
Robust MPC: Asynchronous Responsiveness yet
Synchronous Security

Chen-Da Liu-Zhang1, Julian Loss2, Ueli Maurer1, Tal Moran3?, and Daniel
Tschudi4 ??

1 {lichen,maurer}@inf.ethz.ch, ETH Zurich
2 julian.loss@rub.de, Ruhr-University Bochum

3 talm@idc.ac.il, IDC Herzliya
4 tschudi@cs.au.dk. Aarhus University

Abstract. Two paradigms for secure MPC are synchronous and asyn-
chronous protocols, which differ substantially in terms of the guarantees
they provide. While synchronous protocols tolerate more corruptions and
allow every party to give its input, they are very slow because the speed
depends on the conservatively assumed worst-case delay ∆ of the net-
work. In contrast, asynchronous protocols are as fast as the actual net-
work allows, i.e., run in time proportional to the actual maximal network
delay δ, but unavoidably parties with slow network connections cannot
give input.
This paper proposes a new, composable model (of UC functionalities)
capturing the best of both worlds. Each party obtains the output as
fast as the network allows (a property called responsiveness), and it is
guaranteed that all parties obtain the same output. We consider differ-
ent corruption thresholds: correctness, privacy, and responsiveness are
guaranteed for less than TC , TP , and TR corruptions, respectively, while
termination is always guaranteed. We achieve a trade-off between cor-
rectness, privacy and responsiveness: For any TR ≤ 1

3n, one can achieve
TC = TP = min{ 1

2n, n− 2TR}. In particular, setting TR = 1
4n allows us

to obtain TC = TP = 1
2n, hence achieving substantial responsiveness, yet

correctness and privacy much better than in an asynchronous protocol
and as good as for a purely synchronous (slow) protocol.
This result is achieved by a black-box compiler for combining an asyn-
chronous and a synchronous protocol, involving new protocol techniques
that may have applications in other contexts, and by devising an asyn-
chronous protocol with TC = TP = n − 2TR, improving the correctness
and privacy of known protocols achieving TC = TP = 1

3n.

1 Introduction

In the context of multiparty computation (MPC), a set of mutually distrustful
parties wish to jointly compute a function by running a distributed protocol.
? Supported in part by ISF grant no. 1790/13 and by the Bar-Ilan Cyber-center.
?? Author was supported by advanced ERC grant MPCPRO.

The protocol is deemed secure if every party obtains the correct output and if
it does not reveal any more information about the parties’ inputs than what
can be inferred from the output. Moreover, these guarantees should be met even
if some of the parties can maliciously deviate from the protocol description.
Broadly speaking, MPC protocols exist in two regimes of synchrony. First, there
are synchronous protocols which assume that parties share a common clock and
messages sent by honest parties can be delayed by at most some a priori bounded
time, say ∆. Synchronous protocols typically proceed in rounds of length ∆, en-
suring that any message sent at the beginning of a round by an honest party will
arrive by the end of that round at its intended recipient. On the upside, such
strong timing assumptions allow to obtain protocols with an optimal resilience of
n
2 corruptions. On the downside, ∆ has to be chosen rather pessimistically. This
means that even for small actual network delay δ, i.e., δ � ∆, a synchronous
protocol runs in time that depends on ∆, thus failing to take advantage of a
fast network. The second type of protocols that we will study in this work are
asynchronous protocols. Such protocols do not require synchronized clocks or
a priori bounded network delays to work properly. As such, they function cor-
rectly under much more realistic network assumptions in which messages can
be arbitrarily delayed and arrive out of order. Moreover, asynchronous protocols
have the benefit of running at the actual speed of the network, i.e., they run in
time that depends only on δ, but not on ∆; a notion that we shall refer to as
responsiveness [33]. This speed and robustness comes at a price, however: it can
easily be seen that no asynchronous protocol that implements an arbitrary func-
tion can tolerate n

3 maliciously corrupted parties. A natural question is whether
it is possible to obtain hybrid protocols that combine beneficial properties from
both regimes, i.e., can be fast under a well-behaved network, but remain resilient
above n

3 corrupted parties as long as synchrony is ensured. Indeed, several re-
cent works have addressed this question in the context of byzantine agreement
(BA) [32] and state-machine-replication (SMR) [33]. All of the aforementioned
works give optimistic guarantees for responsiveness using a fast asynchronous
path while offering a slow, but resilient synchronous fallback path in case the
fast path fails. The main challenge is to trade off properties in a non-trivial
fashion, i.e., without ‘overwriting’ one of the paths by running the other.

1.1 Contributions

In this work, we extend the scope of hybrid protocols to the realm of MPC. We
make the following contributions.

The model. We first introduce a new composable model of hybrid functional-
ities in the UC framework, which captures the guarantees that protocols from
both asynchronous and synchronous worlds achieve in a very general fashion.
Our model allows to capture multiple distinct guarantees such as privacy, cor-
rectness, or responsiveness, each of which is guaranteed to hold for (possibly)
different thresholds of corruption. Our ideal hybrid functionality admits compo-
sition in a black-box fashion without sacrificing the responsiveness guarantees of

2

any of the composed components. This is in stark contrast to the aforementioned
works for which the issue of composition is left mostly as an open question and
security is not proven in the UC framework.

New protocols. We show a protocol that always terminates, and has a trade-off
between correctness, privacy and responsiveness: for any responsiveness thresh-
old TR ≤ 1

3n, we achieve a correctness and privacy threshold of TC = TP =
n − 2TR. That is, for TR = 1

4n, we achieve a reasonable amount of responsive-
ness, and keep the same correctness and privacy as synchronous protocols. To
this end, we follow two steps, which might be of independent interest:

1. Black-Box compiler. We give a generic black-box compiler that combines
an asynchronous protocol for SFE with a synchronous protocol for SFE
and gives a hybrid protocol that combines beneficial properties from both
the synchronous and asynchronous regime, roughly in the following way: As-
suming synchronous protocols with correctness and privacy 1

2n, and an asyn-
chronous protocol with correctness, privacy and responsiveness (T aC , T aP , T aR),
the compiler provides correctness, privacy and responsiveness (min{T aC , n2 },
min{T aP , n2 }, T

a
R). Compared to the above works, the main challenge that we

have to overcome in our compiler is to preserve the privacy of both protocol
components– an issue that does not show up for BA or SMR.

2. Improved asynchronous protocol. Finally, we show how to modify the asyn-
chronous MPC protocol by Cohen [10] to obtain the trade-off mentioned
above when used in our aforementioned compiler. That is, we achieve an
asynchronous protocol with correctness and privacy TC = TP = n − 2TR,
improving the correctness and privacy of current asynchronous protocols
achieving TC = TP = 1

3n.

1.2 Technical Overview of Our Results

The Model. In order to capture the guarantees that asynchronous and syn-
chronous protocols achieve in a fine-grained manner, we describe an ideal func-
tionality Fhyb which allows parties to jointly evaluate a function. At a high level,
Fhyb is composed of two phases; an asynchronous and a synchronous phase. Each
party can obtain output in either phase, but not in both. Regardless of when
parties output, as long as less than TC parties are corrupted, each honest party
outputs the correct (and identical) output. As in asynchronous protocols, the
outputs obtained during the asynchronous phase are obtained fast, i.e., at a
time which depends on the actual network delay δ, but not on the worst case
network delay ∆. If less than TR parties are corrupted Fhyb ensures responsive-
ness, meaning that every honest party outputs during the asynchronous phase.
On the downside, Fhyb unavoidably may ignore up to TR inputs from honest
parties. In contrast, if no honest party outputs during the asynchronous phase,
the outputs obtained during the synchronous phase are guaranteed to take into
account all inputs from honest parties (but are received much later). To allow
Fhyb to give different guarantees depending on the number of corruptions, we

3

consider a tuple of thresholds and model the adversary’s capabilities in a fine-
grained manner, such as tampering outputs, learning the honest parties inputs’
or blocking the outputs based on the thresholds. For example, if the correct-
ness threshold is violated, we allow the adversary to modify the outputs; if the
responsiveness threshold is violated, we allow the adversary to block the fast
outputs.

To smoothly model the transition between the two phases, Fhyb operates
with respect to a global clock Gclk and a global timeout functionality Gtimeout.
The goal of Gtimeout is to communicate from the environment a point in time at
which the functionality switches from one phase to the other. This gives a very
general way to model a timeout, since it allows Gtimeout to send the timeout
signal to Fhyb at a time which is not a-priori fixed or within an interval (for
example, the timeout could be sent when an agreement protocol finishes).

Compiler. We now give an outline of our compiler. At a high level, the idea
of our compiler is to first run an asynchronous protocol until the timeout event
occurs. Upon timing out, the parties switch to a synchronous computation. If
the network is well behaved and sufficiently many parties are honest, the honest
parties can hope to obtain their output at the actual speed of network. The
main challenge is to ensure that if even a single honest party obtains output
during the asynchronous phase, the remaining honest parties do not recompute
the output during the synchronous phase. This would be problematic for two
reasons: First, because the combined protocol would offer no improvement over
a standard synchronous protocol in terms of responsiveness; if a party does
not know if the output it obtains during the asynchronous phase will be later
recomputed during the synchronous phase, then this output is essentially useless
to that party. Therefore, if this were indeed the case, then one could run just the
synchronous part of the protocol. Second, computing two different outputs may
be problematic for privacy reasons, as two different outputs give the adversary
more information about the honest parties’ inputs than what it should be able
to infer. Our solution to this problem is to have the asynchronous protocol
output a threshold ciphertext [y] of the actual output y. Prior to running the
hybrid protocol, the parties each obtain a key share di such that t out of n
parties can jointly decrypt the ciphertext by pooling their shares. This way, if
we set t = n − TR, where TR is the responsiveness threshold, we are ensured
that sufficiently many parties will pool their shares during the asynchronous
phase, given that the network is sufficiently well-behaved and fewer than TR
parties are corrupt. Therefore, every honest party should be able to decrypt and
learn the output during the asynchronous phase, thus ensuring responsiveness.
On the other hand, our compiler ensures that if any honest party gives out its
key share during the asynchronous phase after seeing the ciphertext [y] being
output by the asynchronous protocol, then the only possible output during the
synchronous phase can be y. Finally, our compiler has a mechanism to detect
whether no honest party has made its key share public yet. In this case, we can
safely recompute the result during the synchronous phase of the hybrid protocol,

4

as we can be certain that the adversary does not have sufficient key shares to
learn the output from the asynchronous phase.

An Asynchronous MPC Protocol with Parameter Tradeoffs. In the last
part of our paper, we show how to modify the protocol of [10] to sacrifice termi-
nation for improved correctness and privacy. Concretely, we start from Cohen’s
protocol which achieves correctness, privacy and termination all simultaneously
for the corruption threshold 1

3n. At a high level, the idea of this protocol is to
use a threshold homomorphic encryption scheme with threshold t = 2

3n and let
parties distribute encryption shares of their inputs to each other. Then, parties
agree on a common set of at least 2

3n parties, whose input will be taken into
account during the function evaluation. In this step, n Byzantine Agreement
protocols are run. Parties can then locally evaluate the function which is to be
computed on their respective input shares by carrying out the corresponding (ho-
momorphic) arithmetic operations on these shares. After this local computation
has succeeded, parties pool their shares of the computation’s result to decrypt
the final output of the protocol. We modify the thresholds in this protocol in the
following manner. Instead of setting t = 2

3n, we set t = 3
4n. Intuitively, assuming

a perfect BA functionality, this modification has the effect that the adversary
needs to corrupt 3

4n parties to break privacy, but can prevent the protocol from
terminating by withholding decryption shares whenever it corrupts more than
1
4n parties. However, one can see that if one realizes the BA functionality using
a traditional protocol with validity and consistency thresholds 1

3n, the overall
statement will only have correctness and privacy 1

3n.
We show how to improve the correctness and privacy thresholds of the pro-

tocol by using, as a subcomponent, the recent BA protocols proposed by Loss
and Moran [32], which offer to smoothly trade termination for validity and con-
sistency. Our protocol inherits the thresholds of the protocols in [32], giving a
correctness and privacy threshold of TC = TP = 1

2n >
n
3 .

1.3 Related Work

Despite being a very natural direction of research, compilers for achieving trade-
offs between asynchronous and synchronous protocol have only begun to be
studied in relatively recent works. Pass and Shi study a hybrid type of SMR
protocol in [33] which confirms transactions at an asynchronous speed and works
in the model of mildly adaptive malicious corruptions; such corruptions take a
short time to take effect after the adversary decides to corrupt a given party
and as such model a slightly weaker adversary than one that is fully adaptive.
Subsequently, Pass and Shi show a general paradigm for SMR protocols with
optimistic confirmation of transactions called Thunderella [34]. In their work,
they show how to achieve optimistic transaction confirmation (at asynchronous
network speed) as long as the majority of some designated committee and a
party called the ‘accelerator’ are honest and faithfully notarize transactions for
confirmation. If the committee or the accelerator become corrupted, the protocol
uses a synchronous SMR protocol to recover and eventually switch back to the

5

asynchronous path of the protocol. Their protocol achieves safety and liveness
even in the presence of a fully adaptive adversary, but can easily be kept on the
slow, synchronous path forever in this case. Subsequently, Loss and Moran [32]
showed how to obtain compilers for the simpler case of BA that achieve smooth
tradeoffs between responsiveness and safety properties even when confronted a
fully adaptive adversary. They also showed that the tradeoffs achieved by their
main compiler are optimal. In an unpublished manuscript, Guo et al. [25] pro-
pose a protocol which follows the fast/slow path approach in an alternative
model which weakens classical synchrony.

Further Related Work. Best-of-both worlds compilers for distributed proto-
cols (in particular MPC protocols) come in many flavors and we are only able to
list an incomplete summary of related work. Goldreich and Petrank [24] give a
blackbox compiler for byzantine agreement which focuses on achieving protocols
which have expected constant round termination, but in the worst case termi-
nate after a fixed number of rounds. Kursawe [31] gives a protocol for byzantine
agreement that has an optimistic synchronous path which achieves byzantine
agreement if every party behaves honestly and the network is well-behaved.
If the synchronous path fails, then parties fall back to an asynchronous path
which is robust to network partitions. However, the overall protocol tolerates
only n

3 corrupted parties in order to still achieve safety and liveness. A line of
works [3],[4],[9],[35] consider the setting where parties have a few rounds of syn-
chronous communication before switching to fully asynchronous computation.
In this setting, one can achieve protocols with better security guarantees than
purely asynchronous ones.

2 Preliminaries

Notation. We denote by κ the security parameter, P = {P1, . . . , Pn} the set of
n parties and by H the set of honest parties.

Threshold Fully Homomorphic Encryption. We assume the existence of
a secure public-key encryption scheme, which is fully homomorphic and enables
threshold decryption.

Definition 1. A fully homomorphic encryption scheme consists of four algo-
rithms:

– Key generation: (ek, dk) = Gen(1κ), where ek is the public encryption key
and dk is the decryption key.

– Encryption: c = Encek(m; r) denotes an encryption with key ek of a plaintext
m with randomness r, to obtain ciphertext c.

– Decryption: m = Decdk(c) denotes a decryption of ciphertext c with key dk
to obtain plaintext m.

– Homomorphic evaluation: c = fek(c1, . . . , cn) denotes the evaluation of a
circuit f over a tuple of ciphertexts (c1, . . . , cn) to obtain c.

6

The security definition is defined for example in [22].

Definition 2. A threshold encryption scheme is a public-key encryption scheme
which has the following two additional properties:

– The key generation algorithm is parameterized by (t, n) and outputs (ek, dk) =
Gen(t,n)(1κ), where dk is represented via a t-out-of-n secret sharing (dk1, . . . ,
dkn).

– Given a ciphertext c and a secret key share dki, there is an algorithm that
outputs di = DecSharedki(c), such that (d1, . . . , dn) forms a t-out-of-n shar-
ing of the plaintext m = Decdk(c). Moreover, with t decryption shares {di},
one can reconstruct the plaintext m = Rec({di}).

Digital Signature Scheme. We assume the existence of a digital signature
scheme unforgeable against adaptively chosen message attacks. Given a signing
key sk and a verification key vk, let Signsk and Vervk the signing and verification
functions. We write σ = Signsk(m) meaning using sk, sign a plaintext m to
obtain a signature σ. Moreover, we write Vervk(m,σ) = 1 to indicate that σ is a
valid signature on m.

3 Model

3.1 Communication Network and Clocks

We borrow ideas from a standard model for UC synchronous communication
[29, 30]. There, parties have access to functionalities and global functionalities [7].
More concretely, parties have access to a synchronized global clock functionality
Gclk, and a network functionality Fnet of pairwise authenticated communication
channels with an unknown upper bound on the message delay. In our model,
parties also have access to a global timeout functionality Gtimeout, which tells
each party when it must switch the execution from asynchronous to synchronous.

At a high level, the model captures the two guarantees that parties have in
the synchronous models. First, every party must be activated each clock tick, and
second, every party is able to perform all its local computation before the next
tick. Both guarantees are captured via the clock functionality Gclk. It maintains
the global time τ and a round-ready flag di = 0, for each party Pi. Each clock
tick, the clock functionality sets the flag to di = 1 whenever a party sends a
confirmation (that it is ready) to the clock. Once the flag is set for every honest
party, the clock counter is increased and the flags are reset to 0 again.

Functionality Gclk

The clock functionality stores a counter τ , initially set to 0. For each honest party
Pi it stores flag di, initialized to 0.

ReadClock:

7

1: On input (ReadClock), return τ .
Ready:

1: On input (ClockReady) from honest party Pi set di = 1 and notify the
adversary.

ClockUpdate: Every activation, the functionality runs the following code before

doing anything else:
1: if for every honest party Pi it holds di = 1 then
2: Set di = 0 for every honest party Pi and τ = τ + 1.
3: end if

The UC standard communication network does not consider any delivery
guarantees. Hence, we consider the functionality Fnet which models a complete
network of pairwise authenticated channels with an unknown upper bound δ
corresponding to the real delay in the network.

The network is connected to the clock functionality Gclk. It works in a fetch-
based mode: parties need to actively query for the messages in order to receive
them. For each messagem sent from Pi to Pj , Fnet creates a unique identifier idm
for the tuple (Tinit, Tend, Pi, Pj ,m). This identifier is used to refer to a message
circulating the network in a concise way. The field Tinit indicates the time at
which the message was sent, whereas Tend is the time at which the message is
made available to the receiver. At first, the time Tend is initialized to Tinit + 1.

Whenever a new message is input to the buffer of Fnet, the adversary is
informed about both the content of the message and the corresponding identifier.
It is then allowed to modify the delivery time Tend by any finite amount. For
that, it inputs an integer value T along with some corresponding identifier idm
with the effect that the corresponding tuple (Tinit, Tend, Pi, Pj ,m) is modified to
(Tinit, Tend +T, Pi, Pj ,m). Moreover, to capture that there is an upper bound on
the delay of the messages, the network does not accept more than δ accumulated
delay for any identifier idm. That is, Fnet checks that Tend ≤ Tinit + δ. Also,
observe that the adversary has the power to schedule the delivery of messages:
we allow it to input delays more than once, which are added to the current
amount of delay. If the adversary wants to deliver a message during the next
activation, it can input a negative delay.

Functionality Fδnet

The functionality is connected to a clock functionality Gclk. It is parameterized by
a positive constant δ (the real delay upper bound only known to the adversary).
It also stores the current time τ and keeps a buffer of messages buffer which
initially is empty.
Each time the functionality is activated it first queries Gclk for the current time
and updates τ accordingly.

Message transmission:

8

1: At the onset of the execution, output δ to the adversary.
2: On input (Send, i, j,m) from party Pi, Fnet creates a new identifier idm and

records the tuple (τ, τ + 1, Pi, Pj ,m, idm) in buffer. Then, it sends the tuple
(Sent, Pi, Pj ,m, idm) to the adversary.

3: On input (FetchMessages, i) from Pi, for each message tuple
(Tinit, Tend, Pk, Pi,m, idm) from buffer where Tend ≤ τ , the functionality
removes the tuple from buffer and outputs (k,m) to Pi.

4: On input (Delay, T, id) from the adversary, if there exists a tuple
(Tinit, Tend, Pi, Pj ,m, id) in buffer and Tend + T ≤ Tinit + δ, then set
Tend = Tend + T and return (Delay-ok) to the adversary. Otherwise, ignore
the message.

The parties also have access to a global timeout functionality Gtimeout. As
mentioned above, the goal of the timeout is to communicate from the environ-
ment the point in time at which it must switch the execution from asynchronous
to synchronous. Observe that this way to model the timeout is more general
than fixing a point in time in which the parties switch the execution, as it allows
to capture situations in which the timeout is given at a point in time which is
not a priori fixed (e.g. when an agreement protocol finishes, or a certain event
happens). Moreover, we choose to model the timeout as an explicit global func-
tionality that guarantees that all parties are notified at the same time, in contrast
to making a restriction to the environment. This allows to explicitly construct
the timeout functionality, and not make any assumptions on the environment.

The functionality stores a flag, which is initially set to false. At soon as the
environment inputs the message (TimeOut, sid), the timeout is set to true in
the next clock tick. This ensures that the timeout is received by the parties at
the beginning of the same clock tick.

One can generalize this functionality to allow the timeout to differ among
parties, as long as they occur within some known interval of time. Then, when
executing the synchronous phase, one could set a round length large enough
such that it accommodates for all timeouts and the known upper bound on the
network delay ∆. But in this paper, we will describe our protocols relative to
the simpler global functionality.

Functionality Gtimeout

The timeout functionality is connected to a clock functionality Gclk. It stores a
flag timeout which initially is set to false. It stores the current time τ and a value
t which is set to t = ⊥.
Each time the functionality is activated it first queries Gclk for the current time
and updates τ accordingly. If t > 0 and τ > t it sets timeout to true.

Timeout Input:

1: On input of (TimeOut, sid) from the environment, if t = ⊥ set t = τ .

9

2: On input of (CheckTimeOut, sid) from a party, a functionality, or the ad-
versary return (CheckTimeOut, timeout, sid).

3.2 Ideal World

It is known that asynchronous protocols can only tolerate up to t < n
3 active

corruptions and can ignore up to t inputs from honest parties. However, the
benefit is that the time at which the parties obtain output only depends on the
actual delay δ of the network, and not on a known upper bound ∆. On the
other hand, synchronous protocols can tolerate up to t < n

2 corruptions, but the
output is obtained at a time that depends on ∆.

Hybrid SFE: We introduce an ideal functionality Fhyb which allows to capture
the guarantees that asynchronous and synchronous protocols for secure function
evaluation offer in a fine-grained manner.

In a nutshell, it gives different guarantees depending on when the timeout
occurs. If the timeout occurs after O(δ) clock ticks, it allows honest parties to
evaluate and obtain the fast output as in an asynchronous protocol. On the other
hand, if the timeout occurs earlier, the parties are guaranteed to obtain a slow
output, at a time which depends on ∆. Moreover, we will see that one can realize
the functionality Fhyb with correctness and privacy parameters beyond t < n

3 ,
which is the optimal threshold for purely asynchronous protocols.

More concretely, the functionality Fhyb has access to the two global func-
tionalities Gclk and Gtimeout, and allows parties to evaluate a function f . It has
two phases, separated by a timeout event: an asynchronous phase and a syn-
chronous phase. In the asynchronous phase, the adversary can adaptively delay
the outputs up to a time which depends solely on the actual network delay δ.
During this phase, the function to be evaluated is allowed to ignore up to TR
inputs from honest parties, which the adversary can explicitly choose. Observe
that for TR < n

3 , we take into account more inputs from honest parties than
current asynchronous protocols, which can ignore up to n

3 of the inputs from
honest parties.

Once the time out happened, the parties switch to the synchronous phase.
In this phase, it is guaranteed that the honest parties obtain output at a time
which depends on the known upper bound ∆. Moreover, if an honest party got
an output during the asynchronous phase (where up to TR honest inputs can
be ignored), it is guaranteed that every other honest party also gets the same
output. If no party obtained an output during the first phase, the parties evaluate
the function f taking into account all inputs from honest parties.

The functionality Fhyb is a functionality which provides different guarantees
depending on the set of parties the adversary corrupts during the protocol. To
model that, we introduce a tamper function TamperT . The tamper function,
parameterized by a tuple of thresholds T , allows to model the capabilities of

10

the adversary, depending on the set of corrupted parties and the parties’ in-
puts. This generalization allows to naturally capture SFE functionalities which
have different guarantees with corruption thresholds for correctness, privacy and
termination. Moreover, we also allow the tamper function to depend on the ac-
tual inputs of the parties. This allows to capture typical conditions of byzantine
agreement or broadcast protocols, such as validity or consistency.
Tamper Function for Fhyb. In the case of Fhyb, the capabilities we consider
are correctness, privacy, responsiveness and output delivery.

Definition 3. We define a hybrid functionality with correctness, privacy, re-
sponsiveness and termination parameters T = (TC , TP , TR, TL) if it has the fol-
lowing tamper function TamperHybT :

Function TamperHybT

(c, p, r, d) = TamperHybT (x1, ..., xn,H), where:
– c = 1 if and only if |P \ H| ≥ TC .
– p = 1 if and only if |P \ H| ≥ TP .
– r = 1 if and only if |P \ H| ≥ TR
– d = 1 if and only if |P \ H| ≥ TL.

We introduce the formal description of Fhyb for a generic tamper function.
In Section 4, we show how to realize Fhyb with the tamper function presented in
Definition 3. In short, if the correctness threshold is satisfied, the honest parties
have the guarantee that the adversary could not tamper with the outputs for
honest parties. When privacy is satisfied, the honest parties have the guarantee
that the adversary does not learn its inputs apart from the output. Responsive-
ness is modeled as a guarantee for the honest parties to obtain an output at a
latest time which depends solely on δ, if there are less than TR corruptions and
the timeout did not trigger. Finally, if the termination threshold is satisfied, it
guarantees that every honest party gets an output.

We describe Fhyb in a generic fashion with parameters. It contains a parame-
ter τasynch which models the maximum output delay in the asynchronous phase,
and parameters τOD and τOND which model the output delays in the synchronous
phase in the case an output was delivered (or not) during the asynchronous
phase. One can think of τasynch = O(δ), and τOD = τOND = O(∆).

Functionality Fhyb

Fhyb is connected to a global clock Gclk and timeout functionality Gtimeout.
The functionality is parametrized by δ, τasynch, τOD, τOND, TamperT , and the function
to evaluate f .
The functionality stores variable OutputDelivered, τ , a variable τi for each Pi,
τtout, sync, xi, yi, vi. These variables are initialized as OutputDelivered = false,
τtout = −1, τ = 0, sync = false, xi = ⊥, and yi = wi = ⊥.
It keeps a set C = ∅.

11

Timeout/Clock :

Each time the functionality is activated query Gclk for the current time and
updates τ accordingly.
Then, send (CheckTimeOut, sid) to Gtimeout. If the response is
(CheckTimeOut, true, sid), set sync = true and τtout = τ . If
OutputDelivered = false, compute y1 = · · · = yn = f(x1, . . . , xn).

Asynchronous Phase If sync = false do the following:

– At the onset of the execution, output δ and τasynch to the adversary.
– On input (Input, vi, sid) from party Pi:
• If some party has received output, ignore this message. Otherwise, set
xi = vi.

• If xi 6= ⊥ for each Pi ∈ I, set each output to yj = f(x′1, . . . , x′n), where
x′i = xi for each Pi ∈ I ∪ (P \ H) and x′i = ⊥ otherwise.

• Output (Input, Pi, sid) to the adversary.
– On input (GetOutput, sid) from Pi do the following:
• If the output has not been set yet or is blocked, i.e., yi = ⊥ or wi =

aBlocked, ignore this message.
• If τ ≥ τasynch output (output, yi, sid) to Pi and set OutputDelivered =

true.
• Otherwise, output (output, i, sid) to the adversary.

Synchronous Phase If sync = true do the following:

– On input (GetOutput, sid) from party Pi
• If OutputDelivered = true and τ ≥ τtout + τOD and wi 6= blocked, it

outputs (Output, yi, sid) to Pi.
• If OutputDelivered = false and τ ≥ τtout + τOND and wi 6= blocked, it

outputs (Output, yi, sid) to Pi.

Adversary
Upon each party corruption, update (c, p, r, d) = TamperT ((x1, . . . , xn),H).

// Core Set and Delivery of Outputs
1: Upon receiving a message (No-Input,P ′, sid) from the adversary, if sync =

false, P ′ is a subset of P of size |P ′| < TR and y1 = · · · = yn = ⊥, set
I = H \ P ′.

2: On input (DeliverOutput, i, sid) from the adversary, if yi 6= ⊥, τ < τasynch

and sync = false, output (output, yi, sid) to Pi and set OutputDelivered =
true.
// Adversary’s capabilities

3: On input (TamperOutput, Pi, y′i, sid) from the adversary, if c = 1, set yi =
y′i.

4: If p = 1, output (x1, . . . , xn) to the adversary.
5: On input (BlockAsynchOutput, Pi, sid) from the adversary, if r = 1 and

sync = false, set wi = aBlocked.
6: On input (BlockOutput, Pi, sid) from the adversary, if d = 1, set wi =

blocked.

12

4 Compiler

In this section, we present a protocol which realizes the ideal functionality Fhyb
in the (Gclk,Gtimeout,Fδnet,FSetup,Fasync,Fsync,FsBC)-hybrid world. The clock
Gclk, the timeout functionality Gtimeout and the network Fδnet with unknown
upper bound δ are described in Section 3.1. FSetup is a functionality which
distributes to the parties keys for a threshold encryption scheme and a digital
signature scheme. The functionality Fsync models a secure function evaluation
synchronous functionality. A concrete functionality is FsBC, which corresponds
to a byzantine broadcast functionality. Finally, Fasync models a secure function
evaluation asynchronous functionality. In the following subsections we describe
all of these functionalities in detail.

Tamper Function for SFE. We first introduce a tamper function that models
the capabilities of the adversary for a SFE functionality with correctness, privacy
and termination parameters T = (TC , TP , TL). In this tamper function, the
adversary can tamper with the output value, learn the inputs from honest parties
or prevent the honest parties to obtain output, if and only if the number of
corruptions is larger than TC , TP or TL, respectively.

Definition 4. We say that an SFE functionality has correctness, privacy and
termination parameters T = (TC , TP , TL) if it has the following tamper function
TamperSFE

T :

Function TamperSFE
T (x1, ..., xn,H)

(c, p, d) = TamperSFE
T (x1, ..., xn,H), where:

– c = 1 if and only if |P \ H| ≥ TC .
– p = 1 if and only if |P \ H| ≥ TP .
– d = 1 if and only if |P \ H| ≥ TL.

At a very high level, the compiler assumes a Fasync (resp. Fsync) function-
ality with correctness, privacy and termination parameters (T aC , T aP , TL) (resp.
(T sC , T sP , n)). It then realizes the ideal functionality Fhyb with correctness, pri-
vacy, responsiveness and termination parameters (min{T aC , T sC},min{T aP , T sP },
TL, n). Observe that the compiled functionality Fhyb terminates independently
of the number of corruptions.

In Section 5, we give an asynchronous protocol that realizes Fasync with
correctness, privacy and termination parameters (n− 2TL, n− 2TL, TL), for any
TL < n

3 . We can then combine this protocol with any synchronous protocol
realizing Fsync with parameters (n2 ,

n
2 , n), and obtain a hybrid protocol with

parameters (min{n− 2TL, n2 },min{n− 2TL, n2 }, TL, n). Observe that in order to
obtain a synchronous protocol realizing Fsync with parameters (n2 ,

n
2 , n), one can

take any protocol secure against up to n
2 corruptions, unconditional [6, 8, 37, 1,

15, 21, 14, 26] or computational [23, 2, 16, 18, 17], and add a time out to ensure
that parties terminate.

13

As an example, if one sets TL = 1
4n, the resulting protocol has the same

parameters as a synchronous protocol for correctness, privacy and termination,
(n2 ,

n
2 , n), and also has the benefit that the parties obtain the output at a latest

time which only depends on δ, given that the adversary corrupts less than n
4

parties. We remark that synchronous protocols have to guarantee that messages
sent in a certain round must arrive before the next round. Hence, they set the
round length to a value ∆� δ and terminate in a time which depends on ∆.

4.1 Key-Distribution Setup

Our compiler works with a key distribution setup. The setup can be computed
once for multiple instances of the protocol, without knowing the parties’ inputs
nor the circuit to evaluate. As usual, we describe our compiler in a hybrid model
where parties have access to an ideal functionality FSetup. At a very high level,
FSetup allows to distribute the keys for a threshold encryption scheme and a
digital signature scheme. The threshold encryption scheme here does not need
to be homomorphic.

More concretely, it provides to each party Pi a public key ek and a t-out-of-n
share of the corresponding secret key dki. Moreover, it gives to each party a
pair of signing and verification key (sk, vk). Due to modularity and clarity in
following sections, we describe the two setups, digital signature setup FDSSKeys
and threshold encryption setup FTEKeys independently. The setup of the proto-
col consists of the combined functionality FSetup = [FDSSKeys,FTEKeys], which
includes both functionalities.

Digital Signature Setup. The protocol assumes a signature setup. That is,
each party has a pair secret key and verification key (sk, vk), where vk is known
to all parties.

Functionality FDSSKeys

FDSSKeys is parameterized by a digital signature scheme.

Key Distribution:

1: At the beginning of the execution, compute (vkj , skj)← SigGen(1κ) for each
party Pj . Then, record (sid, vk, sk), where vk = (vk1, . . . , vkn) and sk =
(sk1, . . . , skn).

2: On input (GetKeys, sid) from Pi, send (sid, Pi, vk) to the adversary, and
(sid, vk, ski) to Pi.

Threshold Encryption Setup. The protocol assumes also a threshold encryp-
tion setup, which allows each party to access a public key ek and a t-out-of-n
share of the corresponding secret key dki.

14

Functionality FTEKeys

FTEKeys is parameterized by a threshold encryption scheme.

Key Distribution:

1: At the beginning of the execution, compute (ek, dk) ← Gen(t,n)(1κ), where
dk = (dk1, . . . , dkn). Then, record (sid, ek, dk).

2: On input (GetKeys, sid) from party Pi, send (sid, Pi, ek) to the adversary,
and output (sid, ek, dki) to Pi.

4.2 Synchronous SFE

The synchronous SFE functionality Fsync allows a set of n parties to evaluate a
specific function f . It is connected to a global clock Gclk and is parametrized by
a time at which the honest parties start the execution, and a time at which the
honest parties obtain the output. We model the synchronous functionality with
deterministic termination, but one can extend this functionality to also model
probabilistic termination using the frameworks presented in [12, 11].

Similar to Fhyb, Fsync has different guarantees depending on the set of parties
the adversary corrupts. This is modelled by a tamper function TamperT .

Functionality Fsync

Fsync is connected to a global clock Fclock. Fsync is parameterized by a set P
of n parties, a function f and a tamper function TamperT , and a delay time at
which the parties obtain output τsync. Additionally, it initializes τ = 0 and, for
each party Pi, xi = yi = ⊥. It keeps the set of honest parties H.
Upon receiving input from any party or the adversary, it queries Fclock for the
current time and updates τ accordingly.
Party:

1: On input (Input, vi, sid) from each party Pi at a fixed time τ ′:
– If xi = ⊥, it sets xi = vi.
– If for each party Pi ∈ P xi 6= ⊥ and yi = ⊥, set y1 = · · · = yn =
f(x1, . . . , xn).

– Set τout = τ ′ + τsync.
2: On input (GetOutput, sid) from honest party Pi or the adversary (for cor-

rupted Pi), if τ ≥ τout and yi 6= >, it outputs (Output, yi, sid) to Pi.

Adversary: Upon party corruption, set (c, p, d) = TamperT ((x1, . . . , xn),H).

1: On input (TamperOutput, Pi, y′i, sid) from the adversary, if c = 1, set yi =
y′i.

2: If p = 1, output (x1, . . . , xn) to the adversary.
3: On input (BlockOutput, Pi, sid) from the adversary, if d = 1, set yi = >.

15

We denote a synchronous SFE functionality with correctness, privacy and
termination parameters (TC , TP , TL) the Fsync functionality with the tamper
function presented in Definition 4.

4.3 Synchronous Byzantine Broadcast

We introduce the synchronous functionality for Broadcast, FsBC. The adversary’s
capabilities are modelled via the tamper function TamperBA

T , which depends on
the inputs of honest parties and the thresholds T = (TV , TC , TL), for validity,
consistency and termination respectively. The tamper function guarantees that
the adversary is not allowed to tamper the output value of the honest parties
in the case the sender is honest, or the consistency threshold is satisfied. It is
also explicitly stated that in any case the adversary obtains the sender’s input.
Finally, the adversary can make the honest parties not obtain output if the
termination threshold is not satisfied.

Definition 5. We say that a Byzantine Broadcast functionality has validity,
consistency and termination parameters T = (TV , TC , TL) if it has the following
tamper function TamperBC

T :

Function TamperBC
T (x1, ..., xn,H)

(c, p, d) = TamperBC
T (x1, ..., xn,H), where:

– c = 0 if and only if |P \ H| < TV and Ps /∈ P \ H, or |P \ H| < TC .
– p = 1.
– d = 1 if and only if |P \ H| ≥ TL.

We define the synchronous Byzantine Broadcast functionality FsBC. It is
defined to be a synchronous SFE functionality Fsync, where the tamper function
is according to Definition 5, and the function to evaluate fFsBC is defined as
follows: The output value is the sender’s input value xs.

4.4 Asynchronous SFE

We borrow ideas from [29, 13] to model an asynchronous SFE functionality.
In traditional asynchronous protocols, the parties are guaranteed to eventually
receive output. That is, the adversary can delay the output of honest parties
in an arbitrary but finite manner. This comes from the fact that the network
that is assumed in these protocols, only guarantees eventual delivery. In our
setting, the guarantee that is obtained from eventual delivery is not so useful,
and hence we make the simple observation that if the network has an unknown
upper bound δ, then asynchronous protocols actually achieve better guarantees.
That is, that parties obtain output at a time which depends only on δ. We model
this generically, and allow the adversary to delay the outputs of honest parties
up to time τasynch, which typically is a function of δ. The guarantee obtained in
an asynchronous SFE with eventual delivery (e.g. as in [13]) is a special case of

16

our functionality, namely when τasynch = ∞. We describe it for the case where
τasynch is a fixed time, but one can model τasynch to be probabilistic as well.

Similar to Fhyb and Fsync, we also want to capture different guarantees de-
pending on the actual set of corrupted parties. For this, we use the same idea
and parameterize the functionality by a tamper function TamperT .

As known from asynchronous protocols, it is impossible to achieve simultane-
ously fast termination (at a time which depends on δ) and input completeness.
This is because δ is unknown and hence it is impossible to distinguish between
an honest slow party and an actively corrupted party. If fast termination must
be ensured even when up to TL parties are corrupted, the parties can only wait
for n−TL inputs. Since the adversary is able to schedule the delivery of messages
from honest parties, it can also typically choose exactly a set of parties P ′ ⊆ P,
|P ′| < TL, whose input is not considered. Therefore, the ideal functionality also
allows the simulator to choose this set.

As in [13], and similar to the network functionality Fδnet, we use a “fetch-
based” mode functionality and allow the simulator to specify a delay on the
delivery to every party.

Functionality Fasync

Fasync is connected to a global clock functionality Gclk. It is parameterized by
a set P of n parties, a function f , a tamper function TamperT , a delay δ, and
a maximum delay τasynch. It initializes the variables xi = yi = ⊥, τin = ⊥ and
τi = 0 for each party Pi ∈ P and the variable I = H, where H is the set of honest
parties.
Party Pi:

1: On input (Input, vi, sid) from party Pi:
– If some party has received output, ignore this message. Otherwise, set
xi = vi.

– If xi 6= ⊥ for each Pi ∈ I, set each output to yj = f(x′1, . . . , x′n), where
x′i = xi for each Pi ∈ I ∪ (P \ H) and x′i = ⊥ otherwise. Set τin = τ .

– Output (Input, Pi, sid) to the adversary.
2: On input (GetOutput, sid) from Pi, if the output is not set or is blocked,

i.e., yi ∈ {⊥,>}, ignore the message. Otherwise, if the current time is larger
than the time set by the adversary, τ ≥ τi, output (Output, yi, sid) to Pi.

Adversary:

1: Upon receiving a message (No-Input,P ′, sid) from the adversary, if P ′ is a
subset of P of size |P ′| ≤ TL and y1 = · · · = yn = ⊥, set I = H \ P ′.

2: On input (SetOutputTime, Pi, τ ′, sid) from the adversary, if τin 6= ⊥ and
τ ′ < τin + τasynch, set τi = τ ′.

Upon each party corruption, update (c, p, d) = TamperT ((x1, . . . , xn),H).
1: On input (TamperOutput, Pi, y′i, sid) from the adversary, if c = 1, set yi =
y′i.

2: If p = 1, output (x1, . . . , xn) to the adversary.
3: On input (BlockOutput, Pi, sid) from the adversary, if d = 1, set yi = >.

17

An asynchronous SFE functionality with correctness, privacy and termina-
tion parameters (TC , TP , TL) is the Fasync functionality with the tamper function
presented in Definition 4.

4.5 Protocol Compiler

The protocol operates in the (Gclk,Gtimeout,Fδnet,FSetup,Fsync,FsBC,Fasync)-
hybrid model. Parties know a delay upper bound ∆� δ of Fδnet.

The protocol works with a key setup FSetup, which distributes to the parties
at a public key ek, a (n−TL)-out-of-n share of the decryption key dk, a signing
key ski and all the verification keys vkj of the parties.

We assume an asynchronous SFE functionality Fasync which evaluates the
function f ′ = Encek(f). This corresponds to the function f , where the output
is encrypted under the setup public key ek. The Fasync functionality has the
parameters (T aC , T aP , TL). We also need to assume a synchronous SFE function-
ality Fsync which evaluates the function f with parameters (n2 ,

n
2 , n). Moreover,

we assume that every party has access to a broadcast functionality FsBC with
parameters (n2 ,

n
2 , n).

The main idea of the protocol is to allow the parties to first optimistically
evaluate Fasync, and use the synchronous functionality Fsync as a robust fall-
back. A challenge is to ensure that if an honest party obtains an output yasynch
during the asynchronous phase, then every other party obtains this output as
well. We remark that even if the function to evaluate is the same, the output
obtained by Fsync is not necessarily yasynch. This is because in an asynchronous
functionality Fasync, up to TL inputs from honest parties can be ignored. To
solve this, we assume an asynchronous functionality Fasync which evaluates the
function f ′ = Encek(f). This corresponds to the function f , where the output is
encrypted under the setup public key ek. Then, we require that when a party
obtains an encrypted output [y], it signs this value and must collect n − TL
signatures on this value.

Once a list of n−TL signatures is collected on a value [y], the party forwards
this list along with [y], and also sends its decryption key share to every other
party. Then, once a party collects n − TL decryption shares, it can obtain the
output y by decrypting [y].

Once the timeout from Gtimeout is received, parties are instructed to broadcast
all pairs (v, L) of value and list of at least n − TL signatures if such a pair was
collected before during the asynchronous phase. If a party receives via broadcast
any valid pair (v, L), then it sends its decryption share to every other party.
Otherwise, it gives its input to Fsync.

The main observation here, is that if an honest party collected a list L of
n−TL signatures on a ciphertext [yasynch], it must broadcast the pair ([yasynch], L),
where L contains at least n − TL signatures during the broadcast round of
the synchronous phase. Then, every honest party obtains at least a valid pair
([yasynch], L′) after the broadcast round is finished. Since there cannot be two
signature lists of size n − TL on different values, this value must be the cipher-
text encrypting the output [yasynch], and all parties are instructed to send their

18

decryption shares. Once the parties send their decryption shares, every party
obtains as output yasynch. On the other hand, if no honest party obtained such a
pair during the asynchronous phase, it is guaranteed that the adversary did not
learn yasynch, but it might be that the adversary collected a valid ([yasynch], L′).
The adversary can then decide whether to broadcast a valid pair. If it does,
every party will hold this pair and everyone will output yasynch as before. On the
contrary, if it does not, no honest party holds a valid pair after the broadcast
round, and every party can safely give their input to Fsync.

Protocol Π∆
hyb(Pi)

The party stores the current time τ , a flag sync = false and a variable τsync = ⊥.
Clock / Timeout Each time the party is activated do the following:

1: Query Gclk for the current time and updates τ accordingly.
2: Send (CheckTimeOut, sid) to Gtimeout. If the response is

(CheckTimeOut, true, sid), set sync = true and τsync = τ .
Setup:

1: If activated for the first time input (GetKeys, sid) to FSetup. We denote the
public key ek, a (n− TL, n)-share dki of the corresponding secret key dk, the
signing key sk and the verification key vk.

Asynchronous Phase: If sync = false handle the following commands.

– On input (Input, xi, sid) (and following activations) do
1: Send (Input, xi, sid) to Fasync.
2: Send (GetOutput, sid) to Fasync until you get an output [y].
3: Send ([y], Sign([y], sk)) to every other party using Fnet.
4: Receive signatures and values via Fnet until you received n−TL signatures
L = (σ1, . . . , σl) on a value v.

5: Send (v, L) to every party using Fnet.
6: Receive message lists (v, L′). For each such list send (v, L′) to every party

using Fnet.
7: Once done with the above, send the secret key share dki to each party

using Fnet.
8: Once n − TL key shares are received via Fnet, reconstruct the value y

from [y] and output y.
– At every clock tick, if it is not possible to progress with the list above, send

(ClockReady) to Gclk.

Synchronous Phase: If sync = true and τ ≥ τsync, stop all previous steps and
do the following commands.

– On input (ClockReady) do:
1: Send (ClockReady) to Gclk.
2: if τ ≥ τsync then
3: Input (v, L) to the synchronous BC functionality FsBC, for each pair

(v, L) received during the Asynchronous Phase.

19

4: Wait until FsBC terminated. If a pair (v, L) was received from FsBC,
input the message (Send, i, j, dki), for each Pj , to Fnet. Otherwise, input
xi to Fsync.

5: end if
– On input (GetOutput, sid) send (GetOutput, sid) to FsBC. If there was

an output ([y], L′) from FsBC, wait for ∆ clock ticks. After ∆ clock ticks,
n−TL key shares are received via Fnet. Compute and reconstruct the value y
from [y]. Output y. Otherwise, input (GetOutput, sid) to Fsync and output
answer from Fsync.

The following theorem is formally proven in Section A.

Theorem 1. The protocol Π∆
hyb operates in the hybrid world containing func-

tionalities (Gclk,Gtimeout,Fδnet,FSetup,Fsync,FsBC,Fasync), with the following
parameters:

– Fδnet has unknown delay δ.
– Fsync evaluates function f and gives output after Tsync(∆) clock ticks. More-

over, it has parameters (n2 ,
n
2 , n) for correctness, privacy and termination.

– FsBC gives output after TBC(∆) clock ticks. Moreover, it has parameters
(n2 ,

n
2 , n) for validity, consistency and termination.

– Fasync evaluates function f ′ = Encek(f) and gives output after Tasynch(δ)
clock ticks. Moreover, it has parameters (T aC , T aP , TL) for correctness, privacy
and termination.

For any ∆ ≥ δ, it realizes Fhyb with correctness, privacy, responsiveness and
termination parameters (min(T aC , n2),min(T aP , n2), TL, n). The maximum delay of
the asynchronous phase is τasynch = Tasynch(δ)+3δ, and of the synchronous phase
is τOD = TBC(∆) + ∆ if an output was delivered in the asynchronous phase, and
otherwise is τOND = TBC(∆) + Tsync(∆).

5 Asynchronous Protocols

In this section, we show how to realize Fasync with correctness and privacy pa-
rameters beyond n

3 . More concretely, we realize Fasync with correctness, privacy
TC = TP = n − 2TL, for any termination TL ≤ 1

3n. We remark that currently
known asynchronous protocols only tolerate up to TC = TP = TL = 1

3n.
The first step is to obtain an asynchronous Byzantine Agreement protocol

with higher validity and consistency thresholds. For that, we borrow ideas from
[32] and prove UC security of their protocols. The resulting BA protocol is then
used to obtain an SFE with higher correctness and privacy thresholds.

As argued in Section 4.4, current asynchronous SFE functionalities only pro-
vide an eventual delivery guarantee on the output [13], where the adversary
can delay the output of honest parties in an arbitrary but finite manner. The
core reason for this is that the network functionality that is assumed in these
protocols, only guarantees eventual delivery.

20

Asynchronous protocols do not rely on knowing any upper bound ∆ on the
network delay, as they work no matter what the upper bound is. However, they
do provide some guarantees on the output delivery time if there exists an upper
bound δ on the message delivery. That is, they the output is obtained at a time
which depends only on the adversary’s strategy, but there is a latest time at
which the parties obtain output, which depends on δ. With the SFE functionality
Fasync introduced in Section 4.4, we make explicit this guarantee. As a special
case, when δ =∞, one obtains the usual guarantees that an asynchronous SFE
with eventual delivery provides (e.g. as in [13]).

Technical Remark. In our model, parties have access to a synchronized clock.
The asynchronous protocols do not read the clock, but in our model they need
to specify at which point the parties send a (ClockReady) message to Gclk, so
that the clock advances. Observe that we do not model time within a single asyn-
chronous round (between fetching and sending messages), or computation time.
Hence, in an asynchronous protocol, at every activation, each party Pi fetches
receive the messages from the assumed functionalities, and then checks whether
it has any message available that it can send. If so, it sends the corresponding
message. Otherwise, it sends a (ClockReady) message to Gclk.

5.1 ABA with increased Validity and Consistency

In this section, we explain how to improve the validity and consistency param-
eters of a given ABA protocol. First, we define the functionality FaBA to be an
instantiation of Fasync with a specific function to evaluate and a specific tamper
function. Then, we show a protocol to increase the validity. Finally, we show how
to increase the consistency.

Asynchronous Byzantine Agreement. We introduce the asynchronous func-
tionality for Byzantine Agreement, FaBA. We define the asynchronous Byzantine
Agreement functionality FaBA to be a special case of the asynchronous SFE func-
tionality Fasync introduced in Section 4.4. Here, the function fFaBA to evaluate
is defined as follows: If the parties in the core set have preagreement on an input
value x, the output value is also x. Otherwise, the output value is the same
for every honest party, but is defined by the adversary. Moreover, the tamper
function TamperBA

T is according to Definition 6, introduced below.
In this case, the adversary’s capabilities depends on the inputs of honest

parties and the thresholds T = (TV , TC , TL), for validity, consistency and ter-
mination respectively. The tamper function is very similar to the Broadcast
Tamper function TamperBC

T . It guarantees that the adversary is not allowed to
tamper the output value of the honest parties in the case he satisfies the validity
threshold and the parties have preagreement on the inputs, or the consistency
threshold is satisfied. It is also explicitly stated that in any case the adversary
obtains the input values from the honest parties, since there is no privacy in
Byzantine Agreement. Finally, the adversary can make the honest parties not
obtain output if the termination threshold is not satisfied.

21

Definition 6. We say that a Byzantine Agreement functionality has validity,
consistency and termination parameters T = (TV , TC , TL) if it has the following
tamper function TamperBA

T :

Function TamperBA
T (x1, ..., xn,H)

(c, p, d) = TamperBA
T (x1, ..., xn,H), where:

– c = 0 if and only if |P \H| < TV and there exists x such that for all Pi ∈ H :
xi = x, or |P \ H| < TC .

– p = 1.
– d = 1 if and only if |P \ H| ≥ TL.

We define the functionality FaBA to be an asynchronous SFE functionality
Fasync, parameterized by the tamper function TamperBA

T and evaluating the
function fFaBA , defined as follows: fFaBA(x′1, ..., x′n) = x if there exists x s.t. for
every honest party Pi ∈ I, x′i = x. Otherwise, fFaBA(x′1, ..., x′n) = x′j where j is
the lowest index corresponding to a corrupted party.

Protocol to Increase Validity. We describe the protocol presented in [32] in
our model. It constructs a binary asynchronous Byzantine Agreement function-
ality with validity, consistency and termination (1

2 (n − TL), TC , TL), which we
denote FbaBA-Val. It operates in the (Gclk,Fδnet,FDSSKeys,FaBA)-hybrid world,
where FaBA has parameters (TV , TC , TL).

At a very high level, the protocol instructs each party Pi to sign its input
and send the signature and the input to every party. Once Pi collects a list L of
n−TL correct pairs of signature-input, it computes the majority bit b and sends
L to every other party. Then, each party inputs the majority bit b to FaBA, and
obtains as output a bit b∗. Each party terminates when it receives a list of n−TL
pairs, where the majority of the signatures are on b∗. Let us argue why validity
holds up to 1

2 (n−TL) corruptions. The idea is that if less than 1
2 (n−TL) parties

are corrupted and obtains a list L of n−TL correct pairs in Step 3, then at least
1
2 (n− TL) pairs are from honest parties. In the case that all honest parties have
the same input b, it follows that the majority bit in L must be b (in fact, any
list of size at least n−TL, will contain b as the majority bit). Then, in Step 5 of
the protocol, every party either terminates with output b upon receiving a valid
list L on b, or does not terminate (in case it received 1− b as output from FaBA
in the previous step).

Protocol Πval
aBA (Pi)

Setup:

1: Input (GetKeys, sid) to FDSSKeys. Let the signing key be sk and the corre-
sponding verification key vk.

Asynchronous Phase: Upon every activation, progress with the following list
of instructions. If not possible, output (ClockReady) to Gclk.

22

1: On input xi, compute the signature σ ← Sign(xi, sk).
2: Send (xi, σ) to every party. That is, input the message (Send, i, j, (xi, σ)), for

each Pj , to Fnet.
3: Upon receiving ` ≥ n − TL valid messages of the form (x, σ) from Fnet,

compute the majority bit b among them. Let L = (x1, σ1, . . . , x`, σl) be the
list containing `/2 signatures on the majority bit b. For each j, input the
message (Send, i, j, L) to Fnet.

4: Input b to FaBA. Let b∗ denote the output of FaBA.
5: Upon receiving a valid message L′ with majority bit b∗ from Fnet, terminate

with output b∗.

The following theorem is proven in Section B.
Theorem 2. The protocol Πval

aBA operates in the hybrid world containing func-
tionalities (Gclk,Fδnet,FDSSKeys,FaBA), where FaBA gives output at most after
τaba(δ) clock ticks, and has validity, consistency and termination parameters
(TV , TC , TL), TL < n

3 . It realizes FbaBA-Val with validity, consistency and ter-
mination parameters (1

2 (1− TL), TC , TL). The maximum delay for the output is
τval = τaba(δ) + 2δ.

Protocol to Increase Consistency. In the following, we describe a protocol
which operates in the (Gclk,Fδnet,FDSSKeys,FaBA), where FaBA has parameters
(TV , TC , TL). It then realizes a binary asynchronous Byzantine Agreement func-
tionality with parameters (TV , (n−2TL), TL). In order to distinguish the assumed
BA from the ideal BA, we denote the ideal BA functionality FbaBA-Con.

The protocol is quite simple. First, each party Pi inputs xi to FaBA, and once
an output x is obtained from FaBA, it computes a signature σ = Sign(x, sk) and
sends it to every other party. Once n−TL signatures on a value x′ are collected,
the party sends the list containing the signatures along with the value x′ to
every other party, and terminates with output x′. The idea is that there cannot
be two lists of n−TL signatures on different values if the number of corruptions
is smaller than n− 2TL.

Protocol Πcon
aBA (Pi)

Setup:

1: Input (GetDSSKeys, sid) to FDSSKeys. Let the signing key be sk and the
corresponding verification key vk.

Asynchronous Phase: Upon every activation, progress with the following list
of instructions. If not possible, output (ClockReady) to Gclk.
1: On input xi, input xi to FaBA. Let x denote the output of FaBA.
2: Compute the signature σ = Sign(x, sk).
3: Input (Send, i, j, (x, σ)), for each party Pj , to Fnet, .
4: Upon receiving ` ≥ n − TL valid messages of the form (x′, σ) from Fnet,

let L = (x′, σ1, . . . , σl) be the list containing these ` signatures on x′. Input
(Send, i, j, L), for each party Pj , to Fnet, and terminate with output x′.

23

The following theorem is proven in Section C.

Theorem 3. The protocol Πcon
aBA operates in the hybrid world containing func-

tionalities (Gclk,Fδnet,FDSSKeys,FaBA), where FaBA gives output at most after
τaba(δ) clock ticks, and it has validity, consistency and termination parameters
(TV , TC , TL), TL < n

3 . It realizes FbaBA-Con with validity, consistency and ter-
mination parameters (TV , n − 2TL, TL). The maximum delay for the output is
τcon = τaba(δ) + δ.

If we assume an asynchronous Byzantine Agreement Fasync which runs con-
currently in expected constant time as in [5], with Theorem 2 and Theorem 3,
we obtain the following corollary:

Corollary 1. There exists a protocol which realizes FaBA with validity, consis-
tency and termination parameters (1

2 (n − TL), (n − 2TL), TL), for any TL < 1
3

in the (Gclk,Fδnet,FDSSKeys)-hybrid world. The expected maximum delay for the
output is τaba = O(δ).

5.2 SFE with increased Correctness and Privacy

In this section, we show how to realize Fasync with correctness, privacy and
termination parameters (n − 2TL, n − 2TL, TL), for any TL < n

3 . For that, we
follow the ideas from [10, 27, 28], and replace the asynchronous Byzantine Agree-
ment functionality with parameters (n3 ,

n
3 ,

n
3), for the one that we obtained in

Section 5.1, with parameters (1
2 (n− TL), (n− 2TL), TL).

Let us first compare the guarantees that our protocol achieves with currently
known protocols: at the cost of having termination when t < TL, we obtain
higher parameters for correctness and privacy than currently known protocols.
As an example, if we set TL = 1

4n, one obtains correctness and privacy up to
TC = TP = 1

2n. Currently known protocols can only guarantee correctness and
privacy up to 1

3n corruptions.
Moreover, the quality of the output is also improved: if the parties manage to

agree on a common set of parties for which the input will be taken into account,
the set has size at least n − TL. In the range where it is guaranteed that the
protocol terminates, t < TL, we know that it also terminates correctly, privacy is
preserved, and it takes into account at least n− 2TL inputs from honest parties.
For TL = 1

4n, it therefore takes into account at least n
2 inputs from honest

parties. By comparison, in current protocols, even if the adversary effectively
corrupts less than 1

4n parties, the number of inputs from honest parties taken
into account is only guaranteed to be 1

3n.

Asynchronous SFE Protocol. The protocol operates in the hybrid model
containing the functionalities (Gclk,Fδnet,FFHE

Setup,FaBA,Fzk). Here, FFHE
Setup is the

same functionality as the functionality FSetup presented in Section 4.1, where
the threshold encryption scheme is fully-homomorphic. The functionality Fzk is
a zero-knowledge functionality, which allows a specific party P to prove to a

24

party V knowledge of a witness w corresponding to a statement x. It is formally
defined as follows:

Functionality Fzk

Fzk is connected to a global clock functionality Gclk. It is parameterized by a
prover P , verifier V , a relation R and a delay time τzk. It also stores the current
time τ and keeps a buffer buffer of messages containing the proofs, initially
empty.
Each time the functionality is activated, it first queries Gclk for the current time
and updates τ accordingly.

Zero-Knowledge Proof:

1: On input (x,w) from P , if R(x,w) = 1, it creates a new identifier id and
records the tuple (τ, τ + 1, (x,w), id). It then sends (x, id) to the adversary.

2: On input (GetProof, sid) from V , for each tuple (Tinit, Tend, (x,w), id) such
that Tend ≤ τ , remove it from buffer and output (x, sid) to V .

3: On input (Delay, T, id) from the adversary, if there is a tuple
(Tinit, Tend, (x,w), id) in buffer and Tend + T ≤ Tinit + τzk, then set Tend =
Tend + T and return (Delay-OK) to the adversary. Otherwise, ignore the
message.

Throughout the protocol, we consider two relations:

1. Proof of Plaintext Knowledge: The relation is parameterized by a threshold
FHE scheme. The statement is an encryption key ek and a ciphertext c, and
the witness is a plaintext m and randomness r such that c = Encek(m; r).

2. Proof of Correct Decryption: The relation is parameterized by a threshold
FHE scheme. The statement consists of an encryption key ek, a ciphertext
c, a decryption share d, and the witness consists of a decryption key share
dki, such that d = Decdki

(c).

The protocol proceeds in three phases: the input stage, the computation and
threshold-decryption stage, and the termination stage.

Input Stage. At a very high level, the goal of the input stage is to define an en-
crypted input for each party. In order to ensure that the inputs are independent,
the parties are required to perform a proof of plaintext knowledge of their cipher-
text. It is known that input completeness and guaranteed termination cannot
be simultaneously achieved in asynchronous networks, since one cannot distin-
guish between an honest slow party and an actively corrupted party. Given that
we only guarantee termination up to TL corruptions, we can take into account
n− TL input providers.

The input stage is as follows: each party Pi encrypts its input to obtain a
ciphertext ci. It then constructs a certificate πi that Pi knows the plaintext of
ci and that ci is the only input of Pi, using bilateral zero-knowledge proofs and
signatures. It then sends (ci, πi) to every other party, and constructs a certificate

25

of distribution disti that (ci, πi) was distributed to at least n−TL parties. This
certificate is sent to every party.

After Pi collects n−TL certificates of distribution, it knows that at least n−TL
parties have proved knowledge of the plaintext of their input ciphertext and also
have distributed the ciphertext correctly to n−TL parties. Since n−TL > TL for
any TL < n

2 , this means that each of the n−TL parties have proved knowledge of
the plaintext of their input ciphertext and also have distributed the ciphertext
to at least 1 honest party. At this point, if each party is instructed to echo the
certified inputs they saw, then every honest party will end up holding the n−TL
certified inputs. To determine who they are, the parties compute a common set
of input providers. For that, n asynchronous Byzantine Agreement protocols are
run, each one to decide whether a party’s input will be taken into account. To
ensure that the size of the common set is at least n−TL, each party Pi inputs 1
to the BAs of those parties for which it saw a certified input. It then waits until
there are n− TL ones from the BAs before inputting any 0.

Protocol Πinput
SFE (Pi)

The protocol keeps sets Si and Di, initially empty. Let xi be the input for Pi.
Setup:

1: If activated for the first time input (GetKeys, sid) to FFHE
Setup. We denote the

public key ek, a (n− TL, n)-share dki of the corresponding secret key dk, the
signing key sk and the verification key vk.

Plaintext Knowledge and Distribution:

1: Compute ci = Encek(xi).
2: Prove to each Pj knowledge of the plaintext of ci, using Fzk.
3: Upon receiving a correct proof of plaintext knowledge for a ciphertext cj from
Pj , send σpopk

i = Signski
(cj) to Pj .

4: Upon receiving n − TL signatures {σpopk
j }, compute πi = {σpopk

j } and send
(ci, πi) to all parties.

5: Upon receiving a message (cj , πj) from Pj , send σdist
i = Signski

((cj , πj)) to
Pj . Add (j, (cj , πj)) to Si.

6: Upon receiving n− TL signatures {σdist
j }, compute disti = {σdist

j } and send
((ci, πi), disti) to all parties.

7: Upon receiving ((cj , πj), distj) from Pj , add j to Di.
Select Input Providers: Once |Di| > n−TL, stop the above rules and proceed
as follows:
1: Send Si to every party.
2: Once n−TL sets {Sj} are collected, let R =

⋃
j
Sj and enter n asynchronous

BAs with inputs v1, . . . , vn ∈ {0, 1}, where vj = 1 if ∃(j, (cj , πj)) ∈ R. Keep
adding possibly new received sets to R.

3: Wait until there are at least n− TL outputs which are one. Then, input 0 for
the BAs which do not have input yet.

4: Let w1, . . . , wn be the outputs of the BAs.
5: Let CoreSet := {j|wj = 1}.
6: For each j ∈ CoreSet with (j, (cj , πj)) ∈ R, send (j, (cj , πj)) to all parties.

26

Computation and Threshold-Decryption Stage. At the end of the input
stage, the parties have agreed on a common subset CoreSet of parties of size at
least n− TL, and each party holds the n− TL ciphertexts corresponding to the
encryption of the input from each party in CoreSet. In the computation stage,
the parties locally compute the homomorphic evaluation of the circuit, resulting
on the ciphertext c encrypting the output.

In the threshold-decryption stage, each party Pi computes the decryption
share di = Decdki

(c), and proves in zero-knowledge simultaneously towards all
parties that the decryption share is correct. Once n − TL correct decryption
shares on the same ciphertext are collected, Pi reconstructs the output yi.

Protocol Πcomp
SFE (Pi)

Start once Πinput
SFE (Pi) is completed. Let CoreSet be the resulting set of at least

n− TL parties, and let the input ciphertexts be cj , for each j ∈ CoreSet.
Function Evaluation:

1: For each j /∈ CoreSet, assume a default valid ciphertext cj for Pj .
2: Locally compute the homomorphic evaluation of the function c =
fek(c1, . . . , cn).

Threshold Decryption:

1: Compute a decryption share di = Decdki (c).
2: Prove, using Fzk, to each Pj that di is a correct decryption share of c.
3: Upon receiving a correct proof of decryption share for a ciphertext c′ and

decryption share dj from Pj , send σpocs
i = Signski

((dj , c′)) to Pj .
4: Upon receiving n − TL signatures {σpocs

j } on the same pair (di, c′), compute
ProofSharei = {σpocs

j } and send ((di, c′), ProofSharei) to all parties.
5: Upon receiving n − TL valid pairs ((dj , c′), ProofSharej) for the same c′,

compute the output yi = Rec({dj}).

Termination Stage. The termination stage ensures that all honest parties
terminate with the same output. This stage is essentially a Bracha broadcast of
the output value.

The idea is that each party Pi votes for one output yi and continuously
collects outputs votes. More concretely, Pi sends yi to every other party. If Pi
receives n−2TL votes on the same value y, it knows that y is the correct output
(because at least an honest party obtained the value y as output if the correctness
threshold TC = n − 2TL is satisfied). Hence, if no output was computed yet, it
sets yi = y as its output and sends yi to every other party. Observe that if the
correctness threshold is not satisfied, the adversary can tamper the outputs, but
so can the simulator.

Once n− TL votes on the same value y are collected, terminate with output
y. The observation is that if a party receives n−TL votes on y, and termination
should be guaranteed (t < TL), there are n− 2TL honest parties that voted for
y, and hence every honest party which did not have output will at some point
collects n−2TL votes on y, and hence will also vote for y. Since each honest party
which terminated voted for y and each honest party which did not terminated

27

voted for y as well, this means that all honest parties which did not terminate
will receive n− TL votes for y.

Protocol Πterm
SFE (Pi)

During the overall protocol, execute this protocol concurrently.
Waiting for Output:

1: Wait until the output c is computed from Πcomp
SFE (Pi).

Adopt Output:

1: Wait until receiving n− 2TL votes for the same value y.
2: Adopt y as output, and send y to every other party.

Termination:

1: Wait until receiving n− TL votes for the same value y.
2: Terminate.

Let us denote ΠSFE the protocol that executes concurrently the protocols
Πinput

SFE , Πcomp
SFE and Πterm

SFE . Each party, at every activation, tries to progress with
any of the subprotocols. If they cannot, they output (ClockReady) to Gclk so
that the clock advances. The following theorem is proven in Section D.

Theorem 4. The protocol ΠSFE operates in the hybrid world containing func-
tionalities (Gclk,Fδnet,FFHE

Setup,FaBA,Fzk), with the following parameters:

– Fδnet has unknown delay δ.
– FaBA gives output at most after τaba(δ) clock ticks. Moreover, it has validity,

consistency and termination parameters (1
2 (n−TL), n− 2TL, TL), where the

parameter TL ≤ n
3 .

– Fzk gives output at most after τzk(δ) clock ticks.

It realizes Fasync with validity, consistency and termination parameters (n−
2TL, n − 2TL, TL). The total maximum delay for the honest parties to obtain
output is τasynch = τaba(δ) + 2τzk(δ) + 9δ.

Given that Fzk can be UC realized in the FCRS-hybrid model non-interactively
[19], using Corollary 1 and Theorem 4 we can state the following theorem:

Theorem 5. There exists a protocol which realizes Fasync with correctness, pri-
vacy and termination parameters (n − 2TL, n − 2TL, TL), for any TL < 1

3 in
the (Gclk,Fδnet,FFHE

Setup,FCRS)-hybrid world. The expected maximum delay for the
output is τasynch = O(δ).

6 Conclusions

In this section, we combine the main theorems of Section 4 and Section 5. We can
instantiate Fsync and FsBC with parameters (n2 ,

n
2 , n) using an honest majority

MPC protocol such as [6, 23], and an honest majority broadcast protocol such

28

as [36, 20]. We denote by Tsync(∆) and TBC(∆) the delays for the outputs in
the Fsync and FsBC functionalities, respectively. With the above remarks and
Theorem 1 and 5, we state formally the final theorem:

Theorem 6. There exists a protocol parameterized by ∆ ≥ δ, which realizes
Fhyb on a function f , with correctness and privacy TC = TP = min{n2 , n−2TR},
for any TR ≤ 1

3n, in the (Gclk,Gtimeout,Fδnet,FFHE
Setup,FCRS)-hybrid world. The

expected maximum delay of the asynchronous phase is τasynch = O(δ), and the
maximum delay of the synchronous phase is τOD = TBC(∆) +∆ if an output was
delivered in the asynchronous phase, and otherwise is τOND = TBC(∆) + Tsync(∆).

In particular, for TR = 1
4n, we obtain a protocol which realizes Fhyb with

correctness, privacy, responsiveness and termination parameters (1
2n,

1
2n,

1
4n, n).

References
[1] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing

in constant number of rounds of interaction. In Piotr Rudnicki, editor, 8th ACM
PODC, pages 201–209. ACM, August 1989.

[2] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of
secure protocols (extended abstract). In 22nd ACM STOC, pages 503–513. ACM
Press, May 1990.

[3] Zuzana Beerliova-Trubiniova, Martin Hirt, and Jesper Buus Nielsen. Almost-
asynchronous MPC with faulty minority. Cryptology ePrint Archive, Report
2008/416, 2008. http://eprint.iacr.org/2008/416.

[4] Zuzana Beerliová-Trub́ıniová, Martin Hirt, and Jesper Buus Nielsen. On the
theoretical gap between synchronous and asynchronous MPC protocols. In PODC,
Zurich, Switzerland, 2010.

[5] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in
constant time. Distributed Computing, 16(4):249–262, 2003.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract).
In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

[7] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Salil P. Vadhan, editor, TCC 2007, volume
4392 of LNCS, pages 61–85. Springer, Heidelberg, February 2007.

[8] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally
secure protocols (extended abstract). In 20th ACM STOC, pages 11–19. ACM
Press, May 1988.

[9] Ashish Choudhury, Arpita Patra, and Divya Ravi. Round and communication effi-
cient unconditionally-secure MPC with t<n / 3 in partially synchronous network.
In ICITS 2017, 2017.

[10] Ran Cohen. Asynchronous secure multiparty computation in constant time. In
Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors,
PKC 2016, Part II, volume 9615 of LNCS, pages 183–207. Springer, Heidelberg,
March 2016.

[11] Ran Cohen, Sandro Coretti, Juan Garay, and Vassilis Zikas. Round-preserving
parallel composition of probabilistic-termination cryptographic protocols. In
LIPIcs-Leibniz International Proceedings in Informatics, volume 80. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

29

http://eprint.iacr.org/2008/416

[12] Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic
termination and composability of cryptographic protocols. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 240–269. Springer, Heidelberg, August 2016.

[13] Sandro Coretti, Juan A. Garay, Martin Hirt, and Vassilis Zikas. Constant-round
asynchronous multi-party computation based on one-way functions. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032
of LNCS, pages 998–1021. Springer, Heidelberg, December 2016.

[14] Ronald Cramer, Ivan Damg̊ard, Stefan Dziembowski, Martin Hirt, and Tal Ra-
bin. Efficient multiparty computations secure against an adaptive adversary. In
Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 311–326.
Springer, Heidelberg, May 1999.

[15] Ronald Cramer, Ivan Damg̊ard, and Ueli M. Maurer. General secure multi-party
computation from any linear secret-sharing scheme. In Bart Preneel, editor, EU-
ROCRYPT 2000, volume 1807 of LNCS, pages 316–334. Springer, Heidelberg,
May 2000.

[16] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computa-
tion from threshold homomorphic encryption. In Birgit Pfitzmann, editor, EU-
ROCRYPT 2001, volume 2045 of LNCS, pages 280–299. Springer, Heidelberg,
May 2001.

[17] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using
a black-box pseudorandom generator. In Victor Shoup, editor, CRYPTO 2005,
volume 3621 of LNCS, pages 378–394. Springer, Heidelberg, August 2005.

[18] Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient mul-
tiparty computation from threshold homomorphic encryption. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 247–264. Springer, Heidel-
berg, August 2003.

[19] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer, Heidelberg, Au-
gust 2001.

[20] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine
agreement. SIAM Journal on Computing, 12(4):656–666, 1983.

[21] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correctness for pri-
vacy in unconditional multi-party computation (extended abstract). In Hugo
Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 121–136. Springer,
Heidelberg, August 1998.

[22] Craig Gentry. A fully homomorphic encryption scheme. PHD. Thesis, 2009.
[23] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game

or A completeness theorem for protocols with honest majority. In Alfred Aho,
editor, 19th ACM STOC, pages 218–229. ACM Press, May 1987.

[24] Oded Goldreich and Erez Petrank. The best of both worlds: Guaranteeing ter-
mination in fast randomized byzantine agreement protocols. Technical report,
Computer Science Department, Technion, 1990.

[25] Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition
tolerance. unpublished manuscript.

[26] Martin Hirt and Ueli M. Maurer. Robustness for free in unconditional multi-party
computation. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages
101–118. Springer, Heidelberg, August 2001.

30

[27] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic asyn-
chronous multi-party computation with optimal resilience (extended abstract). In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 322–
340. Springer, Heidelberg, May 2005.

[28] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous multi-
party computation with quadratic communication. In Luca Aceto, Ivan Damg̊ard,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 473–
485. Springer, Heidelberg, July 2008.

[29] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally
composable synchronous computation. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 477–498. Springer, Heidelberg, March 2013.

[30] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-
party computation using a global transaction ledger. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 705–734. Springer, Heidelberg, May 2016.

[31] Klaus Kursawe. Optimistic asynchronous byzantine agreement. 2000.
[32] Julian Loss and Tal Moran. Combining asynchronous and synchronous byzantine

agreement: The best of both worlds. Cryptology ePrint Archive, Report 2018/235,
2018. https://eprint.iacr.org/2018/235.

[33] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the per-
missionless model. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 91. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[34] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant
confirmation. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 3–33. Springer, 2018.

[35] Arpita Patra and Divya Ravi. On the power of hybrid networks in multi-party
computation. IEEE Trans. Information Theory, 2018.

[36] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[37] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM
Press, May 1989.

31

https://eprint.iacr.org/2018/235

Supplementary Material

The following supplementary material is divided in sections labeled by latin
letters and appropriately referred to in the body.

A Proof of the Protocol Compiler

In this section, we show the proof of the Theorem 1 of Π∆
hyb from Section 4.

Theorem 1. The protocol Π∆
hyb operates in the hybrid world containing func-

tionalities (Gclk,Gtimeout,Fδnet,FSetup,Fsync,FsBC,Fasync), with the following
parameters:

– Fδnet has unknown delay δ.
– Fsync evaluates function f and gives output after Tsync(∆) clock ticks. More-

over, it has parameters (n2 ,
n
2 , n) for correctness, privacy and termination.

– FsBC gives output after TBC(∆) clock ticks. Moreover, it has parameters
(n2 ,

n
2 , n) for validity, consistency and termination.

– Fasync evaluates function f ′ = Encek(f) and gives output after Tasynch(δ)
clock ticks. Moreover, it has parameters (T aC , T aP , TL) for correctness, privacy
and termination.

For any ∆ ≥ δ, it realizes Fhyb with correctness, privacy, responsiveness and
termination parameters (min(T aC , n2),min(T aP , n2), TL, n). The maximum delay of
the asynchronous phase is τasynch = Tasynch(δ)+3δ, and of the synchronous phase
is τOD = TBC(∆) + ∆ if an output was delivered in the asynchronous phase, and
otherwise is τOND = TBC(∆) + Tsync(∆).

Proof. Completeness. We first show that the protocol is complete. That is, if
there are no corruptions, no environment can distinguish the real world from the
ideal world. To this end, we need to argue that the output the parties obtain
in both worlds are exactly the same. Observe that even if the adversary does
not corrupt any party, it can still delay messages. We divide two cases, which
depends on how the adversary delays the messages and at which time the timeout
triggers:

1. An honest party obtains an output [yasynch] from Fasync and managed to
collect a list L of n−TL signatures on this ciphertext during the asynchronous
phase. In this case, we argue that every honest party outputs yasynch. Observe
that there cannot be two lists L of size n − TL for different outputs, since
TL <

n
3 . Then, every honest party obtains the pair ([yasynch], L) as output of

the synchronous BC in the synchronous phase. Hence, all parties send the
decryption shares and every honest party who did not obtain the output in
the asynchronous phase, will decrypt [yasynch] and obtain the output yasynch.

32

2. No honest party obtains an output [yasynch] from Fasync and managed to
collect a list L of n−TL signatures on this ciphertext during the asynchronous
phase. Observe that in this case the adversary could have gathered a valid
pair ([yasynch], L), but it was not able to learn anything about the output
yasynch. This follows from the security of the threshold encryption scheme
and the fact that no honest party sent any decryption key share.
If the adversary broadcasts a valid pair, every honest party will decrypt
[yasynch] and obtain yasynch as output. Otherwise, every honest party gives
its input to Fsync and hence, every party obtains the same output ysync.

Moreover, one can easily see that if the timeout occurs after τasynch = Tasynch(δ)+
3δ clock ticks, then every honest party obtains output during the asynchronous
phase. Let us analyze what happens if the timeout occurs before τasynch. In this
case, we divide two cases: if an honest party obtained output, as argued above,
every party will execute a broadcast round, and will send decryption shares.
Hence, the honest parties obtain output after τOD = TBC(∆) + ∆ clock ticks.
Otherwise, the honest parties obtain output either with delay τOD in case the
adversary broadcasts a valid pair, or with delay τOND = TBC(∆) + Tsync(∆) if the
adversary did not broadcast a valid pair.

Soundness. To argue soundness, we first describe the simulator. The simula-
tor Shyb has to simulate the view of the dishonest parties during the protocol
execution.

Algorithm Shyb

Clock / Timeout At every activation, the simulator does the following:

1: Query Gclk for the current time and updates τ accordingly.
2: Send (CheckTimeOut, sid) to Gtimeout. If the response is

(CheckTimeOut, true, sid), set sync = true, τsync = τ .
Network Messages:
The simulator prepares a set buffer = ∅ to simulate the messages that are sent to
corrupted parties throughout the simulation (recall the variable buffer in Fnet).
More concretely, it does the following:
1: On input δ from Fhyb, output δ to the adversary.
2: On input (FetchMessages, i) from Pi, for each message tuple

(Tinit, Tend, Pk, Pi,m, idm) from buffer where Tend ≤ τ , output (k,m)
to Pi.

3: On input (Delay, T, id) from the adversary, if there exists a tuple
(Tinit, Tend, Pi, Pj ,m, id) in buffer and Tend + T ≤ Tinit + δ, then set
Tend = Tend + T and return (Delay-ok) to the adversary. Otherwise, ignore
the message.

Setup:

1: The simulator generates the keys at the beginning of the execution. That
is, it computes (ek, dk) ← Gen(n−TL,n)(1κ), where dk = (dk1, . . . , dkn),
and (vkj , skj) ← SigGen(1κ) for each party Pj . Then, it records the tuple
(sid, ek, dk, vk, sk), where vk = (vk1, . . . , vkn) and sk = (sk1, . . . , skn).

33

2: On input (GetKeys, sid) from a corrupted party Pi, send output
(sid, ek, dki, vk, ski) to Pi.

Asynchronous Phase:
It receives the time output τasynch from Fhyb. It keeps a variable τi for each
party Pi.

// Internal emulation of Fasync.
1: On input (SetOutputTime, Pi, τ ′, sid) from the adversary, if τ ′ < τasynch, set
τi = τ ′.

2: Upon receiving an output y from Fhyb, compute an encryption [y] under the
key ek. Output this encryption to each corrupted party Pi as soon as τi = 0.
// Internal emulation of Fnet.

3: As soon as τi = 0 for an honest party Pi, input to buffer, the tuple
(τ, τ + 1, i, j, [y], Sign([y], ski)), id), for each party Pj and freshly generated
id. Output (Sent, i, j, ([y],Sign([y], ski))), id) to the adversary.

4: As soon as the current time τ is such that there are n − TL tuples
(τ1, τ2, j, i, ([y],Sign([y], skj))) such that τ2 ≤ τ for the same i in buffer,
input to buffer the tuple (τ, τ + 1, i, j, ([y], L′), id), for each Pj , where L′
contains the list of signatures. Input (τ, τ + 1, i, j, dki, id) to buffer, for each
party Pj . Also, output (Sent, i, j, dki, id) to the adversary.

5: Whenever a tuple (i, (L, [y])) is delivered from buffer to a Pj , for each party
Pi, input (τ, τ +1, Pj , Pi, dkj , id) to buffer and output (Sent, j, i, dkj , id) to
the adversary.
// Delivery of honest parties’ outputs.

6: On input (Output, i, sid) from Fhyb, where Pi is an honest party, if τ ≥
τi, and there are n − TL tuples (τ1, τ2, j, i, dkj , id) with different j, input
(DeliverOutput, i, sid) to Fhyb.

Synchronous Phase:

// Internal emulation of FsBC.
1: For each emulated honest party Pi that received a valid pair ([y], L) in the

asynchronous phase, output ([y], L) to the adversary after TBC(∆) clock ticks.
2: On input a valid pair ([y], L) from the adversary, input (τ, τ+1, Pj , Pi, dkj , id)

to buffer, for each honest party Pj to each corrupted party Pi to the adver-
sary after TBC(∆) clock ticks.
// Internal emulation of Fsync.

3: If no valid pair was received from the adversary, and no honest party received
a valid pair in the asynchronous phase, do the following:

– On input x′i from a corrupted party Pi, output x′i to Fhyb.
– On input the message (GetOutput, id) from corrupted party Pi, for-

ward the message to Fhyb.
– On input a message (Output, yi, id) where Pi is a corrupted party from
Fhyb, forward the message to the adversary.

Tamper Function:

1: On input (TamperOutput, Pi, y′i, sid) from the adversary, forward the input
to Fhyb.

2: On input (x1, . . . , xn) from Fhyb, output it to the adversary.

34

3: On input (BlockOutput, Pi, sid;Fasync) from the adversary, forward the
input (BlockAsynchOutput, Pi, sid) to Fhyb.

4: On input (BlockOutput, Pi, sid;Fsync) from the adversary, forward the in-
put (BlockOutput, Pi, sid) to Fhyb.

We need to prove that the real and ideal worlds are indistinguishable. First,
we remark that the simulator emulates the network by keeping a variable buffer
which stores the messages that are sent. If a corrupted party inputs a message to
Fnet in the real world, the simulator inputs the corresponding tuple to buffer
exactly the same way as Fnet. Moreover, the simulator have to input to buffer
all messages that are sent from honest parties to corrupted parties in the real
world. One can see that such messages correspond to signatures on an encrypted
output, lists of such signatures and decryption shares. All these messages can
be simulated, since the simulator obtains the output and then encrypts and
signs the output the same way as parties in the real world. We remark that the
simulator has knowledge of all the keys from the parties, since it simulates the
setup functionality FSetup.

Now we analyze each phase individually.

Setup Phase. It is straightforward to see that the messages that the adversary
sees during the setup phase are identical in both worlds. This is because the sim-
ulator executes the key generation algorithms for both the threshold encryption
and the digital signature scheme as the functionality FSetup in the ideal world.

Asynchronous Phase. We argue that the view of the adversary is exactly the
same in both worlds.
Internal emulation of Fasync. The simulator keeps a delay variable τi for each
party Pi, which it sets the same way as the adversary. When τi = 0, a corrupted
party Pi gets the encryption [y] in the real world. In the ideal world, as soon
as the simulator obtains the output y, it computes [y] and then delivers the
ciphertext to Pi when τi = 0 as well.
Internal emulation of Fnet. In the real world, the corrupted parties obtain three
types of messages after obtaining the ciphertext [y]: signatures on [y], lists of
signatures and decryption shares. Once an honest party obtains [y] from the
asynchronous functionality, it inputs to Fnet a signature of [y] towards every
party. Then, when n− TL signatures are collected, the honest party inputs the
list and the decryption share to Fnet towards every party.

The simulator maintains a variable buffer which stores the messages that
are sent via the network. It then inputs signatures of [y] on behalf of each honest
party Pi to buffer, towards every party (in particular, towards corrupted par-
ties), and at the corresponding time. Once n− TL signatures are collected with
destination Pi, the simulator emulates internally the protocol of Pi, and inputs
to buffer the corresponding list, and also the decryption share dki, towards
every party.
Delivery of honest parties’ outputs. The simulator has the power to deliver the
outputs of honest parties in the ideal world. Hence, it delivers the outputs at the

35

corresponding time. Namely, when the honest party has the output ciphertext
[y] and collects n− TL decryption shares in the real world.

Synchronous Phase. We argue again that the view of the adversary is exactly
the same in both worlds.
Internal emulation of FsBC. In the real world, the parties broadcast all valid
pairs ([y], L) that were received in the Asynchronous phase. This behavior is
emulated by the simulator as follows: the simulator keeps track of the honest
parties that obtained a valid pair ([y], L) during the asynchronous phase. The
simulator then internally emulates FsBC and outputs the valid pairs ([y], L) at
the end of the broadcast round, after TBC clock ticks. Also, if the adversary inputs
a valid pair ([y], L) during the broadcast round, it also outputs the valid pair
([y], L) to each party at the corresponding time.
Internal emulation of Fsync. After the round of synchronous broadcasts termi-
nated, if a valid pair ([y], L) was received, then in the real world the honest
parties send their decryption shares via Fnet. Equivalently in the ideal world,
the simulator inputs the decryption shares of each honest party to each corrupted
party to buffer. Finally, if no valid pair was received, in the real world the par-
ties execute Fsync, whose behavior is directly emulated by the Fhyb functionality
in the ideal world. That is, the simulator forwards the output from Fhyb to the
adversary.

All that is left to do is to argue about the messages the adversary obtains
from breaking the correctness, privacy and termination thresholds.

Correctness. In the real world, if the adversary corrupts more than T aC parties,
it can set the output of the asynchronous functionality Fasync to any output y.
In this case, the simulator will set the output to an encryption of y. If the
adversary corrupts more than n

2 parties, we also allow the simulator to set the
output correspondingly. That is, the output of the parties will only be affected
if there was not an output during the asynchronous phase and the Byzantine
agreement protocol output ⊥. In both cases, the adversary can set the output
of Fhyb in the ideal world, since the correctness bound of Fhyb is min(T aC , n2).

Privacy. In the real world, if the adversary corrupts more than either T aP or
n
2 parties, it can obtain the inputs from the honest parties. This is also the case
in the ideal world, since the privacy bound of Fhyb is min(T aP , n2).

Termination. We remark that even if the termination bound TL of Fasync
is violated, all the adversary can do in the real world is to prevent a party to
obtain an output from Fasync. Hence, responsiveness is lost and the simulator
will block the output from the asynchronous phase.

ut

B Proof of the Protocol for ABA with Increased Validity

In this section, we show the proof of the Theorem 2 of Πval
aBA from Section 5.

Theorem 2. The protocol Πval
aBA operates in the hybrid world containing func-

tionalities (Gclk,Fδnet,FDSSKeys,FaBA), with the following parameters:

36

– Fδnet has unknown delay δ.
– FaBA gives output at most after τaba(δ) clock ticks. Moreover, it has validity,

consistency and termination parameters (TV , TC , TL), where TL < n
3 .

It realizes FbaBA-Val with validity, consistency and termination parameters
(1

2 (1− TL), TC , TL). The maximum delay for the output is τval = τaba(δ) + 2δ.

Proof. Completeness. Let us first argue that if the adversary does not corrupt
any party, the real world and the ideal world are indistinguishable. The output is
the same in both worlds. If every party has the same input b, in the real world,
every party will receive n − TL signatures on b, and hence b is the majority
bit. By validity of the assumed FaBA, every party will output b. In the case
that the parties do not hold the same input, after any party collects a list of
n− TL signatures, it echoes the list to every other party. By the consistency of
the assumed FaBA, every honest party terminates Step 5 with the same bit b′.
Also, since the parties do not hold the same value, and we consider bits, at least
one honest party Pj has input b′. This means that Pj collected a list of n− TL
signatures with majority bit b′. Every other party will eventually obtain such
list, and will also terminate with bit b′. In the ideal world, the simulator can
choose this as the output bit.

Soundness. We start describing the simulator. The job of the simulator Scon is
to simulate the view of the adversary during the protocol execution. For read-
ability, let us denote the ideal world Byzantine agreement functionality with
improved consistency FbaBA-Val, and FaBA the functionality assumed in the real
world.

At a very high level, the simulator simulates internally the messages that
the real world functionalities Fnet, FSetup and FaBA output to the adversary. In
order to simulate the messages that the adversary obtains from the asynchronous
network Fnet, the simulator simply keeps the variable buffer as in Fnet, which
records the messages sent via Fnet in the real world, with the delays of the
messages. It also records the delays that the adversary inputs, and only delivers
the messages when the corresponding party fetches the messages and the delay of
the message is 0. Moreover, it internally emulates the messages that the honest
parties obtains.

To simulate the messages from FSetup, the simulator executes the DSS key
generation algorithm at the onset of the execution, and outputs the signing keys
of the corrupted parties and all the verification keys to the adversary.

Finally, to simulate the messages from FaBA, the simulator first computes
the input to FaBA (recall that it emulated the messages that each honest party
obtained), and then internally emulates FaBA. That is, it waits for the adversary
to define a core set I (which by default is the set of honest parties), and after
all parties in I provide his input bit, the simulator computes the output as in
FaBA.

37

Algorithm Sval

Network Messages:
The simulator prepares a set buffer = ∅ to simulate the messages that are sent to
corrupted parties throughout the simulation (recall the variable buffer in Fnet).
More concretely, it does the following:
1: On input δ from FbaBA-Val, output δ to the adversary.
2: On input (FetchMessages, i) from Pi, for each message tuple

(Tinit, Tend, Pk, Pi,m, idm) from buffer where Tend ≤ τ , output (k,m)
to Pi.

3: On input (Delay, T, id) from the adversary, if there exists a tuple
(Tinit, Tend, Pi, Pj ,m, id) in buffer and Tend + T ≤ Tinit + δ, then set
Tend = Tend + T and return (Delay-ok) to the adversary. Otherwise, ignore
the message.

Setup:

1: The simulator generates the keys at the beginning of the execution. That is,
it computes (vkj , skj) ← SigGen(1κ) for each party Pj . Then, it records the
tuple (sid, vk, sk), where vk = (vk1, . . . , vkn) and sk = (sk1, . . . , skn).

2: On input (GetKeys, sid) from a corrupted party Pi, output (sid, vk, ski) to
Pi.

Main:

1: Upon receiving the input bi from honest party Pi, input to buffer, on behalf
of Pi, the tuple (τ, τ + 1, i, j, (bi,Sign(bi, ski)), id) for each corrupted party
Pj and freshly generated id. Output (Sent, i, j, (bi, Sign(bi, ski)), id) to the
adversary.

2: Once there are n − TL tuples of the form (τ1, τ2, j, i, (bj , Sign(bj , skj))) that
have been delivered from buffer to a fixed party Pi (τ2 ≥ τ), compute the
majority bit b among the signed bits. Then input, on behalf of honest party
Pi, for each j, to buffer the tuple (τ, τ + 1, i, j, L, id), where L contains the
list with a majority of signatures on the value b. Output (Sent, i, j, L, id) to
the adversary. Set xBAi = b.

3: On input (No-Input,P ′, sid) from the adversary, forward the command to
FbaBA-Val.

4: Once an output (Output, b, sid) is received from FbaBA-Val, output
(Output, b, sid) to the adversary.

5: Define the output time τi of each honest party Pi. Set the output delay of
Pi equal to D′, where D′ is the smallest number such that (D′, j, i, L, id) ∈
buffer. Output (SetOutputTime, Pi, τi, sid).

6: On input (SetOutputTime, Pi, τ ′, sid) from the adversary, if τ ′ > τi, forward
the command to FbaBA-Val.

Tamper Function:

1: On input (TamperOutput, Pi, y′i, sid), where Pi is honest, from the adver-
sary, forward the input to FbaBA-Val.

2: On input (x1, . . . , xn) from FbaBA-Val, output it to the adversary.
3: On input (BlockOutput, Pi, sid), where Pi is honest, from the adversary,

forward the input to FbaBA-Val.

38

In order to prove that the real world and the ideal world are indistinguishable,
we divide cases depending on the adversary’s capabilities.

First, let us remark that the real world is guaranteed to terminate when
|P \H| < TL. This is because in this case every party will be able to collect a list
of n−TL signatures, and FaBA also terminates. In the ideal world, the simulator
is allowed to block the outputs for the parties if |P \ H| ≥ TL.

Now, let us argue what happens if the validity threshold is satisfied, i.e.
|P \ H| < 1

2 (n − TV), and every honest party holds the same bit b. In the real
world any list containing n−TL signatures will contain this bit b as the majority
bit. Hence, every party terminates with output b. In the ideal world, the validity
of FbaBA-Val guarantees that the output is b. If the consistency threshold holds,
|P \ H| < TC , then at least one honest party Pj has input b′, corresponding to
the output of the assumed FaBA. This means that Pj collected a list of n− TL
signatures with majority bit b′. Every other party will also obtain such list, and
will also terminate with bit b′. In the ideal world, the simulator can choose this
as the output bit.

If none of the above conditions hold, then the output of the real world can be
anything, depending on the adversary’s strategy. Since the simulator can choose
the output in this case, it can just compute the output based on the adversary’s
strategy.

Moreover, let us remark that in the real world, the parties only send messages
in two steps via the network, and one via FaBA. This means, since the adversary
can only delay each network message by up to δ clock ticks, and the output
from FaBA up to τaba(δ) clock ticks, then the maximum delay for the output is
τval = τaba(δ)+2δ. Hence, it is enough that the simulator has the power to delay
the output up to τval clock ticks.

ut

C Proof of the Protocol for ABA with Increased
Consistency

In this section, we show the proof of the Theorem 3 of Πcon
aBA from Section 5.

Theorem 3. The protocol Πcon
aBA operates in the hybrid world containing func-

tionalities (Gclk,Fδnet,FDSSKeys,FaBA), with the following parameters:

– Fδnet has unknown delay δ.
– FaBA gives output at most after τaba(δ) clock ticks. Moreover, it has validity,

consistency and termination parameters (TV , TC , TL), where TL < n
3 .

It realizes FbaBA-Con with validity, consistency and termination parameters
(TV , n− 2TL, TL). The maximum delay for the output is τcon = τaba(δ) + δ.

Proof. Completeness. We first argue that if the adversary does not corrupt
any party, the real world and the ideal world are indistinguishable. The output
is the same in both worlds. If every party has the same input b, in the real world,

39

FaBA outputs b, and then each party signs b and collects n−TL signatures on b.
This implies that the parties terminate with output b, which is the value that is
output in the ideal world as well. The same happens if the parties do not hold
the same input. In this case, in the real world, each party obtains the input x1,
signs this value, collects n− TL signatures and terminates with output x1. This
is also the output of the ideal world.

Soundness. We start describing the simulator. The job of the simulator Scon is
to simulate the view of the adversary during the protocol execution. For read-
ability, let us denote the ideal world Byzantine agreement functionality with
improved consistency FbaBA-Con, and FaBA the functionality assumed in the
real world.

On a very high level, the simulator simulates internally the messages that
the real world functionalities Fnet, FSetup and FaBA output to the adversary. In
order to simulate the messages that the adversary obtains from the asynchronous
network Fnet, the simulator simply keeps the variable buffer as in Fnet, which
records the messages sent via Fnet in the real world, with the delays of the
messages. It also records the delays that the adversary inputs, and only delivers
the messages when the corresponding party fetches the messages and the delay of
the message is 0. To simulate the messages from FSetup, the simulator executes
the DSS key generation algorithm at the onset of the execution, and outputs
the signing keys of the corrupted parties and all the verification keys to the
adversary. Finally, to simulate the messages from FaBA, the simulator waits
for the adversary to define a core set I (which by default is the set of honest
parties), and after all parties in I provide his input bit, the simulator computes
the output as in FaBA: if there is preagreement on a value x, that is the output,
and otherwise, the output corresponds to the input of the corrupted party with
lowest index.

Algorithm Scon

Network Messages:
The simulator prepares a set buffer = ∅ to simulate the messages that are sent to
corrupted parties throughout the simulation (recall the variable buffer in Fnet).
More concretely, it does the following:
1: On input (FetchMessages, i) from Pi, for each message tuple

(0, Pk, Pi,m, idm) in buffer, output (k,m) to Pi.
2: On input (Delay Fnet, T, id) from the adversary, if there exists a tuple

(D,Pi, Pj ,m, id) in buffer then set D = D + T and return (Delay-ok)
to the adversary. Otherwise, ignore the message.

Setup:

1: The simulator generates the keys at the beginning of the execution. That is,
it computes (vkj , skj) ← SigGen(1κ) for each party Pj . Then, it records the
tuple (sid, vk, sk), where vk = (vk1, . . . , vkn) and sk = (sk1, . . . , skn).

2: On input (GetKeys, sid) from a corrupted party Pi, send (sid, vk, ski) to Pi.
Main:

40

1: On input (No-Input,P ′, sid) from the adversary, set a variable I = H \ P ′,
and forward (No-Input,P ′, sid) to FbaBA-Con.

2: Upon receiving the input bi from honest party Pi or the adversary on behalf
of a party, set xBAi = bi. Moreover, if it is from the adversary, forward xBAi
to FbaBA-Con.

3: On input (Output, x, sid) from FbaBA-Con, output (Output, x, sid) to the
adversary.

4: Keep a variable DFaBA,i := 0 which denotes the delay of honest party Pi in
FaBA. Moreover, on input (SetOutputTime, Pi, D, sid) from the adversary,
set DFaBA,i = D, and also forward the input to FbaBA-Con.

5: Once DFaBA,i = 0 and Pi is activated, input to buffer, on behalf of Pi, the
tuple (τ, τ+1, i, j, (x,Sign(x, ski)), id) for each corrupted party Pj and freshly
generated id. Output (Sent, i, j, (x,Sign(x, ski)), id) to the adversary.

6: Once there are n − TL tuples of the form (τ1, τ2, j, i, (x′, Sign(x′, skj))) have
been delivered from buffer to a fixed honest party Pi, input, for each j, to
buffer the tuple (τ, τ + 1, i, j, L, id), where L contains the list of signatures
on the value x′. Output (Sent, i, j, L, id) to the adversary.

7: Input (Delay FbaBA-Con, Pi, τ2+DFaBA,i, sid), where τ2 is the smallest number
such that there is a tuple (τ1, τ2, j, i, L, id) ∈ buffer containing a list of at
least n − TL signatures on a value x′. From now on, keep the output delay
of Pi equal to DFaBA,i plus the smallest number such that there is a tuple
(τ1, τ2, j, i, L, id) ∈ buffer.

Tamper Function:

1: On input (TamperOutput, Pi, y′i, sid), where Pi is honest, from the adver-
sary, forward the input to FbaBA-Con.

2: On input (x1, . . . , xn) from FbaBA-Con, output it to the adversary.
3: On input (BlockOutput, Pi, sid), where Pi is honest, from the adversary,

forward the input to FbaBA-Con.

In order to prove that the real world and the ideal world are indistinguishable,
we divide cases depending on the adversary’s capabilities.

If the validity threshold is satisfied, i.e. |P \ H| < TV and the parties in
the core-set have the same input, or the consistency threshold is satisfied, i.e.
|P \ H| < TC , then FaBA ensures that the output at Step 1 is consistent among
the honest parties. Let us denote this value x. In this case, if |P \H| < TL, then
every honest party eventually receives a list of n − TL signatures on x. In the
ideal world, the output is x as well. Otherwise, if |P \ H| ≥ TL, some honest
parties may not receive a list of n− TL signatures on x, and hence they do not
receive any output. For these honest parties, the simulator blocks the output
value of these parties.

On the other hand, if it is not the case that |P \H| < TV where the parties in
the core-set have the same input, nor the consistency threshold is satisfied, i.e.
|P \H| ≥ TC , then it is not guaranteed that the output after Step 1. (from FaBA)
is consistent. However, we still need that if |P \ H| < n− 2TL, all final outputs
are consistent. That is the case, because there cannot be two lists of signatures
of size at least n − TL on different values. Assume towards contradiction, that

41

there are such two lists. Observe that any two lists of size n − TL, intersect in
at least n − 2TL parties. Since |P \ H| < n − 2TL, there must be at least one
honest party in this intersection. But honest parties do not send signatures on
different values.

Moreover, let us remark that in the real world, the parties only send mes-
sages in Step 2 via the network, and in Step 1 via FaBA. This means, since the
adversary can only delay each network message by up to δ clock ticks, and the
output from FaBA up to τaba(δ) clock ticks, then the maximum delay for the
output is τcon = τaba(δ)+δ. Hence, it is enough that the simulator has the power
to delay the output up to τcon clock ticks.

ut

D Proof of the Protocol for SFE with increased
Correctness and Privacy

In this section, we show the proof of the Theorem 4 of ΠSFE from Section 5.

Theorem 4. The protocol ΠSFE operates in the hybrid world containing func-
tionalities (Gclk,Fδnet,FFHE

Setup,FaBA,Fzk), with the following parameters:

– Fδnet has unknown delay δ.
– FaBA gives output at most after τaba(δ) clock ticks. Moreover, it has validity,

consistency and termination parameters (1
2 (n−TL), n− 2TL, TL), where the

parameter TL ≤ n
3 .

– Fzk gives output at most after τzk(δ) clock ticks.

It realizes Fasync with validity, consistency and termination parameters (n−
2TL, n − 2TL, TL). The total maximum delay for the honest parties to obtain
output is τasynch = τaba(δ) + 2τzk(δ) + 9δ.

Proof. Completeness. We first show that the protocol is complete. It is easy
to see that, if there are no corruptions, no environment can distinguish the real
world from the ideal world. First, observe that the output that is evaluated in
both worlds is the same, since the simulator sets the core set containing the
same parties as in the real world. Moreover, the simulator delivers the outputs
of honest parties at the time at which the honest parties obtain the output and
terminate in the real execution.

One can readily verify, that in the protocol, the parties send messages in 9
steps, performs calls to Fzk in two steps, and executes in parallel n BAs during
the input provider selection. Hence, the protocol takes at most τaba(δ)+2τzk(δ)+
9δ clock ticks to execute.

Soundness. We first describe the simulator.

42

Algorithm SSFE

Network Messages:
The simulator prepares a set buffer = ∅ to simulate the messages that are sent to
corrupted parties throughout the simulation (recall the variable buffer in Fnet).
More concretely, it does the following:
1: Receive δ from Fasync.
2: On input (FetchMessages, i) from Pi, for each message tuple

(0, Pk, Pi,m, idm) in buffer, output (k,m) to Pi.
3: On input (Delay Fnet, T, id) from the adversary, if there exists a tuple

(D,Pi, Pj ,m, id) in buffer and T ≤ δ, then set D = D + T and return
(Delay-ok) to the adversary. Otherwise, ignore the message.

Setup:

1: The simulator generates the keys at the beginning of the execution. That is, it
computes and records (ek, dk)← Gen(n−TL,n)(1κ), where dk = (dk1, . . . , dkn).

2: On input (GetKeys, sid) from a corrupted party Pi, output (sid, ek, dki) to
Pi.

Input Stage:

// Plaintext Knowledge and Distribution.
1: Set ci = Encek(0), for each honest party Pi.
2: The simulator keeps track of the delays the adversary sets for the outputs

from Fzk. Then, when the adversary requests the output of Pi from Fzk at
the corresponding time, the simulator responds with a confirmation of the
validity of the ciphertext ci.

3: On input σpopk
j from corrupted party Pj to Pi, input the tuple (τ, τ +

1, Pj , Pi, σpopk
j , id) to buffer.

4: When a corrupted party Pi inputs ((ek, ci), (xi, ri)) to prove plaintext knowl-
edge of ci to a party Pj , the simulator checks that ci = Encek(xi, ri). If so, it
inputs (τ, τ + 1, Pj , Pi, σpopk

j , id) to buffer.
5: As soon as there are n − TL tuples (τ1, τ2, Pj , Pi, σ

popk
j , id) for different Pj ,

such that τ ≥ τ2 in buffer, then compute πi = {σpopk
j } and input (τ, τ +

1, i, j, (ci, πi), id) for each Pj .
6: On input (ci, πi) from a corrupted party Pi to Pj , the simulator inputs (τ, τ+

1, Pi, Pj , (ci, πi), id) to buffer.
7: As soon as there is a tuple (τ1, τ2, Pj , Pi, (cj , πj), id), such that τ ≥ τ2 in

buffer, input a signature to buffer. That is, input (τ, τ + 1, i, j, σdist
i , id) to

buffer.
8: As soon as there are n − TL tuples (τ1, τ2, Pj , Pi, σ

dist
j , id) for different Pj ,

such that τ ≥ τ2 in buffer, then start simulating the input provider selection.
// Input Providers.

9: For each party Pi, keep track of the parties which successfully proved plaintext
knowledge to Pi. We denote that set Si.

10: The simulator inputs to buffer each set Si towards every party. That is,
input (τ, τ + 1, i, j, Si, id) to buffer, for each Pj .

11: Once an emulated honest party Pi received n−TL such sets, emulate for that
party the execution of the BAs. That is, input a 1 to Pj ’s BA, if Pj is in

43

one of the received sets. Take into account all the commands tampering the
outputs or blocking the outputs of the BAs that come from the adversary,
and change the output accordingly.

12: Wait until there are n− TL ones as outputs from the BAs. Then, input 0 to
the remaining BAs.

13: Define CoreSeti as the set of parties such that the emulated BA for that party
outputted 1. Observe that if the adversary corrupted more than n− 2TL, the
consistency of the BAs is not satisfied, and hence the core sets can be different.

14: The simulator emulates each party Pi, by inputting the pairs (cj , πj) that it
collected in the n− TL sets Sj , to buffer.

Computation and Threshold Stage:

// Setting the Core Set.
1: Once the simulator computes CoreSeti from the previous Stage, do the fol-

lowing: if the core sets are consistent, it sends to Fasync the input values xi
from each corrupted party, and also inputs (No-Input,P \ CoreSet, id) to
Fasync. It obtains the output y. Otherwise, input any of the core sets CoreSeti

to Fasync. Then, obtain the inputs from honest parties (if the core set are not
consistent, t ≥ n − 2TL, the simulator is allowed to obtain the inputs since
privacy is not satisfied).
// Computation.

2: For each honest party Pi, the simulator internally computes the evaluated
ciphertext ci = fek(c1, . . . , c|CoreSeti|), based on the ciphertext from the input
providers.
// Threshold Decryption.

3: The simulator computes the decryption share di = DecSharedki (ci) for each
corrupted party Pi, and sets the decryption shares from honest parties such
that (d1, . . . , dn) forms a secret sharing of the output value y, if the core sets
are consistent. Otherwise, for each honest Pi it can evaluate the function on
the inputs in CoreSeti to obtain yi, encrypt it, and set the decryption share
exactly as in the real world. In this case, the simulator also fixes the output
of Pi to yi.

4: Each time the adversary requests validity of the decryption share di from an
honest party Pi, the simulator responds with a confirmation of the validity
of di.

5: As soon as the adversary inputs a decryption share di for ciphertext c′, the
simulator checks the validity of the decryption share, and if it is valid, inputs
to buffer a signature on (di, c′).

6: Once an emulated honest party Pi received n − TL signatures on the same
pair (di, c′), it computes a proof that the decryption share di for c′ is correct
ProofSharei = {σpocs

j }. It inputs to buffer the tuple ((di, c′), ProofSharei)
to every party.

7: When an honest party receives n−TL tuples of the form ((di, c′), ProofSharei)
with the same c′, it sets his output bit to y.

Termination Stage:

1: The simulator keeps track of the votes that each party performs. That is, if
an emulated honest party Pi received an output y in the previous stage, it
inputs y to buffer, towards every other party.

44

2: As soon as an emulated honest party receives n−2TL votes on y, if the party
Pi did not vote yet, it sets its output to y, and inputs y to buffer, towards
every other party.

3: As soon as an emulated honest party receives n−TL votes on y, the simulator
delivers the party’s output in the ideal world.

We define a series of hybrids to argue that no environment can distinguish
between the real world and the ideal world.

Hybrids and security proof.

Hybrid 1. This corresponds to the real world execution. Here, the simulator
knows the inputs and keys of all honest parties.

Hybrid 2. We modify the real-world execution in the computation stage. Here,
when a corrupted party requests a proof of decryption share from an honest
party, the simulator simply gives a valid response without checking the witness
from the honest party.

Hybrid 3. This is similar to Hybrid 2, but in the computation of the decryption
shares is different. In this case, the simulator obtains the output y from Fasync,
computes the decryption shares of corrupted parties, and then adjusts the de-
cryption shares of honest parties such that the decryption shares (d1, . . . , dn)
form a secret sharing of the output value y. That is, here the simulator does
not need to know the secret key share of honest parties to compute the decryp-
tion shares. If there are more than n− 2TL corrupted parties, privacy is broken,
so the simulator obtains the inputs from the honest parties and computes the
decryption shares as in the previous hybrid.

Hybrid 4. We modify the previous hybrid in the Input Stage. Here, when a
corrupted party requests a proof of plaintext knowledge from an honest party,
the simulator simply gives a valid response without checking the witness from
the honest party.

Hybrid 5. We modify the previous hybrid in the Input Stage. Here, the hon-
est parties, instead of sending an encryption of the actual input, they send an
encryption of 0.

Hybrid 6. This corresponds to the ideal world execution.
In order to prove that no environment can distinguish between the real world

and the ideal world, we prove that no environment can distinguish between any
two consecutive hybrids.

Claim 1. No efficient environment can distinguish between Hybrid 1 and Hy-
brid 2.
Proof: This follows trivially, since the honest parties always send a valid witness
to Fzk. �

Claim 2. No efficient environment can distinguish between Hybrid 2 and Hy-
brid 3.

45

Proof: This follows from properties of a secret sharing scheme and the security of
the threshold encryption scheme. Given that the threshold is n−TL, any number
corrupted decryption shares below n − TL does not reveal anything about the
output y. Moreover, one can find shares for honest parties such that (d1, . . . , dn)
is a sharing of y. Above n − TL corruptions, the simulator obtains the inputs
from honest parties, and hence both hybrids are trivially indistinguishable. �

Claim 3. No efficient environment can distinguish between Hybrid 3 and Hy-
brid 4.
Proof: This follows trivially, since the honest parties always send a valid witness
to Fzk. �

Claim 4. No efficient environment can distinguish between Hybrid 4 and Hy-
brid 5.
Proof: This follows from the semantic security of the encryption scheme. �

Claim 5. No efficient environment can distinguish between Hybrid 5 and Hy-
brid 6.
Proof: This follows, because the simulator in the ideal world and the simulator
in Hybrid 5 emulate internally the joint behavior of the ideal assumed function-
alities, exactly the same way. �

We conclude that the real world and the ideal world are indistinguishable.
ut

46

	Robust MPC: Asynchronous Responsiveness yet Synchronous Security
	Introduction
	Contributions
	Technical Overview of Our Results
	Related Work

	Preliminaries
	Model
	Communication Network and Clocks
	Ideal World

	Compiler
	Key-Distribution Setup
	Synchronous SFE
	Synchronous Byzantine Broadcast
	Asynchronous SFE
	Protocol Compiler

	Asynchronous Protocols
	ABA with increased Validity and Consistency
	SFE with increased Correctness and Privacy

	Conclusions
	Proof of the Protocol Compiler
	Proof of the Protocol for ABA with Increased Validity
	Proof of the Protocol for ABA with Increased Consistency
	Proof of the Protocol for SFE with increased Correctness and Privacy

