
Analysis of Secure Caches and Timing-Based
Side-Channel Attacks

Shuwen Deng, Wenjie Xiong and Jakub Szefer

Yale University, New Haven, CT, USA
{shuwen.deng,wenjie.xiong,jakub.szefer}@yale.edu

Abstract.

Many secure cache designs have been proposed in literature with the aim of mitigating
di�erent types of cache timing-based side-channel attacks. However, there has so
far been no systematic analysis of how these secure cache designs can, or cannot,
protect against di�erent types of the timing-based attacks. To provide a means of
analyzing the caches, this paper first presents a novel three-step modeling approach to
exhaustively enumerate all the possible cache timing-based side-channel vulnerabilities.
The model covers not only attacks that leverage cache accesses or flushes from the
local processor core, but also attacks that leverage changes in the cache state due to
the cache coherence protocol actions from remote cores. Moreover, both conventional
attacks and speculative execution attacks are considered. With the list of all possible
cache timing side-channel vulnerabilities derived from the three-step model, this work
further analyzes each of the existing secure cache designs to show which types of
timing-based side-channel vulnerabilities each secure cache can mitigate. Based on
the security analysis of the existing secure cache designs, this paper further summaries
di�erent techniques gleaned from the secure cache designs and the technique’s ability
help mitigate di�erent types of cache timing-based side-channel vulnerabilities.
Keywords: Secure Caches · Side-Channel Attacks · Security Analysis

1 Introduction
Research on timing-based side-channel attacks in computer processor caches has a long
history predating the recent Spectre [1] and Meltdown [2] attacks, e.g., [3, 4, 5, 6, 7]. These
attacks have shown the possibility to extract sensitive information via the timing-based
side channels, and often the focus is on extracting cryptographic keys. In addition, due
to the recent Spectre [1] and Meltdown [2] attacks, there is now renewed interested in
timing-channels. Especially, the Spectre and Meltdown attacks consist of two parts: first,
speculative execution is used to access some sensitive information; second, a timing-based
channel is used to actually transfer the information to the attacker. Whether by itself,
or combined with speculative execution, the timing-based channels in processors pose a
threat to a system’s security, and should be mitigated.

To address the threat of these cache timing-based attacks, di�erent secure cache designs
have been presented in academic literature to date [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24]. The di�erent secure processor caches are designed with di�erent
assumptions and often address only specific types of timing-based side-channel or covert-
channel attacks. To help analyze the security of these designs, this work uses a three-step
modeling approach to reason about all the possible timing-based vulnerabilities.

A three-step model has been recently proposed by us [25] in order to analyze cache
timing-based side-channel attacks. The model considers cache timing-based side-channel
vulnerabilities as a set of three “steps” or actions performed by either the attacker or the

2 Analysis of Secure Caches and Timing-Based Side-Channel Attacks

victim, which can a�ect the states of the cache. In this work, our methodology from [25]
is improved to better represent actions of the attacker and the victim. For each step, all
possible states for a cache block are enumerated in terms of whether the operation is driven
by the attacker or the victim, what memory range the data being operated on belongs to,
and whether the state is changed because of a memory access or data invalidation operation
(e.g., due to a cache coherence operation). To understand which possible three-step actions
can lead to an attack, we further propose and develop a cache three-step simulator, and
apply a set of reduction rules to derive a complete list of vulnerabilities by eliminating
three-step combinations that do not map to an attack. Furthermore, we consider both
normal and speculative execution for the memory operations and modeling of the cache
attacks. Speculative execution has gotten increased attention due to recent Spectre [1] and
Meltdown [2] attacks, which depend on timing channels to actually extract information –
speculation alone is not enough for the attacks.

In the process of development of the improved three-step model, we have uncovered 43
types of timing-based side-channel vulnerabilities which have not been previously exploited
(in addition, there are other 29 types that map to attacks already known in literature).
These new types consider data that are operated on by either the victim or the attacker,
and are in di�erent data ranges, as well as di�erent types of memory related operations.

Furthermore, this work analyzes whether the existing secure cache designs can prevent
all the timing-based side-channel attacks (possibly with assistance of software assumptions
that the authors discuss in their papers). We reviewed and analyzed 17 existing secure
cache designs [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] in terms of
the security features and implementations. Based on the analysis, we summarize cache
features that help improve security. Especially, the caches and the processor architectures
should provide new features to let software explicitly label memory loads or stores of
sensitive data, and di�erentiate them from normal loads and stores, so sensitive data can
be e�ciently identified and protected by the hardware. The caches can use partitioning to
isolate the attacker and the victim and prevent the attacker from being able to set the
victim’s cache blocks into a known state, which is needed by many attacks. To mitigate
attacks based on internal interference, the caches can use randomization to de-correlate
the data that is accessed and the data that is put to the cache.

1.1 Contributions
The contributions of this work are as follows:

• A new formulation of the three-step model with new cache states and derivation of a
new set of types for covering all the cache timing-based side-channel vulnerabilities.

• Inclusion of cache coherence issues into the three-step mode.
• Expansion of the three-step model to consider both normal and speculative execution.
• Design of reduction rules and cache three-step simulator to automatically derive

the exhaustive list of all the three steps which map to e�ective vulnerabilities; and
elimination of three-step patterns which do not map to a potential attack.

• Evaluation of 17 secure processor cache designs on how they can help prevent
timing-based side-channel attacks and analysis of security features they used.

2 Cache Timing-Based Side-Channel Attacks and the
Threat Model

Modern processor caches are known to be vulnerable to timing-based side-channel attacks.
The timing of the memory accesses varies due to caches’ operation. For example, a cache
hit is fast while a cache miss is slow. Cache coherence protocol can also change the cache

Shuwen Deng, Wenjie Xiong and Jakub Szefer 3

states and a�ect the timing of the memory operations. Cache coherence may invalidate a
cache line from a remote core, resulting in a cache miss in the local core, for example. Also,
the timing of cache flush operations varies depending on whether the data to be flushed is
in the cache or not. Flushing an address using clflush with valid data in the cache is slow,
while flushing an address not in the cache is fast. From these timing di�erences of memory
related operations, the attacker can infer if a data at a specific memory address is in the
cache or not, and thus potentially learn some information about the victim’s secrets.

2.1 Threat Model
An attacker’s objective is to retrieve victim’s secret information using timing-based side
channels in the cache. Specifically, we consider the situation where the victim accesses an
address V

u

and the address depends on some secret information. V

u

is within some fixed
range of physical memory locations x, which are known to the attacker. The goal of the
attacker is to obtain the address V

u

. We assume the attacker knows some of the source
code of the victim, so he or she can further infer the secret from knowing the address V

u

.
The attacker cannot directly access any data in the state machine of the cache logic,

nor directly read the data of the victim, if the two are not sharing the same address space.
The attacker can, however, observe its own timing or the timing of the victim process.
And the attacker knows that the timing of the memory related operations depends on the
cache states.

The attacker is able to force the victim to execute a specific function. For example,
attacker can request victim to decrypt a specific piece of data, thus triggering the victim
to execute a function that makes use of a secret key he or she wants to learn. The victim
in the cache attacks can be user software, code in an enclave, operating system, or another
virtual machine.

The processor microarchitecture and the operating system are assumed to be able
to di�erentiate between the victim and the attacker in di�erent processes by assigning
di�erent process IDs. If the victim and the attacker are in the same process, e.g., attacker
is a malicious library, they will have the same process ID. The system software (e.g.,
operating system or hypervisor) is responsible for properly setting up virtual memory
(page tables) and assigning IDs, which may be used by the hardware to identify di�erent
threads, processes or virtual machines. When analyzing secure cache designs, the system
software is considered trusted and bug-free. For secure cache designs which add new
instructions for security related operations, the victim process or management software
is assumed to correctly use these instructions. During speculative execution, the cache
state can be modified by the instructions executed speculatively, unless a processor cache
architecture explicitly prevents or forbids certain speculative accesses.

2.2 Side Channels Versus Covert Channels
This work focuses on side channel. However, there are also covert channels. Covert channels
use the same methods as side channels, but the attacker controls both the sender and the
receiver side of the channel. All types of side-channel attacks are equally applicable to
covert channels. But for brevity, we just use the term “side channels".

2.3 Hyperthreading Versus Timing-Slice Sharing
When the hyperthreading is supported in a system, the attacker and the victim are
able to run on di�erent threads in parallel instead of run once every time slice when no
hyperthreading is used. Our model can be applied to both of the scenario since our model
abstracts away how the sharing happens.

4 Analysis of Secure Caches and Timing-Based Side-Channel Attacks

Exhaustive List
of all possible

three-step
combinations

Cache
Three-Step
Simulator

Preliminary Strong
Vulnerability

Preliminary Weak
Vulnerability

Ineffective Three-Step

Reduction
Rules

Strong
Vulnerability

Weak
Vulnerability

Classification
Step

Reduction
Step

Vulnerability Types
Vulnerability Types

4913

164

524

3744

72

64

Figure 1: Processing procedures to derive the e�ective types of three-step timing-based side-
channel vulnerabilities. Ovals refer to the number of vulnerabilities in each category.

3 Modeling of the Cache Timing-Based Side-Channel
Vulnerabilities

This section explains how a three-step modeling approach is developed and used to model
the behavior of the cache logic and how it can be used to enumerate all the possible cache
timing-based side-channel vulnerabilities.

3.1 Introduction of the Three-Step Model
We have observed that all of the existing cache timing-based side-channel attacks can be
modeled with three steps of memory related operations. Here, memory related operation
refers to loads, stores or di�erent flushes that can be done on the same core or di�erent
cores (cache coherence will then be triggered). The three-step model has three steps, as
the name implies. In Step 1, a memory operation is performed, placing the cache in an
initial state known to the attacker (e.g., a new piece of data at some address is put into the
cache or the cache line is invalidated). Then, in Step 2, a second memory operation alters
the state of the cache from the initial state. Finally, in Step 3, a final memory operation
is performed, and the timing of the final operation reveals some information about the
relationship among the addresses from Step 1, Step 2 and Step 3. For example, in Flush +
Reload [26] attack, in Step 1, a cache line is flushed by the attacker. In Step 2, security
critical data is accessed by, for example, victim’s AES encryption operation. In Step 3,
the same cache line as the one flushed in Step 1 will be accessed and the time of the access
will be measured by the attacker. If the victim’s secret dependent operation in Step 2
accesses the cache line, in Step 3 there will be a cache hit and fast timing of the memory
operation will be observed, and the attacker learns the victim’s secret address.

To model all the timing-based attacks, we write the three steps as: Step 1 Step 2
Step 3, which represents a sequence of steps taken by the attacker or the victim. To
simplify the model, we focus on memory related operation a�ecting one single cache block
(also called cache slot or cache entry). Cache block is the smallest unit of the cache. Since
all the cache blocks are updated following the same cache state machine logic, it is su�cient
to consider only one cache block.

When modeling the attacks, we propose that there are 17 possible states for a cache
block. Table 1 lists all the 17 possible states of the cache block after each step in our
three-step model.

3.2 Derivation of All Cache Timing-Based Vulnerabilities
With the 17 candidate states shown in Table 1 for each step, there are in total 17ú17ú17 =
4913 combinations of three-steps. Not all of them can lead to real attacks. We developed
a cache three-step simulator and a set of reduction rules to process all the three-step
combinations and decide which ones can indicate a real attack. As is shown in Figure 1,

Shuwen Deng, Wenjie Xiong and Jakub Szefer 5

Table 1: The 17 possible states for a single cache block in our three-step vulnerability
modeling procedure.

State Description

Vu

A memory location belonging to the victim is accessed and is placed in the cache

block by the victim (V). Attacker does not know u, but u is from a range x of

memory locations, range which is known to the attacker. It may have the same

index as Aa, Va, Aaalias , Vaalias and thus conflict with them in the cache block.

The goal of the attacker is to learn the index or address of Vu.

Aa or

Va

The cache block contains a specific memory location a. The memory location is

placed in the cache block due to a memory access by the attacker, Aa, or the victim,

Va. The attacker knows the address a, independent of whether the access was by

the victim or the attacker themselves. The address a is within the range of sensitive

locations x. The address a may or may not be the same as the address u.

Aaalias

or

Vaalias

The cache block contains a memory address a

alias
. The memory location is placed

in the cache block due to a memory access by the attacker, Aaalias , or the victim,

Vaalias . The address a

alias
is within the range x and not the same as a, but it has

the same address index and maps to the same cache block, i.e. it “aliases” to the

same block.

Ad or

Vd

The cache block contains a memory address d. The memory address is placed in

the cache block due to a memory access by the attacker, Ad, or the victim, Vd. The

address d is not within the range x.

A

inv

or

V

inv

The cache block previously might have contained some memory address but is now

invalid. The data and its address are “removed” from the cache block by the attacker

A

inv
or the victim V

inv
as a result of cache block being invalidated, e.g., this is a

cache flush of the whole cache.

A

inv
a

or

V

inv
a

The cache block state can be anything except a in this cache block now. The address

a is “removed” from the cache block by the attacker A

inv
a or the victim V

inv
a . E.g.,

by using a flush instruction such as clflush that can flush specific address, or by

causing certain cache coherence protocol events that force a to be removed from the

cache block.

A

inv
aalias

or

V

inv
aalias

The cache block state can be anything except a

alias
in this cache block now. The

address a

alias
is “removed” from the cache block by the attacker A

inv
aalias or the

victim V

inv
aalias . E.g., by using a flush instruction such as clflush that can flush

specific address, or by causing certain cache coherence protocol events that force

a

alias
to be removed from the cache block.

A

inv
d

or

V

inv
d

The cache block state can be anything except d in this cache block now. The address

d is “removed” from the cache block by the attacker A

inv
d or the victim V

inv
d . E.g.,

by using a flush instruction such as clflush that can flush specific address, or by

causing certain cache coherence protocol events that force d to be removed from the

cache block.

V

inv
u

The cache block state can be anything except u being in the cache block. The data

and its address is “removed” from the cache block by the victim V

inv
u as a result

of cache block being invalidated, e.g., by using a flush instruction such as clflush,

or by certain cache coherence protocol events that force u to be removed from the

cache block. The attacker does not know u. Therefore, the attacker is not able to

trigger this invalidation and A

inv
u does not exist in the model.

ı

Any data, or no data, can be in the cache block. The attacker has no knowledge of

the memory address in this cache block.

the exhaustive list of the 4913 combinations will first be input to the cache three-step
simulator, where the preliminary classification of vulnerabilities is derived. The e�ective
vulnerabilities will then be sent as the input to the reduction rules to remove the redundant
three-steps and obtain final list of vulnerabilities.

3.2.1 Cache Three-Step Simulator

We developed a cache three-step simulator that simulates the state of one cache block
and derives the attacker’s observations in the last step of the three-step patterns that it
analyzes, for di�erent possible u. Since u is in secure range x, the possible candidates of
u for a cache block are a, a

alias and NIB (Not-In-Block). Here, NIB indicates the case
that u does not have same index as a and a

alias and thus does not map to this cache block.
In this way, the cache three-step simulator can derive the relationship between the victim’s

6 Analysis of Secure Caches and Timing-Based Side-Channel Attacks

Victim’s
Behavior (u)

a
aalias

Attacker’s
Observation

NIB

fast
slow

Vd⤳ Vu ⤳ Aa

Victim’s
Behavior (u)

a
aalias

Attacker’s
Observation

NIB

fast
slow

* ⤳ Vu ⤳ Aa
invalid

Victim’s
Behavior (u)

a
aalias

Attacker’s
Observation

NIB

fast
slow

Vd⤳ Vu
invalid ⤳ Vd

(a) (b) (c)

Victim’s
Behavior (u)

a
aalias

Attacker’s
Observation

NIB

fast
slow

Vu⤳ Ad ⤳ Vu
invalid

Victim’s
Behavior (u)

a
aalias

Attacker’s
Observation

NIB

fast
slow

Aaalias
invalid⤳ Vu

invalid ⤳ Va

Victim’s
Behavior (u)

a
aalias

Attacker’s
Observation

NIB

fast
slow

Aa⤳ Vu ⤳ Ad

(d) (e) (f)

Example
Vulnerability:

Example
Vulnerability:

Example
Vulnerability:

Example
Vulnerability:

Example
Vulnerability:

Example
Vulnerability:

Figure 2: Examples of relations between victim’s behavior (u) and attacker’s observation for
each vulnerability type ((a)(d) Strong Vulnerability, (b)(e) Weak Vulnerability, (c)(f) Ine�ective

Three-Step).

behavior (regarding the secret) and the attacker’s observation (timing in the last step).
The cache three-step simulator judges whether a three-step pattern is a potential

vulnerability by analyzing whether the attacker is able to observe di�erent and unambiguous
timing for di�erent values of V

u

. The simulator categorizes all the three-step patterns in
the following way:

1. Strong Vulnerability: When a fast or slow timing is observed by the attacker, he or she
is able to uniquely distinguish the value of u (either it maps to some known address
or has the same index with some known address). a has the same address known to
the attacker or not). In this case, the vulnerability has strong information leakage
(i.e. attacker can directly obtain the value of u based on the observed timing). We
categorize these vulnerabilities to be strong. E.g., for V

d

 V

u

 A

a

vulnerability
shown in Figure 2a, if u maps to a, the attacker will always derive fast timing. If u

is a

alias or NIB, slow timing will be observed. This indicates that the attacker is
able to unambiguously infer the victim’s behavior (u) from the timing observation.

2. Weak Vulnerability: Fast or slow timing corresponds to more than one possible
value of u (e.g., a and a

alias). For these vulnerabilities, timing variation can still
be observed due to di�erent victim’s behavior (V

u

). However, the attacker cannot
fully extract the address of V

u

. E.g., for type ı V

u

 A

inv

a

shown in Figure 2b,
when fast timing is observed, u possibly maps to a

alias or NIB (the reason for the
possibility of u mapping to NIB is that due to the ı in Step 1, the cache could have
a hit and then A

a

would result in a cache hit). On the other hand, when slow timing
is observed, u possibly maps to a or NIB. This pattern leads to uncertain u guess
about value of u based on timing observation.

3. Ine�ective Three-Step: The remaining types are treated to be ine�ective. E.g., for
type A

a

 V

u

 A

d

shown in Figure 2f, no matter what the value of u is, attacker’s
observation is always slow timing.

After figuring out the type of all the three-step patterns, the cache three-step simulator
will output e�ective (Strong Vulnerability or Weak Vulnerability) three-step patterns. Due
to the space limit, we only list and analyze the Strong vulnerabilities in this paper. Weak

Shuwen Deng, Wenjie Xiong and Jakub Szefer 7

vulnerabilities are left for future work when channels with smaller channel capacities are
desired to be analyzed.

3.2.2 Reduction Rules

We also have developed rules that can further reduce the output list of all the e�ective
three-steps from the cache three-step simulator. Reduction’s goal is to remove repeated
vulnerabilities from the list of e�ective Strong or Weak Vulnerability. A script was developed
that automatically applies below reduction rules to the output of the simulator to get the
final list of vulnerabilities. A three-step combination will be eliminated if it satisfies one of
the below rules:

1. Three-step patterns with two adjacent steps which are repeating, or which are both
known to the attacker, can be eliminated, e.g., A

d

 A

a

 V

u

can be reduced to
A

a

 V

u

, which is equivalent to ı A

a

 V

u

. Therefore, A

d

 A

a

 V

u

is a
repeat type of ı A

a

 V

u

and can be eliminated.
2. Step involving a known address a and an alias to that address a

alias gives the same
information. Thus three step combinations which only di�er in use of a or a

alias

cannot represent di�erent attacks, and only one combination needs to be considered.
For example, V

u

 A

a

alias V

u

is a repeat type of V

u

 A

a

 V

u

, and we will
eliminate the first pattern.

3. V

u

and V

inv

u

in adjacent consecutive steps with each other can be eliminated, since
the e�ective information is lost after executing these two steps.

4. V

inv or A

inv followed by address-specific invalidation, for example, V

inv

u

, can be
eliminated, since the memory location is repeatably flushed by the two steps.

3.2.3 Categorization of StrongVulnerabilities

As is shown in Figure 1, after applying the rule reduction, the remaining Strong vulnera-
bilities are in total 72 types. Table 2 lists all the vulnerability types of which the last step
is a memory access and Table 3 shows all the vulnerability types of which the last step is
an invalidation-related operation. To ease the understanding of all the vulnerability types,
we group the vulnerabilities based on attack strategies (left most column in Table 2 and
Table 3), these strategies correspond to well-known names for the attacks, if such exist,
otherwise we provide a new name.

The list of vulnerability types can be further collected into four simple macro types
which cover one or more vulnerability types: internal interference miss-based (IM), internal
interference hit-based (IH), external interference miss-based (EM), external interference hit-
based (EH), as labeled in column 5 of Table 2 and Table 3. All the types of vulnerabilities
that only involve the victim’s behavior, V , in the states in Step 2 and Step 3 are called
internal interference vulnerabilities (I). The remaining ones are called external interference
(E). Some vulnerabilities allow the attacker to learn that the address of the victim accesses
map to the set the attacker is attacking by observing slow timing due to a cache miss
or fast timing due to invalidation of data not in the cache1. We call these miss-based
vulnerabilities (M). The remaining ones leverage observation of fast timing due to a cache
hit or slow timing due to an invalidation of an address that is currently valid in the cache,
and are called hit-based vulnerabilities (H).

Many vulnerability types have been explored before. E.g., the Cache Collision attack [6]
is e�ectively based on the Internal Collision, and it maps to types labeled (2) in the Attack
column in Table 2 and Table 3. The types labeled new correspond to new attack not

1
Invalidation is fast when the corresponding address to be invalidated does not exist in the cache and

thus no operation is needed for the invalidation.

8 Analysis of Secure Caches and Timing-Based Side-Channel Attacks

Table 2: The table shows all the cache timing-based cache side-channel vulnerabilities
where the last step is a memory access related operation. The Attack Strategy column
gives our common name for each set of one or more specific vulnerabilities that would be
exploited in an attack in a similar manner. The Vulnerability Type column gives the three
steps that define each vulnerability. For Step 3, fast indicates a cache hit must be observed,
while slow indicates a cache miss must be observed. The Macro Type column proposes the
categorization the vulnerability belongs to. “E” is for external interference vulnerabilities.
“I” is for internal interference vulnerabilities. “M” is for miss-based vulnerabilities. “H” is
for hit-based vulnerabilities. The Attack column shows if a type of vulnerability has been
previously presented in literature.

Attack
Strategy

Vulnerability Type Macro
Type Attack

Step 1 Step 2 Step 3

Cache
Internal
Collision

Ainv Vu Va (fast) IH (2)
V inv Vu Va (fast) IH (2)

Ad Vu Va (fast) IH (2)
Vd Vu Va (fast) IH (2)

A
aalias Vu Va (fast) IH (2)

V
aalias Vu Va (fast) IH (2)
Ainv

a Vu Va (fast) IH (2)
V inv

a Vu Va (fast) IH (2)

Flush
+ Reload

Ainv
a Vu Aa (fast) EH (5)

V inv
a Vu Aa (fast) EH (5)

Ainv Vu Aa (fast) EH (5)
V inv Vu Aa (fast) EH (5)

Ad Vu Aa (fast) EH (5)
Vd Vu Aa (fast) EH (5)

A
aalias Vu Aa (fast) EH (5)

V
aalias Vu Aa (fast) EH (5)

Reload
+ Time

V inv
u Aa Vu (fast) EH new

V inv
u Va Vu (fast) IH new

Flush
+ Probe

Aa V inv
u Aa (slow) EM (6)

Aa V inv
u Va (slow) IM new

Va V inv
u Aa (slow) EM new

Va V inv
u Va (slow) IM new

Evict
+ Time

Vu Ad Vu (slow) EM (1)
Vu Aa Vu (slow) EM (1)

Prime
+ Probe

Ad Vu Ad (slow) EM (4)
Aa Vu Aa (slow) EM (4)

Bernstein’s
Attack

Vu Va Vu (slow) IM (3)

Vu Vd Vu (slow) IM (3)
Vd Vu Vd (slow) IM (3)
Va Vu Va (slow) IM (3)

Evict
+ Probe

Vd Vu Ad (slow) EM new
Va Vu Aa (slow) EM new

Prime
+ Time

Ad Vu Vd (slow) IM new
Aa Vu Va (slow) IM new

Flush
+ Time

Vu Ainv
a Vu (slow) EM new

Vu V inv
a Vu (slow) IM new

(1) Evict + Time attack [27].

(2) Cache Internal Collision attack [6].

(3) Bernstein’s attack [5].

(4) Prime + Probe attack [27, 4], Alias-driven attack [28].

(5) Flush + Reload attack [26, 29], Evict + Reload attack [30].

(6) SpectrePrime, MeltdownPrime attack [31].

previously discussed in literature. We believe these 43 are new attacks not previously
analyzed nor known.

3.3 Soundness of the Three-Step Model
In this section we analyze the soundness of the three-step model to demonstrate that the
three-step model can cover all possible cache timing-based side-channel vulnerabilities. If
there is a vulnerability, it can always be reduced to a model that requires only three steps.

Let — denote the number of memory related operations in a vulnerability.
When — = 1, there is only one memory related operation, and it is not possible to create

Shuwen Deng, Wenjie Xiong and Jakub Szefer 9

Table 3: The table shows the second part of the timing-based cache side-channel vulnerabil-
ities where the last step is an invalidation related operation. For Step 3, fast indicates no
corresponding address of the data is invalidated, while slow indicates invalidation operation
makes some data invalid, causing longer processing time.

Attack
Strategy

Vulnerability Type Macro
Type Attack

Step 1 Step 2 Step 3

Cache Internal
Collision

Invalidation

Ainv Vu V inv
a (slow) IH new

V inv Vu V inv
a (slow) IH new

Ad Vu V inv
a (slow) IH new

Vd Vu V inv
a (slow) IH new

A
aalias Vu V inv

a (slow) IH new
V

aalias Vu V inv
a (slow) IH new

Flush + Flush

Ainv
a Vu V inv

a (slow) IH (1)
V inv

a Vu V inv
a (slow) IH (1)

Ainv
a Vu Ainv

a (slow) EH (1)
V inv

a Vu Ainv
a (slow) EH (1)

Flush + Reload
Invalidation

Ainv Vu Ainv
a (slow) EH new

V inv Vu Ainv
a (slow) EH new

Ad Vu Ainv
a (slow) EH new

Vd Vu Ainv
a (slow) EH new

A
aalias Vu Ainv

a (slow) EH new
V

aalias Vu Ainv
a (slow) EH new

Reload + Time
Invalidation

V inv
u Aa V inv

u (slow) EH new
V inv

u Va V inv
u (slow) IH new

Flush + Probe
Invalidation

Aa V inv
u Ainv

a (fast) EM new
Aa V inv

u V inv
a (fast) IM new

Va V inv
u Ainv

a (fast) EM new
Va V inv

u V inv
a (fast) IM new

Evict + Time
Invalidation

Vu Ad V inv
u (fast) EM new

Vu Aa V inv
u (fast) EM new

Prime + Probe
Invalidation

Ad Vu Ainv
d (fast) EM new

Aa Vu Ainv
a (fast) EM new

Bernstein’s
Invalidation

Attack

Vu Va V inv
u (fast) IM new

Vu Vd V inv
u (fast) IM new

Vd Vu V inv
d (fast) IM new

Va Vu V inv
a (fast) IM new

Evict + Probe
Invalidation

Vd Vu Ainv
d (fast) EM new

Va Vu Ainv
a (fast) EM new

Prime + Time
Invalidation

Ad Vu V inv
d (fast) IM new

Aa Vu V inv
a (fast) IM new

Flush + Time
Invalidation

Vu Ainv
a V inv

u (fast) EM new
Vu V inv

a V inv
u (fast) IM new

(1) Flush + Flush attack [32].

interference between memory related operations since two memory related operations are
the minimum requirement for an interference. Furthermore, — = 1 corresponds to the
three-step pattern with both Step 0 and Step 1 to be ı since the cache state ı gives no
information. These types are not listed in Table 2 and Table 3, which show all the e�ective
vulnerabilities. Therefore, attack cannot happen when — = 1.

When — = 2, this case corresponds to the three-step cases where Step 0 is ı. And there
are no vulnerabilities listed in Table 2 and Table 3 with Step 0 to be ı. So —! = 2.

When — = 3, we exhaustively list all possible three-step memory related operations in
Section 3.2 and we conclude that there are in total 72 types of Strong attacks, of which 46
are new compared to what is known in literature.

When — > 3, the pattern of memory related operations for a vulnerability can be
broken down using the following rules:

• Rule 1: If there is a sub-pattern such as { ... ı ...}, the longer pattern can
be divided into two separate patterns, where ı is assigned as Step 0 of the second
pattern. This is because ı gives no timing information, and the attacker loses track
of the cache state after ı. This rule should be recursively checked until there are no
sub-patterns with a ı in the middle.

• Rule 2: If the remaining memory related operations have a sub-pattern that has two

10 Analysis of Secure Caches and Timing-Based Side-Channel Attacks

adjacent states both related to known addresses or both related to unknown address,
the two adjacent states can be reduced to only one.

– For two unknown adjacent memory related operations (containing u), although
u is unknown, both of the accesses target on the same u so can be reduced.
E.g., {V

u

 V

u

} can be reduced to {V

u

}.
– For two known adjacent memory related operations, there are two cases.

� In one case, two operations result in a deterministic state of the cache block,
so this two steps can be reduced to only one step. E.g., {A

d

 V

a

} can be
reduced to {V

a

}.
� In another case, two operations can be separated in use for two access

patterns. E.g., for {V

u

 A

inv

a

alias V

inv

a

 V

u

} that contains adjacent
known operations {A

inv

a

alias V

inv

a

}, it can be split into two patterns:
{V

u

 A

inv

a

alias V

u

} and {V

u

 V

inv

a

 V

u

}. This transformation not
only allows the attacker to trigger less steps for a vulnerability, but also
provides clearer information leakage for the attacker. For {V

u

 A

inv

a

alias
V

inv

a

 V

u

}, a corresponding slow timing indicates u can either map to a or
a

alias. On the other hand, slow timing observation of {V

u

 A

inv

a

alias V

u

}
or {V

u

 V

inv

a

 V

u

} only indicates one possible mapping (aalias or a,
respectively) of u.

The Rule 2 should be recursively checked until there are no two adjacent states both
related to known addresses or both related to unknown address.

• Rule 3: After recursive reductions of Rule 1 and Rule 2, either — Æ 3 holds, or one
of the following two sub-pattern partitions still exists:

– known_memory_operation u_operation known_memory_operation

– u_operation known_memory_operation u_operation

Here u_operation refers to V

u

or V

inv

u

, known_memory_operation refers to all
the possible states shown in Table 1 except ı, V

u

and V

inv

u

. E�ective ones of these
two sub-patterns map to known vulnerabilities listed in Table 2 and Table 3. Rule
3 will check every adjacent three-step partition of the patterns that are input to
Rule 3. If a pattern contains a partition that maps to one of the e�ective patterns,
the corresponding pattern already represents a vulnerability, which proves the
e�ectiveness of the original long pattern. Rule 3 will output corresponding e�ective
partition(s) if there are some. Otherwise, the original long pattern is ine�ective.

We make use of the three Rules in the way shown in Algorithm 1 to reduce —-step
(— > 3) pattern to be within three steps and demonstrate that the —-step pattern can be
mapped to three-step vulnerabilities if it is e�ective.

In conclusion, the three-step model can model all possible timing-based cache side-
channel vulnerability with any — steps. Attacks which are represented by more than three
steps can be always reduced to one (or more) vulnerabilities from our three-step model;
and thus, using more than three step is not necessary.

4 Secure Caches
Having explained the three-step model, we now explore the various secure caches which
have been presented in literature to date [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24]. Latter, in Section 5 we will apply the three-step model to check if the secure
caches can defend some or all of the vulnerabilities in our model.

Shuwen Deng, Wenjie Xiong and Jakub Szefer 11

Algorithm 1 —-Step (— > 3) Pattern Reduction
Input: —: number of steps of the pattern

step_list: a two-dimensional dynamic-size array. step_list[0] contains the states of each step
of the original pattern in order. step_list[1], step_list[2], ... is empty initially.

Output: reduce_list: reduced e�ective vulnerability pattern(s) array. It will be an empty list if
the original pattern does not correspond to an e�ective vulnerability.

1: while step_list.contain(ı) and ı.index not 0 do
2: Rule_1 (step_list)
3: end while
4: while step_list.contain(adjacent known_memory_operation or u_operation) do
5: Rule_2 (step_list)
6: end while
7: reduce_list = Rule_3 (step_list)
8: return reduce_list

This section gives brief overview of the 17 secure cache designs that have been presented
in academic literature in the last 14 years. To the best of our knowledge, these cover all the
secure cache designs proposed to date. Most of the designs have been realized in functional
simulation, e.g., [14, 19]. Some have been realized in FPGA, e.g., [23], and a few have been
realized in real ASIC hardware, e.g., [33]. No specific secure caches have been implemented
in commercial processors to the best of our knowledge, however, CATalyst [18] leverages
Intel’s CAT (Cache Allocation Technology) technology available today in Intel Xeon E5
2618L v3 processors, and could be deployed today.

When the secure cache description in the cited papers did not mention the issue of
using flush or cache coherence, we assume the victim or the attacker cannot invalidate each
other’s cache blocks by using clflush instructions or through cache coherence protocol
operations; but they can flush or use cache coherence to invalidate their own cache lines.
The victim and the attacker also cannot invalidate protected or locked data. Further, if
the authors specified any specific assumptions (mainly about the software), we list the
assumption as part of the description of the cache. What’s more, when the level of cache
hierarchy was unspecified, we assume the secure caches’ features can be applied to all the
microarchitecture in the cache hierarchy, including L1 cache, L2 cache and Last Level
Cache (LLC). If the inclusivity of the caches was not specified, we assume they target
inclusive caches. Following the below descriptions of each secure cache design, the analysis
of the secure caches is given in Section 5.

SPú cache [15, 34]2 uses partitioning techniques to statically partition the cache ways
into High and Low partition for the victim and the attacker according to their di�erent
process IDs. The victim typically belongs to High security and attacker belongs to Low
security. Victim’s memory accesses cannot modify Low partition (assigned to processes
such as the attacker), while the attacker’s memory accesses cannot modify High partition
(assigned to the victim). However, the memory accesses of both the victim and the attacker
can result in a hit in either Low or High partition if the data is in the cache.

SecVerilog cache [9, 8] statically partitions cache blocks between security levels L
(Low) and H (High). Each instruction in the source code for programs using SecVerilog
cache needs to include a timing label which e�ectively represents whether the data being
accessed by that instruction is Low or High based on the code and this timing label can be
similar to a process ID that di�erentiates attacker’s (Low) instructions from victim’s (High)
instructions. The cache is designed such that operations in the High partition cannot a�ect
timing of operations in the Low partition. For a cache miss due to Low instructions, when

2
Two existing papers give slightly di�erent definitions for an “SP” cache, thus we selected to define a

new cache, the SP

ú
cache, that combines secure cache features of the Secret-Protecting cache from [15]

with secure cache features of the Static-Partitioned cache from [34].

12 Analysis of Secure Caches and Timing-Based Side-Channel Attacks

the data is in the High partition, it will behave as a cache miss, and the data will be moved
from the High to the Low partition to preserve consistency. However, High instructions
are able to result in a cache hit in both High and Low partitions, if the data is already in
the cache.

SecDCP cache [14] builds on the SecVerilog cache and uses partitioning idea from
the original SecVerilog cache, but the partitioning is dynamic. It can support at least two
security classes H (High) and L (Low), and configurations with more security classes are
possible. They use the percentage of cache misses for L instructions that was reduced
(increased) when L’s partition size was increased (reduced) by one cache way to adjust the
number of ways of the cache assigned to the Low partition. When adjusting number of
ways in the cache dedicated to each partition, if L’s partition size decreases, the process
ID is checked and L blocks are flushed before the way is reallocated to H. On the other
hand, if L’s partition size increases, H blocks in the adjusted cache way remain unmodified
so as to not add more performance overhead, and they will eventually be evicted by L’s
memory accesses. However, the feature of not flushing High partition data during way
adjustment may leak timing information to the attacker.

NoMo cache [17] dynamically partitions the cache ways among the currently “active”
simultaneous multithreading (SMT) threads. Each thread is exclusively reserved Y blocks
in each cache set, where Y is within the range of [0, Â N

M

Ê], where N is the number of
ways and M is the number of SMT threads. NoMo-0 equals to traditional set associative
cache while NoMo-Â N

M

Ê partitions cache evenly for the di�erent threads and there are no
non-reserved ways. The number of Y assigned to each thread is adjusted based on its
activeness. When adjusting number of blocks assigned to a thread, Y blocks are invalidated
for cache sets to protect timing leakage. Eviction is not allowed within each thread’s own
reserved ways while it is possible for the shared ways. Therefore, to avoid eviction caused
by the unreserved ways, we assume NoMo-Â N

M

Ê is used to fully partition the cache. When
the attacker and the victim share the same library, there will be a cache hit if accessing
the shared data, and the normal cache hit policy holds to guarantee the cache coherence.

SHARP cache [16] uses both partitioning and randomization techniques to prevent
victim’s data from being evicted or flushed by other malicious processes and it targets on
the inclusive caches. Each cache block is augmented with the core valid bits (CVB) to
indicate which private cache (process) it belongs to (similar to the Process ID), where
CVB stores a bitmap and i-th bit in the bitmap is set if the line is present in i-th core’s
private cache. Cache hit is allowed among di�erent processes’ data. When there is cache
miss and data needs to be evicted, data not belonging to any current processes will be
evicted first. If there is no such data, data belonging to the same process will be evicted.
If there is no existing data in the cache that is in the same process, a random data in the
cache set will be evicted. This random eviction will generate an interrupt to the OS to
notify it of a suspicious activity. For pages that are read-only or executable, SHARP cache
disallows flushing using clflush in user mode. However, invalidating victim’s blocks by
using cache coherence protocol is still possible.

Sanctum cache [13] focuses on isolation of enclaves (equivalent to Trusted Software
Module in other designs) from each other and the operating system (OS). In terms of
caches, they implements security features for L1 cache, TLB and LLC. Cache isolation of
LLC is achieved by assigning each enclave or OS to di�erent DRAM address regions. It
uses page-coloring-based cache partitioning scheme [35, 36] and a software security monitor
that ensures per-core isolation between OS and enclaves. For L1 cache and TLB, when
there is a transition between enclave and non-enclave mode, the security monitor will flush
the core-private caches to achieve isolation. Normal flushes triggered by the enclave or
the OS can only be done within enclave or not within enclave code. Also, timing-based
side-channel attacks exploiting cache coherence are explicitly not prevented, thus behavior
on cache coherence operations is not defined. This cache listed extra software assumptions

Shuwen Deng, Wenjie Xiong and Jakub Szefer 13

as follows:
Assumption 1. Software security monitor guarantees that victim and attacker process

cannot share the same cache blocks. It uses page coloring [35, 36] to ensure that victim
and attacker’s memory is never mapped to the same cache blocks for the LLC.

Assumption 2. The software runs on a system with a single processor core where victim
and attacker alternate execution, but can never run truly in parallel. Moreover, security
critical data is always flushed by the security monitor when program execution switches
away from the victim program for the L1 cache and the TLB.

MI6 cache [23] is part of the memory hierarchy of the MI6 processor, which combines
Sanctum [13] cache’s security feature with disabling speculation during the speculative
execution of memory related operations. During normal processor execution, for L1
caches and TLB, the corresponding states will be flushed across context switches between
software threads. For the LLC, set partitioning is used to divide DRAM into contiguous
regions. And cache sets are guaranteed to be strictly partitioned (two DRAM regions
cannot map to the same cache set). Each enclave is only able to access its own partition.
Speculation is simply disabled when enclave interacts with the outside world because of
small performance influence based on the rare cases of speculation. This cache listed extra
software assumptions as follows:

Assumption 1. Software security monitor guarantees that the victim and the attacker
process cannot share the same cache blocks. It uses page coloring [35, 36] to ensure that
victim’s and attacker’s memory are never mapped to the same cache blocks for the LLC.

Assumption 2. The software runs on a system with a single processor core where victim
and attacker alternate execution, but can never run truly in parallel. Moreover, security
critical data is always flushed by the security monitor when program execution switches
away from the victim program for the L1 cache and the TLB.

Assumption 3. When an enclave is interacting with the outside environment, the
corresponding speculation is disabled by the software.

InvisiSpec cache [22] is able to make speculation invisible in the data cache hierarchy.
Before a visibility point shows up, when all of its prior control flow instructions resolve,
unsafe speculative loads (USL) will be put into a speculative bu�er (SB) without modifying
any cache states. When reaching the visibility point, there are two cases. In one case, the
USL and successive instructions will be possibly squashed because of mismatch of data in
the SB and the up-to-date values in the cache. In another case, the core receives possible
invalidation from the OS before checking of memory consistency model and no comparison
is needed. When speculative execution happens, the hardware puts the data into SB, as to
identify visibility point for dealing with final state transition of the speculative execution.
InvisiSpec cache targets on Spectre-like attacks and futuristic attacks. However, InvisiSpec
cache is vulnerable to all non-speculative side channels.

CATalyst cache [18] uses partitioning, especially Cache Allocation Technology
(CAT) [37] available in the LLC of some Intel processors. CAT allocates up to 4 dif-
ferent Classes of Services (CoS) for separate cache ways so that replacement of cache blocks
is only allowed within a certain CoS. CATalyst first uses CAT mechanism to partition
caches into secure and non-secure parts (non-secure parts may map to 3 CoS while secure
parts map to 1 CoS). Secure pages are assigned to virtual machines (VMs) at a granularity
of a page, and not shared by more than one VM. Here, attacker and victim reside in
di�erent VMs. Combined with CAT technology and pseudo-locking mechanism which pins
certain page frames managed by software, CATalyst guarantees that malicious code cannot
evict secure pages. CATalyst implicitly performs preloading by remapping security-critical
code or data to secure pages. Flushes can only be done within each VM. And cache
coherence is achieved by assigning secure pages to only one processor and not sharing
pages among VMs. This cache listed extra software assumptions as follows:

Assumption 1. Security critical data is always preloaded into the cache at the beginning

14 Analysis of Secure Caches and Timing-Based Side-Channel Attacks

of the whole program execution.
Assumption 2. Security critical data is always able to fit within the secure partition of

the cache. I.e. all data in the range x can fit in the secure partition.
Assumption 3. The victim process and the attacker process cannot share the same

memory space.
Assumption 4. Use pseudo-locking mechanism by software to make sure that victim

and attacker process cannot share the same cache blocks.
Assumption 5. Secure pages are reloaded immediately after the flush, which is done by

the virtual machine monitor (VMM) to make sure all the secure pages are still pinned in
the secure partition.

DAWG cache [21] (Dynamically Allocated Way Guard) partitions the cache by cache
ways and provides full isolation for hits, misses and metadata updates across di�erent
protection domains (between the attacker and the victim). DAWG cache is partitioned for
the attacker and the victim and each of them keep their own di�erent domain_id (which
is similar to process ID used in general caches). Each domain_id has its own bit fields,
one is called policy_fillmap, for masking fills and selecting the victim to replace, another
is called policy_hitmap, for masking hit ways. Only both the tag and the domain_id
are the same will a cache hit happen. Therefore, DAWG allows read-only cache lines to
be replicated across ways for di�erent protection domain. For a cache miss, the victim
can only be chosen within the ways belonging to the same domain_id, recorded by the
policy_fillmap. Consistently, the replacement policy is updated with the victim selection
and the metadata derived from the policy_fillmap for di�erent domains is updated as well.
The paper also proposes the idea to dynamically partitions the cache ways following the
system’s workload changes but does not actually implement it.

RIC cache [20] (Relaxed Inclusion Caches) proposes a low-complexity cache to defend
against eviction-based timing-based side-channel attacks on the LLC. Normally for an
inclusive cache, if the data R is in the LLC, it is also in the higher level cache, and eviction
of the R in the LLC will cause the same data in the higher level cache, e.g., L1 cache
to be invalidated, making eviction-based attacks in the higher level cache possible (e.g.,
attacker is able to evict victim’s security critical cache line). For RIC, each cache line is
extended with a single bit to set the relaxed inclusion. Once the relaxed inclusion is set
for that cache line, the corresponding LLC line eviction will not cause the same line in the
higher-level cache to be invalidated. Two kinds of data will be set relaxed inclusion bit:
read only data and thread private data when they are loaded into the cache. These two
kinds of data are claimed by the paper to cover all the critical data for ciphers. Therefore,
RIC will not prevent writable in-private critical data, which is currently not found in any
ciphers. Apart from that, RIC requires flushing for the corresponding cache lines in the
cases that the RIC bits are modified or for thread migration events to avoid the timing
leakage during transition time.

PL cache [10] provides isolation by partitioning cache based on cache blocks. It extends
each cache block with a process ID and a lock status bit. The process ID and the lock
status bits are controlled by the extended load and store instructions (ld.lock/ld.unlock

and st.lock/st.unlock) which allow the programmer and compiler to set or reset the lock
bit through use of the right load or store instruction. In terms of cache replacement
policy, for a cache hit, PL cache will perform the normal cache hit handling procedure
and the instructions with locking or unlocking capability can update the process ID and
the lock status bits while the hit is processed. When there is a cache miss, locked data
cannot be evicted by data that is not locked and locked data among di�erent processes
cannot be evicted by each other. In this case, the new data will be either loaded or stored
without caching. In other cases, data eviction is possible. This cache listed extra software
assumption as follows:

Assumption 1. Security critical data is always preloaded into the cache at the beginning

Shuwen Deng, Wenjie Xiong and Jakub Szefer 15

of the whole program execution.
RP cache [10] uses randomization to de-correlate the memory address accessing and

timing of the cache. For each block of RP cache, there is a process ID and one protection
bit P set to indicate if this cache block needs to be protected or not. A permutation table
(PT) stores each cache set’s pre-computed permuted set number and the number of tables
depends on number of protected processes. For memory access operations, cache hit needs
both process ID and address to be the same. When a cache miss happens to data D of
a cache set S, if the to-be-evicted data and to-be-brought-in data belong to the same
process but have di�erent protection bit, an arbitrary data of a random cache set S

Õ will
be evicted and D will be accessed without caching. If they belong to di�erent processes,
D will be stored in an evicted cache block of S

Õ and mapping of S and S

Õ will be swapped
as well. Otherwise, the normal replacement policy is executed.

Newcache cache [11, 33] dynamically randomizes memory-to-cache mapping. It
introduced a ReMapping Table (RMT), and the mapping between memory addresses
and this RMT is as in a direct mapped cache, while the mapping between the RMT and
actual cache is fully associative. The index bits of memory address are used to look up
entries in the RMT to find the cache block that should be accessed. It stores the most
useful cache lines rather than hold a fixed set of cache lines. This index stored in RMT
combined with the process ID is used to look up the actual cache where each cache line is
associated with its real index and process ID. Each cache block is also associated with
a protection bit (P) to indicate if it is security critical. For cache replacement policy,
it is very similar to RP cache. Cache hit needs both process ID and address to be the
same. When cache miss happens to data D, an arbitrary data will be evicted and D will
be accessed without caching if they belong to the same process but either one of their
protection bit is set. If the evicted data and brought-in data have di�erent process IDs, D

will randomly replace a cache line since it is fully associative in the actual cache. Otherwise,
the normal replacement policy for direct mapped cache is executed.

Random Fill cache [12] de-correlates cache fills with the memory access using random
filling technique. New instructions used by applications in Random Fill cache can control
if the requested data belongs to a normal request or a random fill request. Cache hits
are processed as in normal cache. For the security critical data accesses of the victim, a
Nofill request is executed and the requested data access will be performed without caching.
Meanwhile, on a Random Fill request, arbitrary data, from the range of addresses, will
be brought into the cache. In the paper [12], the authors show that random fill of spatially
near data does not hurt performance. For other processes’ memory accesses and normal
victim’s memory accesses, Normal request will be used to achieve normal replacement
policy. Victim and attacker are able to remove victim’s own security critical data including
using clflush instructions or cache coherence protocol since the flush will not influence
timing-based side-channel attack prevention (the random filling technique is used for this).

CEASER cache [24] is able to mitigate conflict-based LLC timing-based side-channel
attacks using address encryption and dynamic remapping. CEASER cache does not
di�erentiate whom the address belongs to and whether the address is security critical.
When memory access tries to modify the cache state, the address will first be encrypted
using Low-Latency BlockCipher (LLBC) [38], which not only randomizes the cache set
it maps, but also scatters the original, possibly ordered and location-intensive addresses
to di�erent cache sets, decreasing the probability of conflict misses. The encryption and
decryption can be done within two cycles using LLBC. Furthermore, the encryption key
will be periodically changed to avoid key reconstruction. The periodic re-keying will cause
the address remapping to dynamically change.

Non Deterministic cache [19] uses cache access delay to randomize the relation
between cache block access and cache access timing. There is no di�erentiation of data
caching between di�erent process ID or whether the data is secure or not. A per-cache-block

16 Analysis of Secure Caches and Timing-Based Side-Channel Attacks

counter records the interval of its data activeness, and is increased on each global counter
clock tick when the data is untouched. When the counter reaches a predefined value, the
corresponding cache line will be invalidated. Non Deterministic Cache randomly sets the
local counters’ initial value to be a number less than the maximum value of the global
counter to change the cache delay. Cache delay interval controlled by this non-deterministic
execution can lead to di�erent cache hit and miss statistics because the invalidation is
determined by the randomized counter of each cache line, and therefore de-correlates any
cache access time from the address being accessed. However, the performance degradation
is tremendous.

5 Analysis of the Secure Caches
In this section, we evaluate the e�ectiveness of the 17 secure caches [8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. We analyze how well the di�erent caches can protect
against the 72 types of vulnerabilities defined in Table 2 and Table 3, which cover all the
possible Strong (according to the definition in Seciton 3) cache timing-based side-channel
vulnerabilities. Following the analysis, we conclude on what types of secure caches and
features are best suited for defending di�erent types of timing-based attacks.

5.1 E�ectiveness of the Secure Caches Against Timing-Based At-
tacks

Table 4 and Table 5 list the result of our analysis of which caches can prevent which
types of attacks. Some caches are able to prevent certain vulnerabilities, denoted by a
checkmark, X, and green color in the table. For example, SPú cache can defend against
V

u

 A

d

 V

u

(slow) (one type of Evict + Time [27]) vulnerability. For some other caches
and vulnerabilities, the cache is not able to prevent the vulnerabilities and it is indicated
by ◊ and red color. For example, SecDCP cache cannot defend against V

u

 V

a

 V

u

(slow) (one type of Bernstein’s Attack [5]) vulnerability.
Each cache is analyzed for each type of vulnerability listed in Table 2 and Table 3. A

cache is judged to be able to prevent a type of cache timing-based side-channel vulnerability
in three cases:

1. The timing of the last step in a vulnerability is always constant and the attacker can
never observe fast and slow timing di�erence for the given set of three steps. For
instance, on a regular set-associative cache, the V

d

 V

u

 A

a

(fast) (one type of
Flush + Reload [26]) vulnerability will allow the attacker to know that address a

maps to secret u when the attacker observes fast timing, compared with observing
slow timing in the other cases. However, RP cache will make the timing of the last
step to be always slow because RP cache does not allow data of di�erent processes
to derive cache hit between each other.

2. The timing of last step is randomized and cannot have original corresponding relation
between victim’s behavior and attacker’s observation. For instance, A

d

 V

u

 A

inv

d

(fast) (one type of Prime + Probe Invalidation) vulnerability when executed on a
normal set-associative cache will allow the attacker to know that the address d has
the same index with secret u when observing fast timing, compared with slow timing
in the other cases. However, when executing this attacks on the Random Fill cache,
a slow timing will not determine that u and d have the same index as the secret,
since in Random Fill cache u would be accessed without caching and another random
data u would be cached in Step 2 instead.

Shuwen Deng, Wenjie Xiong and Jakub Szefer 17

Table
4:

A
nalysis

ofsecure
caches’ability

to
protect

against
di�erent

types
oftim

ing-based
attacks.

For
each

ofthe
72

types
ofattacks,the

table
show

s
ifthe

cache
can

defend
the

attack
or

not.
Single

X
in

a
green

cellm
eans

this
cache

can
prevent

the
corresponding

vulnerability.
A

◊
in

a
red

cellm
eans

this
cache

cannot
prevent

this
vulnerability.

Furtherm
ore,for

each
cache,w

e
analyze

norm
alexecution

(left
colum

n
under

the
cache

nam
e)

and
speculative

execution
(right

colum
n

under
the

cache
nam

e).

T
y

p
e

V
u

ln
erab

ility

S
et

A
sso-

ciative
C

ach
e

S
P

ú

C
ach

e

S
ec-

V
erilog

C
ach

e
S

ecD
C

P
C

ach
e

N
oM

o
C

ach
e

S
H

A
R

P
C

ach
e

6
S

an
ctu

m
C

ach
e

2
M

I6
C

ach
e

In
v

i-
siS

p
ec

C
ach

e
9

C
A

T
-

aly
st

C
ach

e
2,5

D
A

W
G

C
ach

e
R

IC
8

P
L

C
ach

e
R

P
C

ach
e

N
ew

-
cach

e

R
an

d
om

F
ill

C
ach

e
C

E
A

S
E

R
C

ach
e

N
on

D
eterm

-
in

istic
C

ach
e

C
ach

e
D

isab
led

C
ach

e
In

tern
al

C
ollision

A
i
n

v

V
u

V
a

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

10
X

10
X

10
X

◊
X

X
X

X
X

◊
◊

X
X

◊
◊

◊
◊

X
X

◊
◊

X
X

X
X

V
i
n

v

V
u

V
a

(fast)
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

X
X

X
◊

◊
◊

◊
X

X
◊

◊
◊

◊
X

X
◊

◊
X

X
X

X
A

i
n

v
a

V
u

V
a

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

10
X

10
X

10
X

◊
X

X
X

X
X

◊
◊

X
X

◊
◊

◊
◊

X
X

◊
◊

X
X

X
X

V
i
n

v
a

V
u

V
a

(fast)
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

X
X

X
◊

◊
◊

◊
X

X
◊

◊
◊

◊
X

X
◊

◊
X

X
X

X
A

d

V
u

V
a

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

10
X

10
X

10
X

◊
X

X
8
X

8
X

X
◊

◊
X

X
◊

◊
◊

◊
X

X
◊

◊
X

X
X

X
V

d

V
u

V
a

(fast)
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

X
X

8
X

8
◊

◊
◊

◊
X

X
X

X
X

X
X

X
◊

◊
X

X
X

X
A

a
a

li
a

s

V
u

V
a

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

10
X

10
X

10
X

◊
X

X
10
X

10
X

X
◊

◊
X

X
◊

◊
◊

◊
X

X
◊

◊
X

X
X

X
V

a
a

li
a

s

V
u

V
a

(fast)
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

X
X

X
◊

◊
◊

◊
◊

◊
◊

◊
X

X
X

X
◊

◊
X

X
X

X
F

lu
sh

+
R

eload

A
i
n

v

V
u

A
a

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

V
i
n

v

V
u

A
a

(fast)
◊

◊
◊

◊
X

X
X

X
◊

◊
◊

◊
X

10
X

4,10
X

10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

A
i
n

v
a

V
u

A
a

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

V
i
n

v
a

V
u

A
a

(fast)
◊

◊
◊

◊
X

X
X

X
◊

◊
◊

◊
X

10
X

4,10
X

10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

A
d

V
u

A
a

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
8
X

8
X

X
◊

◊
X

X
X

X
X

X
X

X
◊

◊
X

X
X

X
V

d

V
u

A
a

(fast)
◊

◊
◊

◊
X

X
X

X
◊

◊
◊

◊
X

10
X

4,10
X

10
X

◊
X

X
8
X

8
X

X
◊

◊
X

X
X

X
X

X
X

X
◊

◊
X

X
X

X
A

a
a

li
a

s

V
u

A
a

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
10
X

10
X

X
◊

◊
X

X
X

X
X

X
X

X
◊

◊
X

X
X

X
V

a
a

li
a

s

V
u

A
a

(fast)
◊

◊
◊

◊
X

X
X

X
◊

◊
◊

◊
X

10
X

4,10
X

10
X

◊
X

X
10
X

10
X

X
◊

◊
◊

◊
X

X
X

X
X

X
◊

◊
X

X
X

X
R

eload
+

T
im

e

V
i
n

v
u

A
a

V
u

(fast)
◊

◊
X

X
X

X
◊

◊
X

1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

V
i
n

v
u

V
a

V
u

(fast)
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

X
X

X
◊

◊
◊

◊
X

X
X

X
X

X
X

X
◊

◊
X

X
X

X
F

lu
sh

+
P

rob
e

A
a

V
i
n

v
u

A
a

(slow
)

◊
◊

X
X

X
X

X
X

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

A
a

V
i
n

v
u

V
a

(slow
)

◊
◊

X
X

X
X

X
X

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

V
a

V
i
n

v
u

A
a

(slow
)

◊
◊

◊
◊

X
X

◊
◊

◊
◊

◊
◊

X
4

X
4

X
4

X
◊

X
X

X
X

X
◊

◊
X

X
X

X
X

X
X

X
◊

◊
X

X
X

X
V

a

V
i
n

v
u

V
a

(slow
)

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
X

X
X

◊
◊

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

E
v

ict
+

T
im

e
V

u

A
d

V
u

(slow
)

◊
◊

X
X

X
X

◊
◊

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
8
X

8
X

X
X

X
X

X
X

X
X

X
◊

◊
X

X
X

X
X

X
V

u

A
a

V
u

(slow
)

◊
◊

X
X

X
X

◊
◊

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
8
X

8
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

P
rim

e
+

P
rob

e
A

d

V
u

A
d

(slow
)

◊
◊

X
X

X
X

X
X

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
8
X

8
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
A

a

V
u

A
a

(slow
)

◊
◊

X
X

X
X

X
X

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
10
X

10
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
B

ern
stein

’s
A

ttack

V
u

V
a

V
u

(slow
)

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
X

X
X

◊
◊

X
X

◊
◊

◊
◊

X
X

X
X

X
X

X
X

X
X

V
u

V
d

V
u

(slow
)

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
X

X
8
X

8
◊

◊
X

X
X

X
X

X
X

X
◊

◊
X

X
X

X
X

X
V

d

V
u

V
d

(slow
)

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
X

X
8
X

8
◊

◊
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
V

a

V
u

V
a

(slow
)

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
X

X
X

◊
◊

X
X

◊
◊

◊
◊

X
X

X
X

X
X

X
X

X
X

E
v

ict
+

P
rob

e
V

d

V
u

A
d

(slow
)

◊
◊

◊
◊

X
X

◊
◊

◊
◊

◊
◊

X
10

X
4,10

X
10

X
◊

X
X

8
X

8
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
V

a

V
u

A
a

(slow
)

◊
◊

◊
◊

X
X

◊
◊

◊
◊

◊
◊

X
10

X
4,10

X
10

X
◊

X
X

10
X

10
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

P
rim

e
+

T
im

e
A

d

V
u

V
d

(slow
)

◊
◊

X
X

X
X

X
X

X
1
X

1
X

X
X

10
X

10
X

10
X

◊
X

X
8
X

8
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
A

a

V
u

V
a

(slow
)

◊
◊

X
X

X
X

X
X

X
1
X

1
X

X
X

10
X

10
X

10
X

◊
X

X
10
X

10
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

F
lu

sh
+

T
im

e
V

u

A
i
n

v
a

V
u

(slow
)

◊
◊

X
X

X
X

◊
◊

X
1
X

1
X

X
X

10
X

4,10
X

10
X

◊
X

X
8
X

8
X

X
◊

◊
X

X
X

X
X

X
◊

◊
◊

◊
X

X
X

X
V

u

V
i
n

v
a

V
u

(slow
)

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
X

X
8
X

8
◊

◊
◊

◊
X

X
X

X
X

X
◊

◊
◊

◊
X

X
X

X

1
[1]

D
y

n
am

ic
ad

ju
stm

en
t

of
w

ay
s

for
d

i�
eren

t
th

read
s

is
assu

m
ed

to
b

e
p

rop
erly

u
sed

accord
in

g
to

th
e

ru
n

n
in

g
p

rogram
’s

cach
e

u
sage.

[2]
S

om
e

softw
are

assu
m

p
tion

s
listed

in
th

e
en

tries
in

th
is

colu
m

n
h

ave
b

een
im

p
lem

en
ted

b
y

th
e

cach
e’s

related
softw

are.
[3]

F
lu

sh
is

d
isab

led
,

b
u

t
cach

e
coh

eren
ce

m
igh

t
b

e
u

sed
to

d
o

th
e

d
ata

rem
oval.

[4]
F

or
L

1
cach

e
an

d
T

L
B

,
fl

u
sh

in
g

is
d

on
e

d
u

rin
g

con
tex

t
sw

itch
.

[5]
T

h
e

tech
n

iq
u

es
are

im
p

lem
en

ted

in
L

1
cach

e,
T

L
B

an
d

last-level
cach

e
w

h
ich

con
sist

of
th

e
w

h
ole

cach
e

h
ierarch

y,
w

h
ere

L
1

cach
e

an
d

T
L

B
req

u
ire

softw
are

fl
u

sh
p

rotection
an

d
th

e
last-level

cach
e

can
b

e
ach

ieved
b

y
sim

p
le

h
ard

w
are

p
artition

in
g.

T
o

p
rotect

all

levels
of

cach
es,

th
e

softw
are

assu
m

p
tion

s
n

eed
to

b
e

ad
d

ed
.

[6]
T

h
e

tech
n

iq
u

e
is

n
ow

on
ly

im
p

lem
en

ted
in

last-level
cach

e.
[7]

T
h

e
tech

n
iq

u
e

n
ow

on
ly

targets
sh

ared
cach

e.
[8]

T
h

e
tech

n
iq

u
e

on
ly

targets
on

in
clu

sion

last-level
cach

e.
[9]

T
h

e
tech

n
iq

u
e

targets
on

d
ata

cach
e

h
ierarch

y.
[10]

F
or

last-level
cach

e,
cach

e
is

p
artition

ed
b

etw
een

th
e

v
ictim

an
d

th
e

attacker.

18 Analysis of Secure Caches and Timing-Based Side-Channel Attacks

Table
5:

Existing
secure

caches’protection
against

allpossible
tim

ing-based
side-channelvulnerabilities

w
ith

last
step

to
be

invalidation
related

operations.
Single

X
in

a
green

cellm
eans

this
cache

can
prevent

the
corresponding

vulnerability.
A

◊
in

a
red

cellm
eans

this
cache

cannot
prevent

this
vulnerability.

Left
and

right
colum

n
ofthe

cache
represent

norm
aland

speculative
execution,respectively.

T
y

p
e

V
u

ln
erab

ility

S
et

A
sso-

ciative
C

ach
e

S
P

ú

C
ach

e

S
ec-

V
erilog

C
ach

e
S

ecD
C

P
C

ach
e

N
oM

o
C

ach
e

S
H

A
R

P
C

ach
e

6
S

an
ctu

m
C

ach
e

2
M

I6
C

ach
e

In
v

i-
siS

p
ec

C
ach

e
9

C
A

T
-

aly
st

C
ach

e
2,5

D
A

W
G

C
ach

e
R

IC
8

P
L

C
ach

e
R

P
C

ach
e

N
ew

-
cach

e

R
an

d
om

F
ill

C
ach

e
C

E
A

S
E

R
C

ach
e

N
on

D
eterm

-
in

istic
C

ach
e

C
ach

e
D

isab
led

C
ach

e
In

tern
al

C
ollision

In
valid

ation

A
i
n

v

V
u

V
i
n

v
a

(slow
)

◊
◊

X
X

X
X

X
X

X
1
X

1
X

X
X

10
X

10
X

10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

V
i
n

v

V
u

V
i
n

v
a

(slow
)

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
X

X
X

◊
◊

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

A
d

V
u

V
i
n

v
a

(slow
)

◊
◊

X
X

X
X

X
X

X
X

X
X

X
10

X
10

X
10

X
◊

X
X

X
X

X
◊

◊
X

X
X

X
X

X
X

X
◊

◊
X

X
X

X
V

d

V
u

V
i
n

v
a

(slow
)

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
X

X
X

◊
◊

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

A
a

a
li

a
s

V
u

V
i
n

v
a

(slow
)

◊
◊

X
X

X
X

X
X

X
X

X
X

X
10

X
10

X
10

X
◊

X
X

X
X

X
◊

◊
X

X
X

X
X

X
X

X
◊

◊
X

X
X

X
V

a
a

li
a

s

V
u

V
i
n

v
a

(slow
)

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
X

X
X

◊
◊

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

F
lu

sh
+

F
lu

sh

A
i
n

v
a

V
u

A
i
n

v
a

(slow
)

◊
◊

X
X

X
X

X
X

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

V
i
n

v
a

V
u

A
i
n

v
a

(slow
)

◊
◊

X
X

X
X

◊
◊

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

A
i
n

v
a

V
u

V
i
n

v
a

(slow
)

◊
◊

X
X

X
X

X
X

X
1
X

1
X

X
X

10
X

10
X

10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

V
i
n

v
a

V
u

V
i
n

v
a

(slow
)

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
X

X
X

◊
◊

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

F
lu

sh
+

R
eload

In
valid

ation

A
i
n

v

V
u

A
i
n

v
a

(slow
)

◊
◊

X
X

X
X

X
X

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

V
i
n

v

V
u

A
i
n

v
a

(slow
)

◊
◊

X
X

X
X

◊
◊

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

A
d

V
u

A
i
n

v
a

(slow
)

◊
◊

X
X

X
X

X
X

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

V
d

V
u

A
i
n

v
a

(slow
)

◊
◊

X
X

X
X

◊
◊

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

A
a

a
li

a
s

V
u

A
i
n

v
a

(slow
)

◊
◊

X
X

X
X

X
X

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

V
a

a
li

a
s

V
u

A
i
n

v
a

(slow
)

◊
◊

X
X

X
X

◊
◊

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

R
eload

+
T

im
e

In
valid

ation

V
i
n

v
u

A
a

V
i
n

v
u

(slow
)

◊
◊

X
X

X
X

X
X

X
1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

V
i
n

v
u

V
a

V
i
n

v
u

(slow
)

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
X

X
X

◊
◊

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

F
lu

sh
+

P
rob

e
In

valid
ation

A
a

V
i
n

v
u

A
i
n

v
a

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

A
a

V
i
n

v
u

V
i
n

v
a

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

V
a

V
i
n

v
u

A
i
n

v
a

(fast)
◊

◊
X

X
X

X
◊

◊
X

1
X

1
X

X
X

4
X

4
X

4
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

V
a

V
i
n

v
u

V
i
n

v
a

(fast)
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

X
X

X
◊

◊
◊

◊
X

X
X

X
X

X
X

X
◊

◊
X

X
X

X

E
v

ict
+

T
im

e
In

valid
ation

V
u

A
d

V
i
n

v
u

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

X
X

X
X

X
X

X
X

◊
◊

X
X

X
X

X
X

V
u

A
a

V
i
n

v
u

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

P
rim

e
+

P
rob

e
In

valid
ation

A
d

V
u

A
i
n

v
d

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
8
X

8
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
A

a

V
u

A
i
n

v
a

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

B
ern

stein
’s

In
valid

ation
A

ttack

V
u

V
a

V
i
n

v
u

(fast)
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

X
X

X
◊

◊
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
V

u

V
d

V
i
n

v
u

(fast)
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

X
X

X
◊

◊
X

X
X

X
X

X
X

X
◊

◊
X

X
X

X
X

X
V

d

V
u

V
i
n

v
d

(fast)
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

X
X

8
X

8
◊

◊
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
V

a

V
u

V
i
n

v
a

(fast)
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

X
X

X
◊

◊
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

E
v

ict
+

P
rob

e
In

valid
ation

V
d

V
u

A
i
n

v
d

(fast)
◊

◊
X

X
X

X
◊

◊
X

X
X

X
X

10
X

4,10
X

10
X

◊
X

X
8
X

8
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
V

a

V
u

A
i
n

v
a

(fast)
◊

◊
X

X
X

X
◊

◊
X

1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

P
rim

e
+

T
im

e
In

valid
ation

A
d

V
u

V
i
n

v
d

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

10
X

10
X

10
X

◊
X

X
8
X

8
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
A

a

V
u

V
i
n

v
a

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

F
lu

sh
+

T
im

e
In

valid
ation

V
u

A
i
n

v
a

V
i
n

v
u

(fast)
◊

◊
X

X
X

X
X

X
X

1
X

1
X

X
X

4,10
X

4,10
X

4,10
X

◊
X

X
X

X
X

◊
◊

X
X

X
X

X
X

◊
◊

◊
◊

X
X

X
X

V
u

V
i
n

v
a

V
i
n

v
u

(fast)
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

◊
◊

X
X

X
◊

◊
◊

◊
X

X
X

X
X

X
◊

◊
◊

◊
X

X
X

X

1
[1]

D
y

n
am

ic
ad

ju
stm

en
t

of
w

ay
s

for
d

i�
eren

t
th

read
s

is
assu

m
ed

to
b

e
p

rop
erly

u
sed

accord
in

g
to

th
e

ru
n

n
in

g
p

rogram
’s

cach
e

u
sage.

[2]
S

om
e

softw
are

assu
m

p
tion

s
listed

in
th

e
en

tries
in

th
is

colu
m

n
h

ave
b

een
im

p
lem

en
ted

b
y

th
e

cach
e’s

related
softw

are.
[3]

F
lu

sh
is

d
isab

led
,

b
u

t
cach

e
coh

eren
ce

m
igh

t
b

e
u

sed
to

d
o

th
e

d
ata

rem
oval.

[4]
F

or
L

1
cach

e
an

d
T

L
B

,
fl

u
sh

in
g

is
d

on
e

d
u

rin
g

con
tex

t
sw

itch
.

[5]
T

h
e

tech
n

iq
u

es
are

im
p

lem
en

ted
in

L
1

cach
e,

T
L

B
an

d
last-level

cach
e

w
h

ich
con

sist
of

th
e

w
h

ole
cach

e
h

ierarch
y,

w
h

ere
L

1
cach

e
an

d
T

L
B

req
u

ire
softw

are
fl

u
sh

p
rotection

an
d

th
e

last-level
cach

e
can

b
e

ach
ieved

b
y

sim
p

le
h

ard
w

are
p

artition
in

g.
T

o
p

rotect
all

levels

of
cach

es,
th

e
softw

are
assu

m
p

tion
s

n
eed

to
b

e
ad

d
ed

.
[6]

T
h

e
tech

n
iq

u
e

is
n

ow
on

ly
im

p
lem

en
ted

in
last-level

cach
e.

[7]
T

h
e

tech
n

iq
u

e
n

ow
on

ly
targets

sh
ared

cach
e.

[8]
T

h
e

tech
n

iq
u

e
on

ly
targets

on
in

clu
sion

last-level

cach
e.

[9]
T

h
e

tech
n

iq
u

e
targets

on
d

ata
cach

e
h

ierarch
y.

[10]
F

or
last-level

cach
e,

cach
e

is
p

artition
ed

b
etw

een
th

e
v

ictim
an

d
th

e
attacker.

Shuwen Deng, Wenjie Xiong and Jakub Szefer 19

3. A secure cache disallows certain step from the three-step model to be executed, thus
prevents the corresponding vulnerability. For instance, when PL cache preloads and
locks the security critical data in the cache, vulnerabilities such as A

d

 V

u

 V

inv

d

(slow) (one type of Prime + Time Invalidation) will not be possible since a preloaded
locked security critical data will not allow A

d

in Step 1 to replace it. In this case,
A

d

cannot be in the cache, so this vulnerability cannot be triggered in PL cache.

From the security prospective, the entries of the secure cache in Table 4 and Table 5
should have as many green colored cells as possible. If a cache design has any red cells,
then it cannot defend against that type of vulnerability – attacker using the timing-based
side-channel vulnerability that corresponds to the red cell can attack the system.

The third column in Table 4 and Table 5 shows a normal set associative cache, which
cannot defend against any type of timing-based side-channel vulnerabilities. Meanwhile,
the last column of Table 4 and Table 5 shows the situation where cache is fully disabled. As
is expected, the timing-based side-channel vulnerabilities are eliminated and timing-based
attacks will not succeed. Disabling caches, however, has tremendous performance penalty.
Similarly, second-to-last column shows Nondeterministic Cache, which totally randomizes
cache access time. It can defend all the attacks, but again will have at tremendous cost to
security when it the application is complex.

In each of the entry that shows the e�ectiveness of a secure cache against a vulnerability,
we listed two results. Left one is for normal execution, and the right one is for speculative
execution. Some secure caches such as InvisiSpec cache targets timing-based side channels
in speculative execution. For most of the caches that do not di�erentiate speculative
executions and normal executions, two sub-columns for each cache are the same.

6 Secure Cache Techniques
Among the secure cache designs presented in the prior section, there are three main
techniques that the caches utilize to prevent timing-based side-channel vulnerabilities:
di�erentiating sensitive data, partitioning and randomization.

Di�erentiating sensitive data (columns for CATalyst cache to columns for Random
Fill cache in Table 4 and Table 5) allows the victim or attacker software or management
software to explicitly label a certain range of the data of victim which they think are sensitive.
The victim process or management software is able to use cache-specific instructions to
protect the data and limit internal interference between victim’s own data. E.g., it is
possible to disable victim’s own flushing of victim’s labeled data, and therefore prevent
vulnerabilities that leverage flushing. This technique allows the designer to have stronger
control over security critical data, rather than forcing the system to assume all of victim’s
data is sensitive. However, how to identify sensitive data and whether this identification
process is reliable are open research questions for caches that support di�erentiation of
sensitive data.

This technique is independent of whether a cache uses partitioning or randomization
techniques to eliminate side channels between the attacker and the victim. Caches that are
able to label and identify sensitive data have advantage in preventing internal interference
since they are able to di�erentiate sensitive data from the normal data and can make use
of special instructions to give more privileges to sensitive data. However, it requires careful
use when identifying the actual sensitive data and implementing corresponding security
features on the cache.

Comparing PL cache with SPú cache, although both of them use partitioning, flush
is able to be implemented to be disabled for victim’s sensitive data in PL cache, where
V

u

 V

inv

a

 V

u

(slow) (one type of Flush + Time) is prevented. Newcache is able to
prevent V

u

 V

a

 V

u

(slow) (one type of Bernstein’s Attack [5]) while most of the caches

20 Analysis of Secure Caches and Timing-Based Side-Channel Attacks

without ability to di�erentiate sensitive data cannot because Newcache disallows replacing
data as long as either data to be evicted or data to be cached is identified to be sensitive.
However, permitting di�erentiation of sensitive data can potentially backfire on the cache
itself. For example, Random Fill cache cannot prevent V

u

 A

d

 V

u

(slow) (one type
of Evict + Time [27]) which most of the other caches can prevent or avoid, because the
random fill technique loses its intended random behavior when the security critical data is
initially loaded into the cache in Step 1.

Partitioning-based caches usually limit the victim and the attacker to be able to
only access a limited set of cache block (columns for SPú cache to column for PL cache in
Table 4 and Table 5). E.g. either there is static or dynamic partitioning of caches which
allocates some blocks to High victim and Low attacker. The partitioning can be based not
just on whether the memory access is victim’s or attacker’s, but also on where the access
is to (e.g. High partition is determined by the data address) For speculative execution,
attacker’s code can be the part of speculation or out-of-order load or store, which is able
to be partitioned (e.g., using speculative load bu�er) from other normal operations. The
partitioning granularity can be cache sets, cache lines or cache ways. Partitioning-based
secure caches are usually able to prevent external interference by partitioning but are
weak at preventing internal interference. When partitioning is used, interference between
the attacker and the victim, or data belonging to di�erent security levels, should not be
possible and attacks based on external interference between the victim and the attacker will
fail. However, the internal interference of victim’s own data is hard to be prevented by the
partitioning based caches. What’s more, partitioning is recognized to be wasteful in terms
of cache space and inherently degrades system performance [10]. Dynamic partitioning
can help limit the negative performance and space impacts, but it could be at a cost of
revealing some side-channel information when adjusting the partitioning size for each part.
It also does not help with internal interference prevention.

In terms of the three-step model, the partitioning-based caches excel at making use
of partitioning techniques to disallow the attacker to set initial states (Step 0) of victim
partition by use of flushing or eviction, and therefore bring uncertainty to the final timing
observation made by the attacker.

SPú cache can prevent external miss-based interference, but it still allows the victim and
the attacker to get cache hits due to each other’s data, which makes hit-based vulnerabilities
happen, e.g., V

d

 V

u

 V

a

(fast) (one type of Cache Internal Collision [6]) vulnerability
is one of the examples that SPú cache cannot prevent. SecVerilog cache is similar to SPú

cache but prevents the attacker from directly getting cache hit due to victim’s data for
confidentiality and therefore prevents vulnerabilities such as A

inv

a

 V

u

 A

a

(fast) (one
type of Flush + Reload [26]). SHARP cache mainly uses partitioning combined with random
eviction to minimize the probability of evicting victim’s data and prevent external miss-
based vulnerabilities. It is vulnerable to hit-based or internal interference vulnerabilities
such as V

u

 V

a

 V

u

(slow) (one type of Bernstein’s Attack [5]) vulnerability. DAWG
cache will only allow the data to get a cache hit if both its address and the process ID are
the same. Therefore, compared with normal partitioning cache such as SPú cache, DAWG
cache is able to prevent vulnerabilities such as V

d

 V

u

 A

inv

d

(fast) (one type of Prime
+ Flush).

SecDCP and NoMo cache both leverage dynamic partitioning to improve performance.
Compared to SecVerilog cache, SecDCP cache introduces certain side channels which
manifest themselves when the number of ways assigned to the victim and attacker changes,
e.g., V

u

 A

inv

a

 V

u

(slow) (one type of Flush + Time) vulnerability. NoMo cache
behaves more carefully when changing the number of ways during dynamic partitioning,
however, it requires victim’s sensitive data to fit into the assigned partitions, otherwise it
will be put into the unreserved way and allow eviction by the attacker. SecDCP does not
have unreserved way. All the spaces in the cache will either belong to High partition or

Shuwen Deng, Wenjie Xiong and Jakub Szefer 21

Low partition.
Sanctum cache and CATalyst cache are both controlled by a powerful software monitor

and they disallow secure page sharing between victim and attacker to prevent vulnerabilities
such as A

d

 V

u

 A

a

(fast) (one type of Flush + Reload [26]). Sanctum cache does not
consider internal interference while CATalyst cache is more carefully designed to prevent
di�erent vulnerabilities with the implemented software system, so far supporting preventing
all of the vulnerabilities, but only works for LLC and with high software implementation
complexity and some assumptions that might be hard to achieve in other scenarios, e.g.,
assuming the secure partition is big enough to fit all the secure data. MI6 cache is the
combination of Sanctum and disabling speculation when interacting with the outside world.
Therefore, in normal execution, it behaves the same as Sanctum. For speculative execution,
because it will simply disable all the speculation when involving the outside world, the
external interference vulnerability such as V

d

 V

u

 A

d

(slow) (one type of Evict +
Probe) vulnerability will be prevented.

InvisiSpec cache does not modify the original cache state but places the data in a
speculative bu�er partition during the speculation or out-of-order load or store. Since
during speculation cache state is not actually updated, the speculative execution cannot
trigger any of the steps in the three-step model. RIC cache and CEASER cache focus on
eviction based attack and therefore are good at preventing even some internal miss-based
vulnerability such as V

u

 V

a

 V

u

(slow) (one type of Bernstein’s Attack [5]) but are bad
at all hit-based vulnerabilities. PL cache is line-partitioned and uses locking techniques
for victim’s security critical data. It can prevent many vulnerabilities because preloading
and locking secure data disallow the attacker or non-secure victim data to set initial states
(Step 0) for victim partition, and therefore brings uncertainty to the final observation
by the attacker, e.g., A

d

 V

u

 V

a

(fast) (one type of Cache Internal Collision [6])
vulnerability is prevented.

Randomization-based caches (columns for SHARP cache, and columns for RP
cache to columns for Non Deterministic cache in Table 4 and Table 5) inherently de-
correlate the relationship between information of victim’s security critical data’s address
and observed timing from cache hit or miss, or between the address and observed timing of
flush or cache coherence operations. For speculative execution, they also de-correlate the
relationship between the address of the data being accessed during speculative execution or
out-of-order load or store and the observed timing from a cache hit or miss. Randomization
can be used when bringing data into the cache, evicting data, or both. Some designs
randomize the address to cache set mapping. As a result of the randomization, the
mutual information from the observed timing, due to having or not having data in the
cache, could be reduced to 0, if randomization is done on every memory access. Some
secure caches use randomization to avoid many of the miss-based internal interference
vulnerabilities. However, they may still su�er from hit-based vulnerabilities, especially
when the vulnerabilities are related to internal interference. However, randomization is
also likewise recognized to increase performance overheads [19]. It also requires a fast and
secure random number generator. Most of the randomization is cache-line-based and can
be combined with di�erentiation of sensitive data to be more e�cient.

RP cache allows eviction between di�erent sensitive data, which leaves vulnerabilities
such as V

u

 V

a

 V

u

(slow) (one type of Bernstein’s Attack [5]) still possible, while
Newcache prevents this. Both of the RP cache and Newcache are not able to prevent
hit-based internal-interference vulnerabilities such as A

inv

a

 V

u

 V

a

(fast) (one type
of Cache Internal Collision [6]). Random Fill cache is able to use total de-correlation of
memory access and cache access of victim’s security critical data to prevent most of the
internal and external interference. However, when security critical data is initially directly
loaded into the cache block for Step 1, Random Fill cache will not randomly load security
critical data and allows vulnerabilities such as V

u

 V

inv

a

 V

u

(slow) (one type of

22 Analysis of Secure Caches and Timing-Based Side-Channel Attacks

Table
6:

Existing
secure

caches’im
plem

entation
m

ethod,perform
ance,pow

er
and

area
sum

m
ary.

M
etric

S
et

A
sso-

ciative
C

ach
e

S
P

ú
C

ach
e

[15,
34]

S
ecV

er-
ilog

C
ach

e
[9,

8]

S
ecD

C
P

C
ach

e
[14]

N
oM

o
C

ach
e

[17]

S
H

A
R

P
C

ach
e

[16]

S
an

c-
tu

m
C

ach
e

[13]

M
I6

C
ach

e[23]

In
v

isiS
-

p
ec

C
ach

e
[22]

C
A

T
a-

ly
st

C
ach

e
[18]

D
A

W
G

C
ach

e
[21]

R
IC

[20]

P
L

C
ach

e
[10]

R
P

C
ach

e
[10]

N
ew

-
cach

e
[11,
33]

R
an

-
d

om
F

ill
C

ach
e

[12]

C
E

A
S

E
R

C
ach

e
[24]

N
on

D
eter-

m
in

is-
tic

C
ach

e
[19]

C
ach

e
D

is-
ab

led

C
ach

e
C

on
fi

g-
u

ration

L
1

C
ach

e
≠

≠
4-w

ay
32k

B

p
ri-

vate
2-w

ay
32k

B
D

/I

8-w
ay

32K
B

D
/I

p
rivate

4-w
ay

32K
B

D
/I

8-w
ay

32K
B

D
/I

8-w
ay

32K
B

D
/I

p
rivate

8-w
ay

64K
B

D
,

4-w
ay

32K
B

I

≠

p
ri-

vate
2◊

8-w
ay

32
K

B

4-w
ay

32
K

B
D

/I

d
irect-

m
ap

p
ed

,
2-w

ay
an

d
4-w

ay
4K

B
to

32K
B

2-w
ay

4-w
ay

16K
B

32K
B

2-
w

ay,
4-w

ay
or

8-
w

ay

4-w
ay

32
K

B

p
ri-

vate
8-w

ay
32K

B

2-w
ay

2
K

B
D

/I
≠

L
2

C
ach

e
≠

≠
≠

sh
ared

8/16-
w

ay
1/2M

B

u
n

i-
fi

ed
8-w

ay
256K

B

p
rivate

8-w
ay

256K
B

256K
B

8-w
ay

L
2

1M
B

,
16-

w
ay,

m
ax

16
re-

q
u

ests

≠
≠

p
ri-

vate
8-w

ay
256
K

B

8-w
ay

256
K

B
≠

≠
≠

8-w
ay

2
M

B

p
ri-

vate
8-w

ay
256K

B

sh
ared

4-w
ay

128
K

B

≠

L
L

C
≠

≠
≠

16-
w

ay
2M

B

sh
ared
16-

w
ay

2M
B

sh
ared

16-w
ay

2M
B

8M
B

16-
w

ay
L

L
C

p
arti-

tion
ed

in
to

core-
lo

cal
slices

coh
er-

en
t

w
ith

I
an

d
D

sh
ared

16-w
ay

2M
B

20-w
ay

20
M

B

sh
ared

8◊
16-

w
ay

2
M

B

sh
ared

16-
w

ay
2

M
B

/512
K

B

≠
≠

≠
≠

sh
ared

16-w
ay

8M
B

≠
≠

B
en

ch
m

ark
≠

R
S

A
,

A
E

S
an

d
M

D
5

M
iB

en
ch

,
ci-

p
h

ers
an

d
h

ash
fu

n
c-

tion
s

of
O

p
en

S
S

L

S
P

E
C

2006
S

P
E

C
2006

S
P

E
C

IN
T

2006,
S

P
E

C
F

P
2006

an
d

P
A

R
-

S
E

C

S
P

E
C

IN
T

2006
S

P
E

C
IN

T
2006

S
P

E
C

IN
T

2006,
S

P
E

C
F

P
2006

an
d

P
A

R
-

S
E

C

S
P

E
C

2006
an

d
P

A
R

-
S

E
C

P
A

R
-

S
E

C
an

d
G

A
P

B
en

ch
-

m
ark

S
u

ite
(G

A
P

B
S

)

S
P

E
C

2006

A
E

S
,

S
P

E
C

2000

A
E

S
,

S
P

E
C

2000
S

P
E

C
2000

S
P

E
C

2006

S
P

E
C

2006
an

d
G

A
P

A
E

S
cry

p
-

to-
grap

h
ic

algo-
rith

m

≠

Im
p

lem
-

en
tation

≠
≠

M
IP

S
p

ro
ces-

sor

G
em

5
sim

u
-

la-
tor

[39]

P
in

[40]
b

ased
trace-
d

riven
x

86
sim

u
-

lator

M
A

R
S

S
[41]

cy
cle-

level
fu

ll-
sy

stem
sim

u
la-

tor

R
o

cket
C

h
ip

G
en

er-
a-

tor
[42]

R
iscy

O
O

p
ro-

ces-
sor

[43]
+

X
ilin

x
F

P
G

A

G
em

5
sim

u
la-

tor
+

C
A

C
T

I
5

[44]

In
tel

X
eon
E

5
2618L

v
3

p
ro-

cessors

zsim
[45]

ex
ecu

-
tion

d
riven

x
86-64
sim

u
-

lator
an

d
H

asw
ell

[46]
h

ard
-

w
are

C
acti

[47]
ver-
sion
6.5

M
-S

im
v

2.0
[48]

M
-

S
im

v
2.0

C
A

C
T

I
5.0

G
em

5
sim

u
-

lator

P
in

-
b

ased
x

86
sim

u
la-

tor

H
otL

eak
-

age
sim

u
-

la-
tor

[49]

≠

P
erform

an
ce

O
verh

ead
≠

1%
≠

12.5%
b

etter
over

static
cach

e
p

arti-
tion

-
in

g

1.2%
aver-
age,
5%

w
orst

3%
-4%

≠
≠

red
u

ce
th

e
ex

e-
cu

tion
slow

-
d

ow
n

of
S

p
ectre

from
74%

to
on

ly
21%

average
slow

-
d

ow
n

of
0.7%
for

S
P

E
C

an
d

0.5%
for

P
A

R
-

S
E

C

L
1

an
d

L
2

m
ost

4%
-7%

im
-

p
roves
10%

12%
0.3%

,
1.2%
w

orst

w
ith

in
th

e
10%

ran
ge

of
th

e
real
m

iss
rate

3.5%
,

9%
if

set-
tin

g
th

e
w

in
-

d
ow

size
to

b
e

largest

1%
for

p
erfor-

m
an

ce
op

ti-
m

iza-
tion

7%
w

ith
sim

p
le

b
en

ch
-

m
ark

s

≠

P
ow

er
≠

≠
≠

≠
≠

≠
≠

≠

L
1

0.56
m

W
,

L
L

C
0.61
m

W

≠
≠

≠
≠

aver-
age

1.5
n

j
<

5%
p

ow
er

≠
≠

≠
≠

A
rea

O
verh

ead
≠

≠
≠

≠
≠

≠
≠

≠

L
1-S

B
L

L
C

-S
B

A
rea

(m
m

2)
0.0174
0.0176

≠
≠

0.176%
≠

≠
≠

≠
≠

≠
≠

Shuwen Deng, Wenjie Xiong and Jakub Szefer 23

Flush + Time) vulnerability to exist. CEASER cache uses encryption scheme plus dynamic
remapping to randomize mapping from memory addresses to cache sets. However, this
targets eviction based attacks and cannot preventing hit-based vulnerabilities such as
V

a

 V

inv

u

 V

inv

a

(fast) (one type of Flush + Probe Invalidation). Non Deterministic
cache totally randomizes timing of cache accesses by adding delays and can prevent all
attacks (but at tremendous performance cost).

6.1 Estimated Performance and Security Tradeo�s.
Table 6 shows the implementation and performance results of the secure caches, as listed
by the designer in the di�erent papers. At the extreme end, there is the Non Deterministic
cache: with complete randomization, the security is guaranteed for all cache timing-based
side-channel vulnerabilities; but the performance can be seriously degraded when it is
used for more complex application than AES algorithm. Disabling caches eliminates the
attacks, but at a huge performance cost. Normally, a secure cache needs to sacrifice some
performance in order to de-correlate memory access with the timing. The secure caches
that tend to be able to prevent more vulnerabilities usually have weaker performance
compared with other secure caches. E.g., more security seems to imply less performance.

6.2 Secure Cache Features for Defending Timing-Based Attacks.
Based on the above analysis, a good secure cache should consider all the 72 types of
Strong vulnerabilities, e.g., external-interference and internal-interference, hit-based and
miss-based vulnerabilities. Considering all factors and based on Table 4 and Table 5,
we have several suggestions and observations for a secure cache design which can defend
timing-based attacks:

• Internal interference is important for caches to prevent timing-based attacks and is
the weak point of most of the secure caches. To prevent this, the following three
subpoints should be considered:

– Miss-based internal interference can be solved by randomly evicting data to
de-correlate memory access with timing information when either data to be
evicted or data to be cached is sensitive, e.g., Newcache prevents V

u

 V

a

 V

u

(slow) (one type of Bernstein’s Attack [5]) vulnerability.
– Hit-based internal interference can be solved by randomly bringing data into the

cache, e.g., Random Fill cache prevents A

d

 V

u

 V

a

(fast) (Cache Internal
Collision) vulnerability.

– To limit internal interference at lower performance cost, rather than simply
assume all of victim’s data is sensitive, it is better to di�erentiate real sensitive
data from other data in the victim code. However, identification of sensitive
information needs to be carefully used, e.g., Random Fill cache is vulnerable to
V

u

 A

d

 V

u

(fast) (one type of Evict + Time [27]) vulnerability which most
of the secure caches are able to prevent.

• Direct partitioning between the victim and the attacker, although may hurt cache
space utilization or performance, is good at disallowing attacker to set known initial
state to victim’s partition and therefore prevents external interference. Alternatively,
careful use of randomization can also prevent external interference.

It should be noted that some cache designs only focus on certain levels, e.g., CATalyst
cache only works at the last level cache. In order to fully protect the whole cache system
from timing-based side-channel attacks, all levels of caches in the hierarchy should be
protected with related security features. E.g., Sanctum is able to prevent all levels of
caches from L1 to last-level cache. Consequently, secure cache design needs to be realizable
at all levels of the cache hierarchy.

24 Analysis of Secure Caches and Timing-Based Side-Channel Attacks

7 Related Work
There is a lot of existing attacks exploring timing-based cache side channels, e.g., [3,
4, 5, 6, 7, 27, 32, 26, 29, 30, 28]. Furthermore, our recent paper [25] has summarized
cache timing-based side-channel vulnerabilities using a three-step model, and inspired
this work on checking which side channel vulnerability types are truly defeated by the
secure caches in context of timing-based attacks. [50] used finite-state machine to model
cache architectures and leveraged mutual information to measure potential side-channel
leakage of the modeled cache architectures. Meanwhile, [34] modeled interference using
probabilistic information flow graph, and used attacker’s success probability to estimate
di�erent caches’ ability to defend against some cache timing-based side-channel attacks.
However, they did not explore all the possible vulnerabilities due to cache timing-based
side channels.

There is also some other work focusing on cache side channel verification [51, 52, 53].
Among these, CacheAudit [51] e�ciently computes possible side-channel observations
using abstractions in a modular way. Bit-level and arithmetic reasoning is used in [52]
for memory accesses in the presence of dynamic memory allocation. CacheD [53] detects
potential cache di�erences at each program point and leverages symbolic execution and
constraint solving.

Hardware transactional memory has also been leveraged to prevent timing-based cache
side-channel attacks [54, 55]. Hardware transactional memory (HTM) is available on
modern commercial processors, such as Intel’s Transactional Synchronization Extensions
(TSX). Its main feature is to abort the transaction and roll back the modifications whenever
a cache block contained in the read set or write set is evicted out of the cache. In [54],
HTM was combined with preloading strategy for code and data to prevent Flush + Reload
attacks in the local setting, and Prime and Probe attacks in the cloud setting. In [55],
the software-level solution targets system calls, page faults, code refactoring, and abort
reasoning to eliminate not only Prime + Probe, Flush + Reload, but also Evict + time
and Cache Collision attacks.

8 Conclusion
This paper first proposed a new single-cache-block three-step model in order to model all
possible cache timing side-channel vulnerabilities. It further provided the cache three-step
simulator and reduction rules to derive e�ective vulnerabilities including existing attacks
and ones that have not been exploited in literature. With exhaustive e�ective vulnerability
types listed, this paper presented analysis of 17 secure processor cache designs with respect
to how well they can defend against these timing-based side-channel vulnerabilities. Our
work showed that vulnerabilities based on internal interference of the victim application
are di�cult to protect against and many secure cache designs fail in this. We also provided
a summary of secure processor cache features that could be integrated to make an ideal
secure cache that is able to defend timing-based attacks. Overall, implementing a secure
cache in a processor can be a viable alternative to defend timing-based side-channel attacks.
However, it requires design of an ideal secure cache, or correction of existing secure cache
designs to eliminate the few attacks that they don’t protect against.

Acknowledgment
This work was supported by NSF grant number 1813797 and through SRC award number
2844.001.

Shuwen Deng, Wenjie Xiong and Jakub Szefer 25

References
[1] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,

T. Prescher, M. Schwarz, and Y. Yarom, “Spectre Attacks: Exploiting Speculative
Execution,” ArXiv e-prints, Jan. 2018.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” ArXiv e-prints, Jan. 2018.

[3] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–Bringing access-based cache
attacks on AES to practice,” in Security and Privacy (SP), 2011 IEEE Symposium
on, pp. 490–505, IEEE, 2011.

[4] C. Percival, “Cache missing for fun and profit,” 2005.

[5] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.

[6] J. Bonneau and I. Mironov, “Cache-collision timing attacks against AES,” in Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, pp. 201–215,
Springer, 2006.

[7] O. Acıiçmez and Ç. K. Koç, “Trace-driven cache attacks on AES (short paper),” in
International Conference on Information and Communications Security, pp. 112–121,
Springer, 2006.

[8] D. Zhang, A. Askarov, and A. C. Myers, “Language-based control and mitigation of
timing channels,” ACM SIGPLAN Notices, vol. 47, no. 6, pp. 99–110, 2012.

[9] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design language for
timing-sensitive information-flow security,” in ACM SIGARCH Computer Architecture
News, vol. 43, pp. 503–516, ACM, 2015.

[10] Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-based
side channel attacks,” in ACM SIGARCH Computer Architecture News, vol. 35,
pp. 494–505, ACM, 2007.

[11] Z. Wang and R. B. Lee, “A novel cache architecture with enhanced performance and
security,” in Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM International
Symposium on, pp. 83–93, IEEE, 2008.

[12] F. Liu and R. B. Lee, “Random fill cache architecture,” in Microarchitecture (MICRO),
2014 47th Annual IEEE/ACM International Symposium on, pp. 203–215, IEEE, 2014.

[13] V. Costan, I. A. Lebedev, and S. Devadas, “Sanctum: Minimal Hardware Extensions
for Strong Software Isolation.,” in USENIX Security Symposium, pp. 857–874, 2016.

[14] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh, “SecDCP: secure dy-
namic cache partitioning for e�cient timing channel protection,” in Design Automation
Conference (DAC), 2016 53nd ACM/EDAC/IEEE, pp. 1–6, IEEE, 2016.

[15] R. B. Lee, P. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang, “Architecture
for protecting critical secrets in microprocessors,” in ACM SIGARCH Computer
Architecture News, vol. 33, pp. 2–13, IEEE Computer Society, 2005.

[16] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure Hierarchy-Aware Cache
Replacement Policy (SHARP): Defending Against Cache-Based Side Channel Attacks,”
in Proceedings of the 44th Annual International Symposium on Computer Architecture,
pp. 347–360, ACM, 2017.

26 Analysis of Secure Caches and Timing-Based Side-Channel Attacks

[17] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev, “Non-
monopolizable caches: Low-complexity mitigation of cache side channel attacks,”
ACM Transactions on Architecture and Code Optimization (TACO), vol. 8, no. 4,
p. 35, 2012.

[18] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee, “Cata-
lyst: Defeating last-level cache side channel attacks in cloud computing,” in High
Performance Computer Architecture (HPCA), 2016 IEEE International Symposium
on, pp. 406–418, IEEE, 2016.

[19] G. Keramidas, A. Antonopoulos, D. N. Serpanos, and S. Kaxiras, “Non determin-
istic caches: A simple and e�ective defense against side channel attacks,” Design
Automation for Embedded Systems, vol. 12, no. 3, pp. 221–230, 2008.

[20] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. Abu-Ghazaleh, D. Pono-
marev, and A. Jaleel, “RIC: relaxed inclusion caches for mitigating LLC side-channel
attacks,” in Design Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE,
pp. 1–6, IEEE, 2017.

[21] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer, “DAWG: A
Defense Against Cache Timing Attacks in Speculative Execution Processors,”

[22] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas, “InvisiSpec:
Making Speculative Execution Invisible in the Cache Hierarchy,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 428–441,
IEEE, 2018.

[23] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, S. Devadas, et al., “MI6: Secure
Enclaves in a Speculative Out-of-Order Processor,” arXiv preprint arXiv:1812.09822,
2018.

[24] M. K. Qureshi, “CEASER: Mitigating Conflict-Based Cache Attacks via Encrypted-
Address and Remapping,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 775–787, IEEE, 2018.

[25] S. Deng, W. Xiong, and J. Szefer, “Cache timing side-channel vulnerability checking
with computation tree logic,” in Proceedings of the 7th International Workshop on
Hardware and Architectural Support for Security and Privacy, no. 2, ACM, 2018.

[26] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A High Resolution, Low Noise, L3
Cache Side-Channel Attack.,” in USENIX Security Symposium, pp. 719–732, 2014.

[27] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: the
case of AES,” in Cryptographers’ Track at the RSA Conference, pp. 1–20, Springer,
2006.

[28] R. Guanciale, H. Nemati, C. Baumann, and M. Dam, “Cache storage channels: Alias-
driven attacks and verified countermeasures,” in Security and Privacy (SP), 2016
IEEE Symposium on, pp. 38–55, IEEE, 2016.

[29] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are Coherence Protocol States
Vulnerable to Information Leakage?,” in High Performance Computer Architecture
(HPCA), 2018 IEEE International Symposium on, pp. 168–179, IEEE, 2018.

[30] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks: Automating
Attacks on Inclusive Last-Level Caches.,” in USENIX Security Symposium, pp. 897–
912, 2015.

Shuwen Deng, Wenjie Xiong and Jakub Szefer 27

[31] C. Trippel, D. Lustig, and M. Martonosi, “MeltdownPrime and SpectrePrime:
Automatically-Synthesized Attacks Exploiting Invalidation-Based Coherence Pro-
tocols,” arXiv preprint arXiv:1802.03802, 2018.

[32] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ Flush: a fast and stealthy
cache attack,” in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pp. 279–299, Springer, 2016.

[33] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache architecture thwarting
cache side-channel attacks,” IEEE Micro, vol. 36, no. 5, pp. 8–16, 2016.

[34] Z. He and R. B. Lee, “How secure is your cache against side-channel attacks?,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pp. 341–353, ACM, 2017.

[35] R. E. Kessler and M. D. Hill, “Page placement algorithms for large real-indexed caches,”
ACM Transactions on Computer Systems (TOCS), vol. 10, no. 4, pp. 338–359, 1992.

[36] G. Taylor, P. Davies, and M. Farmwald, “The TLB slice-a low-cost high-speed address
translation mechanism,” in Computer Architecture, 1990. Proceedings., 17th Annual
International Symposium on, pp. 355–363, IEEE, 1990.

[37] I. R.-T. P. by Utilizing, “Cache Allocation Technology,” Intel Corporation, Apr, 2015.

[38] J. Borgho�, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen,
G. Leander, V. Nikov, C. Paar, C. Rechberger, et al., “Prince–a low-latency block
cipher for pervasive computing applications,” in International Conference on the
Theory and Application of Cryptology and Information Security, pp. 208–225, Springer,
2012.

[39] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5 simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[40] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: building customized program analysis tools with
dynamic instrumentation,” in Acm sigplan notices, vol. 40, pp. 190–200, ACM, 2005.

[41] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: a full system simulator
for multicore x86 CPUs,” in Design Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE, pp. 1050–1055, IEEE, 2011.

[42] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. StojanoviÊ, and K. AsanoviÊ,
“A 45nm 1.3 GHz 16.7 double-precision GFLOPS/W RISC-V processor with vector
accelerators,” in European Solid State Circuits Conference (ESSCIRC), ESSCIRC
2014-40th, pp. 199–202, IEEE, 2014.

[43] S. Zhang, A. Wright, T. Bourgeat, and A. Arvind, “Composable Building Blocks to
Open up Processor Design,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 68–81, IEEE, 2018.

[44] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “CACTI 5.1,” tech.
rep., Technical Report HPL-2008-20, HP Labs, 2008.

[45] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitectural simulation
of thousand-core systems,” in ACM SIGARCH Computer architecture news, vol. 41,
pp. 475–486, ACM, 2013.

28 Analysis of Secure Caches and Timing-Based Side-Channel Attacks

[46] I. X. Processor, “E5-2680 v3.”

[47] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing, power, and
area model,” 2001.

[48] J. Sharkey, D. Ponomarev, and K. Ghose, “M-sim: a flexible, multithreaded architec-
tural simulation environment,” Techenical report, Department of Computer Science,
State University of New York at Binghamton, 2005.

[49] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan, “Hotleakage: A
temperature-aware model of subthreshold and gate leakage for architects,” University
of Virginia Dept of Computer Science Tech Report CS-2003, vol. 5, 2003.

[50] T. Zhang and R. B. Lee, “New models of cache architectures characterizing information
leakage from cache side channels,” in Proceedings of the 30th Annual Computer Security
Applications Conference, pp. 96–105, ACM, 2014.

[51] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “Cacheaudit: A tool for the
static analysis of cache side channels,” ACM Transactions on Information and System
Security (TISSEC), vol. 18, no. 1, p. 4, 2015.

[52] G. Doychev and B. Köpf, “Rigorous analysis of software countermeasures against cache
attacks,” in Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 406–421, ACM, 2017.

[53] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying Cache-Based
Timing Channels in Production Software,” in 26th USENIX Security Symposium.
USENIX Association, 2017.

[54] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa, “Strong
and e�cient cache side-channel protection using hardware transactional memory,” in
USENIX Security Symposium, pp. 217–233, 2017.

[55] S. Chen, F. Liu, Z. Mi, Y. Zhang, R. B. Lee, H. Chen, and X. Wang, “Leveraging
Hardware Transactional Memory for Cache Side-Channel Defenses,” in Proceedings of
the 2018 on Asia Conference on Computer and Communications Security, pp. 601–608,
ACM, 2018.

