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Abstract. Profiling side-channel attacks represent the most powerful
category of side-channel attacks. There, we assume that the attacker
has access to a clone device in order to profile the device. Additionally,
we assume the attacker to be unbounded in power in an effort to give
the worst-case security analysis. In this paper, we start from a different
premise and consider an attacker in a restricted setting where he is able to
profile only a limited number of measurements. To that end, we propose
a new framework for profiling side-channel analysis that we call the Re-
stricted Attacker framework. With it, we enforce the attackers to really
conduct the most powerful attack possible but also we provide a set-
ting that inherently allows a more fair analysis among attacks. Next, we
discuss the ramifications of having the attacker with unbounded power
when considering neural network-based attacks. There, we are able to
prove that the Universal Approximation Theorem can result in neural
network-based attacks being able to break implementations with only a
single measurement. Those considerations further strengthen the need
for the Restricted Attacker framework.

Keywords: Side-channel analysis, Machine learning, Deep learning, Restricted
Attacker framework

1 Introduction

Side-channel analysis (SCA) is a threat that exploits weaknesses in physical
implementations of cryptographic algorithms rather than the algorithms them-
selves [1]. SCA exploits any unintentional leakage observed in physical channels
like timing [2], power dissipation [3], electromagnetic (EM) radiation [4], etc.
Profiling SCA performs the worst-case security analysis by considering the most
powerful side-channel attacker that has access to an open (in the sense that the
keys can be chosen by the attacker) clone device.

Usually, we consider an attacker in the setting where he has unbounded
power, e.g., he can obtain any number of profiling or attacking traces and he



has unlimited computational power. Yet, it is clear that every attacker must be
bounded and much less powerful than given by such assumptions. The difference
between the assumed power of an attacker and his real power can introduce a
serious problem into the profiling side-channel analysis framework and thus into
the evaluation and classification of attacks. A common way to conduct a pro-
filing attack is to use the template attack. Template attack is known to be the
most powerful one from the information theoretic point of view when the at-
tacker has an unbounded number of traces in the profiling phase [5, 6]. If the
template attack is the most powerful one, why do we care about other attack
techniques? The reason is that the template attack is the most powerful one
only if some difficult constraints are fulfilled, which does not occur often in prac-
tice. In the last two decades, besides template attack and its variants [7, 8], the
SCA community started using various machine learning techniques to conduct
profiling attacks. The results with machine learning proved to be highly com-
petitive when compared to template attack and actually in many scenarios such
techniques surpassed template attack. Often in these scenarios, the number of
profiling traces is arbitrarily limited and no clear guidelines on the limitation
are given or discussed. In the last few years, the SCA community also started
to experiment with various deep learning techniques where the performance of
such techniques bested both template attack and other machine learning tech-
niques. Again, no clear guideline on the number of profiling traces was given or
investigated.

In the machine learning domain, there is a well-known theorem called the
Universal Approximation Theorem, which informally states that a feed-forward
neural network with a single hidden layer containing a finite number of neurons
can approximate a wide range of functions with any desired level of error. With
such a theorem, and considering a powerful (“unbounded”) SCA attacker, we
must assume he is able to always approximate any function describing the leakage
of implementation. And since the theorem states that the approximation is done
to any desired level of error, this would result in an attacker able to break any
implementation.

In order to devise a reliable framework, we need to limit the power of an
attacker to be able to draw meaningful conclusions. Still, it is important to limit
the attacker in a sense that will make the framework more practical while giv-
ing the attacker enough power to obtain relevant results. Note, there is another
reason why it would be beneficial to limit the power of the attacker. By setting
the attacker in a scenario where he can obtain an unlimited number of measure-
ments, instead of making the attacker as powerful as possible, we actually allow
him to use weaker attacks. More precisely, he can use a larger set of measure-
ments to compensate for less powerful profiling models. Consequently, a proper
framework would consider an attacker that has as limited number of measure-
ments as possible and is yet able to break the implementation. In this paper, the
notion of a model is equivalent to the notion of mapping (i.e., a function), while
the framework is the general setting that uses models in order to fulfill certain
goals.
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As far as we are aware, there are no previous works considering such restricted
attacker frameworks. When the attacker is restricted, it is either set as one of
a number of tested scenarios (e.g., testing the performance of a classifier with
a different number of measurements in the training phase) or motivated with
some limitation in the data acquisition. One example of a limitation would be
a device with a counter on the number of measurements. Still, all those works
have in common that they test restricted attackers as one test case and not as
a “proper” framework for profiling SCA.

In this paper, we present two main contributions:

1. We propose a new framework for the profiling side-channel analysis where
we restrict the ability of an attacker to obtain measurements in the pro-
filing phase. Note, such attacker is still powerful from the computational
perspective as well as from the perspective of the models he can build.

2. With some constraints on the type of SCA leakage, we show that a neural
network can break the cryptographic implementation with a single measure-
ment.

The rest of this paper is organized as follows. In Section 2, we discuss the
available techniques to conduct profiling SCA. In Section 3, we present related
works and in Section 4, the currently used frameworks for profiling SCA. Sec-
tion 5 introduces our new framework – The Restricted Attacker framework. In
Section 6, we further develop on the proposed framework and we show its rele-
vance for neural network-based approaches. Additionally, by connecting the the-
oretical results from the machine learning domain and SCA, we show how neural
networks can be even more powerful than one would intuitively think. In Sec-
tion 7, we discuss the significance of our findings and the similarities/differences
between profiling attacks and supervised learning. Finally, in Section 8, we con-
clude the paper.

2 On the Methods to Perform Profiling Side-channel
Analysis

In this section, we formally introduce profiling side-channel analysis and super-
vised machine learning while maintaining the usual phrasing of the respective
domain.

2.1 Setting

Let calligraphic letters (X ) denote sets, capital letters (X) denote random vari-
ables over X , and the corresponding lowercase letters (x) denote their realiza-
tions. Let k∗ be the fixed secret cryptographic key (byte), k any possible key
hypothesis, and the random variable T the plaintext or ciphertext of the cryp-
tographic algorithm, which is uniformly chosen.

We consider a scenario where a powerful attacker has a device (usually called
the clone device) with knowledge about the secret key implemented and is able
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to obtain a set of N profiling traces X1, . . . , XN . Using the known secret key
and N plaintexts or ciphertexts Tp, he calculates a leakage model Y (Tp, k

∗). In
this phase, commonly known as the profiling phase, the attacker has available
N pairs (Xi, Yi) with i = 1, . . . , N which are used to build a profiled model f .

The attack can then be carried out on another device by using the mapping f .
For this, the attacker measures additional Q traces X1, . . . , XQ from the device
under attack in order to guess the unknown secret key k∗a. The leakage model is
now calculated for all possible key candidates k ∈ K:

Y (Ta, k1), . . . , Y (Ta, k|K|), (1)

given Q plaintexts or ciphertexts Ta.
In Figure 1, we depict the profiling side-channel attacks scenario where we

distinguish between the profiling phase in which we learn a model f using N
measurements and the attacking phase where we use the model f and Q mea-
surements to predict the secret key on the attacking device.

Profiling device Attacking device 

Set of Q attacking 
traces

Set of N profiling 
traces / iputs

profiled model side-channel attack key guess

Fig. 1: The profiling side-channel analysis

2.2 Classical Profiling Side-channel Attacks

The best-known profiling attack is the template attack which is based on the
Bayesian rule. It works under the assumption that the measurements are de-
pendent among the D features given the target class. More precisely, given the
vector of N observed attribute values for x, the posterior probability for each
class value y is computed as:

p(Y = y|X = x) =
p(Y = y)p(X = x|Y = y)

p(X = x)
, (2)
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where X = x represents the event that X1 = x1 ∧X2 = x2 ∧ . . . ∧XN = xN .
Note that the class variable Y and the measurement X are not of the same

type: Y is discrete while X is continuous. So, the discrete probability p(Y = y)
is equal to its sample frequency where p(X = x|Y = y) displays a density
function. Mostly in the state-of-the art, p(X = x|Y = y) is assumed to rely on
a (multivariate) normal distribution and is thus parameterized by its mean x̄y
and covariance matrix Σy:

p(X = x|Y = y) =
1√

(2π)D|Σy|
e−

1
2 (x−x̄y)TΣ−1

y (x−x̄y). (3)

In practice, the estimation of the covariance matrices for each class value y
can be ill-posed mainly due to an insufficient number of traces for each class.
The authors of [8] propose to use only one pooled covariance matrix to cope with
statistical difficulties and thus a lower efficiency. Accordingly, Eq. (3) changes to

p(X = x|Y = y) =
1√

(2π)D|Σ|
e−

1
2 (x−x̄y)TΣ−1(x−x̄y). (4)

The works in e.g., [8–10] showed that the pooled version can be indeed more
efficient, in particular for a smaller number of traces in the profiling phase.

2.3 Supervised Machine Learning (in SCA)

Machine learning encompasses a number of methods used for classification,
clustering, regression, feature selection, and other knowledge discovering meth-
ods [11]. A usual division of machine learning algorithms is into two fundamen-
tally different approaches: supervised and unsupervised learning, based on the
desired outcome of the algorithm. In the rest of this paper, we consider only the
supervised learning paradigm but we note that also unsupervised learning (or
their combination, the so-called semi-supervised learning) can be used in SCA,
see e.g., [12].

The goal for machine learning algorithms is to learn a mapping f , such that
f : X → Y, given a training set of N pairs (Xi, Yi). This phase is commonly
known as the training phase. The function f is an element of the space of all
possible functions F . Since we are interested in scenarios where Y takes values
from a finite set (discrete labels), we talk about classification. To classify new
examples, we can use two families of algorithms for supervised learning. Gen-
erative algorithms try to model the class-conditional density p(X|Y ) by some
unsupervised learning procedure. Discriminative algorithms do not estimate how
Xi is generated, but instead estimate p(Y |X).

Differing from the profiling SCA where there are only a handful of used
algorithms, in supervised learning for SCA there is a plethora of algorithms that
show good performance. For a more detailed list of different algorithms, we refer
readers to Section 3. Next, we give details about multilayer perceptron since it
has an important role for the Universal Approximation Theorem we use in the
following sections.
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The multilayer perceptron (MLP) is a feed-forward neural network that maps
sets of inputs onto sets of appropriate outputs. MLP consists of multiple layers
of nodes in a directed graph, where each layer is fully connected to the next
one. To train the network, the backpropagation algorithm is used, which is a
generalization of the least mean squares algorithm in the linear perceptron [13].
An MLP consists of three or more layers (since input and output represent two
layers) of nonlinearly-activating nodes [14]. Note, if there is more than one hidden
layer, the architecture can be already considered deep, i.e., we are using deep
learning. We depict a multilayer perceptron in Figure 2. Here, every node is a
perceptron unit as depicted in Figure 3. Note that the output of a perceptron is
a weighted sum of N inputs xi evaluated through an activation function A:

Output = A(

N∑
i=1

wi · xi). (5)

Fig. 2: Multilayer perceptron

3 Profiling Side-channel Evaluation and Techniques Used

Profiling side-channel attacks, especially those based on machine learning re-
ceived a significant amount of attention in the SCA community in the last decade
or so. There, researchers reported a number of scenarios where machine learning
is able to achieve top results in attacking cryptographic implementations. Addi-
tionally, in the last few years, deep learning emerged as a powerful alternative
where results surpassed both template attack and other machine learning tech-
niques. In this section, we first give a brief overview of relevant works and then
we give a more exhaustive list of works considering machine learning techniques
and the supervised learning paradigm. The purpose of that list is twofold: 1) to
demonstrate that machine learning techniques are of high interest to the SCA
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Fig. 3: Perceptron unit

community and 2) to facilitate future research by allowing easier identification
of related works.

When considering profiling (or supervised) SCA, we see that the community
started with a template attack and its variants. Afterward, Support Vector Ma-
chines (SVM) and Random Forest (RF) attracted most of the attention. Still, in
the last few years, multilayer perceptron (MLP) is used more and more. Finally,
in 2016, the SCA community started experimenting with convolutional neural
networks and from that moment, most of the other machine learning techniques
serve only as a means to compare. Besides that, we see sporadic attempts to
extend the pool of used methods but for now, they do not seem to attract much
attention.

In Table 1, we give a list of machine learning techniques used in profiling
SCA and corresponding references. Naturally, despite the fact that we tried
to be exhaustive, it is unlikely that these works are the only ones that exist.
Note, if template attack is also used in those papers, we note that in the table
but we do not list papers that do not use machine learning technique. First,
one can observe a significant number of papers considering neural networks.
Additionally, we see that Support Vector Machines are well explored but more
careful inspection shows that in the last few years this technique represents
the baseline machine learning case and not state-of-the-art. Finally, most of the
works consider a different number of available traces in the profiling phase, which
makes it difficult to compare.

4 Existing Frameworks for Side-channel Evaluation

In this section, we discuss the currently used frameworks for profiling side-
channel analysis in scientific works and for certification.

4.1 Scientific Metrics

The most common evaluation metrics in the side-channel analysis are success
rate (SR) and guessing entropy (GE) [42]. Success rate defines the estimated
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Table 1: Overview of profiling side-channel attacks used in literature.
Algorithm Reference

Naive Bayes and its variants [9, 15–19]
Random Forest [6, 15–17,19–26]
Rotation Forest [10,17,18,27]
XGB [18]
MultiBoost [10]
Self-organizing maps [22]
Support Vector Machines [6, 10,17,19–25,27–31]
Multivariate regression analysis [23,24,32]
Multilayer Perceptron [15,16,18–21,33–39]
Convolutional Neural Networks [18,20,21,33,39–41]
Autoencoders [21]
Reccurent Neural Networks [21]
Template Attack and its variant [6, 9, 10,17,19–25,27,28,30,39–41]
Stochastic attack [20,23,24]

averaged probability of success. The average key rank is given by the guessing
entropy. More precisely, GE states the average number of key candidates an
adversary needs to test in order to reveal the secret key after conducting a
side-channel analysis. In particular, given Q amount of samples in the attacking
phase, an attack outputs a key guessing vector g = [g1, g2, . . . , g|K|] in decreasing
order of probability with |K| being the size of the keyspace. So, g1 is the most
likely and g|K| the least likely key candidate. The guessing entropy is the average
position of k∗a in g over multiple experiments. The success rate is defined as the
average empirical probability that g1 is equal to the secret key k∗a.

In practice one may consider leakage models Y (·) that are bijective functions,
thus each output probability calculated from the classifiers for Y (k) directly
relates to one single key candidate k. In case Y (·) is not bijective, several key
candidates k may get assigned with the same output probabilities, which is why
on average a single trace attack (Q = 1) may not be possible in case of non-
bijective leakage models. Further, to calculate the key guessing vector g over Q
amount of samples, the (log-)likelihood principle is used.

SR and GE are used for practical evaluations in both non-profiling and profil-
ing scenarios. Typically, they are given over a range of the number of traces used
in the attacking phase (i.e., for q = 1, 2, . . . , Q). In case these metrics are used
in profiling scenarios, there are no clear guidelines on how to evaluate attacks.
Most of the time, the number of training samples N in the profiling stage is
(arbitrary) fixed which makes comparisons and meaningful conclusion on side-
channel attacks or resistance of implementations hard and unreliable in most
scenarios.

A more theoretical framework has been introduced by Whitnall and Os-
wald [43,44] that aims at comparing distinguishing powers instead of estimators

8



of attacks. Accordingly, the size of the profiling dataset N does not play any role
in this framework. The most popular metrics of the framework are the relative
and absolute distinguishing margins in which the output score of the correct key
and the value for the highest ranked alternative are compared.

Another approach to compare side-channel attacks uses closed-form expres-
sions of distinguishers [45], which enables to make conclusions about distinguish-
ers without the requirement of actual measurements. Unfortunately, only a few
closed-form expressions of distinguishers have been achieved so far.

Typically, to assess the performance of the machine learning classifiers one
uses accuracy:

ACC =
TP + TN

TP + TN + FP + FN
. (6)

TP refers to true positive (correctly classified positive), TN to true negative (cor-
rectly classified negative), FP to false positive (falsely classified positive), and
FN to false negative (falsely classified negative) instances. TP, TN, FP, and FN
are well-defined for hypothesis testing and binary classification problems. For
multi-class classification, they are defined in one class–vs–all other classes man-
ner. A more detailed comparison between accuracy and guessing entropy/success
rate is given in [20], which details that accuracy may not always be a good metric
for side-channel analysis.

While all these previous metrics are relevant in some contexts and scenarios,
a different approach is required for profiling attacks. This becomes even more
clear when looking at practical evaluation used in standardization processes as
detailed next.

4.2 Practical Evaluation Testing

In practice, there are two main practical schemes: 1) Test-based schemes, such as
NIST FIPS 140 [46] and ISO/IEC 17825 [47] and 2) Evaluation-based schemes,
such as Common Criteria (CC, ISO/IEC 15408 [48]).

It is interesting that both FIPS 140 and CC pay attention to the limited
amount of resources spent. When considering FIPS 140 / ISO/IEC 17825, the
requirement is more on the attacking traces, but regarding CC, the evaluation of
attacks is considered under two phases: identification (which matches with the
training phase in the context of side-channel attacks) and exploitation (which
matches with the attacking phase in the context of side-channel attacks). Strictly
speaking, the distinction is for CC version 2, but it still implicitly holds for
version 3. Several factors are considered for the quotation of attacks, namely:
elapsed time, expertise, knowledge of the Target Of Evaluation (TOE), access
to TOE, equipment, open samples. The first factor, elapsed time, has a direct
connection with the acquisition of traces in the profiling phase. Indeed, according
to the guidance “Application of Attack Potential to Smartcards” [49]), the score
is considered:

– 0 if the profiling of the traces can be performed in less than one hour,
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– 1 if the profiling of the traces can be performed in less than one day,
– 2 if the profiling of the traces can be performed in less than one week,
– 3 if the profiling of the traces can be performed in less than one month,
– 5 if the profiling of the traces cannot be performed in less than one month.

Accordingly, we see that the CC guidance favors attacks which are realized with
as little profiling effort (besides time, this profiling effort could be also interpreted
through the number of acquired measurements) as possible.

One reason is that the collection of side-channel traces becomes less reliable
after a long period of time. Indeed, some trend noise must be added to the side-
channel traces (due to temperature and environmental conditions evolution over
time). This has for instance been characterized by Heuser et al. in [50], where
it is proven that trend noise drastically impedes SCA. Similar findings are also
confirmed by Cao et al. [51].

5 The Restricted Attacker Framework

As already stated, current frameworks for profiling SCA assume the attacker
to be unbounded in his power. By doing this, we aim to provide the worst-
case scenario for the designer, which helps in the proper assessment of the risk.
Naturally, despite the fact that the attacker is considered unbounded, he is
always bounded but those bounds are set ad-hoc and there are no clear directions
one should follow when modeling the realistic attacker.

We start by examining the three components of a successful attack. The
worst-case (strongest) attacker will be unbounded in all three components. At
the same time, fulfilling only one or two of them accounts for more realistic
settings one can encounter in practice:

1. Quantity - there must be sufficient measurements in the profiling/testing
phase to conduct the attack, i.e., to build a reliable model that generalizes
to the unseen data.

2. Quality - the measurements need to be of sufficient quality to conduct the
attack. This could be translated into the condition that the SNR should
be sufficiently high, or that the data need to have all information required
to correctly model the leakage. Finally, this component also includes the
quality of the leakage model, i.e., that the considered leakage model provides
sufficient information as well as the distribution of leakages.

3. Learnability - the attacker needs to be able to learn the model. This perspec-
tive also accounts for learning the best possible parameters of the model. The
learnability is naturally connected with the quantity and quality parameters.

Obviously, we should not influence the quality parameter: if the attacker is
able to obtain measurements, those measurements should be of the best possible
quality. Similarly, we cannot limit the attacker’s power from the perspective of
learnability. The attacker must be able (at least in theory) to learn the model
(and its optimal parameters) and he should also possess enough computational
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power to do so. Finally, when discussing the quantity parameter, we see that we
can (and we must) limit the attacker in the number of measurements he is able
to obtain in the profiling phase. There are two reasons for that:

1. By giving the attacker the option to use as much as possible measurements,
we “allow” him to design a weaker model. Indeed, additional measurements
will sometimes help the attacker to reach good results despite the fact that
he uses a sub-optimal attack. Differing from that, if we limit the attacker in
the number of traces he has on his disposal, we require from him to develop
a strong attack if he wants to succeed.

2. On a more general level, the attacker who is unbounded in his capabilities
is able to break cryptographic implementations with a single measurement
under certain assumptions. This suggests that ultimately, there is nothing
the designer can do to stop the attacker. Naturally, being able to mount
such attack is often not possible in practice since all the components from
Listing 5 need to be fully fulfilled.

Limiting the number of measurements is also a realistic occurrence in prac-
tical scenarios, as the attacker may be limited by time, resources, and also face
implemented countermeasures which prevent him from taking an arbitrarily large
amount of side-channel measurements, while knowing the secret key of the de-
vice.

How do we limit the attacker, i.e., the quantity of data? We need to consider
an attacker who is able to perform a successful attack with the smallest possible
number of measurements N , where success is defined over a performance metric
ρ with a threshold δ. For example, ρ could be reaching GE < 10, or SR > 0.9,
which are common threshold values in the side-channel analysis, see, e.g., [20].

Recall, the goal for machine learning is to learn a mapping (model) f from
X to Y, i.e., Y ← f(X, θ) where X are samples drawn i.i.d. from set X and
where the cardinality of X equals N . Let theta be the parameters of the model
that result in the best possible approximation, Xp is the input to the model
(measurements), Ya labels associated with Xa, and c(θ,Xa, Ya) is the cost used
to train the model. Additionally, let gQ,f = [g1, g2, . . . , g|K|] be the guessing
vector from the profiling side-channel attack using Q measurement traces in the
attacking phase and the model f build in the profiling phase as an input. Then,
ρ(gQ, k

∗
a) represents the performance metric of the profiling side-channel attack

using the secret key k∗a to evaluate the success.
The Restricted Attacker framework aims at minimizing the number of pro-

filing traces N to model the function f , such that the performance metric is still
below (or above) a certain threshold δ:

min{N | ρ(gQ,f , k
∗
a) < δ}, where N ≥ 1. (7)

Algorithm 1 gives the pseudocode of the evaluation in the Restricted Attacker
framework and an example is given Example 1.

Example 1. A common performance metric used in the side-channel analysis is,
for example, the guessing entropy with a threshold δ = 10. Therefore, in the
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Input : Profiling and attacking device to collect traces from
Output : Minimum number of profiling traces N

1 Capture a testing dataset (with secret key k∗a). Its size Q depends on the
expected performance of the attack. For instance, this test dataset can be as
small as one trace!

2 Select a performance metric ρ and a threshold value δ, e.g., GE < 10
3 Training set ← ∅
4 while True do
5 Capture one trace // A speed-up can be obtained by advancing

faster, e.g., 10 by 10 traces

6 Append them to Training set, N = N + 1
7 Perform Training (which yields a model f)
8 Make a key guess k from the Testing set with Q measurements
9 if ρ < δ then

10 break // model is good enough

11 return Minimum number of profiling traces N

Algorithm 1: The Restricted Attacker framework

Restricted Attacker framework, one would compute the minimum number of
profiling traces N to reach a guessing entropy below 10 for a fixed number of
Q attacking traces. Typically, Q is ranging over a set of values. Experimental
results are discussed in Section 7.

Notice that so far the cost of training the model c(θ,Xa, Ya) is not limited
but we assume that X and Y are of sufficient quality (inherently) and quantity
(by the Restricted Attacker framework) for a model to generalize well to the
unseen data. Once the attacker is restricted, we have a framework enabling us
to conduct a more fair comparison. Indeed, to improve on the results, now one
needs to reach at least the same level of performance as measured with ρ but by
having smaller sets X and Y . It is easy to see that now we require our attacker to
build a more powerful model if he wants to surpass the performance as obtained
up to that moment.

Next, one could also add the computational power of the attacker to our
framework. Naturally, this leaves the possibility to leverage whether compu-
tational power or the number of measurements in the profiling phase is more
important. We believe it is easier to estimate the number of measurements and
consequently consider this as the most important criterion. Still, two models re-
sulting in the same performance can and must be compared with respect to the
used computational power to obtain such results. The model that spent fewer
resources performs better. What happens if two models exhibit very similar per-
formance but use a radically different amount of resources. In this case, a Pareto
front of solutions (i.e., a set of nondominated solutions) needs to be given where
the designer is then able to decide on a proper trade-off.
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Finally, we reiterate that our framework is not designed to force the attacker
to use a small number of measurements in the profiling phase. Rather, it forces
the attacker to evaluates what is the smallest number of traces he requires in
order to conduct a successful attack.

6 The Restricted Attacker Framework in Neural
Network-based Attacks

In this section, we investigate machine learning techniques in SCA and we show
the relevance of the Restricted Attacker framework when considering neural net-
work approaches. Next, we present several results proving that neural networks
are able to provide the most powerful attacks for profiling SCA, provided certain
assumptions are fulfilled.

6.1 Universal Approximation Theorem

The Universal Approximation Theorem proves that for any Borel measurable
function f (where Borel measurable mapping f : X → Y between two topological
spaces has the property that f−1(A) is a Borel set for any open set A), there
exists a feed-forward neural network, having only a single hidden layer with a
finite number of neurons, which uniformly approximates f within an arbitrary
nonzero amount of error ε [52, 53].

For this theorem to hold, we require only mild assumptions on activation
functions (such that saturate for both very negative and very positive arguments)
and naturally, the network needs to have enough hidden units. Note, the theorem
was also proved for a wider class of activation functions, including rectified linear
unit [54].

As a consequence of the Universal Approximation Theorem, we know that a
multilayer perceptron that has enough nodes will be able to represent any Borel
measurable function. Naturally, there is no guarantee that the machine learning
algorithm will be actually able to learn that function. Indeed, if this theorem is
correct, the question is why it is still difficult (in many practical applications)
to obtain even a decent performance of a classifier, let alone approximation to
an arbitrary ε. For instance, as given in Section 3, there are numerous works
using multilayer perceptron (which is a feed-forward network) where more than
a single hidden layer is used and yet the results are far from optimal.

The main problem is that the Universal Approximation Theorem does not
consider the algorithmic learnability of feed-forward networks. The theorem says
that the number of nodes in the network is finite, but does not specify how many
nodes do we actually need. There are some results on bounds on the number of
nodes, but unfortunately, in the worst case scenario, an exponential number of

3 A Borel set is any set in a topological space that can be formed from open sets (a
set S is open if every point in S has a neighborhood lying in the set) through the
operations of countable union, countable intersection, and relative complement.
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nodes is needed [55]. Additionally, from a practical perspective, the learnability
of the model also heavily depends on the quality and quantity of data we have
at our disposal. Here, by quality, we consider that our data need to have all
information needed to correctly model the function f and by the quantity that we
need to have sufficient information to build a reliable model that will generalize
to the unseen data.

Up to now, we mentioned only feed-forward networks and how they fit the
Universal Approximation Theorem. Yet, we stated in Section 1 that convolu-
tional neural networks were recently used to achieve state-of-the-art performance
in the SCA domain. Consequently, a natural question is to ask whether the Uni-
versal Approximation Theorem is also valid for convolutional neural networks.
We give a small example. Let us consider a feed-forward network with a single
hidden layer that has A inputs and B outputs. To realize such an architecture,
we require a weight matrix W ∈ RB×A. If we assume that the convolution is
applied only to the input and there is no padding, it is rather straightforward to
see that we can simulate this feed-forward network with only two convolutional
layers. In the first layer, we have B × A filters of shape A. The element a of
filter b, a is equal to Wb,a with the rest being zeros. This layer transforms the
input into BA-dimensional intermediate space where every dimension represents
a product of weight and its corresponding input. The second layer contains B
filters of shape BA. The elements bA . . . (b + 1)A of filter b are ones while the
rest are zeros. This layer performs the summation of products from the pre-
vious layer. Naturally, for this construction, we assumed some conditions that
are not realistic but we show this as a motivating example that the Universal
Approximation Theorem can be applied for other types of neural networks also.
We emphasize that various functions can be more efficiently approximated by
architectures that have greater depth, which is a reason why deep learning is
able to exhibit such performance.

More formally, D. Yarotsky showed that any translation equivariant func-
tion can be approximated arbitrarily well by a convolutional neural network
given that it is sufficiently wide [56]. This has a direct analogy to the Universal
Approximation Theorem.

6.2 From the Universal Approximation Theorem to Optimal
Side-channel Attack

Conjecture 1. A side-channel leakage can be modeled by Borel measurable func-
tion.

Recall, Borel measurable function is a mapping f : X → Y between two
topological spaces with the property that f−1(A) is a Borel set. A Borel set is
any set in a topological space that can be formed from open sets (a set S is open
if every point in S has a neighborhood lying in the set) through the operations of
countable union, countable intersection, and relative complement for any open
set A.
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Clearly, all continuous functions (i.e., functions defined on R) are Borel func-
tions (but not all Borel functions are continuous). Unfortunately, in SCA one
uses an oscilloscope in the acquisition process and they have a finite precision,
which makes the resulting function a discrete one.

Let us consider power or electromagnetic side-channel. As mentioned, the
oscilloscope samples only a discrete time and quantifies the measurements. Such
measurements are a series of finite values, which may not be Borel measurable
as such. However, before sampling and quantization, the signal was a physical
quantity, which is Borel measurable. Indeed, it is obtained from the RLC-filtering
of some physical quantity [57, Figure 2], itself obtained as the resolution of
differential equations of electronics/mechanisms. It is therefore possible, as a
pre-processing step, to interpolate and smooth the SCA measurements to make
them continuous, hence eligible to be Borel measurable. More intuitively, there
are infinitely many continuous functions that can describe a finite number of
samples.

Additionally, we can make use of Lusin’s theorem, which states that ev-
ery measurable function is continuous on nearly all its domain [58]. More for-
mally, a function f : X → R is measurable if for every real number a, the set
x ∈ X : f(x) > a is measurable. Practically, this means that any function that
can be described is measurable.

Lemma 1. If a side-channel leakage is Borel measurable (see Conjecture 1)),
then a feed-forward neural network with a single hidden layer consisting of a
finite number of neurons can approximate any side-channel leakage to a desired
nonzero error.

Proof. Straightforward from the Universal Approximation Theorem. ut

Theorem 1. A profiling side-channel attack where the Universal Approxima-
tion Theorem holds (i.e., where Lemma 1 holds), can succeed in breaking an
implementation with only a single measurement.

Proof. Trivial. If SCA leakage can be approximated to a desired (nonzero)
amount of error, it means (provided that we use the appropriate leakage model)
that we need only a single measurement to obtain the key information. ut

There is also a simple alternative proof. Since we know that in the ideal case,
template attack can break an implementation with a single measurement, then it
is enough for neural networks to be able to approximate such a model (template)
built by the template attack. If a neural network can approximate a template
with a desired nonzero amount of error, then such a network can simulate the
behavior of a template attack. We emphasize that for the template attack to be
able to break an implementation in a single measurement some conditions must
be met. Similar as we discussed the quality and quantity for machine learning,
we can extend it to template attack. There, in the quality, we need to account
for the level of noise, leakage model, and distribution of leakage. In the quantity,
we assume to have a sufficient number of measurements for template attack to
work (and break the implementation with a single measurement).
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One could ask if neural networks are able to (theoretically and under some
assumptions) break the implementation in a single measurement, how is that
aligned with what we know about template attack. Indeed, we already said that
the template attack is the most powerful one from the information theoretic
point of view and yet, now we claim that neural networks are able to display
the same performance. We believe this not to be in contradiction due to heavy
assumptions on both techniques. For template attack, we require an unlimited
number of traces, which is naturally impossible to have. On the other side, for
neural networks, we do not consider the algorithmic learnability, where the learn-
ing process can fail from several reasons [13]. Still, we note that the breaking of
cryptographic implementations in a single measurement is not something that
is only possible in theory, see e.g., [40] where convolutional neural networks and
template attack are able to break different implementations in a single measure-
ment.

Finally, although in this paper we do not discuss machine learning tech-
niques except neural networks, other machine learning techniques would also
benefit from the Restricted Attacker framework. Indeed, we do not require the
theoretical promise of being able to break implementation with a single mea-
surement. Rather, we require a setting that limits the attacker’s power in the
profiling phase, which is independent of the considered attack techniques.

7 Discussion

In this section, we first provide insights from our new framework. Next, we dis-
cuss the difference between the profiling attacks and attacks based on supervised
learning. Finally, we give directions for future work.

7.1 Insights from the Restricted Attacker Framework

The Restricted Attacker framework does not only enable us to compare side-
channel attacks but also gives a fair comparison between leakage models. For
profiling side-channel attacks it is often assumed to consider the most accurate
leakage model, i.e., using the intermediate value as class variables which results
into 2b classes where b is the number of considered bits. In an unsupervised
setting, using the Hamming weight or Hamming distance model is a common
choice which results in only b + 1 classes. Clearly, using only b + 1 Hamming
weight/distance classes to guess a key value in {0, . . . , 2b} cannot result in a
single trace attack on average. However, it is often overlooked that using the
Hamming weight/distance models may require fewer traces in the profiling phase
to gain good quality estimates of the models. It is therefore not straightforward
to determine what leakage model is more suitable. Consequently, to fairly give
a comparison one should include a dependency on the number of traces in the
profiling phase as in the Restricted Attacker framework.

Figure 4 illustrates an example using the AES software implementation. We
use the publicly available traces of the DPAcontest v4, which is a masked AES
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Fig. 4: TA pooled and MLP evaluation for HW and value model

software implementation [59]. We assume the mask is known and thus turn it
into an unprotected scenario. As a metric, we utilize the guessing entropy (GE)
and in particular, give the minimum number of profiling traces in order to reach
GE < 10. As a side-channel attack, we use the pooled template attack (TAp) and
the multilayer perceptron (MLP) consisting of 5 hidden layers with the number
of neurons equal to (50, 25, 10, 25, 50) that uses ReLU activation function. As
a leakage model, we use the intermediate value model (resulting in 256 classes)
and the Hamming weight (HW) model (resulting into 9 classes) as AES operates
on b = 8 bits.

One can observe that only when using the intermediate value model it is
possible to reach a GE < 10 with a single trace. In our experiments, we could
not reach this threshold using the HW model with Q = 1. On the other side, it
is clear that if the HW model is able to succeed (i.e., number of attacking traces
> 1) then the HW model requires much less profiling traces. Comparing TAp and
MLP we see that when using the HW model no real difference is observable. For
the intermediate value model, it can be seen that for Q = 1, 2, . . . , 5, MLP and
TAp require approximately the same amount of profiling traces N to reach GE
< 10. When Q > 5, we observe that MLP requires less profiling traces to reach
the same performance as TAp, which is very relevant information, for example,
for evaluation labs. Moreover, one can choose a trade-off between profiling traces
N and attacking traces Q while still being able to perform a successful attack.

Note that, the example given in Figure 4 comes from a low-noise implemen-
tation setup where one does not expect interesting and decisive results as the
classification task is “too easy”. Still, with the Restricted Attacker framework,
one can clearly define the strength of both leakage models and make conclusions
on N and Q even with a high SNR.
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7.2 Profiling SCA vs Supervised Learning

It is quite common to consider profiling SCA to be the same as supervised ma-
chine learning. Indeed, such a perspective is true for most of the published works
but there can be certain differences. From the machine learning perspective, su-
pervised learning represents a scenario where a certain number of examples with
a known label is obtained and used to train the machine learning model. For
the training phase in machine learning, we do not generally assume how the
measurements are obtained. We only assume there are reasonably accurate so
we are able to build a model that generalizes to the unseen data.

Differing from that, in SCA in the profiling phase we assume that the same
(type of) device is used to acquire knowledge about the device. Such knowledge
can be translated into a template or a model that is used in the attack phase.
Recently, B. Timon introduced a concept of non-profiled deep learning (or more
generally, machine learning). There, he does not build a model from the clone de-
vice but actually estimates the behavior of a device with a non-profiled approach
and then uses supervised machine learning to build a model and verify it [33].
With this approach, he does not conduct a profiling phase but is conducting
supervised learning. Consequently, the name of no-profiled deep learning could
be regarded as a misnomer since machine learning (in the strict sense) cannot
be profiling or non-profiling but supervised or unsupervised. To conclude, every
profiling attack is a supervised attack but not all supervised attacks are profiling
ones (since non-profiling attacks can be supervised).

Afterward, the results from the profiling/training are used to test the mea-
surements where the label is not known. The testing phase (as in machine learn-
ing) can be the same as the attack phase (in SCA) but again, this is not manda-
tory. We consider the test phase to be the same as the attack phase if we are
able to use the results to break the implementation. Considering the metrics in
SCA and machine learning, attacking and testing are the same if and only if the
machine learning metric gives a direct insight into the key guessing performance.
This is a common occurrence in, for instance, the intermediate value model.

7.3 Future Directions

Besides using the Restricted Attacker framework to compare profiling side-
channel attacks on various implementations, we emphasize as a future direction
the comparison of attacks in the presence of various side-channel countermea-
sures. Such a study would highlight if different types of side-channel countermea-
sures differ in their complexity of profiling where it may be of particular interest
to increase the complexity of the profiling phase more than the attacking phase
or to find a suitable trade-off to protect against powerful attackers.

Another direction that could be interesting to include in the Restricted At-
tacker framework is the analysis of the complexity of side-channel attacks. Nat-
urally, some attacks are less complex in terms of resources than others. For
example, in most cases, the template attack is less complex than a deep neural
network. Taking required resources (time, memory, etc.) will give more detailed
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information for the Restricted Attacker framework, such that reasonable trade-
off, in particular for evaluation labs, can be made.

Recently, there were several papers proposing to conduct data augmentation
techniques in order to construct additional, synthetic measurements to be used
in the profiling phase [20, 41, 60]. Our framework does not limit the use of such
synthetic examples in the sense that those measurements are not counted in the
profiling set N since they are built from the original measurements. It would be
interesting to investigate what are the limits of efficiency for such data augmen-
tation techniques in SCA, i.e., can we construct good, synthetic examples even
from a limited number of real measurements.

Finally, discussing the unbounded attacker can be problematic if not consid-
ering what the concept of unbounded means for machine learning. For instance,
how realistic is to expect to have a neural network either large enough or deep
enough to (almost) perfectly approximate a function. Or, since the attacker is
unbounded in his power, we must assume he will be able to learn a model, i.e., to
find the best parameters of the model. In machine learning, we usually assume
i.i.d. samples, but what happens if the attacker has the capability to take only
those measurements that would improve his attack, i.e., to increase the quality
of his measurements. In practice, we do not observe that the scenarios given here
appear often but we still need to consider them if the attacker is unbounded in
his power. In future work, we aim to address issues arising there and provide
recommendations on how to further limit the attacker.

8 Conclusions

In this paper, we discuss how to limit the power of the attacker when consid-
ering the profiling side-channel analysis. We argue that having the unbounded
attacker, while not being realistic can also have negative effects on the way how
side-channel analysis is performed. We propose a new framework, called the Re-
stricted Attacker framework where we limit the amount of the measurements
that the attacker can acquire in the profiling phase. Next, we connect the notion
of the unbounded attacker with the Universal Approximation Theorem and we
show that because of it, the attacker could be able to break implementations
with only a single measurement, provided that some conditions are met.

Naturally, this does not occur often in practice but we still consider the
“race” for the most powerful attacks meaningless if the theory indicates that
breaking an implementation in a single measurement is possible. We consider
our new framework not only more realistic but also more adept for experimental
evaluations since it allows to compare different results in a more unified way.
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