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Abstract

We introduce a new variant of decentralised, trustless, permissionless proof-of-work blockchain.
The main novelty of the new variant is a multi-stage proof of work which is analogous to multi-
stage pipelining used in hardware architectures. Among the possible advantages of using a
multi-stage proof-of-work blockchain are the following.

• Reduction of the time for confirmation of a transaction and speeding up the overall rate
of transactions processing without reducing the time for mining a block.

• Encourage cooperative behaviour among the miners so that the reward for mining a block
is shared by a number of miners.

• Use of hardware incompatible hash functions for various stages so that it becomes very
difficult for a single entity to attain major computational advantage over all the stages of
the block mining.

• Improve security by making 51% attacks more difficult to achieve and by providing re-
silience to selfish mining attacks.

We believe that the new blockchain structure mitigates the problem of scalability without com-
promising security. By enforcing cooperative behaviour among the miners, reward for mining
a block is more equitably distributed. This, in turn, will help in ensuring participation by a
greater number of entities in the overall mining activity.
Keywords: blockchain, proof-of-work, pipelining, Bitcoin.

1 Introduction

Bitcoin was launched by Satoshi Nakamoto in 2009 [9]. It is a form of currency which operates
in a decentralised, trustless and permissionless environment. It is decentralised in the sense that
there is no central authority which issues or manages the currency; it is trustless in the sense
that users do not require to trust any entity to use the currency; and it is permissionless in the
sense that anybody can join the community of users of the currency without requiring any kind of
permission. The creation of such a currency is a fascinating technological feat. Starting from its
obscure origin a decade ago, Bitcoin is presently an internationally well known invention with a
market capitalisation of more than 60 billion US Dollars.
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Bitcoin is based on the blockchain technology which combines ideas from cryptography and
distributed computing. Since cryptography plays an essential role, Bitcoin is called a cryptocur-
rency. A blockchain is a method to implement what is called a distributed ledger, i.e., a ledger
whose entries are immutable and which is stored in a distributed fashion. The creation of Bitcoin
kick-started an immense amount of activity in cryptocurrency in particular and more generally on
the blockchain technology and distributed ledger. We note, however, that not all cryptocurrencies
are based on blockchain (an example is XRP of Ripple) and that not all blockchains operate in a
trustless and permissionless model (an example is Quorum).

Presently, several problems have been identified with the performance of Bitcoin. A major issue
is that of scalability. The design of Bitcoin inherently limits the number of payment transactions
that can be processed per second. Also, the confirmation time for a transaction is itself quite long.
These two factors limit the applicability of Bitcoin as a currency for regular use. A second issue is
that of centralisation. Transactions are confirmed by entities called miners who employ expensive
special purpose hardware for so-called block mining. The high cost of block mining has led to the
formation of mining pools. As things stand, block mining is done only by a small number of mining
pools. This has led to fears of centralisation which cuts at one of the basic premises of Bitcoin.
Several proposal have been made in the literature for overcoming these problems. We mention
some of these after providing an overview of our main contribution.

Our Contributions

This work describes a modification of the proof-of-work blockchain used by Bitcoin. Broadly
speaking the idea is the following. The proof-of-work to be done for mining a block is divided
into stages. Suppose there are k stages. Consider a block Bi for i ≥ k. The proof-of-work for
mining Bi can start immediately after block Bi−k has been mined. Stage numbered 0 of the proof-
of-work for mining Bi depends upon block Bi−k; stage numbered 1 of the proof-of-work for mining
Bi depends upon block Bi−k+1 and the completion of stage numbered 0; and so on until stage
numbered k − 1 of the proof-of-work is taken up after mining of block Bi−1 and the completion of
stage numbered k − 2.

The target (and difficulty) of each stage is determined by the network in a manner such that
the completion time for all the stages is more or less the same. We denote this parameter as the
stage completion time T . So, the entire proof-of-work for a block takes kT seconds while blocks
get added to the blockchain at the rate of one block per T seconds. This leads to two advantages.
First, the overall transaction processing rate of the blockchain improves. Second, the confirmation
time for a transaction also improves. Suppose that a transaction is considered to be confirmed if
the block containing it is mined and a further ν blocks are added to the blockchain. Then the
transaction confirmation time is kT + νT seconds which is an improvement over νkT seconds.
The idea underlying the multi-stage blockchain is similar to pipelined computations in hardware
architectures.

The rate at which transactions are processed by Bitcoin is limited by several factors – the rate
at which blocks are added to the blockchain, the network delay in propagating a block, and the size
of a block. A multi-stage proof-of-work blockchain disassociates the time for creating a block from
the rate at which blocks are added to the network. Theoretically speaking, the rate of adding blocks
to the blockchain in a multi-stage blockchain can be arbitrarily lowered by choosing a suitably high
value of the number of stages. This removes the first factor contributing to the delay in transaction
processing. The second factor, i.e., network delay, however, remains. In fact, the network delay
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provides a lower bound on the rate at which blocks are added to the blockchain. The size of a block
limits the number of transactions that can be accommodated in a block. One way to improve the
transaction processing rate is to increase the block size so that more transactions fit within a single
block. This approach is complementary to improving the rate at which blocks are added to the
blockchain.

In a multi-stage blockchain, the proof-of-work of an individual stage can be released immediately
after they are obtained. Other miners can work on such a proof-of-work to obtain proofs of works
of subsequent stages ultimately leading to the mining of a complete block. Once a complete block is
mined, the miners who contributed the proofs of works of the individual stages obtain an appropriate
portion of the block reward. So, by releasing the proof-of-work of an individual stage, a miner locks
in a certain return in case this proof-of-work is completed to mine an entire block. Such a strategy
incentivises miners to cooperate in the process of block mining

The proof-of-work of individual stages require the application of hash functions. We put forward
the idea that these hash functions should be defined from a set of hardware incompatible hash
functions. This will make it very difficult for a single entity to obtain substantial computational
advantage for all the stages. This reduces the possibility of 51% and selfish mining attacks.

Previous and Related Works

There have been a number of works which have tried to alleviate the problems of Bitcoin blockchain.
We discuss some of these along with the relevance to multi-stage proof-of-work blockchain.

A line of works [12, 13, 7, 11, 14] have proposed the replacement of a linear blockchain by
a directed acyclic graph (DAG). This leads to faster processing times for transactions. A basic
problem in DAG based schemes is to obtaining an ordering of the blocks. This requires a careful
analysis. DAG based schemes are quite far from the notion of multi-stage blockchain that we
introduce.

A modification of a blockchain based scheme which is somewhat closer to our notion is fruitchain [10].
In a fruitchain, the blocks contain fruits, where each fruit contains a list of transactions. Fruits
refer to a recently mined block. Both fruits and blocks are to be mined. A multi-stage blockchain,
on the other hand, does not have the two-tiered notion of fruits and blocks. Blocks contain trans-
actions and are mined. It is the mining process itself that goes over several stages and refers to
prior blocks.

Computing proofs of works can be an energy intensive procedure. There have been several
suggestions to replace proof-of-work by proof-of-stake [6, 5, 2]. The idea is that holder of a certain
amount of currency has a stake in the currency. Such a holder provides a proof-of-stake and
obtains a chance to create a new block. There is no competition for block creation. Some kind
of distributed consensus mechanism is followed to determine the entity which will create the new
block. A proof-of-stake based currency provides fast transaction processing and avoids wastage of
energy required for block mining. On the downside, proof-of-stake schemes tend to favour the richer
entities which again moves away from the goal of decentralisation. So, while proof-of-stake is an
important concept, we also expect proof-of-work based schemes to co-exist in the cryptocurrency
space.

In a usual blockchain, all the miners simultaneously compete with each other in the mining of
the next block. There have been proposals which explicitly partition the set of entities such that
each group of entities work on disjoint problems. Such a strategy has been called sharding and
leads to improvement of transaction processing [8, 1, 15]. A multi-stage blockchain also implicitly
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introduces a sharding strategy in the sense that in general the miners will be divided into k groups
with each group working on the proof-of-work of one particular stage for some block.

2 Description

In this section, we provide the description of the multi-stage blockchain and how it operates.

Parameters:

k : number of stages;
µ : number of hardware incompatible hash functions;
T : stage completion time;
ν : number of confirmations for a transaction.

Digital signature scheme: A digital signature scheme (setup, sign, verify) is required. An entity
invokes setup to obtain a signing-verification key pair (sk, pk). Algorithm sign is used on a message
M and the signing key sk to produce a signature σ. The verification algorithm runs on a message-
signature pair (M,σ) and the verification key pk and returns true (indicating that the pair is valid)
or false (indicating that the pair is invalid).

Hash functions: Let H0, . . . ,Hk−1 be hash functions. The size of the digest for all of these hash
functions is n1 bits. Let H be a hash function which produces digests of size n2 bits. It is possible
to choose H to be one of H0, . . . ,Hk−1 and in this case n1 = n2 = n.

Hardware incompatible hash functions: We say that two hash functions G and G′ are hard-
ware incompatible if it is not possible to easily modify or reconfigure a fast hardware for computing
one of the functions to obtain a fast hardware for computing the other function. For example,
SHA2 and SHA3 are hardware incompatible hash functions.

A set of hash functions is said to be hardware incompatible if the hash functions in the set are
pairwise hardware incompatible. For example, the finalists in the NIST Hash Competition form a
set of hardware incompatible hash functions.

It is not easy to find a large set of secure hardware incompatible hash functions. Suppose
{G0, . . . , Gµ} is a set of hardware incompatible hash functions. The required hash functions
H0, . . . ,Hk−1 can be defined from this set by the following rule.

Hi = Gi mod µ, i = 0, . . . , k − 1. (1)

Address: Addresses are computed by applying the hash function H to a public key pk, i.e., a is
an address if a = H(pk).

Transaction: A transaction T is a pair (IL,OL, σ) where

1. IL = ((pk1, c1), . . . (pks, cs)), s ≥ 1. Here pk1, . . . , pks are public keys and for i = 1, . . . , s, ci is
the amount of currency associated with H(pki).

2. OL = ((a1, d1), . . . (at, dt)), t ≥ 1. Here a1, . . . , at are addresses and for j = 1, . . . , t, dj is the
amount of currency to be associated to the address aj .
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3.
∑s

i=1 ci ≥
∑t

j=1 dj . The difference (
∑s

i=1 ci)−
(∑t

j=1 dj

)
is the transaction fee.

4. σ consists of the signature(s) on (IL,OL) constructed using the signing key(s) corresponding
to the public key(s) pk1, . . . , pks.

We require each transaction to have at least one input address and one output address. Bitcoin has
coinbase transactions which do not have an input address and has only one output address. These
are used to assign block rewards. Our definition of transaction does not cover coinbase transactions.
Instead, we will explicitly mention the addresses used for assigning block rewards as part of a block.

Root hash tree of a list of transactions: Let L be a list of transactions. These are to be
hashed together using some kind of tree structure. Bitcoin uses the Merkle hash tree to stitch
together the hashes of the transactions in the list. This uses a hash function to construct the tree
on the list of transactions in L and the final output is a single digest. Ethereum uses a more
complicated version of the Merkle hash tree.

For our purposes, the exact structure of the hash tree used to process the transactions in L is
not important. We only specify that the hash function H0 is used to build a hash tree from L and
the final output of the hash tree will be called the root hash and denoted as RH(L).

Block: A general block B consists of the following information:

bn,
bdigest,
L,
t0, η0, τ0, a0, c0
t1, η1, τ1, a1, c1
...
tk−1, ηk−1, τk−1, ak−1, ck−1

Here

• bn is the block number.

• bdigest is the block digest. We later explain the computation of the block digest.

• L is the (possibly empty) list of transactions in the block.

• For j = 0, . . . , k − 1,

– tj is the target for stage j;

– ηj is the nonce corresponding to the proof-of-work for stage j;

– τj is the timestamp for the completion of stage j;

– aj is the address to which the reward for completing stage j is to be assigned;

– cj is the reward for completing stage j; the block assigns cj coins to the address aj .
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The block reward consists of the new coins that is created on successful mining of the block
and the sum of all the transactions fees in the block. We denote the block reward of a block B
by BR(B). We do not specify any particular monetory policy for creating new coins. All that we
require is that given a block number, it should be possible to determine the number of coins that
is created on the successful mining of that block.

There has to be a policy for distributing BR(B) to the k addresses corresponding to the successful
completion of the k stages. The simplest would be c0 = · · · = ck−1 = BR(B)/k. We will assume
this distribution. We note, on the other hand, that it is also possible to specify more complicated
way of distributing the block reward BR(B) to the different stage addresses.

Blockchain: The blockchain is of the following form:

B0 ← B1 ← · · · ← Bk−1 ← Bk ← Bk+1 ← · · ·

Blocks B0, B1, . . . , Bk−1 are start-up (or genesis) blocks while later blocks, i.e., Bk, Bk+1, . . . are
general blocks.

General blocks: For i ≥ 0,

Bi+k =

i+ k,
bdigesti+k,
Li+k,
ti+k,0, ηi+k,0, τi+k,0, ai+k,0, ci+k,0
ti+k,1, ηi+k,1, τi+k,1, ai+k,1, ci+k,1
...
ti+k,k−1, ηi+k,k−1, τi+k,k−1, ai+k,k−1, ci+k,k−1

The proofs of works of the various stages and the final block digest bdigesti+k of block Bi+k are
defined as follows.

gi+k,0 = H0 (bdigesti, i+ k,RH(Li+k), ti+k,0, ai+k,0, ci+k,0, τi+k,0, ηi+k,0) ;
gi+k,1 = H1

(
bdigesti+1, gi+k,0, ti+k,1, ai+k,1, ci+k,1, τi+k,1, ηi+k,1

)
;

· · · · · · ·
gi+k,k−1 = Hk−1

(
bdigesti+k−1, gi+k,k−2, ti+k,k−1, ai+k,k−1, ci+k,k−1, τi+k,k−1, ηi+k,k−1

)
.

 (2)

Finally, bdigesti+k is set to be equal to gi+k,k−1.
Verification conditions for the proofs of works of the different stages of block Bi+k are the

following.

gi+k,0 < ti+k,0
gi+k,1 < ti+k,1
· · · · · · ·

gi+k,k−1 < ti+k,k−1

 (3)

Block Bi+k depends upon k previous blocks, namely blocks Bi, . . . , Bi+k−1. The proof of work
required to create (or, mine) blockBi+k comes in k stages. Essentially, the values ηi+k,0, . . . , ηi+k,k−1
are the proofs of works of the individual stages. For j = 0, . . . , k − 1, the nonce ηi+k,j is used to
obtain gi+k,j such that gi+k,j < ti+k,j . The process of computing the proof of work for the j-th
stage, i.e., obtaining ηi+k,j can start immediately after the completion of the following two tasks.
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1. Block Bi+j has been created.

2. The proof of work for stage j − 1 has been completed, i.e., gi+k,j−1 has been created.

Incremental block information: A general block has a k-stage proof-of-work. After completing
each of the initial k−1 stages, a miner may release the proof-of-work for that stage. After completing
the k-th stage, a miner releases the entire block. Incremental block information has the following
format.

For i ≥ 0,

IBIi+k,0 =

(i+ k, 0),
gi+k,0,
Li+k,
ti+k,0, ηi+k,0, τi+k,0, ai+k,0, ci+k,0

IBIi+k,1 =
(i+ k, 1),
gi+k,1,
ti+k,1, ηi+k,1, τi+k,1, ai+k,1, ci+k,1

...
...

...

IBIi+k,k−2 =
(i+ k, k − 2),
gi+k,k−2,
ti+k,k−2, ηi+k,k−2, τi+k,k−2, ai+k,k−2, ci+k,k−2

Given IBIi+k,j and bdigesti+j+1 from block Bi+j+1, it is possible to obtain the following.

1. IBIi+k,j+1 for j = 0, . . . , k − 3.

2. Block Bi+j+1 for j = k − 2.

For j = 0, . . . , k − 2, the verification of the proof of work for IBIi+k,j consists of verifying that
gi+k,j has indeed been correctly computed as given by (2) and that the conditions in (3) hold.

Note that IBIi+k,j are not added to the blockchain. Only after the proof-of-work of the entire
block Bi+k is complete that the block is added to the blockchain. So, the blockchain consists of only
completely mined blocks and the blockchain does not keep track of incremental block information
of different stages.

Start-up blocks: For the blockchain to start, the initial k blocks B0, . . . , Bk−1 need to be defined.
For 0 ≤ i ≤ k − 1,

Bi =
i,
bdigesti,
ti, ηi, τi, ai, ci

The quantities bdigest0, . . . , bdigestk−1 are defined as follows.

bdigest0 = H0 (0, t0, a0, c0, τ0, η0) ;
bdigesti = Hi

(
bdigesti−1, i, ti, ai, ci, τi, ηi

)
, 1 ≤ i ≤ k − 1.

}
(4)
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Verification conditions for the proofs of works of blocks B0, . . . , Bk−1 are the following.

bdigesti < ti. (5)

Note that we do not define k-stage proofs of works for the start-up blocks. This can be done,
but, does not seem to be necessary. The blockchain would become operational only after the start-
up blocks have been prepared. The issue of k-stage proof-of-work becomes relevant only after the
blockchain becomes operational.

For i = 0, . . . , k − 1, block Bi assigns ci coins to address ai. The start-up blocks can be used
for initial mining of some coins so that transactions become possible. The coins to be mined in the
start-up blocks can be offered as initial coin offerings to prospective entities.

Stage completion time SCT: Each stage of the total proof of work has an independent target.
The value of this target and the hash rate for the hash function used for the particular stage
determines the amount of time required to complete the proof of work of the stage. The goal is
to ensure that all the stages require about the same time for the proof of work of the stage to
complete. We denote this as the stage completion time (SCT) which is defined to be T seconds.
The value of T is to be defined as part of the design rules.

The targets for the various stages are to be updated at regular intervals so that SCT of T
seconds is maintained. The actual rule for updation of target for each stage can be a simple one
as used in Bitcoin or, it can be more sophisticated as for example used in Ethereum. We do not
specify the actual target updation rule. As long as the updation rule is able to ensure that each
stage requires about T seconds it can be fitted into our framework.

Difficulty: The difficulty of completing the proof of work of a stage of a block is a parameter
which is computed as a function of the target for that particular stage of the block. We do not
specify the exact method of computing difficulty. A simple method such as the one used in Bitcoin
may be used, or, alternatively some more sophisticated method may be used. The only thing
important is that given a value of the target for the stage, it should be possible to obtain the
difficulty of the stage.

The difficulty of a block is the sum of difficulties of the k stages in the block. This is a rough
measure of the amount of work that has been put in to mine the block.

Block size: There will be an upper bound on the size of a block. We do not specify this bound.
Any feasible bound may be used. The block-size parameter is independent of whether the proof-
of-work is single-stage or multi-stage. The block-size limits the number of transactions that can be
accommodated in a block. Suppose the block-size is fixed so that a maximum of 100 transactions
will fit into a single block. This will hold irrespective of whether the proof-of-work is single-stage
or multi-stage.

Network: The system is envisaged to operate in a decentralised, permissionless and trustless
mode. Any entity would be able to download (or, implement) the software and become a node in
the peer-to-peer to network. Such a node will maintain its own local copy of the blockchain. The
nodes would communicate among themselves using some gossip protocol. Such a protocol should
require nodes to do the following.

1. Relay transactions.
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2. Relay incremental block informations.

3. Relay blocks.

Before relaying any information, each node will perform validation checks on the information
it relays. This will include verification of formatting, signature, proof of work and other consensus
rules of the network. Such rules would include verification of timestamps and the rules for updating
the targets of the various stages.

Choosing between blocks: Given competing blocks which can be added to the local copy of
the blockchain, a node will choose the more difficult one. If the blocks have the same difficulty, then
the node will retain the one which it received the earliest. The goal is to ensure that the consensus
blockchain represents the maximum amount of work among all possible competing blockchains.
This rule for choosing between blocks is essentially the same as that used in Bitcoin.

Forking: A fork is a split in the blockchain leading to two blockchains. These two blockchains
share the same history up to a certain block and beyond that there is bifurcation which creates the
two separate blockchains. A fork may arise due to the necessity of a rule change, or more, generally
a disagreement in the community of users of the blockchain. Note that forking is a block-level
phenomenon. Designing the proof-of-work to be multi-stage is a “within block” feature. So, having
a multi-stage proof-of-work does not make forking either easier or more difficult to handle.

3 Block Mining

We assume that the k start-up blocks B0, . . . , Bk−1 have been mined. After this, general blocks
can be mined and added to the blockchain. General blocks can accommodate transactions. So,
processing of transactions can proceed after the start-up blocks have been mined.

The first list of transactions will be included in the block Bk. Completion of the proof of work
for block Bk will have k stages. Each stage will require about T seconds to be completed. After
the proof of work of the first stage of Bk is complete, the corresponding miner can release the
incremental block information IBIk,0. This miner as well as other miners can build upon IBIk,0 to
try and complete the proof of work of the second stage. Simultaneously, other miners may group
together a second list of transactions and start mining the proof of work for the first stage of block
Bk+1.

Each stage requires about T seconds to complete. So, the entire proof of work for block Bk
will be completed in about kT seconds. Since the mining of block Bk+1 started T seconds after
block Bk and the entire proof of work for block Bk+1 also requires about kT seconds, at the end of
(k + 1)T seconds, the mining of block Bk+1 will be completed.

More generally, for i ≥ 0, the following two invariants will hold.

1. The time to complete the mining for the entire proof of work for block Bi+k will be about
kT seconds.

2. Block Bi+k+1 will be mined about T seconds after block Bi+k is mined.

Consequently, blocks will be added to the blockchain at the rate of one block per T seconds. On
the other hand, the mining of each block will require kT seconds. This is reminiscent of typical
pipelining scenario in hardware architectures. In fact, the goal of the multi-stage design is to
translate benefits of pipelining to block mining.
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Time for confirmation of a transaction: Suppose a transaction is considered to be confirmed,
if the block containing the transaction has been mined and at least ν subsequent blocks have been
added to the blockchain. The time to mine the block containing the transaction is kT seconds
while the time for the addition of ν subsequent blocks is νT . So, the total time for confirming a
transaction is kT + νT .

Let us take some concrete figures to understand the speed-up.

Example 1: In Bitcoin, the time to mine a block is designed to be about 600 seconds. Suppose
that a transaction is considered to be confirmed if five further blocks have been added to the
blockchain. This means that Bitcoin requires about one hour for a transaction to be confirmed.
Suppose that in our setting also, we wish to ensure that a block requires 600 seconds to be mined
and is confirmed if five further blocks have been obtained. The time to mine a block in our setting
is kT which we set equal to 600. Further, ν = 5. Suppose, we choose k = 10. Then T = 60 seconds.
Thus, the time to mine a block and obtain 5 further confirmations is kT + νT = 600 + 300 = 900,
i.e., a transaction will be considered to be confirmed in about 15 minutes. This is a fourfold
improvement over the confirmation time for Bitcoin. Blocks will be added to the blockchain at the
rate of one block per minute which is a tenfold improvement over Bitcoin.

Example 2: In Litecoin, the time to mine a block is designed to be about 150 seconds. Sup-
pose that a transaction is considered to be confirmed if 9 further blocks have been added to the
blockchain. So, a transaction will be confirmed after about 150 × 10 = 1500 seconds (25 min-
utes). Again, we wish to ensure that the time to mine a block remains 150 seconds and is con-
sidered confirmed if 9 subsequent blocks are added to the blockchain, i.e., kT = 150 and ν = 9.
Suppose we choose k = 5 so that T = 30. Then the time for confirmation of a transaction is
kT + νT = 150 + 270 = 420 seconds (7 minutes). This is about a fourfold improvement in confir-
mation time. Blocks will be added to the blockchain at the rate of one block per half-minute which
is a fivefold improvement over Litecoin.

The above examples show how to speed up the confirmation time for a transaction without
reducing the time to mine an individual block. The time to mine an individual block is a security
issue. So, using a multi-stage blockchain speeds up both confirmation time for transactions and
the overall rate at which transactions are processed by the blockchain without reducing security.

In the above analysis, we have taken T = 60 and T = 30 for Bitcoin and Litecoin respectively. A
lower bound on the value of T is given by the network delay. A comprehensive work on network delay
for Bitcoin has been done [3] and the site http://bitcoinstats.com/network/propagation/

provides statistics of delay in the Bitcoin network. The value of T = 60 for Bitcoin respects these
network delays. We note that multi-stage blockchain does not provide a method for handling
network delays. If it can be ensured that network delay is small, then T can be taken to be much
smaller leading to further increase in the rate of transaction processing and lowering of the time
for transaction confirmation.

Remarks:

1. For any blockchain which is being actually used in the real world, it is reasonable to assume
that in the steady state the rate at which new transactions are produced is more than the
rate at which transactions are added to the blockchain. So, at any point of time, sufficiently
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many new transactions will be available so that a new block is filled to its maximum size.
This feature holds irrespective of whether the proof-of-work is single-stage or multi-stage.

2. As explained above, the time to mine a single block remains the same for both single-stage
and multi-stage proof-of-work blockchain. Also, in both cases, the size of a block will be the
same. Assuming for simplicity that all transactions have the same size, in both cases, a block
will contain the same number of transactions.

Incremental mining: The multi-stage framework provides the option for releasing proofs of
works of individual stages. We consider the incentive to a miner for doing so. Suppose a miner M
is able to complete stage 0 of block i+k. It has the option of immediately releasing IBIi+k,0. If it does
this, other miners can possibly work on IBIi+k,0 and build the proofs of works for the subsequent
stages and eventually complete the block. As part of IBIi+k,0, miner M has also provided the
address ai+k,0. This address has been computed by applying the hash function H to a verification
key whose signing key is known to M . If the part IBIi+k,0 gets completed to block Bi+k, then ci+k,0
coins will be assigned to the address ai+k,0. Since M knows the signing key corresponding to the
address ai+k,0, it will obtain control of ci+k,0 coins. So, by releasing IBIi+k,0, miner M has locked
in a certain amount of coins which it has a chance of obtaining in the future.

There is nothing special about IBIi+k,0. The above argument applies to IBIi+k,j for all i ≥ 0 and
j = 0, . . . , k − 2. If a miner is able to complete the proof of work for stage j of block Bi+k, then it
has the option of immediately releasing IBIi+k,j . This contains the address ai+k,j whose secret key
is known to M . If IBIi+k,j gets completed to a block Bi+k, then ci+k,j coins gets assigned to ai+k,j
giving M control over these coins.

Alternatively, miner M could withold IBIi+k,j and try to complete the mining of the entire block
Bi+k by itself. By doing this, it runs the risk that the other miners can together mine block Bi+k
earlier. Then, the entire work done by M in obtaining proofs of works of various stages will be
wasted and result in no return. It would be better for the miner M to release stage-wise proof of
works.

The above incentive mechanism encourages miners to cooperate to mine a complete block.
More accurately, the above scenario captures both competitive and cooperative behaviour. Miners
compete with each other to complete the mining of the individual stages. By releasing the proofs
of works of the individual stages, the miners cooperate with each other to complete the mining of
an entire block. In contrast, single stage blockchain only allows for competitive behaviour among
the miners.

Simultaneous block mining: By the nature of the multi-stage blockchain, for i ≥ k, the mining
of stage j + 1 of block Bi can be done simultaneously with the mining of stage j of block Bi+1,
j = 0, . . . , k − 2. In the steady state, the miners will be divided into k groups as follows:

• A group working on obtaining a proof of work for stage k − 1 of block Bi;

• A group working on obtaining a proof of work for stage k − 2 of block Bi+1;

• . . .

• A group working on obtaining a proof of work for stage 0 of block Bi+k−1;
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This is another way in which the miners cooperate to extend the whole blockchain. In contrast, for
a single stage blockchain, all miners would be competing with each other to mine block Bi.

The above mentioned partition of miners to work on disjoint problems is a form of sharding.
Several proposals have been described which have sharding as an explicit goal. For a multi-stage
proof-of-work blockchain, sharding arises implicitly.

Hardware incompatible hash functions: We have specified that the hash functionsH0, . . . ,Hk−1
are to be instantiated from a set of µ hardware incompatible hash functions as given by (1). It
would require a huge investment from an individual miner to obtain very fast special purpose
hardware for all the hash functions G0, . . . , Gµ. What is more likely is that individual miners will
focus on obtaining special purpose hardware for one hash function. This will provide it with a
computational leverage over some of the stages, but, not all the stages. Other miners will invest
in obtaining special purpose hardware for the other stages providing computational leverages for
these stages.

In such a situation, a miner will focus on completing the proof of work of the stages for which
it has special hardware. Since, other miners have special hardware for other stages, this will
incentivise a miner to release proofs of works of individual stages thus promoting the cooperative
behaviour in the mining of a block.

4 Security

Suppose the j-th target for a block B is tj . Then successful completion of the proof-of-work of
stage j of the block requires about 2n1/tj invocations of the hash function Hj . So, the total amount
of work required to mine block B is

2n1

t0
CH0 +

2n1

t1
CH1 + · · ·+ 2n1

tk−1
CHk−1

(6)

where CHj is the cost of applying the hash function Hj once.
Let ρj be the hash rate of the network for the hash function Hj , i.e., the network is able to

compute Hj at the rate of ρj invocations per second. Then the time to mine block B is

t =
2n1

ρ0t0
+

2n1

ρ1t1
+ · · ·+ 2n1

ρk−1tk−1
. (7)

Let us consider the immutability of the blockchain which is important for ensuring that there
is no double spending. Suppose there is an adversary A having hash rate ρ∗j for the hash function
Hj . Then the time required by A to mine block B is

t∗ =
2n1

ρ∗0t0
+

2n1

ρ∗1t1
+ · · ·+ 2n1

ρ∗k−1tk−1
. (8)

The adversary takes shorter time, i.e., t∗ < t if and only if

1

t0

(
1

ρ0
− 1

ρ∗0

)
+

1

t1

(
1

ρ1
− 1

ρ∗1

)
+ · · ·+ 1

tk−1

(
1

ρk−1
− 1

ρ∗k−1

)
> 0. (9)

The total hash rate for hash function Hj is ρj + ρ∗j of which the fraction fj = ρj/(ρj + ρ∗j ) is
controlled by the honest miners and the fraction f∗j = ρ∗j/(ρj + ρ∗j ) is controlled by the adversary.
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The j-th component of (9) is positive if and only if f∗j > 1/2. For a usual (single stage) blockchain
based on hash function Hj , the condition f∗j > 1/2 is called the 51% attack. This signifies that if
an adversary is able to control more than half the hash rate, it has a good chance of lauching an
attack on the immutability of the blockchain which can lead to double spending.

If k > 1, then the f∗j > 1/2 for one particular j does not necessarily imply a 51% attack. It is
still possible that the other terms of (9) cancel out the advantage that the adversary has in the j-th
component. If f∗j > 1/2 for all j = 0, . . . , k − 1, then the adversary can surely launch an attack on
the immutability of the blockchain. However, since the hash functions H0, . . . ,Hk−1 are based on
a set of hardware incompatible hash functions, it would require a huge investment for an adversary
to gain control of more than half the hash rate for all the hash functions.

To summarise, the immutability of a multi-stage blockchain is at least as hard as that of a
single-stage blockchain with the added benefit that an adversarial control over more than half the
hash rate of any particular stage does not necessarily imply an attack on the immutability of the
multi-stage blockchain. So, using a multi-stage blockchain does not decrease security and may
actually improve it in some situations.

Selfish mining attack: In a usual (i.e., single-stage) blockchain, suppose an adversary is able to
mine a block ahead of the public blockchain. It can then withold the block and keep on privately
mining on top of it while it is still ahead of the public blockchain. At a later stage, it releases the
blocks it has mined. At this point, the honest miners must discard the blocks they have mined and
replace them with the blocks mined by the adversary. This results in a wastage of the computational
power by the honest miners and a proportionate gain in computational power by the adversary.
This strategy has been called selfish mining and analysed in details [4].

In the context of multi-stage blockchain, if an adversary is able to privately mine a whole block
ahead of the public blockchain, then the attack applies in essentially the same way as that for a
single-stage blockchain. However, in a multi-stage blockchain, proofs of works of individual stages
are released as soon as they are completed. So, the honest miners cooperate to obtain the entire
proof of work for any particular block. Further, the various stages use hardware incompatible hash
functions. As a result of these two factors, it is extremely unlikely that an adversary is able to
privately complete the entire proof of work for a single block ahead of all the honest miners. So,
block level selfish mining seems to be difficult to mount on a multi-stage blockchain.

An adversary may attempt selfish mining on a particular stage of block mining. Suppose, it
obtains a proof of work of one particular stage and does not release the corresponding incremental
block information. Instead, it tries to complete the rest of the proof of work. This, however, does
not amount to selfish mining. The incremental block information are not added to the blockchain.
Only a completely mined block is added to the blockchain. So, no discarding of blocks from the
blockchain of the honest miners occur. Also, as mentioned above, it is unlikely that any single
entity will be able to complete the proofs of works of all the stages for mining a block.

By making it difficult for any single entity to mine an entire block by itself, multi-stage
blockchain provides resilience to selfish mining attacks.

5 Conclusion

We have introduced a variant of decentralised, trustless, permissionless blockchain where the proof
of work for mining a block is divided into multiple stages. This reduces the time for confirmation
of a transaction and improves the rate at which transactions are processed without affecting the
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time to mine a block. It also provides several improved security benefits. Further, the process of
mining a block becomes a combination of cooperative and competitive efforts between miners as
opposed to only a competition for a single-stage blockchain. The improved features of a multi-stage
blockchain make the idea an attractive option for future designs and implementations.
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