
FastKitten:
Practical Smart Contracts on Bitcoin

Poulami Das* Lisa Eckey* Tommaso Frassetto§ David Gens§

Kristina Hostáková* Patrick Jauernig§ Sebastian Faust* Ahmad-Reza Sadeghi§

Technische Universität Darmstadt, Germany
* first.last@cs.tu-darmstadt.de

§ first.last@trust.tu-darmstadt.de

Abstract
Smart contracts are envisioned to be one of the killer applications of decentralized cryptocurrencies.
They enable self-enforcing payments between users depending on complex program logic. Unfortu-
nately, Bitcoin – the largest and by far most widely used cryptocurrency – does not offer support
for complex smart contracts. Moreover, simple contracts that can be executed on Bitcoin are often
cumbersome to design and very costly to execute. In this work we present FastKitten, a prac-
tical framework for executing arbitrarily complex smart contracts at low costs over decentralized
cryptocurrencies which are designed to only support simple transactions. To this end, FastKitten
leverages the power of trusted computing environments (TEEs), in which contracts are run off-chain
to enable efficient contract execution at low cost. We formally prove that FastKitten satisfies
strong security properties when all but one party are malicious. Finally, we report on a prototype
implementation which supports arbitrary contracts through a scripting engine, and evaluate per-
formance through benchmarking a provably fair online poker game. Our implementation illustrates
that FastKitten is practical for complex multi-round applications with a very small latency. Com-
bining these features, FastKitten is the first truly practical framework for complex smart contract
execution over Bitcoin.

1 Introduction
Starting with their invention in 2008, decentralized cryptocurrencies such as Bitcoin [52] currently
receive broad attention both from academia and industry. Since the rise of Bitcoin, countless new
cryptocurrencies have been launched to address some of the shortcomings of Nakamoto’s original
proposal. Examples include Zerocash [48] which improves on Bitcoin’s limited anonymity, and
Ethereum [16] which offers complex smart contract support. Despite these developments, Bitcoin
still remains by far the most popular and intensively studied cryptocurrency, with its current market
capitalization of $109 billion which accounts for more than 50% of the total cryptocurrency market
size [2].
A particular important shortcoming of Bitcoin is its limited support for so-called smart contracts.
Smart contracts are (partially) self-enforcing protocols that allow emitting transactions based on
complex program logic. Smart contracts enable countless novel applications in, e.g., the financial in-
dustry or for the Internet of Things, and are often quoted as a glimpse into our future [9]. The most
prominent cryptocurrency that currently allows to run complex smart contracts is Ethereum [16],
which has been designed to support Turing complete smart contracts. While Ethereum is continu-
ously gaining popularity, integrating contracts directly into a cryptocurrency has several downsides

1

as frequently mentioned by the advocates of Bitcoin. First, designing large-scale secure distributed
systems is highly complex, and increasing complexity even further by adding support for complex
smart contracts also increases the potential for introducing bugs. Second, in Ethereum, smart con-
tracts are directly integrated into the consensus mechanics of the cryptocurrency, which requires in
particular that all nodes of the decentralized system execute all contracts. This makes execution of
contracts very costly and limits the number and complexity of applications that can eventually be
run over such a system. Finally, many applications for smart contracts require confidentiality, which
is currently not supported by Ethereum.
There has been significant research effort in addressing these challenges individually. Some works
aim to extend the functionality of Bitcoin by showing how to build contracts over Bitcoin by using
multiparty computation (MPC) [38, 39, 41], others focus on achieving privacy-preserving contracts
(e.g., Hawk [36], Ekiden [20]) by combining existing cryptocurrencies with trusted execution envi-
ronments (TEEs). However, as we elaborate in Section 2, all of these solutions suffer from various
deficiencies: they cannot be integrated into existing cryptocurrencies such as Bitcoin, are highly
inefficient (e.g., they use heavy cryptographic techniques such as non-interactive zero-knowledge
proofs or general MPC), do not support money mechanics, or have significant financial costs due to
complex transactions and high collateral (money blocked by the parties in MPC-based solutions).
In this work, we propose FastKitten, a novel system that leverages trusted execution environments
(TEEs) utilizing well-established cryptocurrencies, such as Bitcoin, to offer full support for arbitrary
complex smart contracts. We emphasize that FastKitten does not only address the challenges
discussed above, but is also highly efficient. It can be easily integrated into existing cryptocurrencies
and hence is ready to use today. FastKitten achieves these goals by using a TEE to isolate
the contract execution inside an enclave, shielding it from potentially malicious users. The main
challenges of this solution, such as for instance how to load and validate blockchain data inside the
enclave or how to prevent denial of service attacks, are discussed in Section 3.1. Moving the contract
execution into the secure enclave guarantees correct and private evaluation of the smart contract
even if it is not running on the blockchain and verified by the decentralized network. This approach
circumvents the efficiency shortcoming of cryptocurrencies like Ethereum, where contracts have to
be executed in parallel by thousands of users. Most related to our work is the recently introduced
Ekiden system [20], which uses a TEE to support execution of multiparty computations but does
support contracts that handle coins. While Ekiden is efficient for single round contracts, it is not
designed for complex reactive multi-round contracts, and their off-chain execution. The latter is one
of the main goals of FastKitten.
We summarize our main goals and contributions below.

• Smart Contracts for Bitcoin: We support arbitrary multi-round smart contracts executed
amongst any finite number of participants, where our system can be run on top of any cryp-
tocurrency with only limited scripting functionality. We emphasize that Bitcoin is only one
example over which our system can be deployed today; even cryptocurrencies that are simpler
than Bitcoin can be used for FastKitten.

• Efficient Off-Chain Execution: Our protocol is designed to keep the vast majority of
program execution off-chain in the standard case if all parties follow the protocol. Since our
system incentivizes honest behavior for most practical use cases, FastKitten can thus run
in real-time at low costs.

• Formal Security Analysis: We formally analyze the security of FastKitten in a strong
adversarial model. We prove that either the contract is executed correctly, or all honest parties
get their money back that they have initially invested into the contract, while a malicious party
loses its coins. Additionally, the service provider who runs the TEE is provably guaranteed to

2

not lose money if he behaves honestly.
• Implementation and benchmarking: We provide an in-depth analysis of FastKitten’s

performance and costs and evaluate our framework implementation with respect to several
system parameters by offering benchmarks on real-world use cases. Concretely, we show that
online poker can run with an overall match latency of 45ms and costs per player are in order
of magnitude of one USD, which demonstrates FastKitten’s practicality.

We emphasize that FastKitten requires only a single TEE which can be owned either by one of
the participants or by an external service provider which we call the operator. In addition, smart
contracts running in the FastKitten execution framework support private state and secure inputs,
and thus, offer even more powerful contracts than Ethereum. Finally, we stress that FastKitten
can support contracts that may span over multiple different cryptocurrencies where each participant
may use her favorite currency for the money handled by the contract.

2 Related Work
Support for execution of arbitrary complex smart contracts over decentralized cryptocurrencies was
first proposed and implemented by the Ethereum cryptocurrency. As pointed out in Section 1,
running smart contracts over decentralized cryptocurrencies results in significant overheads due to
the replicated execution of the contract. While there are currently huge research efforts aiming at
reducing these overheads (for instance, via second layer solutions such as state channels [50, 25],
Arbitrum [35] or Plasma [56], outsourcing of computation [59], or permissioned blockchains [47]),
these solutions work only over cryptocurrencies with support complex smart contracts, e.g. over
Ethereum. Another line of work, which includes Hawk [37] and the “Ring of Gyges” [34], is addressing
the shortcoming that Ethereum smart contracts cannot keep private state. However, also these
solutions are based on complex smart contracts and hence cannot be integrated into popular legacy
cryptocurrencies such as Bitcoin, which is the main goal of FastKitten.
In this section we will focus on related work, which considers smart contract execution on Bitcoin.
We separately discuss multiparty computation based smart contracts and solutions using a TEE. We
provide a more detailed discussion on how the above-mentioned Ethereum based solutions compare
to FastKitten in Appendix A. Additionally, in Section 8 we discuss some exemplary contract use
cases and compare their execution inside FastKitten with the execution over Ethereum.

Approach Minimal
TX Collateral Generic

Contracts
Privacy

Ethereum contracts O(m) O(n) 3 5

MPC [40, 41, 39] O(1) O
(
n2m

)
3 3

Ekiden [20] O(m) no support for money 3

FastKitten O(1) O(n) 3 3

Table 1: Selected solutions for contract execution over Bitcoin and their comparison to Ethereum
smart contracts. Above, n denotes the number of parties and m is the number of reactive execution
rounds.

Multiparty computation for smart contracts An interesting direction to realize complex con-
tracts over Bitcoin is to use so-called multiparty computation with penalties [40, 41, 39]. Similar
to FastKitten these works allow secure m-round contract execution but they rely on the claim-
or-refund functionality [40]. Such a functionality can be instantiated over Bitcoin and hence these
works illustrate feasibility of generic contracts over Bitcoin. Unfortunately, solutions supporting

3

generic contracts require complex (and expensive) Bitcoin transactions and high collateral locked
by the parties which makes them impractical for most use-cases. Concretely, in all generic n-party
contract solutions we are aware of, each party needs to lock O(nm) coins, which overall results in
O(n2m) of locked collateral. In contrast, the total collateral in FastKitten is O(n), see column
“Collateral” in Table 1.
It has been shown that for specific applications, concretely, a multi-party lottery, significant improve-
ments in the required collateral are possible when using MPC-based solutions [49]. This however
comes at the cost of an inefficient setup phase, communication complexity of order O(2n), and
O(log n) on-chain transactions for the execution phase. Let us stress that the approach used in [49]
cannot be applied to generic contracts.
Overall, while MPC-based contracts are an interesting direction for further research, we emphasize
that these systems are currently far from providing a truly practical general-purpose platform for
contract execution over Bitcoin—which is the main goal of FastKitten.
TEEs for blockchains There has recently been a large body of work on using TEEs to improve
certain features of blockchains [65, 66, 10, 44, 60]. A prominent example is Teechain [44], which
enables off-chain payment channel systems over Bitcoin. Most of these prior works do not use
the TEE for smart contract execution. Some notable exceptions include Hawk [37] and the “Ring of
Gyges” [34], who propose privacy preserving off-chain contracts execution, but, as already mentioned,
do not work over Bitcoin.
Probably most related to our work is Ekiden [20], which proposes a system for private off-chain smart
contract execution using TEEs. While Ekiden focuses on solutions over Ethereum, it does not require
a powerful scripting language of the underlying blockchain technology – just like FastKitten.
Despite the conceptual similarities of Ekiden and FastKitten, the goals of these systems are
orthogonal. Ekiden aims at moving heavy smart contract execution off the chain in order to reduce
the cost of executing complex contract functions. In contrast, FastKitten focuses on efficient
off-chain execution of multi-round contracts between a set of parties. Importantly, we require our
system to natively handle coins of the underlying blockchain. A joint goal of both systems is to
provide state privacy of the contracts.
Ekiden considers clients (contract parties) and computing nodes which have a similar task as
FastKitten’s TEE operator since they also execute contracts inside a TEE. In contrast to FastKit-
ten, Ekiden sends the encryption of the resulting contract state to the blockchain after every function
call. If a client requests another function call, a selected computing node takes the state from the
blockchain, decrypts it inside its enclave and performs the contract execution. This implies that re-
active multi-round contracts are very costly even in the standard case when all participating parties
are honest (c.f. column “Minimal # TX” in Table 1).
Ekiden relies on multiple TEEs and guarantees service availability as long as at least one TEE is
controlled by an honest computing node. We note in Section 9.2 that fault tolerance can be integrated
into FastKitten in a straightforward way. Additionally, Ekiden aims to achieve forward secrecy
even if a small fraction of TEEs gets corrupted via, e.g., a side-channel attack. Their strategy is
to secret-share a long-term secret key between the TEEs and use it to generate a short-term secret
key every “epoch”. Hence, an attacker learning the short-term key can only decrypt state from the
current epoch. While side-channel attacks are out of scope of this work, note that FastKitten
can achieve forward secrecy of states in case of side-channel attacks using the same mechanism as
Ekiden.
An important part of the FastKitten construction is the fair distribution of coins through the
enclave. Ekiden does neither model nor discuss the handling of coins. It is not straightforward to

4

add this feature to their model since the contract state is encrypted and hence the money cannot
be unlocked automatically on-chain.

3 Design
FastKitten allows a set of n users P1, . . . , Pn to execute an arbitrary complex smart contract over
a decentralized cryptocurrency that only supports very simple scripts. Concretely, FastKitten
considers cryptocurrencies that, in addition to supporting simple transactions between users, offer
so-called time-locked transactions. A transaction is time-locked if it is only processed and integrated
into the blockchain after a certain amount of time has passed. Moreover, FastKitten requires that
transactions contain space for storing arbitrary raw data. We emphasize that these are very mild
requirements on the underlying cryptocurrency that, for instance, are satisfied by the most prominent
cryptocurrency Bitcoin.1 FastKitten leverages these properties together with the power of trusted
execution environments to provide an efficient general-purpose smart contract execution platform.
As discussed in the introduction, a contract is a program that handles coins according to some—
possibly complex—program logic. In this work, we consider n-party contracts, which are run among
a group of parties P1, . . . , Pn and have the following structure. During the initialization phase, the
contract receives coins from the parties and some initial inputs. Next, it runs for m reactive rounds,
where in each round the contract can receive additional inputs from the parties Pi, and produces
an output. Finally, after the m-th round is completed the contract pays out the coins to the parties
according to its final state and terminates.
A key feature of FastKitten is very low execution cost and high performance compared to contract
execution over cryptocurrencies such as Ethereum. This is achieved by not executing contracts by
all parties maintaining the cryptocurrency but instead running the contract within a TEE which
could, e.g., be owned and operated by a single service provider which we call the operator Q. In the
standard case when all parties are honest, FastKitten runs the entire contract off-chain within
the enclave and only needs to touch the blockchain during contract initialization and finalization.
More concretely, during initialization, the parties transfer their coins to the enclave by time-locking
coins with deposit transactions, while at the end of finalization the enclave produces transactions that
transfer coins back to the users according to the results of the contract execution. These transactions
are called output transactions and can be published by the users of the system to receive their coins.

3.1 Design Challenges of FastKitten
Leveraging TEEs for building a general-purpose contract execution platform requires us to resolve
the following main challenges.
Protection against malicious operator. The operator runs the TEE and hence controls its
interaction with the environment (e.g., with other parties or the blockchain). Thus, the operator
can abort the execution of the TEE, delay and change inputs, or drop any ingoing or outgoing
message. To protect honest users from such an operator, the enclave program running inside the
TEE must identify such malicious behavior and punish the operator. In particular, we require that
even if the TEE execution is aborted, all parties must be able to get their coins refunded eventually.
To achieve this, we let the operator create a so-called penalty transaction: the penalty transaction
time-locks coins of the operator, which in case of misbehavior can be used to refund the users and
punish the operator.
Note that designing such a scheme for punishment is highly non-trivial. Consider a situation where
party Pi was supposed to send a message x to the contract. From the point of view of the enclave

1Bitcoin transactions can store up to 97 KB of data [45]; multiple transactions can be used for bigger payloads.

5

that runs the contract, it is not clear whether the operator was behaving maliciously and did not
forward a message to the enclave, or, e.g., party Pi did not send the required message to the operator.
To resolve this conflict, we leverage a challenge-response mechanism carried out via the blockchain.
We emphasize that this challenge-response mechanism is only required when parties are malicious,
and typically will not be executed often due to the high financial costs for an adversary.
Verification of blockchain evidence. To ensure that a malicious operator cannot make up
false blockchain evidence, we need to design a secure blockchain validation algorithm which can
efficiently be executed inside a TEE. We achieve this by simplifying the verification process typically
carried out by full blockchain nodes by using a checkpoint block to serve as the initial starting point
for verification. This drastically reduces blockchain verification time in comparison to verification
starting from the genesis block. To further speed up the transaction verification, we only validate
correctness of block headers. Finally, when the TEE needs to verify whether a certain transaction
was integrated into a block, we set a minimum number of blocks that must confirm a transaction
as part of the security parameter within our protocol. This guarantees that faking a valid-looking
chain is computationally infeasible for a malicious operator. Finally, it is computationally infeasible
for a malicious operator to load a fake (but valid-looking) chain into the enclave before the penalty
transaction is published on the blockchain.
Minimizing blockchain interaction. Since blockchain interactions are expensive, FastKitten
only requires interaction with the blockchain in the initialization and finalization phases if all parties
follow the protocol. As already discussed above, however, in case of malicious behavior FastKitten
may require additional interaction with the blockchain for conflict resolution. This is required to
allow the TEE to attribute malicious behavior either to the operator or to some other participant
Pi that provides input to the contract. We achieve this through a novel challenge-response protocol,
where the TEE will ask the operator to challenge Pi via the blockchain. The operator can then either
deliver a proof that he challenged Pi via the blockchain but did not receive a response, in which case
Pi will get punished; or the operator receives Pi’s input and can continue with the protocol.
Of course, this challenge-response protocol adds to the worst-case execution time of our system, and
additionally will result in fees for blockchain interaction. To address the latter, our protocol ensures
that both parties involved in the challenge-response mechanism have to split the fees resulting from
blockchain interaction equally.2 This incentivizes honest behavior if parties aim to maximize their
personal profits.
Preventing denial of service attacks. Complex smart contracts may take a very long time to
complete, and in the worst case not terminate. Hence, a malicious party may carry out a denial-
of-service attack against the contract execution platform, where the platform is asked to execute
a contract that never halts. It is well known that determining whether a program terminates
is undecidable. Hence, general-purpose contract platforms, such as Ethereum, mitigate this risk
by letting users pay via fees for every step of the contract execution. This effectively limits the
amount of computation that can be carried out by the contract. Since FastKitten allows multiple
parties to provide input to the contract in the same round, it might be impossible to decide which
party (parties) caused the denial of service and should pay the fee. To this end, FastKitten
protects against such denial-of-service attacks using a time-out mechanism. As all users of the
system (including the operator) have to agree on the contract to be executed, we assume that this
agreement includes a limit on the maximum amount of execution steps that can be performed inside
the enclave per one execution round. See Section 6.5 for more details.

2In the cryptocurrency community, this is often referred to as griefing factor 1 : 1, meaning that for every coin
spent by the honest users on fees the adversary is required to also spend one coin.

6

FASTKITTEN Execution Platform

Enclave

j

Smart
Contract

1

FASTKITTEN2

Crypto Interface

Participants

TEE

Scripting Engine

5

3

4

Operator

Graphene

Host Process

Initial
Config

Participant
Connection

Blockchain

B0

Block

B1

Block

Figure 1: Architecture of the FastKitten Smart Contract Execution Platform. Dashed arrows
indicate interaction with the blockchain and non-dashed arrows depict communication between par-
ties.

3.2 Architecture and Protocol
To enable secure off-chain contract execution, our architecture builds on existing TEEs, which are
widely available through commercial off-the-shelf hardware. In particular, our architecture can be
implemented using Intel’s Software Guard Extensions (SGX) [46, 30, 4] which is a prominent TEE
instantiation built into most recent Intel processors. SGX incorporates a set of new instructions to
create, control and communicate with enclaves. While enclaves are part of a legacy host process,
SGX enforces strict isolation of computation and memory between enclave and host process on the
hardware level. Another prominent instantiation of the TEE concept is ARM TrustZone [6], which
provides similar functionality for mobile devices. We note that only the operator Q is required to
own TEE-enabled hardware.
As depicted in Figure 1, our FastKitten Execution Facility is run by the operator Q and consists
of a host process and an enclave. The untrusted host process takes care of setting up the enclave
with an initial config, handles the participant connections, and blockchain communication over the
network. While this means that Q has complete control over these parts, the influence of a malicious
operator on a running enclave is limited: he can interrupt enclave execution, but not tamper with it.
Further, the enclave will sign and hash all code and data as part of its attestation towards parties,
so they can verify correctness of the setup before placing deposits. To support arbitrary contract
functionality, FastKitten includes a scripting engine inside the enclave and several helper libraries,
such as the Crypto library to generate and verify transactions, and an Interface library to pass data
between host process and enclave. The individual contracts are loaded into the FastKitten enclave
during the initialization of our protocol by the underlying host process and participants can verify
that contracts are loaded correctly. Our protocol then proceeds in three phases, which we call
setup phase, round computation, and finalization phase. Figure 1 depicts the architecture of the
FastKitten framework.
During the setup phase (Steps 1 – 3) the contract is loaded into the enclave. Using the TEE’s
attestation functionality, all parties P1, . . . , Pn can verify that this step was completed correctly.

7

Then the operator and all parties block their coins for the contract execution. If any party aborts
in this phase, the money is refunded to all parties that deposited money and the protocol stops.
Otherwise, all parties receive a time-locked penalty transaction, needed in case Q aborts the protocol.
Afterwards, the round computation phase (Step 4) starts, in which Q sends the previous round’s
output to all parties. If a party Pi receives such an output, which is correctly signed by the enclave, it
signs and sends the input for the following round to Q. If all parties behave honestly, Q will forward
the received round inputs to the enclave, which computes the outputs for the next round. In case
that the enclave does not receive an input from party Pi the enclave needs to determine whether Pi
failed to send its input or if Q behaved maliciously (e.g., by dropping the message). Therefore, the
enclave will punish Q unless it can prove, that it sent the last round output to Pi but did not receive
a response. This proof is generated via the blockchain: Q publicly challenges Pi to respond with the
input for the next round by posting the output of the previous round to the blockchain. As soon as
this challenge transaction is confirmed, Pi needs to respond publicly by spending the coins of the
challenge transaction and include its input for the next round. If Pi responds, Q can extract Pi’s
input and continue with the protocol execution. If Pi did not respond, Q forwards the respective
blocks as a transcript to the enclave, to prove that Pi misbehaved.3 So, while a malicious party
(or the operator) can force this on-chain challenge-response procedure without direct punishment,
posting these transactions will also act against its own financial interests by extending the time
lock of its own coins and leading to transaction fees. Nevertheless, such malicious behavior cannot
prevent the fair termination of our protocol.
The last phase of the protocol is the payout phase (Step 5). In this phase the enclave returns the
output transaction generated by the Crypto library. This transaction distributes the coins according
to the terminated contract. In case of a protocol abort, the coins initially put by the users will be
refunded to all honest parties. If any party was caught cheating, this party will not receive back its
coins. This means the money will stay in control of the enclave and will never be spent.

4 Adversary Model
The FastKitten protocol is executed n parties P1, . . . , Pn and an operator Q (who owns the TEE)
with the goal of executing a smart contract C. FastKitten’s design depends on a TEE to ensure
its confidentiality and integrity. Our design is TEE-agnostic, even if our implementation is based on
Intel SGX. Recent research showed that the security and privacy guarantees of SGX can be affected
by memory-corruption vulnerabilities [11], architectural [13] and micro-architectural side-channel
attacks [61]. For the operator, we assume that Q has full control over the machine and consequently
can execute arbitrary code with supervisor privileges. While memory corruption vulnerabilities can
exist in the enclave code, a malicious operator must exploit such vulnerabilities through the standard
interface between the host process and the enclave. For the enclave code, we assume a common code-
reuse defense such as control-flow integrity (CFI) [3, 15], or fine-grained code randomization [24, 43]
to be in place and active. Architectural side-channel attacks, e.g., based on caches, can expose
access patterns [13] from SGX enclaves (and therefore our FastKitten prototype). However, this
prompted the community to develop a number of software mitigations [58, 28, 19, 12, 57] and new
hardware-based solutions [53, 23, 29]. Microarchitectural side-channel attacks like Foreshadow [61]
can extract plaintext data and effectively undermine the attestation process FastKitten relies on,
leaking secrets and enabling the enclave to run a different application than agreed on by the parties;
however, the vulnerability enabling Foreshadow was already patched by Intel [33]. Since existing

3Alternatively, we could allow the operator to spend the challenge transaction after a timeout has passed. While
this would result in easier verification for the TEE, the operator would need to publish an additional transaction,
increasing both fees and the overall time for the challenge-response phase.

8

defenses already target SGX vulnerabilities and since FastKitten’s design is TEE agnostic (i.e., it
can also be implemented using ARM TrustZone or next-generation TEEs), we consider mitigating
side-channel leakage as an orthogonal problem and out of scope for this paper.
For our protocol we consider a byzantine adversary [42], which means that corrupted parties can
behave arbitrarily. In particular, this includes aborting the execution, dropping messages, and
changing their inputs and outputs even if it means that they will lose money. FastKitten is secure
even if n parties are corrupt (including the two cases where only the operator is honest, and only
one party is honest but the operator is corrupt). We show that no honest party will lose coins, a
corrupt party will be penalized and that no adversary can tamper with the result of the contract
execution. While we prove security in this very strong adversarial model, we additionally observe
that incentive-driven parties (i.e., parties that aim at maximizing their financial profits) will behave
honestly, which significantly boosts efficiency of our scheme.
We stress that security of FastKitten relies on the security of the underlying blockchain. We
require that the underlying blockchain systems satisfies three security properties: liveness, consis-
tency and immutability [27]. Liveness means that valid transactions are guaranteed to be included
within the next δ blocks. Consistency guarantees that eventually all users have the same view on
the current state of the blockchain (i.e., the transactions processed and their order). In addition,
blockchains also are immutable, which means that once transactions end up in the blockchain they
cannot be reverted. Most blockchain based cryptocurrencies guarantee consistency and immutability
only after some time has passed, where time is measured by so-called confirmations. A block bi is
confirmed k-times if there exists a valid chain extending bi with k further blocks. Once block bi has
been sufficiently often confirmed, we can assume that the transactions in bi cannot be reverted and
all honest parties agree on an order of the chain (b0, b1, b2, . . . , bi). For most practical purposes k can
be a small constant, i.e., in Bitcoin it is generally believed that for k = 6 a block can be assumed
final.4

5 The FastKitten Protocol
In this section we give a more detailed description of our protocol, which includes the specification
of the protocol run by Q and honest parties P1, . . . , Pn, all transactions and a description of the
enclave program FastKitten. The interaction between Q,Pi and the blockchain is depicted in
Figure 2. We first describe the interactions with the blockchain and TEE.

5.1 Modeling the Blockchain
We will introduce some basic concepts of cryptocurrencies that are relevant for our work before
we describe our high-level design. Cryptocurrencies are built using blockchains—a distributed data
structure that is maintained by special parties called miners. The blockchain is comprised as a chain
of blocks (b0, b1, b2, . . .) that store the transactions of the system. The miners create new blocks by
verifying new transactions and comprising them into new blocks that extend the tail of the chain.
New blocks are created within some period of time t, where, for instance, in Bitcoin a new valid
block is created every 10 minutes on average.
In cryptocurrencies users are identified by addresses, where an address is represented by a public
key. To send coins from one address to another, most cryptocurrencies rely on transactions. If a
user A with address pkA wants to send x coins to user B with address pkB, she creates a transaction
tx which states that x coins from address pkA are transferred to pkB. Such a transaction tx is

4We notice that in blockchain-based cryptocurrencies there is no guaranteed finality, and even for very large values
of k blocks can be reverted in principle. We emphasize however that even for small values of k reverting blocks
becomes impossible in practice very quickly.

9

represented by the following tuple:

tx := (tx.Input, tx.Output, tx.Time, tx.Data),

where tx.Input refers to a previously unspent transaction, tx.Output denotes the address to which
tx.Value are going to be transferred to. Note that a transaction tx is unspent if it is not referred to by
any other transaction in its Input field. Further, tx.Time ∈ N, which denotes the block counter after
which this transaction will be included by miners, i.e., tx can be integrated into blocks bi, bi+1, ...,
where i = tx.Time. Finally, tx.Data ∈ {0, 1}∗ is a data field that can store arbitrary raw data.
Similar to [5], we will often represent transactions by tables as shown exemplary in the table below,
where the first row of the table gives the name of the transaction.

Transaction tx

tx.Input: Coins from unspent input transaction

tx.Output: Coins to receiver address

tx.Time: Some timelock (optional)

tx.Data: Some data (optional)

Notice that a transaction tx only becomes valid if it is signed with the corresponding secret key of
the output address from tx.Input. We emphasize that the properties described above are very mild
and are for instance achieved by the most prominent cryptocurrency Bitcoin.
In order to model interaction with the cryptocurrency, we use a simplified blockchain functionality
BC, which maintains a continuously growing chain of blocks. Internally it stores a block counter c
which starts initially with 0 and is increased on average every t minutes. Every time the counter
is increased, a new block will be created and all parties are notified. To address the uncertainty
of the block creation duration we give the adversary control over the exact time when the counter
is increased but it must not deviate more than ∆ ∈ [t − 1] seconds from t. Whenever any party
publishes a valid transaction, it is guaranteed to be included in any of the next δ blocks.
Parties can interact with the blockchain functionality BC using the following commands.

• BC.post(tx): If the transaction tx is valid (i.e., all inputs refer to unspent transactions assigned
to creator of tx and the sum of all output coins is not larger than the sum of all input coins)
then tx is stored in any of the blocks {bc+1, . . . , bc+δ}.

• BC.getAll(i): If i < c, this function returns the latest block count c − 1 and a list of blocks
that extend bi: b = (bi+1, . . . , bc)

• BC.getLast(): The function getLast can be called by any party of the protocol and returns the
last (finished) block and its counter: (c, bc).

For every cryptocurrency there must exist a validation algorithm for validating consistency of the
blocks and transactions therein, which we model using the function Extends. It takes as input, a
chain of blocks b and a checkpoint block bcp and outputs 1 if b = (bcp+1, . . . , bcp+i) is a valid chain of
blocks extending bcp and otherwise it outputs 0. In Section 6 we give more details on the validation
algorithm, and how this function is implemented for the Bitcoin system. Recall, that we assume
an adversary which cannot compute a chain of blocks of length k by itself (c.f. Section 4). This
guarantees that he cannot produce a false chain such that this function outputs 1. To make the
position of some transaction tx inside a chain of blocks explicit, we write ` := Pos(b, tx) when the
transaction is part of the `-th block of b. If the transaction is in none of the blocks, the function
returns∞. For more details on the transaction and block verification we refer the reader to [52, 27, 7].

10

5.2 Modeling the TEE
In order to model the functionality of a TEE, we follow the work of Pass et. al. [55]. We explain here
only briefly the simplified version of the TEE functionality whose formal definition can be found
in [55, Fig. 1]. On initialization, the TEE generates a pair of signing keys (mpk ,msk) which we
call master public key and master secret key of the TEE. The TEE functionality has two enclave
operations: install and resume. The operation TEE.install takes as input a program p which is
then stored under an enclave identifier eid . The program stored inside an enclave can be executed
via the second enclave operation TEE.resume which takes as input an enclave identifier eid , a
function f and the function input in. The output of TEE.resume is the output out of the program
execution and a quote % over the tuple (eid , p, out). In the protocol description we abstract from
the details how the users verify the quote that is generated through the enclave attestation. Since
we only consider one instance E of the specific program p, we will simplify the resume command
[out , %] := TEE.resume(eid , f, in) and write5:

[out , %] := E.f(in)

For every attestable TEE there must exist a function vrfyQuote(mpk , p, out , %) which on input of a
correct quote % outputs 1, if and only if out was outputted by an enclave with master public key mpk
and which indeed loaded p. Again, we assume that the adversary cannot forge a quote such that
the function vrfyQuote() outputs 1. For more information on how this verification of the attestation
is done in practice we refer the reader to [55].

5.3 Detailed Protocol Description
As explained in Section 3, our protocol πFastKitten proceeds in three phases. During the setup
phase the contract is installed in the enclave, attested, and all parties deposit their coins. Then the
round execution follows for all m rounds of the interactive contract. When the contract execution
aborts or finishes, the protocol enters the finalize phase. We now explain all phases and the detailed
protocol steps for all involved parties and the operator Q in depth. The detailed interactions as well
as the subprocedure of the parties and the operator are displayed in Figure 2, Figure 3 describes the
FastKitten enclave program pFK. Overall the protocol requires six different type of transactions.
Setup phase. In the setup phase, each party Pi first runs Initialize to generate its key pairs and
gets the latest block bcp which serves as a genesis block or checkpoint of the protocol. Then Pi sends
the set of parties P, the bcp and the contract C to the operator Q. Upon receiving the initial values
from all n parties, Q runs the subprocedure InitEnclave to initialize the trusted execution of the
enclave program pFK(P, C, κ, bcp) where κ is the security parameter of the scheme. This security
parameter κ also determines the values for the timeout period t and the confirmation constant k.
This ensures that all parties and the TEE agree on these fixed values. Once pFK is installed in the
enclave, it generates key pairs for the protocol execution and in particular the blockchain public key
pkT

6. Now, Q can make its deposit transaction txQ which assigns q coins to the enclave public key.

Q’s Deposit Transaction txQ

tx.Input: Some unspent tx from Q

tx.Output: Assign q coins to pkT

5Since we only need the quote of the first activation of E, we will omit this parameter from there on.
6For simplicity we omit here, that the enclave might need multiple key pairs for signing transactions and messages.

11

PBC
i (C, Si)

Initialize

(cp, bcp) := BC.getLast()
(P, C, bcp) Q

VerfyEnclave

(mpk , pkT ,�, txp, %)
vrfyQuote(mpk , p (C,P,, bcp), (pkT ,�), %)
6= 1 Vrfy(mpk ; pkT ,�) 6= 1

setupFail
BC.post(txi)

RoundInputj

Vrfy(pkT ; (outC , j);�) 6= 1
(ini,j , Sign(sk i; ini,j)) Q

WhenChallenged

(`, b`) := BC.getLast()
txchal(i, j, outC ,�T) 2 b`
� := Sign(sk i; ini,j)
BC.post(txresp(i, j, ini,j ,�)

WhenFinal

(`, b`) := BC.getLast()
txout(J ,d, outC) 2 b`

outC

WhenTimeout

(`, b`) := BC.getLast()
` = ⌧final
BC.post(txp)
(⌧final,b) := BC.getAll(⌧1)

9 i 2 [n] txi /2 b
setupFail

abort

QBC,TEE(1)

InitEnclave

(cp, bcp) := BC.getLast()
mpk

E := TEE.install(p (C,P,, bcp))
[(pkT ,�), %] := E .genKeys()
BC.post(txQ)

txQ k
(⌧1,b) := BC.getAll(cp)
cp := ⌧1
[(txp,�), ·] := E .Qdep(b)

(mpk , pkT ,�, txp, %) Pi

LoadDepositP

LoadDepositP

⌧2
(⌧2,b) := BC.getAll(⌧1)
[(outC ,�), ·] := E .Pdep(b)

outC = txout

Finalize

(outC ,�) Pi

(ExecuteTEE1)

ExecuteTEEj

i 2 [n]
Vrfy(pk i; ini, si)) = 1

(in(i,j), si)) I

BC.post(txchal(i, j, outC))

|I| = n

txchal 2k + �
(⌧3,b) := BC.getAll(⌧2)

txresp 2 b
Vrfy(pk i; ini, si)) = 1

(in(i,j), si)) I

|I| < n
[txout, ·] := E .errorProof(b)

Finalize()

[(outC ,�), ·] := E .round(j, I)
outC = txout

Finalize()

(outC ,�) Pi

(ExecuteTEE)j+1

Finalize

BC.post(txout)

bcp

P ,C,bcp

mpk,pkT ,s,txp,%

outC ,s

ini, j ,s

cp,bcp cp,bcp

t1,b

t2,b

`,b`

t3,b

`,b`

`,b`

tfinal,b

txQ

txi

txchal

txresp

txp

txout

Figure 2: Protocol πFastKitten. Direct black arrows indicate communication between the parties
and Q, gray dashed arrows indicate reading from the blockchain and gray double arrows posting on
the blockchain.

12

Let block counter τ1 denote the time when this transaction has been included and confirmed in the
blockchain. Q loads all blocks from cp to τ1 as evidence to the enclave. If this evidence is correct,
the execution of pFK function Qdep outputs a penalty transaction txp, stating that after timeout
τfinal (after which the protocol must be terminated) the q coins of Q’s deposit transaction txQ are
payed out to the parties P1, . . . , Pn.

Penalty Transaction txp

tx.Input: Q’s Deposit Transaction txQ

For all i ∈ [n]:
tx.Outputi: Assign ci coins to Pi

tx.Time: Spendable after τfinal

Q sends the penalty transaction to all parties P1, . . . , Pn, who run subprocedure VerfyEnclave. This
transaction is used whenever the protocol does not finish before the final timeout τfinal, which equals
(3 + 2m) × (δ + k) blocks after the protocol start (recall, that we use δ to bound the time until
some transaction is guaranteed to be included and it will be confirmed after k blocks).7 Only
if participant Pi received this penalty transaction from Q during the setup and verified that the
program pFK(P, C, κ, b0) is installed in the enclave, it creates and publishes its deposit transaction.

Pi’s Deposit Transaction txi

tx.Input: Some unspent tx from Pi

tx.Output: Assign ci coins to TEE

After time τ2 < τ1, Q executes LoadDepositP and again provides the block evidence to the enclave
execution of pFK. If all parties published the deposit transactions, the first-round execution starts.
Otherwise the enclave proceeds to the finalize phase and outputs a refund transaction txout(T,~c) that
returns the deposit back to honest users and Q, where T ⊂ P is the set of all parties that submitted
the deposit transaction until time τ2. Note, that the internal state of the contract execution is
maintained by the pFK program inside the enclave. This guarantees that the contract is not executed
on outdated state.
Round computation phase. When the protocol arrives to the round computation phase, Q sends
the authenticated output of the enclave to every party Pi and requests input for the next round.
Each party Pi runs the round algorithm. Internally it verifies whether the input request came from
the enclave by verifying the attached signature. Then it generates and signs its round input and
sends it to Q. While Pi waits for the next round, Q verifies all received inputs and their signatures
in the ExecuteTEE subprocedure. If all the parties Pi responded with correctly signed round inputs,
Q triggers the execution of the contract in the enclave. Let us emphasize that in this simplified
description of our protocol we do not focus on the privacy aspect and hence we omit that all round
inputs to the contract could be encrypted with the public key of the enclave. In this case the trusted
enclave execution needs to decrypt them before it evaluates the contract on them. See Section 9.3
for more details.
Note that the operator Q may be malicious and refrain from requesting a party Pi for the input to
a round computation. Instead Q may pretend that it actually did not receive any input from the
party Pi. On the other hand, one can imagine a scenario where Q is behaving honestly but the party

7The definition of τfinal guarantees that even if the execution is delayed in every round, an honest operator will not
be penalized.

13

Pi is dishonest and does not send the correctly signed round input to Q. Note, that the program
pFK cannot distinguish between these two cases without additional information. We will next show
how an honest Q can generate a proof to attribute the malicious behavior to Pi. First, Q has to
publish a challenge transaction txchal which includes the signed output of the previous step. txchal

spends a very small amount µ of coins from Q and assign them to party Pi8.

Challenge Transaction txchal(i, j, outC , σT)

tx.Data: Store i, j, outC , σT
tx.Input: Some unspent tx from Q

tx.Output: Assign µ coins to Pi

Once txchal is included in the blockchain, party Pi can read the correct output information from
the transaction. The party should respond with txresp, which includes its signed round input.
txresp spends the txchal and assigns the µ coins back to Q. The action of Pi is depicted via the
WhenChallenged subprocedure.

Response Transaction txresp(i, j, in, σi)

tx.Data: Store i, j, in, σi
tx.Input: Challenge Transaction txchal(i, j, state)

tx.Output: Assign µ coins to Q

If some party does not send the response after it was challenged, Q can prove this misbehavior to the
FastKitten program, by providing the blockchain evidence of the challenge-response transcript.
If the enclave program identifies a cheating party, it proceeds to the finalize phase. Otherwise, if
all the parties’ inputs were received with authentication (possibly after challenge-response phase),
Q instructs the enclave to execute the contract on the accumulated input.
The result of the contract execution is the output outC , the updated state state, and a coin distri-
bution denoted by d. If state equals ⊥, the contract execution is finished, and the protocol proceeds
to the finalize phase. Otherwise, FastKitten internally stores the state and outputs outC to Q
who sends this output to all parties and waits for next round inputs.
Finalize phase. In the finalize phase, the enclave publishes a final output transaction txout which
distributes the coins back to all honest parties. It is parameterized by a set of parties to receive coins
J , a final coin distribution ~e and a final state outC . The transaction txout(J , ~e, outC), spends all
deposit transactions txi for all i ∈ J and Q’s deposit transaction txQ. It includes the outC in the data
field and assigns q coins back to Q and ei coins to party Pi, for every i ∈ J . Let us note that J = [n]
implies correct protocol termination. If J 6= [n], then some party misbehaved and the protocol failed.
Either a party did not make a deposit in the setup phase (signaled by outC = setupFail) or some
party aborted in the round computation phase (signaled by outC = abort). In both cases all other
parties get their initial deposits back. Note, that if a party Pj is caught cheating by the TEE, it
will lose its deposit.
Q now has to publish this transaction to get his coins before time τfinal and by that also distributes
coins and reveals outC to honest parties. The participants need to constantly monitor the blockchain
for transactions which challenge them or indicate final output. When they see a challenge transaction
they respond as described above. If they see an output transaction they know the protocol execution
ended and output the final contract output according to subroutine WhenFinal.

8Cryptocurrencies like Bitcoin allow transactions with very small denominations (e.g. fractions of cents).

14

The execution of pFK is initialized with the secret key msk , the set of parties (where every Pi ∈ P is
identified by its key pki), a contract C, a security parameter κ (which also defines the waiting period t
and confirm period k) and a checkpoint bcp. Internally it stores the state of the contract state and the
status flag s initially set to state = ∅ and s = genKeys.

procedure genKeys()
1: if s 6= genKeys then abort
2: (skT , pkT) := Gen(1κ)
3: s := Qdep
4: return pkT , Sign(msk ; pkT)

procedure Qdep(b)
1: if s 6= Qdep or Extends(bcp,b) 6= 1 or Pos(b, txQ) > |b| − k then abort
2: s := Pdep
3: bcp := last block of b
4: return txp . Else, output penalty transaction

procedure Pdep(b)
1: if s 6= Pdep or Extends(bcp,b) 6= 1 then abort
2: set J := ∅
3: for i ∈ P do
4: `i := Pos(b, txi)
5: if `i < δ and `i < |b| − k then add i to J
6: if J = [n] then
7: s := round1

8: bcp := b.last
9: return ∅,Sign(skT ; ∅, bcp)

10: else
11: s := terminated
12: return txout(J , c, setupFail)

procedure round(j, (in1, σ1) . . . , (inn, σn))
1: if s 6= roundj or for any i ∈ [n] : Vrfy(pk i; ini, si) 6= 1 then abort
2: (outC , state

′,d) := C(state, ~in)
3: if state′ 6= ⊥ then
4: s := roundj+1

5: state := state′

6: return outC , Sign(skT ; (outC , j))
7: else
8: s := terminated
9: return txout([n],d, outC)

procedure errorProof, (j,b)
1: if s 6= roundj or Extends(bcp,b) 6= 1 then abort
2: Let σ := Sign(skT ; (outC , j))
3: J := [n]
4: for i ∈ P do
5: if Pos(b, txchal(i, j, outC , σ)) < |b| − δ − k then
6: if Pos(b, txresp(i, j, in, σ) > |b| − k then
7: delete i from J
8: else if Vrfy(pki; in, σ) 6= 1 then
9: delete i from J

10: s = terminated
11: if J 6= [n] then
12: return txout(J , c, abort)

Figure 3: FastKitten enclave program pFK(P, C, κ, bcp)

15

Output Transaction txout(J , ~e, outC)

tx.Data: Store outC

tx.Input: Deposit Transactions txQ, {txi}i∈J

tx.Output1: q coins to Q
For all i ∈ J :

tx.Outputi+1: ei coins to Pi

6 Execution Facility
As shown in Figure 1, we leverage a TEE for smart contract execution. For our prototype, we
implemented FastKitten for the Bitcoin blockchain using Intel SGX as a TEE. We chose Python
as our scripting engine because it’s memory safe, very well known, and widely available. To interact
with the Bitcoin blockchain data in the enclave, we implemented our Crypto library using the open-
source breadwallet-core [14], a simplified payment verification (SPV) library for Bitcoin used by
the Breadwallet mobile wallet app. To abstract from SGX’s peculiarities, and thus simplify smart
contract development, we use the Graphene Library OS [18] (referred to as “Graphene” in the rest
of the paper) as a basis. Graphene enables running arbitrary native Linux binaries in SGX enclaves
while providing compatible library interfaces for networking and other OS services. Note that the
design of the FastKitten protocol does not require a trusted time source in the TEE.

6.1 The Enclave Program FastKitten
An execution facility in the sense of FastKitten must provide a set of abstract functionalities like
key generation, transaction generation, smart contract execution, and error handling, all executed
inside the enclave. This set of procedures is described in detail in Figure 3. We implemented each
of the procedures using equivalent Python scripts. It is parameterized by the set of parties P, the
contract C which internally specifies the expected deposits c, a security parameter κ and a genesis
block bcp. This does not need to be the actual genesis block of the underlying blockchain but it
can be a later block which is used as a checkpoint. All parties must verify that this block is indeed
a block of the blockchain. The security parameter κ also determines the waiting time k which is
needed for the verification of the blocks.

6.2 Blockchain Verification
Blockchain communication is important for the setup and the finalization phase in the protocol.
Thanks to the integrity properties of blockchains, a secure connection between the enclave and
the blockchain is not needed if verification of received data can be done in the enclave. As it is
not practical to download a complete copy of the blockchain to the enclave, we only concentrate
on transactions caused by FastKitten protocol invocation. Thus, it is sufficient to verify that
these transactions are part of a valid block—without downloading entire blocks, which can be done
efficiently using simplified payment verification (SPV). However, SPV libraries can only prove that
a transaction is part of a block on the blockchain, but they cannot prove that a transaction is not
part of any block. As required by the challenge-response case, we added an alternative verification
mode that fully downloads every block that could potentially contain the transaction and checks
whether its present in any of those blocks.

6.3 Participant Communication
To place the deposits and receive them later, as well for sending input, communication between par-
ticipants (including the Operator Q) is needed in the off-chain phase. We secure this communication

16

using TLS sockets provided by Python. This transparently encrypts participants’ communication,
and thus ensures input integrity and confidentiality of parties’ messages towards the operator.

6.4 Enclave Setup
In the FastKitten prototype, we leverage Intel SGX as a TEE. SGX is a TEE included in recent
Intel CPUs which introduces the concept of isolated hardware enclaves that can be created and
managed using new CPU instructions. SGX enclaves are even shielded from the operating system;
only the CPU is trusted. To support smart contract execution in these enclaves we provide a run-
time environment based on Graphene, which replaces the Intel SDK in both the enclave and the host
process. This allows Graphene to transparently provide services from the untrusted OS (and check
the integrity of the results). To protect the enclave application from the host process, a manifest has
to be provided at enclave initialization. The manifest includes interfaces, services, and respective
integrity checksums, e.g., hashes of files the enclave requires. Accesses to these files will be checked
against hashes in the manifest to guarantee integrity.
As depicted by Figure 3, the Execution Facility incorporates a set of functionalities. For key deriva-
tion (genKeys) we leverage the rdrand instruction to get high-entropy randomness inside of the
enclave. After checking that txQ (Qdep) is in the blockchain, the derived private key skT is used
to generate the penalty transaction txp using our Crypto library. txp is distributed to the other
participants over a TLS connection. Other participants can generate their deposit transactions txi
(Pdep) using a regular wallet. This concludes the setup phase, and the smart contract gets executed
(round).
The Graphene run-time environment enables FastKitten to support arbitrary Linux binaries,
thus, can be used to implement smart contracts. However, instead of allowing binaries, we use a
scripting engine based on a Python interpreter in our proof-of-concept implementation. First, this
makes development easier for contract developers, as they are not always familiar with lower-level
programming languages, and second, this makes smart contracts less prone to memory corruption
vulnerabilities. Two use cases we implemented are presented and evaluated in Section 8.

6.5 Denial of Service Protection
The protocol as described in Section 5 assumes instantaneous contract execution meaning that the
execution of a contract inside a TEE takes no time. For most practical contracts, this simplifying
assumption is reasonable since executing a simple contract function inside a TEE is much faster than
the network/blockchain delay. However, this is not true when considering arbitrary contracts which
might potentially contain endless loops. Moreover, the halting problem states that it is impossible
to predict if a certain algorithm will halt within a certain number of steps. A simple protection
against endless loops and denial-of-service attacks, is letting the enclave monitor the execution of
the smart contract and terminate execution if the number of execution steps exceeds a predefined
limit. If the contract execution is aborted due to an execution timeout, the enclave signs an outputs
transaction txout which returns deposited coins back to parties and to the operator.

7 Security
In this section we present the underlying security considerations of FastKitten.
Since our protocol is rather complex, we argue about its security in a model that views a protocol as a
stand-alone system. In more robust models, such as for example the Global Universal Composability
model [17] which considers concurrent protocol executions and protocol composition, statements and
proofs are typically convoluted even for simple protocols.

17

In order to guarantee security for the protocol, we require three security properties: correctness,
fairness and operator balance security.
Intuitively, correctness states that in case all parties behave honestly (including the operator), every
party Pi ∈ P outputs the correct result and earns the amount of coins she is supposed to get
according to the correct contract execution. The fairness property guarantees that if at least one
party Pi ∈ P is honest, then (i) either the protocol correctly completes an execution of the contract
or (ii) all honest parties output setupFail and stay financially neutral or (iii) all honest parties output
abort , stay financially neutral, and at least one corrupt party must have been financially punished.
Finally, the operator balance security property says that in case the operator behaves honestly, he
cannot lose money.

Theorem 1 (Informal statement). The protocol πFastKitten as defined in Section 5 satisfies cor-
rectness, fairness and operator balance security property.

The most challenging part of the proof is the fairness property. We need to show how honest parties
reach consensus on the result of the execution and prove that coins are always distributed between
parties according to this result (even if malicious parties collude with the operator). In order to
prove the operator balance security, we show that an honest operator has always enough time to
publish a valid output transaction which pays him back his deposit, before the time-locked penalty
transaction can be posted on the blockchain.
Incentive-driven adversary If we consider only incentive-driven adversaries, then statement (iii)
of the fairness property is never true. Hence, if the setup phase completes successfully, then the
result of the protocol is a correct contract execution. This follows directly from the fact, that when
the protocol aborts the misbehaving parties lose coins. By definition of incentive-driven parties,
losing coins is against their interest. This is why the only possible outcome of the protocol is
correct execution of the contract. Moreover, when we consider fees for positing transaction on
the blockchain, parties are additionally incentivized to prevent the challenge-response transactions.
These additional incentives enforce fast and protocol compliant behavior of the parties.

7.1 Architecture Security
The main goal of FastKitten is to enable efficient execution of general multi-round smart con-
tracts. Hence, we analyze the security of FastKitten with regards to its system architecture
and implementation. Possible adversaries can be malicious participants, a malicious operator, or a
combination of both.
We note that participating clients are only required to send and receive transactions from the
blockchain (e.g., to enter an execution) and the ability to exchange protocol messages (e.g., to play
rounds). Hence, client implementations can be based on a diverse set of entirely different code
bases in practice, possibly using memory-safe languages such as Python, Go, or Rust. Malicious
participants are further limited to interacting with other parties and the operator through the
exchange of messages as specified within our protocol, and hence, we focus on the TEE-based
execution facility in the following.
A malicious operator could deny execution, however, he is incentivized to adhere to the protocol or
lose money. Thus, we assume that the goal of a malicious operator is to try and exploit the execution
facility at runtime. Since the operator already controls the host process, the main target would be
the enclave that executes the contract. Enclaves have a well-defined interface with the rest of the
system, and any attack has to be launched using this interface. By providing fake data through
this interface, the attacker could try to exploit a memory-corruption vulnerability in the low-level
enclave code to launch (a) a code-reuse attack, e.g., by manipulating enclave stack memory, or (b)

18

a data-only attack, e.g., to leak information about the game state or manipulate Bitcoin addresses
in contracts. As mentioned in Section 4, for (a) we assume a standard code-reuse defense such as
control-flow integrity [3, 64, 67, 51, 15] or fine-grained code randomization [24, 62, 31, 22, 54, 43].
The core functionality of FastKitten additionally tackles both attack vectors by implementing
the main enclave code in Python, which provides memory-safety features such as implicit bounds
checking. The only parts that are implemented in unsafe languages are the initialization code of
Graphene [18] and the Simple Payment Verification (SPV) library [14]. FastKitten actually has no
strong dependency on Graphene in principle, it was mainly used to simplify and speed up prototype
implementation. Finally, SPV represents a standard library used by most blockchain clients and
an adversary that is able to construct a data-only attack against it would be able to exploit any of
those clients connected to the Bitcoin network using the same data-only attack.

8 FastKitten Contracts
In this section we take a look at applications and performance through a number of benchmarks.

8.1 Complexity
The FastKitten protocol consists of setup, round computation and finalize phases. During the
setup phase, each party Pi deposits a constant amount of coins ci. The operator needs to deposit an
amount

∑
i∈[n] ci which equals the sum of all other deposits from P together. To post the deposit

transactions txis and txQ, a total of n+ 1 transactions is necessary.
During the round computation phase, in the optimistic case FastKitten can operate completely
off-chain without any blockchain interaction. Any user can force that challenge response transactions
are posted to attribute misbehavior of a party, in any given round. If this (pessimistic) case occurs,
it can add 2 to another 2n transactions. In the worst case, a challenge response transaction pair
needs to be posted on the blockchain for every party Pi at every round j ∈ [m] leading to O(nm)
blockchain interactions. In finalize phase, FastKitten requires one additional payout transaction
txout to settle money distribution among parties. Scenarios of missing deposit at the Setup phase or
an abort by a party at the round computation phase are dealt with by posting the refund transaction
txout and the penalty transaction txp respectively.
Setup time In the optimistic case (which we have shown is the standard case when considering
incentive-driven parties) the overall execution of the protocol only requires n+2 transactions on the
blockchain. This also indicates at what speed the protocol can be executed in this case. If all parties
agree, the setup phase can be finished in 2 blockchain rounds and from that point on the protocol
can be played off-chain. In the next subsection we give some indication how fast this second part
can be achieved. Running the protocol as fast as possible is in the interest of every party since it
shortens the locking time of the deposits.

8.2 Performance Evaluation
We performed a number of performance measurements to demonstrate the practicality of FastKit-
ten using our lab setup, which consists of three machines: First, an SGX-enabled machine running
Ubuntu 16.04.5 LTS with an Intel i7-7700 CPU clocked at 3.60GHz and 8GB RAM, where we in-
stalled FastKitten’s contract execution facility to play the role of the operator’s server. Second,
a machine running Ubuntu 14.04.4 LTS on an Intel i7-6700 CPU clocked at 3.40GHz with 32GB
RAM, which provides unmodified blockchain nodes in a local test network using Bitcoin Core ver-
sion 0.16.1. Third, a laptop machine with macOS 10.13.6 on with Intel i7-4850HQ CPU clocked at
2.30GHz and 16GB of RAM, which takes the role of the participants in the protocol. All three ma-
chines are connected through a Gigabit Ethernet LAN. For tests involving the real Bitcoin network

19

the individual machines are connected through the Internet using our Internet connection.
Block validation In our experiments, the enclave takes approximately 5 s to validate one block
from the Bitcoin main network, thus proving that it is capable of validating real blocks in real time.
Enclave Startup The time to setup an enclave until it is ready is 2 s, proving that instantiating
enclaves on the fly is feasible.
End-to-end Time Assuming all parties are incentive-driven and, thus, comply with the protocol,
the total time required by FastKitten is the time of 2 blockchain interactions (see Section 8.1),
plus the computation time (a few milliseconds in our use cases), plus the time required by the parties
to choose the next inputs.

8.3 Applications
FastKitten allows to run complex smart contracts on top of cryptocurrencies that would not
natively support such contracts, like Bitcoin. But in contrast to Turing-complete contract execution
platforms like Ethereum, a secure off-chain execution such as FastKitten puts some restrictions
on the contracts it can run:

• The number of parties interacting with the contract must be known at the start of the protocol.
• It must be possible to estimate an upper bound on the number of rounds and the maximum

run time of any round.
All of these restrictions make FastKitten contracts different from smart contracts running on
Ethereum itself. The restrictions above come from the fact that the contract can be completely (and
repeatedly) executed without blockchain interactions. Other off-chain solutions (like state channels
[50, 25, 21]) come with similar caveats. By allowing additional blockchain interaction we could get
around those restrictions but we would lose efficiency in the optimistic case (which is also similar to
state channel constructions).
FastKitten has important features which are supported by neither Bitcoin nor Ethereum —
FastKitten allows private inputs and batched execution of user inputs. Overall, this leads to
cheaper, faster and private contract execution than what is possible with on-chain contracts in
Ethereum. Below, we highlight these efficiency gains by presenting four concrete use-cases in which
FastKitten outperforms contracts run over Ethereum or in Ethereum state channels.
Lottery A lottery contract takes coins from every involved party as input, and randomly selects one
winner, who gets all the coins. The key challenge for such a contract is to fairly generate randomness
to select the winner. In Ethereum or Bitcoin the randomness is computed from user inputs through
an expensive commit-reveal scheme [49]. In FastKitten, all parties can immediately send their
random inputs to the enclave which will securely determine a winner. Hence, we reduce the round
complexity from O(log n) [49] to O(1).
Auctions Another interesting use-case for smart contracts are auctions, where parties place bids
on how much they are willing to pay and the contract determines the final price. In a straightforward
auction, the bids can be public, but more fair versions, like second bid auctions, require the users
not to learn the other bids before they place their own. The privacy features of FastKitten can
be used to reduce the round complexity for such auctions which would otherwise require complex
cryptographic protocols [26].
Rock-paper-scissors We implemented the popular two-party game rock-paper-scissors to show
the feasibility of FastKitten contracts. Again, the privacy features allow one match to be executed
in a single round, which would have required at least 3 rounds in Ethereum. The pure execution
time in the optimistic case, excluding delays due to human reaction times, is 12ms for one round
(averaged over 100 matches). This demonstrates that off-chain protocols, like FastKitten, are

20

Transaction Size (Bytes) Fees (BTC) Fees (USD)

Deposit (typical) 250 0.000007-0.000073 0.05-0.46

Penalty (txp) 504 0.000015-0.000148 0.09-0.93

Challenge (txchal) 293 0.000009-0.000086 0.05-0.54

Response (txresp) 266 0.000008-0.000078 0.05-0.49

Output (txout) 1986 0.000058-0.000582 0.36-3.65

Table 2: Estimated fees for a typical deposit transaction and the FastKitten transactions, using
data from CoinMarketCap [2] and BlockCypher [1] retrieved on Nov. 14, 2018.

highly efficient when the same set of parties wants to run complex contracts (like multiple matches
of a game).
Poker We also implemented a Texas Hold’em Poker game, to prove that multi-party contracts
which inherently require multiple rounds can also be efficiently executed in FastKitten. In our
implementation, each player starts with an equal chip stack and participates in an initial betting
round and in additional rounds after the flop, river, and turn have been dealt by the enclave. If
more than two players remain in the game after the final bets, the enclave reveals the winner and
distributes the chips in the current pot to the winner. The game continues until only one player
remains. We measured 50 matches between 10 players resulting in an average time of 45ms per
match (multiple betting rounds are included in each match). The run time was measured starting
from the moment all deposits are committed to the blockchain (details on the exact measurements
and analysis can be found in the Appendix D).
Real-world Fees We generated examples of the transaction types used in our protocol for a 10-
player poker match, which are shown in Appendix E. In Table 2 we estimate the fees required to
commit to the blockchain our transactions, in addition to a typical deposit transaction. Assuming
all parties comply with the protocol, each party (including Q) must pay between 0.05 USD and
0.46 USD for the deposit. Additionally, the output transaction txout requires between 0.36 USD and
3.65 USD in fees.
Other Well-known Contracts Certain well-known contracts like ERC20 token and CryptoKitties
inherently need to be publicly available on the blockchain, since they are accessed frequently by
participants which are not previously known. In contrast, contracts resembling our examples above,
which rely on private data and where a fixed set of participants sends a large number of transactions,
are highly efficient when moved off-chain using a system like FastKitten. The nature of off-chain
solutions like FastKitten or state channels requires advance knowledge of the participants. Open
contracts like ERC20 and CryptoKitties that require continuous synchronization with the blockchain
and are meant to be publicly accessible would eliminate the advantages of off-chain solutions.

9 Discussion and Extensions
In order to explain and analyze the FastKitten protocol, we presented a simplified protocol version
which only includes the building blocks required to guarantee security. Depending on the use case
one might be interested in further properties. Possible extensions discussed in this section include the
option to pay the operator for his service, protect the operator against TEE faults, hide the contract
output from through a layer of output encryption and allow cross-currency smart contracts. In

21

the following, we explain how to achieve these features and at what cost they can be added to the
simplified protocol.

9.1 Fees for the Operator
The owner of the TEE provides a service to the users who want to run a smart contract and,
naturally, he wants to be paid for it. In addition to the costs of buying, maintaining and running
the trusted hardware, he also needs to block the security deposit q for the duration of the protocol.
While the security of FastKitten ensures that he will never lose this money, he still cannot use it
for other purposes. The goal of the operator-fees is to make both investments attractive for Q.
We assume that the operator will be paid ξ coins for each protocol round for each party. Since the
maximum number of rounds m is fixed at the protocol start, Q will receive ξ × n ×m coins if the
protocol succeeds (even if the contract terminated in less than m rounds). If the operator proves to
the TEE in round x that another party did not respond to the round challenge, he will only receive
a fee for the passed x number of rounds (namely ξ×x×n). This pay-per-round model ensures that
the operator does not have any incentive to end the protocol too early. If the protocol setup does
not succeed or the operator cheats, he will not receive any coins.
The extended protocol with operator fees requires each party to lock ci+m×ξ coins and the operator
needs to level this investment with qci +m× ξ coins.

9.2 Fault Tolerance
In order to ensure that the execution of the smart contract can proceed even in the presence of
software or hardware faults, the enclave can save a snapshot of the current state in an encrypted
format, e.g., after every round of inputs. This encrypted state would be sent to the operator and
stored on redundant storage. If the enclave fails, the operator can instantiate a new enclave which
will restart the computation starting from the encrypted snapshot. If the TEE uses SGX, snapshots
would leverage SGX’s sealing functionality [32] to protect the data from the operator while making
it available to future enclave instances.

9.3 Privacy
As mentioned in the introduction, traditional smart contracts cannot preserve privacy of user inputs
and thus always leak internal data to the public. In contrast to common smart contract technologies,
the FastKitten protocol supports privacy preserving smart contracts as proposed in Hawk [37].
This requires private contract state to hide the internal execution of the contract and input privacy,
which means that no party (including the operator) sees any other parties’ round input before
sending its own.
It is straightforward to see that FastKitten has a secret state, since it is stored and maintained
inside the enclave. Input privacy can easily be achieved by encrypting all inputs with the public key
of the enclave. This guarantees that only the FastKitten execution facility and the party itself
knows the inputs. If required, FastKitten could also be extended to support privacy of outputs
from the contract to the parties, by letting the enclave encrypt the individual outputs with the
parties’ public keys. But this additional layer should only be used when the contract requires it,
since in the worst case this increases the output complexity of the challenge and output transaction.

9.4 Multi-currency Contracts
FastKitten requires from the underlying blockchain technology that transactions can contain ad-
ditional data and can be timelocked. Any blockchain like Bitcoin, Ethereum, Lightcoin and many
others which allow these transaction types can be used for the FastKitten protocol. With some

22

minor modifications FastKitten can even support contracts which can be funded via multiple dif-
ferent currencies. This allows parties that own coins in different currencies to still execute a contract
(play a game) together. The main modification to the FastKitten protocol is that the operator
and the enclave need to simultaneously handle multiple blockchains in parallel. In particular, for
each of the considered currencies, Q needs to deposit the sum of all coins that were deposited by
parties in that currency. This is in order to guarantee that if the operator cheats, players get back
their invested coins in the correct currency. In addition, the operator is obliged to challenge each
party via its blockchain. If the execution completes (or the operator proves to the enclave that one
of the players cheated), the enclave signs one output transaction for each of the currencies. While
this extension adds complexity to the enclave program and leads to more transactions and thus
transaction-fees, the overall deposit amount stays identical to the single blockchain use case.9 A
complete design and proof of correctness of a cross-ledger FastKitten is left to future work.

10 Conclusion
In this paper we have shown that efficient smart contracts are possible using only standard trans-
actions by combining blockchain technology with trusted hardware. We present FastKitten, our
Bitcoin-based smart contract execution framework that can be executed off-chain. Since FastKit-
ten is the first work that supports efficient multi-round contracts handling coins, for the first time,
this enables real-time application scenarios, like interactive online gaming, with millisecond round
latencies between participants. We formally prove and thoroughly analyze the security of our general
framework, also extensively evaluating its performance in a number of use cases and benchmarks.
Additionally, we discuss multiple extensions to our protocol, such as adding output privacy or
operator fees, which enrich the set of features provided by our system.

Acknowledgments
We are grateful to our anonymous reviewers and our shepherd Mihai Christodorescu for their con-
structive feedback.
This work has been supported by the German Research Foundation (DFG) as part of projects
HWSec, P3 and S7 within the CRC 1119 CROSSING and the Emmy Noether Program FA 1320/1-
1, by the German Federal Ministry of Education and Research (BMBF) and the Hessen State
Ministry for Higher Education, Research and the Arts (HMWK) within CRISP, by BMBF within
the iBlockchain project, by the Intel Collaborative Research Institute for Collaborative Autonomous
& Resilient Systems (ICRI-CARS).

References
[1] BlockCypher, Nov 2018. https://live.blockcypher.com/btc/.

[2] CoinMarketCap, Nov 14 2018. https://coinmarketcap.com.

[3] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity principles, implementations, and
applications. ACM Transactions on Information System Security, 13, 2009.

[4] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata. Innovative Technology for CPU Based Attestation and
Sealing. In Workshop on Hardware and Architectural Support for Security and Privacy (HASP). ACM, 2013.

[5] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. Secure multiparty computations on bitcoin.
In 2014 IEEE Symposium on Security and Privacy, 2014.

[6] ARM Limited. Security technology: building a secure system using TrustZone technology. http://infocenter.
arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.
pdf, 2008.

9This solution assumes that any party can receive coins in any of the considered currencies.

23

https://live.blockcypher.com/btc/
https://coinmarketcap.com
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

[7] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a transaction ledger: A composable treatment.
In CRYPTO, 2017.

[8] J. Barbie. Why smart contracts are not feasible on plasma, Jul 2018. https://ethresear.ch/t/why-smart-
contracts-are-not-feasible-on-plasma/2598.

[9] G. Belisle. A glimpse into the future of blockchain, 2018. Available at https://the-blockchain-journal.com/
2018/03/29/a-glimpse-into-the-future-of-blockchain/.

[10] I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach, P. Daian, and A. Juels. Tesseract: Real-time
cryptocurrency exchange using trusted hardware. IACR Cryptology ePrint Archive, 2017.

[11] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi. The guard’s dilemma: Efficient code-reuse attacks
against intel sgx. In Proceedings of the 27th USENIX Conference on Security Symposium. USENIX Association,
2018.

[12] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen, U. Müller, and A. Sadeghi. DR.SGX:
hardening SGX enclaves against cache attacks with data location randomization. CoRR, abs/1709.09917, 2017.

[13] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi. Software grand exposure:
SGX cache attacks are practical. In USENIX Workshop on Offensive Technologies, 2017.

[14] Breadwallet. Breadwallet-core - spv bitcoin c library, 2018.

[15] N. Burow, S. A. Carr, S. Brunthaler, M. Payer, J. Nash, P. Larsen, and M. Franz. Control-flow integrity:
Precision, security, and performance. CoRR, 2016.

[16] V. Buterin et al. A next-generation smart contract and decentralized application platform. white paper, 2014.

[17] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with global setup. In Theory
of Cryptography, 4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands, February
21-24, 2007, Proceedings, 2007.

[18] C. che Tsai, D. E. Porter, and M. Vij. Graphene-sgx: A practical library OS for unmodified applications on
SGX. In 2017 USENIX Annual Technical Conference, 2017.

[19] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting privileged side-channel attacks in shielded execution
with Déjá Vu. In ACM Symposium on Information, Computer and Communications Security, 2017.

[20] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels, A. Miller, and D. Song. Ekiden: A
platform for confidentiality-preserving, trustworthy, and performant smart contract execution. arXiv preprint
arXiv:1804.05141, 2018.

[21] J. Coleman, L. Horne, and L. Xuanji. Counterfactual: Generalized state channels, Jun 2018. https://l4.
ventures/papers/statechannels.pdf.

[22] M. Conti, S. Crane, T. Frassetto, A. Homescu, G. Koppen, P. Larsen, C. Liebchen, M. Perry, and A.-R. Sadeghi.
Selfrando: Securing the tor browser against de-anonymization exploits. Proceedings on Privacy Enhancing Tech-
nologies, 2016.

[23] V. Costan, I. A. Lebedev, and S. Devadas. Sanctum: Minimal Hardware Extensions for Strong Software Isolation.
In USENIX Security Symposium, 2016.

[24] L. Davi, A. Dmitrienko, S. Nürnberger, and A. Sadeghi. Gadge me if you can: secure and efficient ad-hoc
instruction-level randomization for x86 and ARM. In 8th ACM Symposium on Information, Computer and
Communications Security, ASIACCS, 2013.

[25] S. Dziembowski, S. Faust, and K. Hostáková. General state channel networks. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018, 2018.

[26] H. Galal and A. Youssef. Verifiable sealed-bid auction on the ethereum blockchain. In International Conference
on Financial Cryptography and Data Security, Trusted Smart Contracts Workshop. Springer, 2018.

[27] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol with chains of variable difficulty. In
CRYPTO. Springer, 2017.

[28] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa. Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory. In 26th USENIX Security Symposium, 2017.

[29] M. Hachman. Intel’s plan to fix meltdown in silicon raises more questions than answers. https://www.
pcworld.com/article/3251171/components-processors/intels-plan-to-fix-meltdown-in-silicon-raises-
more-questions-than-answers.html, 2018.

24

https://ethresear.ch/t/why-smart-contracts-are-not-feasible-on-plasma/2598
https://ethresear.ch/t/why-smart-contracts-are-not-feasible-on-plasma/2598
https://the-blockchain-journal.com/2018/03/29/a-glimpse-into-the-future-of-blockchain/
https://the-blockchain-journal.com/2018/03/29/a-glimpse-into-the-future-of-blockchain/
https://l4.ventures/papers/statechannels.pdf
https://l4.ventures/papers/statechannels.pdf
https://www.pcworld.com/article/3251171/components-processors/intels-plan-to-fix-meltdown-in-silicon-raises-more-questions-than-answers.html
https://www.pcworld.com/article/3251171/components-processors/intels-plan-to-fix-meltdown-in-silicon-raises-more-questions-than-answers.html
https://www.pcworld.com/article/3251171/components-processors/intels-plan-to-fix-meltdown-in-silicon-raises-more-questions-than-answers.html

[30] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo. Using Innovative Instructions to Create
Trustworthy Software Solutions. In Workshop on Hardware and Architectural Support for Security and Privacy
(HASP). ACM, 2013.

[31] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz. Librando: trans-parent code randomization for just-in-time
compilers. In ACM SIGSAC Conference on Computer and Communications Security, CCS, 2013.

[32] Intel. Intel Software Guard Extensions developer guide, 2016. https://download.01.org/intel-sgx/linux-1.
7/docs/Intel_SGX_Developer_Guide.pdf.

[33] Intel. Resources and Response to Side Channel L1 Terminal Fault. https://www.intel.com/content/www/us/
en/architecture-and-technology/l1tf.html, 2018.

[34] A. Juels, A. E. Kosba, and E. Shi. The ring of gyges: Investigating the future of criminal smart contracts. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, 2016.

[35] H. A. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten. Arbitrum: Scalable, private smart
contracts. In USENIX Security Symposium, 2018.

[36] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016.

[37] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain model of cryptography
and privacy-preserving smart contracts. In IEEE Symposium on Security and Privacy, 2016.

[38] R. Kumaresan and I. Bentov. How to use bitcoin to incentivize correct computations. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security. ACM, 2014.

[39] R. Kumaresan and I. Bentov. Amortizing secure computation with penalties. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, 2016.

[40] R. Kumaresan, T. Moran, and I. Bentov. How to use bitcoin to play decentralized poker. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security. ACM, 2015.

[41] R. Kumaresan, V. Vaikuntanathan, and P. N. Vasudevan. Improvements to secure computation with penalties.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, 2016.

[42] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Transactions on Programming
Languages and Systems (TOPLAS), 1982.

[43] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. SoK: Automated software diversity. In 35th IEEE
Symposium on Security and Privacy, S&P, 2014.

[44] J. Lind, O. Naor, I. Eyal, F. Kelbert, P. R. Pietzuch, and E. G. Sirer. Teechain: Reducing storage costs on the
blockchain with offline payment channels. In 11th ACM International Systems and Storage Conference, 2018.

[45] R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldorf, D. Müllmann, O. Hohlfeld, and K. Wehrle. A quantitative
analysis of the impact of arbitrary blockchain content on bitcoin. In Proceedings of the 22nd International
Conference on Financial Cryptography and Data Security (FC). Springer, 2018.

[46] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue, and U. R. Savagaonkar.
Innovative Instructions and Software Model for Isolated Execution. In Workshop on Hardware and Architectural
Support for Security and Privacy (HASP). ACM, 2013.

[47] Microsoft. The coco framework, 2018. GIT repository available at https://github.com/Azure/coco-framework.

[48] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous distributed e-cash from bitcoin. In
Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013.

[49] A. Miller and I. Bentov. Zero-collateral lotteries in bitcoin and ethereum. In Security and Privacy Workshops
(EuroS&PW), 2017 IEEE European Symposium on. IEEE, 2017.

[50] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry. Sprites: Payment channels that go faster than lightning.
CoRR, abs/1702.05812, 2017.

[51] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz. Opaque control-flow integrity. In NDSS,
2015.

[52] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system,” http://bitcoin.org/bitcoin.pdf, 2008.

[53] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens, B. Preneel, I. Verbauwhede, and
F. Piessens. Sancus: Low-cost trustworthy extensible networked devices with a zero-software trusted computing
base. In 22nd USENIX Security symposium, USENIX Sec, 2013.

25

https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://github.com/Azure/coco-framework

[54] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hindering return-oriented program-
ming using in-place code randomization. In 33rd IEEE Symposium on Security and Privacy, S&P, 2012.

[55] R. Pass, E. Shi, and F. Tramèr. Formal abstractions for attested execution secure processors. IACR Cryptology
ePrint Archive, 2016.

[56] J. Poon and V. Buterin. Plasma: Scalable autonomous smart contracts, Aug 2017. Plasma, https://plasma.
io/plasma.pdf/.

[57] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim. SGX-Shield: Enabling address space layout
randomization for SGX programs. In Annual Network and Distributed System Security Symposium, 2017.

[58] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Eradicating controlled-channel attacks against enclave
programs. In Annual Network and Distributed System Security Symposium, 2017.

[59] J. Teutsch and C. Reitwießner. A scalable verification solution for blockchains, Nov 2017. https://people.cs.
uchicago.edu/~teutsch/papers/truebit.pdf.

[60] F. Tramèr, F. Zhang, H. Lin, J. Hubaux, A. Juels, and E. Shi. Sealed-glass proofs: Using transparent enclaves
to prove and sell knowledge. In 2017 IEEE European Symposium on Security and Privacy, EuroS&P, 2017.

[61] J. Van Bulck, F. Piessens, and R. Strackx. Foreshadow: Extracting the keys to the intel sgx kingdom with tran-
sient out-of-order execution. In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,
2018.

[62] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: self-randomizing instruction addresses of
legacy x86 binary code. In ACM SIGSAC Conference on Computer and Communications Security, CCS, 2012.

[63] Worldveil. Deuces-a pure python poker hand evaluation library, 2016.

[64] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou. Practical control flow
integrity and randomization for binary executables. In 34th IEEE Symposium on Security and Privacy, S&P,
2013.

[65] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. Town crier: An authenticated data feed for smart
contracts. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. ACM,
2016.

[66] F. Zhang, P. Daian, I. Bentov, and A. Juels. Paralysis proofs: Safe access-structure updates for cryptocurrencies
and more. IACR Cryptology ePrint Archive, 2018.

[67] M. Zhang and R. Sekar. Control flow integrity for COTS binaries. In 22nd USENIX Security Symposium,
USENIX Sec, 2013.

A Further Related Work
There is a large body of work trying to improve the scalability of blockchains by moving a major part
of smart contract executions off the blockchain (for example, via second layer solutions [50, 56, 25, 35]
or outsourcing of computation [59]). As discussed in the main body of this paper, all of these
solutions run on top of blockchains with sufficiently complex scripting language, e.g., on Ethereum.
However, they cannot be integrated into popular legacy cryptocurrencies such as Bitcoin, which is
their main difference compared to our work. Recall that one of the main goals of FastKitten is
make minimal assumption on the underlying blockchain technology and in particular, to run over
the Bitcoin blockchain.
Another motivation for off-chain contract execution might be the goal of protecting privacy. Hawk [37]
and the “Ring of Gyges” [34] are examples of works that do keep the state, all inputs and outputs
private. It is also true for the scaling solutions mentioned above; These techniques work only over
cryptocurrencies with support for complex smart contracts, e.g. over Ethereum.
Below we discuss the differences between these solutions and FastKitten when run on top of
Ethereum.

26

https://plasma.io/plasma.pdf/
https://plasma.io/plasma.pdf/
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf

A.1 Second-layer Scaling Solutions
State Channels State channels [50, 25, 21] are a prominent second layer scaling solution. They
allow a set of parties to execute complex smart contracts off-chain. As long as all parties are honest
and agree on the state transitions, the blockchain is contacted only during the channel creation, when
parties lock funds in the channel, and during channel closure, when the locked funds are distributed
back to the parties according to the result of contract execution. However, once parties run into
disagreement off-chain, they have to resolve their dispute on-chain and perform the state transition
via the blockchain.
While in the optimistic case when all parties are honest, state channels are very efficient, a potentially
heavy computation might need to be done on-chain in case of disagreement. This is in contrast to the
FastKitten protocol which does not require any computation to be performed on the blockchain
even in case of disputes.
Plasma Another promising second-layer scaling solution is Plasma, first introduced by Poon and
Buterin [56]. The main idea of Plasma is to build new chains (Plasma chains) on top of the Ethereum
blockchain. Each Plasma chain has its own operator that is responsible for validating transactions
and regularly posting a short commitment about the current state of the Plasma chain to a smart
contract on the Ethereum blockchain. The regular commitments guarantee to the participants of
the Plasma chain that in case the operator cheats, his misbehavior can be proven to the Ethereum
smart contract and parties can exit the Plasma chain with all their funds.
While the original goal of Plasma [56] was to support arbitrary complex smart contracts, to the best
of our knowledge, there is no concrete protocol that would achieve this goal (the existing Plasma
designs support only payment transactions). Moreover, the plasma research community currently
conjectures that Plasma with general smart contracts might be impossible to construct [8].

A.2 Incentive-driven Verification
Arbitrum The disadvantage of state channels, i.e., the potentially heavy on-chain execution in
case of dispute, is being addressed by the work Arbitrum [35]. Every smart contract, which Ar-
bitrum models as a virtual machine (VM), to be executed off-chain has a set of “manager” parties
responsible for correct VM execution. As long as managers reach consensus on the VM state transi-
tions, execution progresses off-chain similarly as in state channels. In case of dispute, managers do
not perform the VM state transition on-chain as in state channel. Instead, one manager can propose
the next VM state which other managers can challenge. If the newly posted state is challenged,
the proposer and the challenger run an interactive protocol via the blockchain, so-called “bisection”
protocol, in which one disputable computation step is eventually identified and whose correct exe-
cution is verified on-chain. Hence, instead of executing the entire state transition on-chain (which
might potentially require a lot of time/space), only one computation step of the state transition
has to be performed on-chain in addition to the bisection protocol (which might require O(log(s))
blockchain transactions, where s is the number of computations steps in the state transition). The
Arbitrum protocol works under the assumption that at least one manager of the VM is honest and
challenges false states if they are posted by other managers. Since the blockchain interaction during
the bisection protocol is rather expensive, Arbitrum uses monetary incentives to motivate managers
to behave honestly and follow the protocol.
TrueBit Another solution that supports off-chain execution of smart contracts using incentive
verification is TrueBit [59]. For each off-chain execution, the TrueBit system selects (using a lottery)
one party, called the “Solver”, that is responsible for performing the state transition and inform all
other parties about the new contract state. The TrueBit system incentives parties to become so called
“verifiers” and check the correctness of the computation performed by the Solver. In case they detect

27

misbehavior, they are supposed to challenge the Solver on the blockchain and run the “verification
game” which works similarly as the “bisection protocol” of Arbitrum. Similar to Arbitrum, TrueBit
relies on the assumption that there is at least one honest verifier which correctly performs all the
validations and challenges malicious Solvers. In contrast to Arbitrum, all inputs and the contract
state are inherently public even in the optimistic case when everyone is honest.
Apart from the different trust model and lower requirement on the underlying blockchain technology,
FastKitten differs from Arbitrum and TrueBit by providing stronger privacy guarantees, meaning
that in both the optimistic and the pessimistic case, inputs of honest parties as well as the state of
the smart contract remains private.

A.3 TEEs for privacy
None of the solutions discussed above achieves privacy preserving off-chain contract execution. This
is tackled by the work Hawk [37] which keeps the state, all inputs and all outputs private. Hawk
contracts [36] achieve these properties using Ethereum smart contracts that judge computations
done by a third party (a manager), who executes the contract on private inputs and is trusted not to
reveal any secrets. First all parties submit their encrypted inputs to the contract, then the manager
computes the result and proves its correctness with a zero knowledge proof. If the proof is correct,
the contract pays out money accordingly. While the authors of Hawk discuss the possibility to use
SGX for instantiating the manager and reducing the trust assumptions in this party, it still leverages
the blockchain for every user input, and it only supports single round protocols which is their main
difference to FastKitten. A possible extension to multi-round protocols would be difficult to
achieve without letting the smart contract verify the correctness of every round individually, and
thus create a large blockchain communication overhead.

B Definitions and notation
We denote the set of natural numbers 1, . . . ,m and [m] and the n-ary Cartesian power of a set S
by Sn := S × S × · · · × S. We refer to the i-th coordinate of the vector s ∈ Sn as s[i]. An n-by-m
matrix of elements from S is denoted by S ∈ Sn×m. The element in the i-th row and j-column of S
is S[i][j], the i-th row of S is denoted by S[i][·] and the j-th column of S is denoted by S[·][j].
Modeling coins and contracts Since our framework is not restricted to one specific blockchain,
we define a coin domain Dcoin as a subset of non-negative rational numbers. The concrete definition
of the set Dcoin depends on the considered blockchain.10

In this work we model an n-party contract C as a polynomial time Turing machine. Every contract
has to define a vector c ∈ Ddep that corresponds to the deposits parties are supposed to make. It
must hold that Ddep = (Dcoin \ {0})n which enforces that every party has to make a deposit. We
write Cc when a reference to the deposit vector is needed. The contract Cc takes as input a value
state ∈ Dstate ∪ {∅} and a vector of values in ∈ Dnin , and returns an output value out ∈ Dout , a new
state state ∈ Dstate ∪ {⊥} and a coin distribution d ∈ Dncoin . The initial state of every contract is
state = ∅ and state = ⊥ signals the contract’s termination. In case state = ⊥, the vector d defines
the final payout to each party of the contract. It must hold that

∑
i∈[n] d[i] ≤

∑
i∈[n] c[i]. This

restriction guarantees that parties cannot create money by executing a contract.
The input domain Din , the state domain Dstate and the output domain Dout are application spe-
cific and defined by the contract. For example, in case C is the “Rock-paper-scissor” game, then
Din could be {rock, paper, scissor} and the Dout could be {winA, winB, same}, where the values
“winA”, “winB” would define the winner and “same” signals that none of the players won.

10For Bitcoin, for instance, we have Dcoin := {c ∈ Q | c · 108 ∈ N ∪ {0}} which corresponds to the fact that the
smallest Bitcoin unit, called Satoshi, is equal to 10−8 BTC.

28

We model the contract C run among n parties for m rounds. Formally, a n-party contract C is
called m-round bounded (or shortly an (n,m)-contract) if for any I ∈ Dn×min there exists m′ ∈ [m]
such that statem′ = ⊥, where (statej , out ,d) := Cc(statej−1, I[·][j]) for j ≥ 1 and state0 := ∅.
In order to formally state our security properties, we need to define what we mean by correct
evaluation of a contract. To this end, we define the algorithm Eval in Fig. 4 which takes as input
an (n,m)-contract C and a matrix of inputs I ∈ Dn×min . The output of the algorithm is the tuple
(out ,d), where out is the output and d is the coin distribution after the contract’s termination.

1: j := 1, state := ∅
2: while state 6= ⊥ do
3: (state, out ,d) := C(state, I[·][j])
4: j := j + 1

5: Output (out ,d).

Figure 4: Correct contract evaluation of an (n,m)-contract C on inputs I ∈ Dn×min .

Protocol execution We consider an n + 1 party protocol π that runs between parties from the
set P+ = {P1, . . . , Pn, Pn+1}. Sometimes it is convenient to refer to the set of parties without the
operator Pn+1.11 To this end we define P := P+ \ {Pn+1}. We will slightly abuse the notation
and write i ∈ P+ instead of Pi ∈ P+. We assume that all parties are connected to the operator
by authenticated channels. A protocol is executed in presence of an adversary A who can corrupt
parties from P+. By saying “A corrupts the party Pi” we mean that the adversary takes complete
control over the party Pi (i.e. the adversary learns the inputs of the party Pi, party’s internal state
and has the power to decide about messages Pi sends and the output Pi returns).
The input of the protocol execution is an (n,m)-contract Cc, a matrix of inputs I ∈ Dn×min , where
the value I[i][j] defines the input of party Pi for round j, and a vector of account balances accold ∈
Dacc(c) ⊆ Dn+1

coin . The account domain Dacc(c) is defined such that ∀i ∈ P : accold[i] ≥ c[i] and
accold[i + 1] ≥

∑
i∈P c[i]. This restriction guarantees that every party has enough coins for the

initial deposit. The output of the execution of the protocol π in presence of an adversary A is
defined as

(out,accnew) := REALπ,A(Cc, I,acc
old),

where accnew ∈ Dn+1
coin is the balance vector after the protocol execution12 and out ∈ (Dout ∪ {setupFail , abort})n

is the vector of parties’ outputs. The meaning of the output setupFail is to signal that the setup
phase of the protocol did not complete successfully (which might for example include the situation
when malicious parties do not make their initial deposits or when parties disagree on the contract
to be executed, etc.). The meaning of the output abort is to signal that the setup phase was suc-
cessful but the contract execution did not complete successfully (this might happen for example if
a malicious party does not provide its input or the operator stops communicating with the parties,
etc.). In case all parties are honest, for brevity we write only REALπ(Cc, I,acc

old).
Security definitions We first define the security property called operator balance security which,
intuitively, says that in case the operator behaves honestly, he cannot lose money.

Definition 1 (Operator balance security). A protocol π run by parties from P+ satisfies the operator
balance security property if for every (n,m)-contract Cc, for every adversary A corrupting only

11For simplicity, we denote the operator Q as Pn+1
12Recall that we consider only standalone security definition; thus the account values cannot be changed by other

processes.

29

parties from P (i.e., the operator must be honest), for every I ∈ Dn×min and every accold ∈ Dacc(c), the
output of the protocol execution (out,accnew) := REALπ,A(Cc, I,acc

old) is such that accnew[n+1] ≥
accold[n+ 1].

Intuitively, correctness states that in case all parties behave honestly (including the operator), every
party Pi ∈ P outputs the correct result and earns the amount of coins she is supposed to get
according to the correct contract execution.

Definition 2 (Correctness). Protocol π run by parties P+ satisfies the correctness property if
for every (n,m)-contract Cc, every I ∈ Dn×min and every accold ∈ Dacc(c), the protocol output
(out,accnew) := REALπ(Cc, I,acc

old) is such that ∀i ∈ P :

out[i] = out and accnew[i] = accold[i]− c[i] + d[i],

where (out ,d) := Eval(Cc, I) (recall that c is the vector of deposits made by parties P as per contract
Cc).

Finally, we define the fairness property which, on high level, guarantees that if at least one party
Pi ∈ P is honest, then (i) either the protocol correctly completes an execution of the contract or
(ii) all honest parties output setupFail and stay financially neutral or (iii) all honest parties output
abort , stay financially neutral, and at least one corrupt party must have been punished.

Definition 3 (Fairness). A protocol π run by parties from P+ satisfies the fairness property if for
every (n,m)-contract Cc, for every adversary A corrupting parties from P+ such that at least one
party from P is honest, for every I ∈ Dn×min and every accold ∈ Dacc(c), the output of the protocol
execution (out,accnew) := REALπ,A(Cc, I,acc

old) is such that one of the following statements must
be true (below H+ denotes the set of honest parties and H the set of honest parties excluding the
operator):

(i) ∃I∗ ∈ Dn×min such that ∀i ∈ H the following holds:

• I[i][·] = I∗[i][·],
• out[i] = out and accnew[i] ≥ accold[i]− c[i] + d[i], where (out ,d) := Eval(Cc, I

∗).

(ii) ∀i ∈ H : out[i] = setupFail , accnew[i] ≥ accold[i].

(iii) ∀i ∈ H : out[i] = abort , accnew[i] ≥ accold[i] and∑
`∈P+\H+

accnew[`] <
∑

`∈P+\H+

accold[`]. (1)

Note that if the statement (i) holds, then the protocol terminated in the finalize phase. Hence, the
only thing the adversary A might have done was changing the inputs of the malicious parties and/or
spending their coins. In other words, an honest party’s output is the same as it would be if no party
was corrupt but inputs of parties from P \ H can be different.

C Proof of Theorem 1
We now formally state and proof the main theorem of our work which has been informally explained
in Sec. 7.

30

Theorem 1 (Formal statement). Assuming existence of a signature scheme (Gen, Sign,Vrfy) that
is existentially unforgeable under chosen message attack, a trusted execution environment emulating
the TEE ideal functionality (see Sec. 5.2) and a blockchain emulating the BC ideal functionality (see
Sec. 5.2), the protocol πFastKitten as defined in Section 5 satisfies correctness, fairness and operator
balance security property.

For the purpose of the security analysis, we do not consider the fees of posting transaction on the
blockchain and the value of the challenge and response transactions µ (see Sec. 5 for the definition
of the mentioned transactions).
Proof of operator balance security
We distinguish the following cases when the operator is honest:
Case A: If during the setup phase, the participants do not agree on a contract C, then the operator
does not make its deposit txQ and hence does not lose any coins.
Case B: If the parties agree on the contract during the setup phase, the operator makes its deposit
but at least one of the parties does not make a deposit, then the enclave outputs a transaction
txout(J , c, setupFail) which the operator can publish on the blockchain. By definition of this trans-
action, the operator receives its entire deposit back.
Case C: Consider now the situation that the setup phase successfully completes. If there is a party Pi
which at round j ∈ [m] of the round computation phase does not provide correctly signed input, even
after the challenge-response case, then the enclave will then output the transaction txout(J , c, abort)
that returns the deposit back to the operator.
Case D: If the contract execution successfully terminates, the enclave outputs the transaction
txout([n],d, outC) that returns the entire deposit back to the operator.
In remains to discuss that the output transaction posed by the operator in cases B,C and D is valid
when published on the blockchain (i.e. all the input transactions are unspent transactions). The
only other transaction that is spending the deposit transactions is the penalty transaction txp which
is valid only after round τfinal = τ + (3 + 2m)(δ + 5), where τ is the starting round, δ upper bounds
the blockchain delay, k is the confirmation constant and m is the maximal amount of execution
rounds of the contract C. Since the setup phase takes at most 3(δ+k) rounds and each execution of
the contract takes at most 2(δ + k) rounds, an honest operator has enough time to post the output
transaction to the blockchain.
Proof of correctness
For this security property we consider the scenario when all parties from P and the operator are
honest. The protocol starts with the Setup phase, where the parties from P agree to the contract
C, followed by the operator’s deposit txQ. Once operator’s deposit is confirmed on the blockchain,
then all parties from P make their deposit. Next, the protocol proceeds to the round computation
phase. For every Pi ∈ P and every round j ∈ [m] the following holds: (1) Pi sends input (ini, si) to
operator Pn+1, who (2) confirms that the input (ini, si) is correctly signed, i.e. Vrfy(pk i; ini, si) =
1. The operator loads the input vector ~in into the enclave and which runs the contract C as
(outC , state

′,d) := C(state, ~in). By our assumption that the contract contract is an (n,m)-contract,
we know that after at most m rounds the output of the contract execution is (outC ,⊥,d) which
signal the final round. The enclave outputs transaction txout(P,d, outC), which sends d[i] coins
back to party Pi. Hence, for every i ∈ P it holds that accnew[i] = accold[i]− c[i] + d[i].
Proof of Fairness
Let us first focus on the Setup phase of the protocol πFastKitten and show that if it does not complete
successfully, then all honest parties output “setupFail ” and stay financially neutral.

31

Lemma 2. If there exists an honest party Pi such that out[i] = setupFail , then the statement (ii)
of the fairness property holds.

Proof. According to the protocol description, there are three cases when an honest party Pi can
output setupFail : (i) if Pi did not receive a valid tuple (init, txp) from the operator. In that case the
party does not post the transaction txi; (ii) if a output transaction txout(J , c, setupFail) is posted
to the blockchain before τfinal. In that case, by definition of the function Pdep, at least one party
Pi∗ did not post the transaction txi∗ ; and (iii) if Pi is posting the penalty transaction txp in round
τfinal and at least one transaction txi∗ was not posted on the blockchain before round τsetup. Hence,
we proved that if an honest party Pi outputs “setupFail ”, then there exists i∗ ∈ P such that txi∗ was
not published on the blockchain before round τsetup. Let us now show that the opposite implication
holds as well.
An honest party Pi does not post the transaction txi to the blockchain only if she does not receive
a valid tuple (init, txp). In this case Pi outputs setupFail . If Pi posted the transaction txi on the
blockchain but txi∗ was not posted for some i∗ 6= i, then the function Pdep (if executed) must return
a transaction txout(J , c, setupFail). If such this output transaction is posted on the blockchain before
round τfinal, then Pi outputs setupFail . If no such transaction is posted on the blockchain, then in
round τfinal party Pi posts the penalty transaction txp and return setupFail .
We can conclude that if one honest party outputs “setupFail ”, then all honest parties output
“setupFail ”. It remains to show that if an honest Pi outputs “setupFail ”, then she never loses
coins. Consider again the three possible cases in which an honest Pi outputs “setupFail ”. In the
case (i) Pi never makes any deposit and hence cannot lose coins; in cases (ii) and (iii) Pi gets c[i]
coins back by definition of the output, resp. penalty, transaction.

The above lemma show that fairness holds in case the Setup phase fails. As a next step we show
the more interesting case; namely, that fairness holds also if the Setup phase completes. The lemma
below discusses the case when an honest party outputs “abort”.

Lemma 3. If there exists an honest party Pi such that out[i] = abort , then the statement (iii) of
the fairness property holds.

Proof. According to the protocol description, there are two cases when an honest party Pi outputs
“abort”: (i) a transaction txout(J , c, abort) is published on the blockchain before round τfinal or (ii)
all transactions txi were posted to the blockchain before round τsetup and the transaction txp was
posted on the blockchain latest in round τfinal. In a similar way as in the proof of Lemma 2, we can
prove that the opposite implication holds as well and hence, if one honest party outputs “abort”, then
so do all honest parties. It remains to discuss that no honest party loses coins and that malicious
parties are punished.
Let us first consider the case (i). By definition of the FastKitten enclave program, the enclave
outputs a transaction txout(J ,d, abort) if and only if the operator executes the function errorProof
and parties from the set P \ J , which must not be an empty set, did not submit a valid input for
the next round even if it was challenged. Since an honest party always provides input for the next
phase, H ⊆ J . By definition of the output transaction, all parties from J and the operator get
their deposit back and the parties from P \ J do not get anything, i.e. ∀` ∈ P \ J it holds that
accnew[`] = accold[`]− c[`]. Since c[`] > 0 and P \J 6= ∅, at least one malicious party lost coins. In
addition, we know that no malicious party earned coins. Hence, the inequality (1) holds.
In case (ii) the penalty transaction is posted on the blockchain which mean that every Pi ∈ P
gets c[i] coins back, i.e. accnew[i] = accold[i] and the operator loses all the deposited coins, i.e.

32

accnew[i] = accold[i]−
∑

i∈[n] c[i]. The operator balance property implies that the operator must be
malicious. Since malicious operator lost coins and no other malicious party earned any coins, the
inequality (1) holds.

What remains to show it that the fairness property holds when the execution of the contract suc-
cessfully completes.

Lemma 4. If there exists an honest party Pi such that out[i] 6∈ {abort , setupFail}, then statement
(i) of the fairness property holds.

Proof. According to the protocol description, an honest party Pi outputs out[i] 6∈ {abort , setupFail}
if only if a transaction txout(J ,d,out[i]) is posted on the blockchain before round τfinal. From
Lemma 2 and Lemma 3 we know that for every honest party P` it must hold that out[`] 6∈
{abort , setupFail}. Since only one transaction txout(J ,d, out) can be posted on the blockchain,
all honest parties output the same value out ∈ Dout . Hence, we proved that honest parties reach
consensus on the output value.
By definition of the function round of the FastKitten enclave program, the enclave outputs a
transaction txout(J ,d, out) if only if the loaded contract terminates with d as the final distribution
and out as the final output before round τfinal. This, in particular, implies that every party Pi
provided a signed input ini,j in every round j and the operator loaded all of them into the enclave,
i.e. I∗[i][j] := ini,j . Unforgeability of the signature scheme guarantees that for every honest party Pi
and every round j it holds that ini,j = I[i][j], i.e. honest parties’ inputs cannot have been modified.
Since the function at least one party Pi ∈ P is honest, we know that the executed contract inside the
enclave is indeed Cc (if the operator load s a different contract inside the enclave, the verification of
the quote would fail in which case an honest party outputs “setupFail ”.).

D Implementation of Provably Fair Poker
For our second use case we implemented a contract that allows participants to play provably fair
online poker. We based the Python contract on a poker library for Texas Hold’em [63] and modified
it by adding a player chip stack and the possibility of betting a number of chips into the pot each
round. Participants first have to buy into the game with an equal amount of bitcoins, which will
be converted to a 10K chip stack for each player sitting at the table (in our protocol, this happens
during the Initialize step of the setup phase).
After the setup phase and before the first round each player is assigned a seat number by the enclave.
The enclave additionally chooses one of the players at random and assigns the dealer button to that
party. Then each player is dealt a hand by the enclave and every player can decide whether or not
to place a bet, starting from the player sitting next to the dealer button (for brevity we omitted the
necessity of placing blinds). After the flop, river, and turn have been dealt by the enclave players
have a final chance of placing bets. If more than two players remain in the game after the final
bets the enclave reveals the winner and distributes the chips in the current pot and schedules the
next round. Further rounds are scheduled until either the maximum number of matches have been
played or only one player remains with all the chips at the table. An example player view of a round
in which two players placed bets is depicted in Listing 5. In our evaluation we did not include a
thinking time per player: we automated the interaction using bots that placed bets instantaneously
based on a win strategy instead of using human players.

33

// Pre-Flop
Common cards:
Your hand: [9«] [T©]
Player 1 bets 1000
Pot: 1000 Your bet: 0 Stack: 10000
Call/Fold/Bet (min 1000) > 1000

// Flop
Common cards: [3«] [Jª] [9ª]
Your hand: [9«] [T©] (Pair)
Player 1 bets 1000
Pot: 3000 Your bet: 1000 Stack: 9000
Call/Fold/Bet (min 1000) > 1000

// River
Common cards: [3«] [Jª] [9ª] [Qª]
Your hand: [9«] [T©] (Pair)
Player 1 bets 1000
Pot: 5000 Your bet: 2000 Stack: 8000
Call/Fold/Bet (min 1000) > 1000

// Turn
Common cards: [3«] [Jª] [9ª] [Qª] [7©]
Your hand: [9«] [T©] (Pair)
Player 1 bets 1000
Pot: 7000 Your bet: 3000 Stack: 7000
Call/Fold/Bet (min 1000) > 1000
Player 2 wins 8000 with a Pair [9«] [T©]

Figure 5: Example match of Texas Hold’em Poker in FastKitten with two players placing bets in
real time.

E Transaction Transcripts
The following Listings show sample penalty, challenge, response, and output transactions, as shown
by the command decoderawtransaction of Bitcoin Core 0.16.1. Those transactions were gener-
ated for the test Bitcoin network (testnet); the main network (mainnet) would use very similar
transactions (of the same length). Only the relevant parts are shown.

34

{
"size": 504 ,
"locktime": 1446631 ,
"vin": [
{

"txid": "84e5253e199d3b4a100a385381be90cf2ff093608dafd8042c6eface3c16f453",
"vout": 11,
"scriptSig": {...},
"txinwitness": [...],
"sequence": 4294967294

}
],
"vout": [
{

"value": 0.00999950 ,
"n": 0,
"scriptPubKey": {

"asm": "OP_HASH160 3210972ae2b0dd7a0f908d0561f774e05b3bed46 OP_EQUAL",
"hex": "a9143210972ae2b0dd7a0f908d0561f774e05b3bed4687",
"reqSigs": 1,
"type": "scripthash",
"addresses": ["2MwowebxQDF1s37WELjUAnGYQbQ3xkb1f4c"] // Player 0

}
}, {

"value": 0.00999950 ,
"n": 1,
"scriptPubKey": {

"asm": "OP_HASH160 555c9781aebcaae0ccb7993c1f1549784c04fc9d OP_EQUAL",
"hex": "a914555c9781aebcaae0ccb7993c1f1549784c04fc9d87",
"reqSigs": 1,
"type": "scripthash",
"addresses": ["2N12aLyvDcmidHkKQavVLjJvhQA27fLEe7v"] // Player 1

}
}, ... {

"value": 0.00999950 ,
"n": 9,
"scriptPubKey": {

"asm": "OP_HASH160 5a463456cf6a22e899b5aa2f55cce5af1b6ef89d OP_EQUAL",
"hex": "a9145a463456cf6a22e899b5aa2f55cce5af1b6ef89d87",
"reqSigs": 1,
"type": "scripthash",
"addresses": ["2N1UYuSSGzfiKtDQcDMiu9QFNiDZy8MUcgB"] // Player 9

}
}

]
}

Listing 1: A sample penalty transaction (size: 504 bytes).

35

{
"size": 293 ,
"locktime": 0,
"vin": [

{
"txid": "84e5253e199d3b4a100a385381be90cf2ff093608dafd8042c6eface3c16f453",
"vout": 11,
"scriptSig": {...},
"txinwitness": [...],
"sequence": 4294967295

}
],
"vout": [

{
"value": 0.00000100 ,
"n": 0,
"scriptPubKey": {

"asm": "OP_HASH160 3210972ae2b0dd7a0f908d0561f774e05b3bed46 OP_EQUAL",
"reqSigs": 1,
"type": "scripthash",
"addresses": ["2MwowebxQDF1s37WELjUAnGYQbQ3xkb1f4c"] // Player 0

}
}, {

"value": 0.84998953 ,
"n": 1,
"scriptPubKey": {

"asm": "OP_HASH160 54cb7b683ce803cc38a93f4686fc818fdcdc2251 OP_EQUAL",
"reqSigs": 1,
"type": "scripthash",
"addresses": ["2MzyaWaYAYKSmn9wL5aP6m6GtVa9xe8ppJe"]

}
}, {

"value": 0.00000000 ,
"n": 2,
"scriptPubKey": {

"asm": "OP_RETURN
436f6d6d6f6e3a203353204a48203948205148203744202048616e643a203953205444",

"hex": "
6a23436f6d6d6f6e3a203353204a48203948205148203744202048616e643a203953205444
",

"type": "nulldata"
}

}
]

}

Listing 2: A sample challenge transaction (size: 293 bytes).

36

{
"size": 266 ,
"locktime": 0,
"vin": [

{
"txid": "85248aafd413c612a9baf2827862695802748374f7c8635edeb7ade4f3b9d2c1",
"vout": 0,
"scriptSig": {...},
"txinwitness": [...],
"sequence": 4294967295

}
],
"vout": [

{
"value": 0.00000100 ,
"n": 0,
"scriptPubKey": {

"asm": "OP_HASH160 2d2d7a1de4b8f57804c3101f73d422ede2feedc2 OP_EQUAL",
"hex": "a9142d2d7a1de4b8f57804c3101f73d422ede2feedc287",
"reqSigs": 1,
"type": "scripthash",
"addresses": ["2MwN6siRR7DthC8jgyoAg9zjrQxQUmM5ynw"]

}
}, {

"value": 1.04999466 ,
"n": 1,
"scriptPubKey": {

"asm": "OP_HASH160 2acecdf3b5a432057412c898361a0433c5539713 OP_EQUAL",
"hex": "a9142acecdf3b5a432057412c898361a0433c553971387",
"reqSigs": 1,
"type": "scripthash",
"addresses": ["2Mw9a7NNtj9wd4ozky47LNLD28MJ753y5qd"]

}
}, {

"value": 0.00000000 ,
"n": 2,
"scriptPubKey": {

"asm": "OP_RETURN 4265742031303030",
"hex": "6a084265742031303030",
"type": "nulldata"

}
}

]
}

Listing 3: A sample response transaction (size: 266 bytes).

37

{
"size": 1986 ,
"locktime": 0,
"vin": [

{ // Deposit by operator
"txid": "84e5253e199d3b4a100a385381be90cf2ff093608dafd8042c6eface3c16f453",
"vout": 2,
"scriptSig": { ... },
"txinwitness": [...],
"sequence": 4294967295

}, { // Deposit by player 0
"txid": "84e5253e199d3b4a100a385381be90cf2ff093608dafd8042c6eface3c16f453",
"vout": 0,
"scriptSig": { ... },
"txinwitness": [...],
"sequence": 4294967295

}, { // Deposit by player 1
"txid": "84e5253e199d3b4a100a385381be90cf2ff093608dafd8042c6eface3c16f453",
"vout": 3,
"scriptSig": { ... },
"txinwitness": [...],
"sequence": 4294967295

}, ... { // Deposit by player 9
"txid": "84e5253e199d3b4a100a385381be90cf2ff093608dafd8042c6eface3c16f453",
"vout": 11,
"scriptSig": { ... },
"txinwitness": [...],
"sequence": 4294967295

}
],
"vout": [

{
"value": 0.09999000 ,
"n": 0,
"scriptPubKey": {

"asm": "OP_HASH160 54cb7b683ce803cc38a93f4686fc818fdcdc2251 OP_EQUAL",
"hex": "a91454cb7b683ce803cc38a93f4686fc818fdcdc225187",
"reqSigs": 1,
"type": "scripthash",
"addresses": ["2MzyaWaYAYKSmn9wL5aP6m6GtVa9xe8ppJe"] // Operator

}
}, {

"value": 0.09999000 ,
"n": 1,
"scriptPubKey": {

"asm": "OP_HASH160 850898c171a3de1d180120f2f9d30f3edada6933 OP_EQUAL",
"hex": "a914850898c171a3de1d180120f2f9d30f3edada693387",
"reqSigs": 1,
"type": "scripthash",
"addresses": ["2N5NeA79D7YV4gM3JmcWxHWDnYnx1BX6q1S"] // Player 4

}
}, {

"value": 0.00000000 ,
"n": 2,
"scriptPubKey": {

"asm": "OP_RETURN 506c6179657220342077696e732e",
"hex": "6a0e506c6179657220342077696e732e",
"type": "nulldata"

}
}

]
}

Listing 4: A sample output transaction (size: 1986 bytes).

38

	Introduction
	Related Work
	Design
	Design Challenges of FastKitten
	Architecture and Protocol

	Adversary Model
	The FastKitten Protocol
	Modeling the Blockchain
	Modeling the TEE
	Detailed Protocol Description

	Execution Facility
	The Enclave Program FastKitten
	Blockchain Verification
	Participant Communication
	Enclave Setup
	Denial of Service Protection

	Security
	Architecture Security

	FastKitten Contracts
	Complexity
	Performance Evaluation
	Applications

	Discussion and Extensions
	Fees for the Operator
	Fault Tolerance
	Privacy
	Multi-currency Contracts

	Conclusion
	Further Related Work
	Second-layer Scaling Solutions
	Incentive-driven Verification
	TEEs for privacy

	Definitions and notation
	Proof of Theorem 1
	Implementation of Provably Fair Poker
	Transaction Transcripts

