementary that the
probability for there to be at least one a ∈ A such that Q(a) = b is

1−Pr(Q(α) 6= b,∀α ∈ A) = 1− ∏
α∈A

Pr(Q(α) 6= b) = 1−
(
1− 1

|B |
)|A|

= 1−
(
1− 1

|B |
)|B | |A||B |

.

Using lim
n→∞

(
1− 1

n

)n

= e−1, we achieve the desired result.

As a result of this lemma, the probability that P
−1

(y) is non-empty is approxi-

mately 1−e−2(dn)−(r o)
.

By far the largest cost in the attack is solving the final quadratic system over F2d .
The smaller the d is, the more efficient the cost is. So, we will minimize our choice of
d such that the probability of finding a signature is high given our above estimate.
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In Tables 2 and 3, we calculate the probability of success on the first guess for
x′ for the parameters as originally given for round 2 LUOV (the authors have since
change their parameters due to SDA). In the astronomically unlikely event that there
is no signature, a different guess for x′ can be used. Table 2 is given on parameters
designed to reduce the size of signatures. These parameters are used in situations
where many signatures are needed. Table 3 is given on parameters designed to re-
duce the cost of both signatures and public keys. These parameters are used when
communicating both signatures and public keys is needed.

NIST Security Level r o v n d Probability of Success
II 8 58 237 295 2 1−exp(−2126)
IV 8 82 323 405 2 1−exp(−2154)
V 8 107 371 478 2 1−exp(−2100)

Table 2. Estimated Probabilities of Failure for Parameters Designed to Minimize the Size of the
Signature

NIST Security Level r o v n d Probability of Success
II 48 43 222 265 8 1−exp(−256)
IV 64 61 302 363 16 1−exp(−21904)
V 80 76 363 439 16 1−exp(−2944)

Table 3. Estimated Probabilities of Failure for Parameters Designed to Minimize the Size of the
Signature and Public Key

2.4 Complexity

The complexity of our attack is tied with the complexity of solving the final quadratic
system, so below we will compute the complexity for the parameters given in Tables
2 and 3.

We will first use the method of Thomae and Wolf [25].

Theorem 1 (Thomae and Wolf ). By a linear change of variables, the complexity of
solving an underdetermined quadratic system of m equations and n = ωm variables
can be reduced to solving a determined quadratic system of m−bωc+1 equations. In a
tight analysis, the complexity can be reduced to the complexity of solving a determined
quadratic system of m −bωc equations provided bωc|m.

To solve this determined system, we will use a hybrid approach, meaning we will
guess for k of the variables resulting in an overdetermined system. Then we use the
XL algorithm originally proposed by Courtois et al. in [5]. Potentially, we might need
to guess again increasing the complexity estimate. The most complex part of XL is
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solving a sparse linear equation over a finite field [3]. We will use the block Wiede-
mann algorithm [4] to solve this. The complexity of hybrid XL for a determined sys-
tem is based on the number of equations m, the number of variables guessed k, and
a positive integer d (k)

r eg called the degree of regularity of the new overdetermined sys-
tem. We will obviously choose the minimum of the estimated complexities for the
choices of k. Our estimates for the complexity and degree of regularity are based on
[27, 28], and the reader should consult those for the definitions of terms used.

Theorem 2. The complexity in terms of field multiplications of performing the XL al-
gorithm on a quadratic system of m equations over a finite field of size q is

ComplexityXL = mink

qk ×3×
(

m −k +d (k)
r eg

d (k)
r eg

)2

×
(

m −k

2

) .

To compute the degree of regularity, we will assume that our quadratic system
is semi-regular. This is a valid assumption as LUOV public keys act like randomly
chosen quadratic systems, and it has been empirically tested that randomly chosen
systems have a very high probability of being semi-regular. Thus, we use the follow-
ing theorem.

Theorem 3. The degree of regularity for a semi-regular quadratic system with m equa-
tions in n variables is given by smallest power of x in the power series of

(1−x2)m

(1−x)n

which has a non-positive coefficient.

As an example, let’s estimate the complexity of forging a signature for a LUOV
public key with parameters r = 8,o = 58, v = 237. This was proposed to meet NIST
level II requiremtents. We need only to focus on solving the quadratic over the in-
termediate field as additional overhead is very small. As mention before, the opti-
mal choice for the intermediate field is F22 . The resulting quadratic system over this
smaller field has o = 58 equations and n − (s − 1)o = 121 variables. As b121/58c = 2
which divides 58, we can use the tight analysis of Theorem 1. So, the complexity is
reduced to solving a determined system of 58−2 = 56 equations.

We search through the complexities of the XL algorithm for the various choices
of k, and we find the smallest is when k = 30. In this case,

(1−x2)56

(1−x)56−30 = 1+26x +295x2 +1820x3 +5635x4 −910x5 +·· · .

So the first power of x with a non-positive coefficient is x5. Thus, d (30)
r eg = 5.

Finally, we compute the complexity as

430 ×3×
(

56−30+5

5

)2

×
(

56−30

2

)
= 32452439380432219597547608473600 ≈ 2105.
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In Table 4 we compute the complexity for the various parameters found in the
original round 2 submission. By original system, we mean before applying the Thomae
and Wolf reduction. The new system is after the reduction. Each system is over the
small field as (number of equations) × (number of variables). We round up the given
log base 2 complexity.

Table and
Security

Finite
Field

Original
System

New
System

# of
Guesses

Degree of
Regularity

Log2
Complexity

(2, II) F22 58×121 56×56 30 5 105
(2, IV) F22 82×159 81×81 37 8 145
(2, V) F22 107×157 106×106 51 9 184
(3, II) F28 43×50 42×42 2 19 128
(3, IV) F216 61×180 60×60 1 31 189
(3, V) F216 76×135 75×75 1 38 229
Table 4. Complexity in Terms of Number of Field Multiplications

Recalling that NIST requires complexity (2146,2210,2272) for security levels (II, IV, V)
respectively, we see that LUOV fails to meet the security level requirements in all
parameter sets given for their targeted security.
The two schemes which claim to be of Level II security do not even satisfy the Level
I security, which is supposed to be 2143.

2.5 Toy Example

Let o = 2, v = 8, and n = 10. The size of the large extension field chosen by the
public key generator will be 28 = 256. In the attack, we will use our small field F22 de-
noting its elements by {0,1, w1, w2}. We will then represent the field F28 by F22 [t ]/ f (t )
where f (t ) = t 4 + t 2 +w1t +1.

Consider the LUOV public key P : Fn
28 → Fo

28 , where for simplicity sake, it will be
homogeneous of degree two:

f̃1(x) =x1x4 +x1x5 +x1x6 +x1x7 +x1x8 +x1x9 +x2x4 +x2x6 +x2x9 +x2
3

+x3x6 +x3x7 +x3x10 +x2
4 +x4x7 +x4x8 +x4x9 +x4x10 +x5x6 +x6x10

+x2
7 +x7x8 +x7x9 +x8x9 +x8x10 +x2

9 +x9x10

f̃2(x) =x1x3 +x1x4 +x1x5 +x1x9 +x2x3 +x2x6 +x2x7 +x2x9 +x2
3 +x3x4

+x3x5 +x3x6 +x3x7 +x3x9 +x2
4 +x4x5 +x4x6 +x4x7 +x4x10 +x2

5

+x5x6 +x5x7 +x5x8 +x5x10 +x6x7 +x7x9 +x9x10 +x2
10

We will attempt to find a signature for the message:

y =
[

w1t 3 +w2t 2 +w2t
w2t 3 +w2t 2 + t

]
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First, we randomly select our x′ as

x′ =



t 3 +w2t
w1t 3 +w2t 2 +w2t

t 3 + t +1
w2t 2 +w1

t 3 + t 2 +1
w2t 3 + t 2 +w2t +w2

w1t 3 +w2t +w
w1t 2 +w2t +1
t 3 +w2t +w1

w2t +w2


We then calculate P (x′+ x̄) and represent it as a polynomial of t :

f̃1(x′+ x̄) =(x̄1 +w1x̄2 + x̄3 +w1x̄5 +w2x̄6 + x̄7 +w1x̄8 + x̄9 +w2x̄10)t 3

+ (x̄1 +w1x̄2 + x̄3 + x̄4 + x̄5 +w1x̄6 + x̄7 +w2x̄8 +w1x̄9)t 2

+ (w2x̄3 +w1x̄6 +w1x̄7 +w2x̄9 +w1x̄10)t

+Q1(x̄1, . . . , x̄n)

f̃2(x′+ x̄) =(x̄1 + x̄2 +w1x̄3 + x̄5 + x̄8)t 3

+ (w1x̄1 + x̄2 + x̄6 + x̄8 +w2x̄9 +w1x̄10)t 2

+ (w1x̄1 +w1x̄2 +w2x̄3 + x̄4 +w1x̄5 + x̄6 +w1x̄7 + x̄9 +w2x̄10)t

+Q2(x̄1, . . . , x̄n),

where Q1(x̄1, . . . , x̄n) and Q2(x̄1, . . . , x̄n) are quadratic polynomials from F22 [x̄1, . . . , x̄n].
By comparing the coefficients of t 3, t 2, t 1 and assuming P (x′+ x̄) = y, we arrive at a
system of linear equations over F22 . This can be represented by a matrix equation
Ax = y. In our case, this is the following:



1 w1 1 0 w1 w2 1 w1 1 w2

1 w1 1 1 1 w1 1 w2 w1 0
0 0 w2 0 0 w1 w1 0 w2 w1

1 1 w1 0 1 0 0 1 0 0
w1 1 0 0 0 1 0 1 w2 w1

w1 w1 w2 1 w1 1 w1 0 1 w2





x̄1

x̄2

x̄3

x̄4

x̄5

x̄6

x̄7

x̄8

x̄9

x̄10


=



w1

w2

w2

w2

w2

1



The solution space for the above equation has dimension 4 over F22 , as we would
expect it to be n− (s−1)o = 4. Thus, there are only (22)4 = 28 possible choices for x̄. A
quick search through these finds the signature
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σ=



t 3 +w2t +1
w1t 3 +w2t 2 +w2t +w1

t 3 + t +w2

w2t 2

t 3 + t 2 +1
w2t 3 + t 2 +w2t +1

w1t 3 +w2t +w1

w1t 2 +w2t +1
t 3 +w2t +1

w2t


In order to show that this was not a fluke and that our above heuristic argument

on P (namely that it acts as a random map) reflects reality, we ran an experiment on
a fixed public key. Table 5 records the parameters used as well as the result.

Number of Documents Signed r o v n d Success Rate
10,000 8 58 237 295 2 100%

Table 5. Experimental Results

3 The Inapplicability of the Subfield Differential Attack on
Unbalanced Oil Vinegar

Now, let us discuss why the Subfield Differential Attack does not work on Un-
balanced Oil Vinegar or Rainbow. Let P : Fn

qr → Fo
qr be either a UOV public key or a

Rainbow public key. Let us assume that Fqr contains a non-trivial subfield Fqd . Again,
construct the differential x′+ x̄ with x′ ∈ Fqr and x̄ ∈ Fqd , and evaluate the public key

at the differential P (x̄) =P (x′+ x̄). In the k th component of P , we have that

f̄k (x′+ x̄) =
n∑

i=1

n∑
j=i

αi , j ,k (x ′
i + x̄i )(x ′

j + x̄ j )+
n∑

i=1
βi ,k (x ′

i ++x̄i )+γk .

Note that there are no restrictions on the coefficients, αi , j ,k ,βi ,k and γk as they are
randomly chosen from Fqr . If we multiply the polynomial out, then we get

f̃k (x′+x) =
n∑

i=1

n∑
j=i

αi , j ,k (x ′
i x ′

j +x ′
i x̄i +x ′

j x̄ j )+
n∑

i=1
βi ,k (x ′

i + x̄i )+γk

+
n∑

i=1

n∑
j=i

αi , j ,k x̄i x̄ j .

The quadratic terms’ coefficients will not be contained in the subfield Fqd . Thus,
instead of having a clear separation of (s − 1)o linear polynomials and o quadratic
polynomials over F2d as before for a LUOV public key, we instead have s∗o quadratic
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polynomials over Fqd . Thus it is not more efficient to direct attack than simply hav-
ing o quadratic polynomials over Fqr , and so viewing the field as a quotient ring does
not help for UOV or Rainbow. So the SDA attack does not apply to these schemes.

4 Conclusion

We proposed a new attack to a NIST round 2 candidate LUOV. This attack only uses
basic structure of field extension and a differential x+ x̄ to solve system of equations.
The idea of our attack is simple, however it has great potential. First, one can see that
the attack does not depend on the design of central map, it can be applied to other
scheme with a lifted structure. Furthermore, our further work indicates that we can
do new attacks without using any subfield but some special subset in the large field,
which we call subset differential attack. Therefore we believe that much more work
needs to be done on this type of new differential attacks.
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