
XONN: XNOR-based Oblivious Deep Neural Network Inference

M. Sadegh Riazi
UC San Diego

Mohammad Samragh
UC San Diego

Hao Chen
Microsoft Research

Kim Laine
Microsoft Research

Kristin Lauter
Microsoft Research

Farinaz Koushanfar
UC San Diego

Abstract

Advancements in deep learning enable cloud servers to pro-
vide inference-as-a-service for clients. In this scenario,
clients send their raw data to the server to run the deep learn-
ing model and send back the results. One standing chal-
lenge in this setting is to ensure the privacy of the clients’
sensitive data. Oblivious inference is the task of running
the neural network on the client’s input without disclosing
the input or the result to the server. This paper introduces
XONN1 (pronounced /z2n/), a novel end-to-end framework
based on Yao’s Garbled Circuits (GC) protocol, that pro-
vides a paradigm shift in the conceptual and practical real-
ization of oblivious inference. In XONN, the costly matrix-
multiplication operations of the deep learning model are re-
placed with XNOR operations that are essentially free in GC.
We further provide a novel algorithm that customizes the
neural network such that the runtime of the GC protocol is
minimized without sacrificing the inference accuracy.

We design a user-friendly high-level API for XONN, al-
lowing expression of the deep learning model architecture
in an unprecedented level of abstraction. We further pro-
vide a compiler to translate the model description from high-
level Python (i.e., Keras) to that of XONN. Extensive proof-
of-concept evaluation on various neural network architec-
tures demonstrates that XONN outperforms prior art such
as Gazelle (USENIX Security’18) by up to 7×, MiniONN
(ACM CCS’17) by 93×, and SecureML (IEEE S&P’17) by
37×. State-of-the-art frameworks require one round of in-
teraction between the client and the server for each layer
of the neural network, whereas, XONN requires a constant
round of interactions for any number of layers in the model.
XONN is first to perform oblivious inference on Fitnet archi-
tectures with up to 21 layers, suggesting a new level of scala-
bility compared with state-of-the-art. Moreover, we evaluate
XONN on four datasets to perform privacy-preserving med-
ical diagnosis. The datasets include breast cancer, diabetes,
liver disease, and Malaria.

1To appear in USENIX Security 2019.

1 Introduction

The advent of big data and striking recent progress in ar-
tificial intelligence are fueling the impending industrial au-
tomation revolution. In particular, Deep Learning (DL) —a
method based on learning Deep Neural Networks (DNNs)
—is demonstrating a breakthrough in accuracy. DL mod-
els outperform human cognition in a number of critical tasks
such as speech and visual recognition, natural language pro-
cessing, and medical data analysis. Given DL’s superior per-
formance, several technology companies are now developing
or already providing DL as a service. They train their DL
models on a large amount of (often) proprietary data on their
own servers; then, an inference API is provided to the users
who can send their data to the server and receive the analy-
sis results on their queries. The notable shortcoming of this
remote inference service is that the inputs are revealed to the
cloud server, breaching the privacy of sensitive user data.

Consider a DL model used in a medical task in which
a health service provider withholds the prediction model.
Patients submit their plaintext medical information to the
server, which then uses the sensitive data to provide a med-
ical diagnosis based on inference obtained from its propri-
etary model. A naive solution to ensure patient privacy is
to allow the patients to receive the DL model and run it
on their own trusted platform. However, this solution is
not practical in real-world scenarios because: (i) The DL
model is considered an essential component of the service
provider’s intellectual property (IP). Companies invest a sig-
nificant amount of resources and funding to gather the mas-
sive datasets and train the DL models; hence, it is important
to service providers not to reveal the DL model to ensure
their profitability and competitive advantage. (ii) The DL
model is known to reveal information about the underlying
data used for training [1]. In the case of medical data, this
reveals sensitive information about other patients, violating
HIPAA and similar patient health privacy regulations.

Oblivious inference is the task of running the DL model
on the client’s input without disclosing the input or the re-

1

sult to the server itself. Several solutions for oblivious in-
ference have been proposed that utilize one or more cryp-
tographic tools such as Homomorphic Encryption (HE) [2,
3], Garbled Circuits (GC) [4], Goldreich-Micali-Wigderson
(GMW) protocol [5], and Secret Sharing (SS). Each of these
cryptographic tools offer their own characteristics and trade-
offs. For example, one major drawback of HE is its compu-
tational complexity. HE has two main variants: Fully Ho-
momorphic Encryption (FHE) [2] and Partially Homomor-
phic Encryption (PHE) [3, 6]. FHE allows computation on
encrypted data but is computationally very expensive. PHE
has less overhead but only supports a subset of functions or
depth-bounded arithmetic circuits. The computational com-
plexity drastically increases with the circuit’s depth. More-
over, non-linear functionalities such as the ReLU activation
function in DL cannot be supported.

GC, on the other hand, can support an arbitrary function-
ality while requiring only a constant round of interactions
regardless of the depth of the computation. However, it has
a high communication cost and a significant overhead for
multiplication. More precisely, performing multiplication
in GC has quadratic computation and communication com-
plexity with respect to the bit-length of the input operands.
It is well-known that the complexity of the contemporary
DL methodologies is dominated by matrix-vector multiplica-
tions. GMW needs less communication than GC but requires
many rounds of interactions between the two parties.

A standalone SS-based scheme provides a computation-
ally inexpensive multiplication yet requires three or more
independent (non-colluding) computing servers, which is a
strong assumption. Mixed-protocol solutions have been pro-
posed with the aim of utilizing the best characteristics of
each of these protocols [7, 8, 9, 10]. They require secure
conversion of secrets from one protocol to another in the
middle of execution. Nevertheless, it has been shown that
the cost of secret conversion is paid off in these hybrid solu-
tions. Roughly speaking, the number of interactions between
server and client (i.e., round complexity) in existing hybrid
solutions is linear with respect to the depth of the DL model.
Since depth is a major contributor to the deep learning ac-
curacy [11], scalability of the mixed-protocol solutions with
respect to the number of layers remains an unsolved issue for
more complex, many-layer networks.

This paper introduces XONN, a novel end-to-end frame-
work which provides a paradigm shift in the conceptual
and practical realization of privacy-preserving interference
on deep neural networks. The existing work has largely
focused on the development of customized security proto-
cols while using conventional fixed-point deep learning al-
gorithms. XONN, for the first time, suggests leveraging the
concept of the Binary Neural Networks (BNNs) in conjunc-
tion with the GC protocol. In BNNs, the weights and acti-
vations are restricted to binary (i.e, ±1) values, substituting
the costly multiplications with simple XNOR operations dur-

ing the inference phase. The XNOR operation is known to be
free in the GC protocol [12]; therefore, performing oblivious
inference on BNNs using GC results in the removal of costly
multiplications. Using our approach, we show that oblivious
inference on the standard DL benchmarks can be performed
with minimal, if any, decrease in the prediction accuracy.

We emphasize that an effective solution for oblivious in-
ference should take into account the deep learning algo-
rithms and optimization methods that can tailor the DL
model for the security protocol. Current DL models are
designed to run on CPU/GPU platforms where many multi-
plications can be performed with high throughput, whereas,
bit-level operations are very inefficient. In the GC protocol,
however, bit-level operations are inexpensive, but multipli-
cations are rather costly. As such, we propose to train deep
neural networks that involve many bit-level operations but
no multiplications in the inference phase; using the idea of
learning binary networks, we achieve an average of 21× re-
duction in the number of gates for the GC protocol.

We perform extensive evaluations on different datasets.
Compared to the Gazelle [10] (the prior best solution) and
MiniONN [9] frameworks, we achieve 7× and 93× lower
inference latency, respectively. XONN outperforms DeepSe-
cure [13] (prior best GC-based framework) by 60× and
CryptoNets [14], an HE-based framework, by 1859×. More-
over, our solution renders a constant round of interactions
between the client and the server, which has a significant ef-
fect on the performance on oblivious inference in Internet
settings. We highlight our contributions as follows:

• Introduction of XONN, the first framework for privacy pre-
serving DNN inference with a constant round complexity
that does not need expensive matrix multiplications. Our
solution is the first that can be scalably adapted to ensure
security against malicious adversaries.

• Proposing a novel conditional addition protocol based on
Oblivious Transfer (OT) [15], which optimizes the costly
computations for the network’s input layer. Our protocol
is 6× faster than GC and can be of independent interest.
We also devise a novel network trimming algorithm to re-
move neurons from DNNs that minimally contribute to the
inference accuracy, further reducing the GC complexity.

• Designing a high-level API to readily automate fast adap-
tation of XONN, such that users only input a high-level
description of the neural network. We further facilitate the
usage of our framework by designing a compiler that trans-
lates the network description from Keras to XONN.

• Proof-of-concept implementation of XONN and evaluation
on various standard deep learning benchmarks. To demon-
strate the scalability of XONN, we perform oblivious infer-
ence on neural networks with as many as 21 layers for the
first time in the oblivious inference literature.

2

2 Preliminaries
Throughout this paper, scalars are represented as lower-
case letters (x ∈ R), vectors are represented as bold lower-
case letters (x ∈ Rn), matrices are denoted as capital letters
(X ∈ Rm×n), and tensors of more than 2 ways are shown us-
ing bold capital letters (X ∈ Rm×n×k). Brackets denote ele-
ment selection and the colon symbol stands for all elements
—W [i, :] represents all values in the i-th row of W .

2.1 Deep Neural Networks

The computational flow of a deep neural network is com-
posed of multiple computational layers. The input to each
layer is either a vector (i.e., x ∈ Rn) or a tensor (i.e., X ∈
Rm×n×k). The output of each layer serves as the input of the
next layer. The input of the first layer is the raw data and the
output of the last layer represents the network’s prediction
on the given data (i.e., inference result). In an image classi-
fication task, for instance, the raw image serves as the input
to the first layer and the output of the last layer is a vector
whose elements represent the probability that the image be-
longs to each category. Below we describe the functionality
of neural network layers.
Linear Layers:Linear operations in neural networks are per-
formed in Fully-Connected (FC) and Convolution (CONV)
layers. The vector dot product (VDP) between two vectors
x ∈ Rn and w ∈ Rn is defined as follows:

VDP (x,w) =
n

∑
i=1

w[i] ·x[i]. (1)

Both CONV and FC layers repeat VDP computation to gen-
erate outputs as we describe next. A fully connected layer
takes a vector x ∈ Rn and generates the output y ∈ Rm using
a linear transformation:

y =W ·x+b, (2)
where W ∈ Rm×n is the weight matrix and b ∈ Rm is a bias
vector. More precisely, the i-th output element is computed
as y[i] = VDP (W [i, :],x)+b[i].

A convolution layer is another form of linear transforma-
tion that operates on images. The input of a CONV layer
is represented as multiple rectangular channels (2D images)
of the same size: X ∈ Rh1×h2×c, where h1 and h2 are the
dimensions of the image and c is the number of channels.
The CONV layer maps the input image into an output image
Y ∈ Rh1′×h2′× f . A CONV layer consists of a weight tensor
W ∈ Rk×k×c× f and a bias vector b ∈ R f . The i-th output
channel in a CONV layer is computed by sliding the kernel
W[:, :, :, i] ∈ Rk×k×c over the input, computing the dot prod-
uct between the kernel and the windowed input, and adding
the bias term b[i] to the result.
Non-linear Activations: The output of linear transforma-
tions (i.e., CONV and FC) is usually fed to an activation
layer, which applies an element-wise non-linear transforma-
tion to the vector/tensor and generates an output with the

same dimensionality. In this paper, we particularly utilize
the Binary Activation (BA) function for hidden layers. BA
maps the input operand to its sign value (i.e., +1 or −1).
Batch Normalization: A batch normalization (BN) layer
is typically applied to the output of linear layers to normal-
ize the results. If a BN layer is applied to the output of a
CONV layer, it multiplies all of the i-th channel’s elements
by a scalar γγγ[i] and adds a bias term βββ [i] to the resulting
channel. If BN is applied to the output of an FC layer, it
multiplies the i-th element of the vector by a scalar γγγ[i] and
adds a bias term βββ [i] to the result.
Pooling: Pooling layers operate on image channels out-
putted by the CONV layers. A pooling layer slides a window
on the image channels and aggregates the elements within
the window into a single output element. Max-pooling and
Average-pooling are two of the most common pooling oper-
ations in neural networks. Typically, pooling layers reduce
the image size but do not affect the number of channels.

2.2 Secret Sharing

A secret can be securely shared among two or multiple par-
ties using Secret Sharing (SS) schemes. An SS scheme
guarantees that each share does not reveal any information
about the secret. The secret can be reconstructed using
all (or subset) of shares. In XONN, we use additive se-
cret sharing in which a secret S is shared among two par-
ties by sampling a random number Ŝ1 ∈R Z2b (integers mod-
ulo 2b) as the first share and creating the second share as
Ŝ2 = S− Ŝ1 mod 2b where b is the number of bits to describe
the secret. While none of the shares reveal any information
about the secret S, they can be used to reconstruct the se-
cret as S = Ŝ1 + Ŝ2 mod 2b. Suppose that two secrets S(1)

and S(2) are shared among two parties where party-1 has Ŝ(1)1

and Ŝ(2)1 and party-2 has Ŝ(1)2 and Ŝ(2)2 . Party-i can create a
share of the sum of two secrets as Ŝ(1)i + Ŝ(2)i mod 2b without
communicating to the other party. This can be generalized
for arbitrary (more than two) number of secrets as well. We
utilize additive secret sharing in our Oblivious Conditional
Addition (OCA) protocol (Section 3.3).

2.3 Oblivious Transfer

One of the most crucial building blocks of secure computa-
tion protocols, e.g., GC, is the Oblivious Transfer (OT) pro-
tocol [15]. In OT, two parties are involved: a sender and a re-
ceiver. The sender holds n different messages m j, j = 1...n,
with a specific bit-length and the receiver holds an index
(ind) of a message that she wants to receive. At the end of
the protocol, the receiver gets mind with no additional knowl-
edge about the other messages and the sender learns noth-
ing about the selection index. In GC, 1-out-of-2 OT is used
where n = 2 in which case the selection index is only one
bit. The initial realizations of OT required costly public key

3

encryptions for each run of the protocol. However, the OT
Extension [16, 17, 18] technique enables performing OT us-
ing more efficient symmetric-key encryption in conjunction
with a fixed number of base OTs that need public-key en-
cryption. OT is used both in the OCA protocol as well as the
Garbled Circuits protocol which we discuss next.

2.4 Garbled Circuits

Yao’s Garbled Circuits [4], or GC in short, is one of the
generic two-party secure computation protocols. In GC, the
result of an arbitrary function f (.) on inputs from two parties
can be computed without revealing each party’s input to the
other. Before executing the protocol, function f (.) has to be
described as a Boolean circuit with two-input gates.

GC has three main phases: garbling, transferring data, and
evaluation. In the first phase, only one party, the Garbler, is
involved. The Garbler starts by assigning two randomly gen-
erated l-bit binary strings to each wire in the circuit. These
binary strings are called labels and they represent semantic
values 0 and 1. Let us denote the label of wire w correspond-
ing to the semantic value x as Lw

x . For each gate in the circuit,
the Garbler creates a four-row garbled table as follows. Each
label of the output wire is encrypted using the input labels
according to the truth table of the gate. For example, con-
sider an AND gate with input wires a and b and output wire
c. The last row of the garbled table is the encryption of Lc

1
using labels La

1 and Lb
1.

Once the garbling process is finished, the Garbler sends
all of the garbled tables to the Evaluator. Moreover, he sends
the correct labels that correspond to input wires that repre-
sent his inputs to the circuit. For example, if wire w∗ is the
first input bit of the Garbler and his input is 0, he sends L∗0.
The Evaluator acquires the labels corresponding to her in-
put through 1-out-of-2 OT where Garbler is the sender with
two labels as his messages and the Evaluator’s selection bit
is her input for that wire. Having all of the garbled tables
and labels of input wires, the Evaluator can start decrypting
the garbled tables one by one until reaching the final output
bits. She then learns the plaintext result at the end of the GC
protocol based on the output labels and their relationships to
the semantic values that are received from the Garbler.

3 The XONN Framework

In this section, we explain how neural networks can be
trained such that they incur a minimal cost during the oblivi-
ous inference. The most computationally intensive operation
in a neural network is matrix multiplication. In GC, each
multiplication has a quadratic computation and communi-
cation cost with respect to the input bit-length. This is the
major source of inefficiency in prior work [13]. We over-
come this limitation by changing the learning process such
that the trained neural network’s weights become binary. As

a result, costly multiplication operations are replaced with
XNOR gates which are essentially free in GC. We describe
the training process in Section 3.1. In Section 3.2, we ex-
plain the operations and their corresponding Boolean circuit
designs that enable a very fast oblivious inference. In Sec-
tion 4, we elaborate on XONN implementation.

3.1 Customized Network Binarization
Numerical optimization algorithms minimize a specific cost
function associated with neural networks. It is well-known
that neural network training is a non-convex optimization,
meaning that there exist many locally-optimum parameter
configurations that result in similar inference accuracies.
Among these parameter settings, there exist solutions where
both neural network parameters and activation units are re-
stricted to take binary values (i.e., either +1 or−1); these so-
lutions are known as Binary Neural Netowrks (BNNs) [19].

One major shortcoming of BNNs is their (often) low infer-
ence accuracy. In the machine learning community, several
methods have been proposed to modify BNN functionality
for accuracy enhancement [20, 21, 22]. These methods are
devised for plaintext execution of BNNs and are not efficient
for oblivious inference with GC. We emphasize that, when
modifying BNNs for accuracy enhancement, one should also
take into account the implications in the corresponding GC
circuit. With this in mind, we propose to modify the num-
ber of channels and neurons in CONV and FC layers, re-
spectively. Increasing the number of channels/neurons leads
to a higher accuracy but it also increases the complexity
of the corresponding GC circuit. As a result, XONN pro-
vides a trade-off between the accuracy and the communica-
tion/runtime of the oblivious inference. This tradeoff enables
cloud servers to customize the complexity of the GC proto-
col to optimally match the computation and communication
requirements of the clients. To customize the BNN, XONN
configures the per-layer number of neurons in two steps:

• Linear Scaling: Prior to training, we scale the number of
channels/neurons in all BNN layers with the same factor
(s), e.g., s= 2. Then, we train the scaled BNN architecture.

• Network Trimming: Once the (uniformly) scaled network
is trained, a post-processing algorithm removes redundant
channels/neurons from each hidden layer to reduce the GC
cost while maintaining the inference accuracy.

Figure 1 illustrates the BNN customization method for an
example baseline network with four hidden layers. Network
trimming (pruning) consists of two steps, namely, Feature
Ranking and Iterative Pruning which we describe next.
Feature Ranking: In order to perform network trimming,
one needs to sort the channels/neurons of each layer based on
their contribution to the inference accuracy. In conventional
neural networks, simple ranking methods sort features based

4

3 2 4 6

 6 4 8 1
2

 9 6 1
2

 1
8

 5 4 6 9

 7 6 1
0

 1
2

Layer 1 Layer 2 Layer 3 Layer 4 Layer 1 Layer 2 Layer 3 Layer 4

Layer 1 Layer 2 Layer 3 Layer 4Layer 1 Layer 2 Layer 3 Layer 4

Layer 1 Layer 2 Layer 3 Layer 4

Scale (s=2)

Scale (s=3)

P
ru

n
e

P
ru

n
e

Per-layer Neurons

Figure 1: Illustration of BNN customization. The bars rep-
resent the number of neurons in each hidden layer.

on absolute value of the neurons/channels [23]. In BNNs,
however, the weights/features are either +1 or −1 and the
absolute value is not informative. To overcome this issue, we
utilize first order Taylor approximation of neural networks
and sort the features based on the magnitude of the gradient
values [24]. Intuitively, the gradient with respect to a certain
feature determines its importance; a high (absolute) gradient
indicates that removing the neuron has a destructive effect on
the inference accuracy. Inspired by this notion, we develop a
feature ranking method described in Algorithm 1.
Iterative Pruning: We devise a step-by-step algorithm for
model pruning which is summarized in Algorithm 2. At
each step, the algorithm selects one of the BNN layers l∗

and removes the first p∗ features with the lowest importance
(line 17). The selected layer l∗ and the number of pruned
neurons p∗ maximize the following reward (line 15):

reward(l, p) =
ccurr− cnext

eacurr−anext
, (3)

where ccurr and cnext are the GC complexity of the BNN be-
fore and after pruning, whereas, acurr and anext denote the
corresponding validation accuracies. The numerator of this
reward encourages higher reduction in the GC cost while
the denominator penalizes accuracy loss. Once the layer
is pruned, the BNN is fine-tuned to recover the accuracy
(line 18). The pruning process stops once the accuracy drops
below a pre-defined threshold.

3.2 Oblivious Inference

BNNs are trained such that the weights and activations are
binarized, i.e., they can only have two possible values: +1
or−1. This property allows BNN layers to be rendered using
a simplified arithmetic. In this section, we describe the func-
tionality of different layer types in BNNs and their Boolean
circuit translations. Below, we explain each layer type.
Binary Linear Layer: Most of the computational com-
plexity of neural networks is due to the linear operations in
CONV and FC layers. As we discuss in Section 2.1, linear
operations are realized using vector dot product (VDP). In
BNNs, VDP operations can be implemented using simplified
circuits. We categorize the VDP operations of this work into

Algorithm 1 XONN Channel Sorting for CONV Layers

Inputs: Trained BNN with loss function L , CONV layer l
with output shape of h1×h2× f , subsampled validation
data and labels {(X1,z1), . . . ,(Xk,zk)}
Output: Indices of the sorted channels: {i0, . . . , i f }

1: G← zeros(k×h1×h2× f) . define gradient tensor
2: for i = 1, . . . ,k do
3: L = L (Xi,zi) . evaluate loss function
4: ∇Y = ∂L

∂Y l . compute gradient w.r.t. layer output
5: G[i, :, :, :]← ∇Y . store gradient
6: end for
7: Gabs← |G| . take elementwise absolute values
8: gs← zeros(f) . define sum of absolute values
9: for i = 1, . . . , f do

10: gs[i]← sum(Gabs[:, :, :, i])
11: end for
12: {i0, . . . , i f }← sort(gs)
13: return {i0, . . . , i f }

two classes: (i) Integer-VDP where only one of the vectors is
binarized and the other has integer elements and (ii) Binary-
VDP where both vectors have binary (±1) values.
Integer-VDP: For the first layer of the neural network, the
server has no control over the input data which is not nec-
essarily binarized. The server can only train binary weights
and use them for oblivious inference. Consider an input vec-
tor x ∈ Rn with integer (possibly fixed-point) elements and
a weight vector w ∈ {−1,1}n with binary values. Since the
elements of the binary vector can only take +1 or −1, the
Integer-VDP can be rendered using additions and subtrac-
tions. In particular, the binary weights can be used in a se-
lection circuit that decides whether the pertinent integer in-
put should be added to or subtracted from the VDP result.

XNOR

+1 +1 -1 -1

-1 +1 -1 -1
-1 +1 +1 +1 +2

1 1 0 0

0 1 0 0

0 1 1 1 +2

MULT SUM

PopCount

Figure 2: Equivalence of Binary-VDP and XnorPopcount.

Binary-VDP: Consider a dot product between two binary
vectors x ∈ {−1,+1}n and w ∈ {−1,+1}n. If we encode
each element with one bit (i.e., −1 → 0 and +1 → 1),
we obtain binary vectors xb ∈ {0,1}n and wb ∈ {0,1}n.
It has been shown that the dot product of x and w can
be efficiently computed using an XnorPopcount opera-
tion [19]. Figure 2 depicts the equivalence of VDP(x,w) and

5

Algorithm 2 XONN Iterative BNN Pruning

Inputs: Trained BNN with n overall CONV and FC layers, minimum accuracy threshold θ , number of pruning trials per layer
t, subsampled validation data and labels dataV , training data and labels dataT
Output: BNN with pruned layers

1: p← zeros(n−1) . current number of pruned neurons/channels per layer
2: acurr← Accuracy(BNN,dataV |p) . current BNN validation accuracy
3: ccurr←Cost(BNN|p) . current GC cost
4: while acurr > θ do . repeat until accuracy drops below θ

5: for l = 1, . . . ,n−1 do . search over all layers
6: inds← Rank(BNN, l,dataV) . rank features via Algorithm 1
7: f ← Number of neurons/channels . number of output neurons/channels
8: for p = p[l],p[l]+ f

t , . . . , f do . search over possible pruning rates
9: BNNnext← Prune(BNN, l, p, inds) . prune p features with lowest ranks from the l-th layer

10: anext ← Accuracy(BNNnext,dataV |p[1], . . . ,p[l] = p, . . . ,p[n−1]) . validation accuracy if pruned
11: cnext ←Cost(BNNnext|p[1], . . . ,p[l] = p, . . . ,p[n−1]) . GC cost if pruned
12: reward(l, p) = ccurr−cnext

e(acurr−anext)
. compute reward given that p features are pruned from layer l

13: end for
14: end for
15: {l∗, p∗}← argmaxl,p reward(l,p) . select layer l∗ and pruning rate p∗ that maximize the reward
16: p[l∗]← p∗ . update the number of pruned features in vector p
17: BNN← Prune(BNN, l∗, p∗, inds) . prune p∗ features with lowest ranks from the l∗-th layer
18: BNN← Fine-tune(BNN,dataT) . fine-tune the pruned model using training data to recover accuracy
19: acurr← Accuracy(BNN,dataV |p) . update current BNN validation accuracy
20: ccurr←Cost(BNN|p) . update current GC cost
21: end while
22: return BNN

XnorPopcount(xb,wb) for a VDP between 4-dimensional
vectors. First, element-wise XNOR operations are performed
between the two binary encodings. Next, the number of set
bits p is counted, and the output is computed as 2p−n.

Binary Activation Function: A Binary Activation (BA)
function takes input x and maps it to y = Sign(x) where
Sign(·) outputs either +1 or−1 based on the sign of its input.
This functionality can simply be implemented by extracting
the most significant bit of x.

Binary Batch Normalization: in BNNs, it is often useful to
normalize feature x using a Batch Normalization (BN) layer
before applying the binary activation function. More specif-
ically, a BN layer followed by a BA is equivalent to:

y = Sign(γ · x+β) = Sign(x+
β

γ
),

since γ is a positive value. The combination of the two layers
(BN+BA) is realized by a comparison between x and −β

γ
.

Binary Max-Pooling: Assuming the inputs to the max-
pooling layers are binarized, taking the maximum in a win-
dow is equivalent to performing logical OR over the binary
encodings as depicted in Figure 3. Note that average-pooling
layers are usually not used in BNNs since the average of mul-
tiple binary elements is no longer a binary value.

11

1 0

0

1

0

0 0

1 0

0

0 0

10

00

1

1MAX OR

Figure 3: The equivalence between Max-Pooling and
Boolean-OR operations in BNNs.

Figure 4 demonstrates the Boolean circuit for Binary-VDP
followed by BN and BA. The number of non-XOR gates for
binary-VDP is equal to the number of gates required to ren-
der the tree-adder structure in Figure 4. Similarly, Figure 5
shows the Integer-VDP counterpart. In the first level of the
tree-adder of Integer-VDP (Figure 5), the binary weights de-
termine whether the integer input should be added to or sub-
tracted from the final result within the “Select” circuit. The
next levels of the tree-adder compute the result of the integer-
VDP using “Adder” blocks. The combination of BN and
BA is implemented using a single comparator. Compared
to Binary-VDP, Integer-VDP has a high garbling cost which
is linear with respect to the number of bits. To mitigate this
problem, we propose an alternative solution based on Obliv-
ious Transfer (OT) in Section 3.3.

6

0

0

1

0

0

1

1

0

1

0

1

1

1-bit
A

dder

log
2 n -bit

A
dder

2-bit
A

dder1-bit
A

dder

1

1

1

0

1

1

0

0

1

1

0

1

1-bit
A

dder 2-bit
A

dder1-bit
A

dder

BN+BABinary-VDP

p

 com
pare w

ith

......

...

...

...n

Figure 4: Circuit for binary-VDP followed by comparison
for batch normalization (BN) and binary activation (BA).

3.3 Oblivious Conditional Addition Protocol
In XONN, all of the activation values as well as neural net-
work weights are binary. However, the input to the neural
network is provided by the user and is not necessarily bi-
nary. The first layer of a typical neural network comprises
either an FC or a CONV layer, both of which are evaluated
using oblivious Integer-VDP. On the one side, the user pro-
vides her input as non-binary (integer) values. On the other
side, the network parameters are binary values representing
−1 and 1. We now demonstrate how Integer-VDP can be
described as an OT problem. Let us denote the user’s input
as a vector v1 of n (b-bit) integers. The server holds a vector
of n binary values denoted by v2. The result of Integer-VDP
is a number “y” that can be described with

b′ =
⌈

log2(n · (2b−1))
⌉

bits. Figure 6 summarizes the steps in the OCA protocol.
The first step is to bit-extend v1 from b-bit to b′-bit. In other
words, if v1 is a vector of signed integer/fixed-point num-
bers, the most significant bit should be repeated (b′ − b)-
many times, otherwise, it has to be zero-padded for most
significant bits. We denote the bit-extended vector by v∗1.
The second step is to create the two’s complement vector
of v∗1, called v∗1. The client also creates a vector of n (b′-
bit) randomly generated numbers, denoted as r. She com-
putes element-wise vector subtractions v∗1− r mod 2b′ and
v∗1− r mod 2b′ . These two vectors are n-many pair of mes-
sages that will be used as input to n-many 1-out-of-two OTs.
More precisely, v∗1− r mod 2b′ is a list of first messages and
v∗1− r mod 2b′ is a list of second messages. The server’s list
of selection bits is v2. After n-many OTs are finished, the
server has a list of n transferred numbers called vt where

vt[i] =
{

v∗1[i]− r[i] mod 2b′ i f v2[i] = 0
v∗1[i]− r[i] mod 2b′ i f v2[i] = 1

i = 1, ... , n.

BN+BA

x

W

1-bit | b-bit
A

dder

Select Circuit

Integer-VDP

w[1]

w[2]

w[3]

w[4]

x[1]

x[2]

x[3]

x[4]

w[n-3]

w[n-2]

w[n-1]

w[n]

x[n-3]

x[n-2]

x[n-1]

x[n]

Select

Select

Select

Select

Select

Select

Select

Select

b-bit
input

binary
weights

n

b-bit
A

dder

(b+
log

2 n) -bit
A

dder

(b+
1)-bit

A
dderb-bit

A
dder

b-bit
A

dder (b+
1)-bit

A
dderb-bit

A
dder

p

 com
pare w

ith

...

...

...

............

1

b
b

b

1

Figure 5: Circuit for Integer-VDP followed by comparison
for batch normalization (BN) and binary activation (BN).

Finally, the client computes y1 = ∑
n
i=1 r[i] mod 2b′ and

the server computes y2 = ∑
n
i=1 vt[i] mod 2b′ . By OT’s def-

inition, the receiver (server) gets only one of the two mes-
sages from the sender. That is, based on each selection bit (a
binary weight), the receiver gets an additive share of either
the sender’s number or its two’s complement. Upon adding
all of the received numbers, the receiver computes an addi-
tive share of the Integer-VDP result. Now, even though the
sender does not know which messages were selected by the
receiver, she can add all of the randomly generated numbers
r[i]s which is equal to the other additive share of the Integer-
VDP result. Since all numbers are described in the two’s
complement format, subtractions are equivalent to the addi-
tion of the two’s complement values, which are created by
the sender at the beginning of OCA. Moreover, it is possible
that as we accumulate the values, the bit-length of the final
Integer-VDP result grows accordingly. This is supported due
to the bit-extension process at the beginning of the protocol.
In other words, all additions are performed in a larger ring
such that the result does not overflow.

Note that all numbers belong to the ring Z2b′ and by def-
inition, a ring is closed under addition, therefore, y1 and y2
are true additive shares of y = y1+y2 mod 2b′ . We described
the OCA protocol for one Integer-VDP computation. As we
outlined in Section 3.2, all linear operations in the first layer
of the DL model (either FC or CONV) can be formulated as
a series of Integer-VDPs.

7

Sender:
(1) Bit-extends all elements of v1 and creates v∗1
(2) Creates two’s complement of v∗1 : v∗1
(3) Creates random vector r : same size as v∗1
(4) Creates list of first messages as m2 = v∗1− r mod 2b′

(5) Creates list of second messages as m1 = v∗1− r mod 2b′

Sender & Receiver:
(6) Parties engage in Oblivious Transfer (OT)

Sender puts m1 and m2 as message vectors
Receiver puts v2 vector as selection bits

Receiver:
(7) Gets vector vt where:

vt[i] =

{
v∗1[i]− r[i] mod 2b′ (if v2[i] = 0)
v∗1[i]− r[i] mod 2b′ (if v2[i] = 1)

Sender:
(8) Computes her additive share of VDP result as:

y1 = ∑
n
i=1 r[i] mod 2b′

Receiver:
(9) Computes his additive share of VDP result as:

y2 = ∑
n
i=1 vt[i] mod 2b′

Figure 6: Oblivious Conditional Addition (OCA) protocol.

In traditional OT, public-key encryption is needed for
each OT invocation which can be computationally expensive.
Thanks to the Oblivious Transfer Extension technique [16,
17, 18], one can perform many OTs using symmetric-key en-
cryption and only a fixed number of public-key operations.

Required Modification to the Next Layer. So far, we have
shown how to perform Integer-VDP using OT. However, we
need to add an “addition” layer to reconstruct the true value
of y from its additive shares before further processing it. The
overhead of this layer, as well as OT computations, are dis-
cussed next. Note that OCA is used only for the first layer
and it does not change the overall constant round complexity
of XONN since it is performed only once regardless of the
number of layers in the DL model.

Comparison to Integer-VDP in GC. Table 1 shows the
computation and communication costs for two approaches:
(i) computing the first layer in GC and (ii) utilizing OCA.
OCA removes the GC cost of the first layer in XONN. How-
ever, it adds the overhead of a set of OTs and the GC costs
associated with the new ADD layer.

Table 1: Computation and communication cost of OCA.

Costs
{Sender, Receiver} GC OCA

OT ADD Layer

Comp. (AES ops) (n+1) ·b · {2, 4} n · {1, 2} b′· {2, 4}
Comm. (bit) (n+1) ·b ·2 ·128 n ·b b′ ·2 ·128

3.4 Security of XONN

We consider the Honest-but-Curious (HbC) adversary model
consistent with all of the state-of-the-art solutions for obliv-
ious inference [7, 8, 9, 10, 13, 25]. In this model, neither of
the involved parties is trusted but they are assumed to follow
the protocol. Both server and client cannot infer any infor-
mation about the other party’s input from the entire protocol
transcript. XONN relies solely on the GC and OT protocols,
both of which are proven to be secure in the HbC adversary
model in [26] and [15], respectively. Utilizing binary neu-
ral networks does not affect GC and OT protocols in any
way. More precisely, we have changed the function f (.) that
is evaluated in GC such that it is more efficient for the GC
protocol: drastically reducing the number of AND gates and
using XOR gates instead. Our novel Oblivious Conditional
Addition (OCA) protocol (Section 3.3) is also based on the
OT protocol. The sender creates a list of message pairs and
puts them as input to the OT protocol. Each message is an
additive share of the sender’s private data from which the se-
cret data cannot be reconstructed. The receiver puts a list of
selection bits as input to the OT. By OT’s definition, the re-
ceiver learns nothing about the unselected messages and the
sender does not learn the selection bits.

During the past few years, several attacks have been pro-
posed that extract some information about the DL model by
querying the server many times [1, 27, 28]. It has been
shown that some of these attacks can be effective in the
black-box setting where the client only receives the predic-
tion results and does not have access to the model. Therefore,
considering the definition of an oblivious inference, these
type of attacks are out of the scope of oblivious inference
frameworks. However, in Appendix B, we show how these
attacks can be thwarted by adding a simple layer at the end
of the neural network which adds a negligible overhead.

Security Against Malicious Adversaries. The HbC ad-
versary model is the standard security model in the liter-
ature. However, there are more powerful security models
such as security against covert and malicious adversaries.
In the malicious security model, the adversary (either the
client or server) can deviate from the protocol at any time
with the goal of learning more about the input from the
other party. One of the main distinctions between XONN
and the state-of-the-art solutions is that XONN can be au-
tomatically adapted to the malicious security using cut-and-
choose techniques [29, 30, 31]. These methods take a GC
protocol in HbC and readily extend it to the malicious se-
curity model. This modification increases the overhead but
enables a higher security level. To the best of our knowledge,
there is no practical solution to extend the customized mixed-
protocol frameworks [7, 9, 10, 25] to the malicious security
model. Our GC-based solution is more efficient compared
to the mixed-protocol solutions and can be upgraded to the
malicious security at the same time.

8

4 The XONN Implementation

In this section, we elaborate on the garbling/evaluation im-
plementation of XONN. All of the optimizations and tech-
niques proposed in this section do not change the security
or correctness in anyway and only enable the framework’s
scalability for large network architectures.

We design a new GC framework with the following design
principles in mind: (i) Efficiency: XONN is designed to have
a minimal data movement and low cache-miss rate. (ii) Scal-
ability: oblivious inference inevitably requires significantly
higher memory usage compared to plaintext evaluation of
neural networks. High memory usage is one critical short-
coming of state-of-the-art secure computation frameworks.
As we show in our experimental results, XONN is designed
to scale for very deep neural networks that have higher accu-
racy compared to networks considered in prior art. (iii) Mod-
ularity: our framework enables users to create Boolean de-
scription of different layers separately. This allows the hard-
ware synthesis tool to generate more optimized circuits as we
discuss in Section 4.1. (iv) Ease-to-use: XONN provides a
very simple API that requires few lines of neural network de-
scription. Moreover, we have created a compiler that takes a
Keras description and automatically creates the network de-
scription for XONN API.

XONN is written in C++ and supports all major GC op-
timizations proposed previously. Since the introduction of
GC, many optimizations have been proposed to reduce the
computation and communication complexity of this proto-
col. Bellare et al. [32] have provided a way to perform
garbling using efficient fixed-key AES encryption. Our im-
plementation benefits from this optimization by using Intel
AES-NI instructions. Row-reduction technique [33] reduces
the number of garbled tables from four to three. Half-Gates
technique [34] further reduces the number of rows in the
garbled tables from three to two. One of the most influen-
tial optimizations for the GC protocol is the free-XOR tech-
nique [12] which makes XOR, XNOR, and NOT almost free
of cost. Our implementation for Oblivious Transfer (OT) is
based on libOTe [35].

4.1 Modular Circuit Synthesis and Garbling

In XONN, each layer is described as multiple invocations of
a base circuit. For instance, linear layers (CONV and FC) are
described by a VDP circuit. MaxPool is described by an OR
circuit where the number of inputs is the window size of the
MaxPool layer. BA/BN layers are described using a com-
parison (CMP) circuit. The memory footprint is significantly
reduced in this approach: we only create and store the base
circuits. As a result, the connection between two invocations
of two different base circuits is handled at the software level.

We create the Boolean circuits using TinyGarble [36]
hardware synthesis approach. TinyGarble’s technology li-
braries are optimized for GC and produce circuits that have

G
arb

ler

V
D

P
V

D
P

...

V
D

P

garbled
tables

...

V
D

P
V

D
P

...

V
D

P

...

C
M

P
C

M
P

...

C
M

P

garbled
tables

output labels of layer L+
1

...

C
M

P
C

M
P

...

C
M

P

...

4

5

3

4

E
valu

ato
r

c labelsf labels

output labels of layer L-1

output labels of layer L

label
selection

c labelsf labels

output labels of layer L-1

output labels of layer L

output labels of layer L+
1

5

1

3

21

label
selection

2

Figure 7: XONN modular and pipelined garbling engine.

low number of non-XOR gates. Note that the Boolean circuit
description of the contemporary neural networks comprises
between millions to billions of Boolean gates, whereas, syn-
thesis tools cannot support circuits of this size. However,
due to XONN modular design, one can synthesize each base
circuit separately. Thus, the bottleneck transfers from the
synthesis tool’s maximum number of gates to the system’s
memory. As such, XONN effectively scales for any neural
network complexity regardless of the limitations of the syn-
thesis tool as long as enough memory (i.e., RAM) is avail-
able. Later in this section, we discuss how to increase the
scalability by dynamically managing the allocated memory.
Pipelined GC Engine. In XONN, computation and commu-
nication are pipelined. For instance, consider a CONV layer
followed by an activation layer. We garble/evaluate these
layers by multiple invocations of the VDP and CMP circuits
(one invocation per output neuron) as illustrated in Figure 7.
Upon finishing the garbling process of layer L− 1, the Gar-
bler starts garbling the Lth layer and creates the random la-
bels for output wires of layer L. He also needs to create
the random labels associated with his input (i.e., the weight

9

parameters) to layer L. Given a set of input and output la-
bels, Garbler generates the garbled tables, and sends them
to the Evaluator as soon as one is ready. He also sends one
of the two input labels for his input bits. At the same time,
the Evaluator has computed the output labels of the (L−1)th

layer. She receives the garbled tables as well as the Garbler’s
selected input labels and decrypts the tables and stores the
output labels of layer L.

Dynamic Memory Management. We design the framework
such that the allocated memory for the labels is released as
soon as it is no longer needed, reducing the memory usage
significantly. For example, without our dynamic memory
management, the Garbler had to allocate 10.41GB for the
labels and garbled tables for the entire garbling of BC1 net-
work (see Section 7 for network description). In contrast, in
our framework, the size of memory allocation never exceeds
2GB and is less than 0.5GB for most of the layers.

4.2 Application Programming Interface (API)
XONN provides a simplified and easy-to-use API for oblivi-
ous inference. The framework accepts a high-level descrip-
tion of the network, parameters of each layer, and input struc-
ture. It automatically computes the number of invocations
and the interconnection between all of the base circuits. Fig-
ure 8 shows the complete network description that a user
needs to write for a sample network architecture (the BM3
architecture, see Section 7). All of the required circuits are
automatically generated using TinyGarble [36] synthesis li-
braries. It is worth mentioning that for the task of oblivious
inference, our API is much simpler compared to the recent
high-level EzPC framework [25]. For example, the required
lines of code to describe BM1, BM2, and BM3 network ar-
chitectures (see Section 7) in EzPC are 78, 88, and 154, re-
spectively. In contrast, they can be described with only 6, 6,
and 10 lines of code in our framework.

I NPUT 28 1 8
CONV 5 16 1 0 OCA
ACT
MAXPOOL 2
CONV 5 16 1 0
ACT
MAXPOOL 2
FC 100
ACT
FC 10

1
2
3
4
5
6
7
8
9

10

Descr i pt i on:

I NPUT #i nput _f eat ur e #channel s #bi t - l engt h

CONV #f i l t er _si ze #f i l t er s #st r i de
 #Pad #OCA (opt i onal)

MAXPOOl #wi ndow_si ze

FC #out put _neur ons

Figure 8: Sample snippet code in XONN.

Keras to XONN Translation. To further facilitate the adap-
tation of XONN, a compiler is created to translate the de-
scription of the neural network in Keras [37] to the XONN
format. The compiler creates the .xonn file and puts the
network parameters into the required format (HEX string) to
be read by the framework during the execution of the GC
protocol. All of the parameter adjustments are also automat-
ically performed by the compiler.

5 Related Work

CryptoNets [14] is one of the early solutions that suggested
the adaptation of Leveled Homomorphic Encryption (LHE)
to perform oblivious inference. LHE is a variant of Partially
HE that enables evaluation of depth-bounded arithmetic cir-
cuits. DeepSecure [13] is a privacy-preserving DL frame-
work that relies on the GC protocol. CryptoDL [38] im-
proves upon CryptoNets [14] and proposes more efficient
approximation of the non-linear functions using low-degree
polynomials. Their solution is based on LHE and uses mean-
pooling in replacement of the max-pooling layer. Chou et al.
propose to utilize the sparsity within the DL model to accel-
erate the inference [39].

SecureML [8] is a privacy-preserving machine learning
framework based on homomorphic encryption, GC, and se-
cret sharing. SecureML also uses customized activation
functions and supports privacy-preserving training in addi-
tion to inference. Two non-colluding servers are used to train
the DL model where each client XOR-shares her input and
sends the shares to both servers. MiniONN [9] is a mixed-
protocol framework for oblivious inference. The underlying
cryptographic protocols are HE, GC, and secret sharing.

Chameleon [7] is a more recent mixed-protocol frame-
work for machine learning, i.e., Support Vector Machines
(SVMs) as well as DNNs. Authors propose to perform
low-depth non-linear functions using the Goldreich-Micali-
Wigderson (GMW) protocol [5], high-depth functions by the
GC protocol, and linear operations using additive secret shar-
ing. Moreover, they propose to use correlated randomness
to more efficiently compute linear operations. EzPC [25] is
a secure computation framework that enables users to write
high-level programs and translates it to a protocol-based de-
scription of both Boolean and Arithmetic circuits. The back-
end cryptographic engine is based on the ABY framework.

Shokri and Shmatikov [40] proposed a solution for
privacy-preserving collaborative deep learning where the
training data is distributed among many parties. Their
approach, which is based on differential privacy, enables
clients to train their local model on their own training data
and update the central model’s parameters held by a central
server. However, it has been shown that a malicious client
can learn significant information about the other client’s pri-
vate data [41]. Google [42] has recently introduced a new ap-
proach for securely aggregating the parameter updates from
multiple users. However, none of these approaches [40, 42]
study the oblivious inference problem. An overview of re-
lated frameworks is provided in [43, 44].

Frameworks such as ABY3 [45] and SecureNN [46] have
different computation models and they rely on three (or four)
parties during the oblivious inference. In contrast, XONN
does not require an additional server for the computation. In
E2DM framework [47], the model owner can encrypt and
outsource the model to an untrusted server to perform obliv-

10

ious inference. Concurrently and independently of ours, in
TAPAS [48], Sanyal et al. study the binarization of neural
networks in the context of oblivious inference. They report
inference latency of 147 seconds on MNIST dataset with
98.6% prediction accuracy using custom CNN architecture.
However, as we show in Section 7 (BM3 benchmark), XONN
outperforms TAPAS by close to three orders of magnitude.

Gazelle [10] is the previously most efficient oblivious in-
ference framework. It is a mixed-protocol approach based
on additive HE and GC. In Gazelle, convolution operations
are performed using the packing property of HE. In this ap-
proach, many numbers are packed inside a single ciphertext
for faster convolutions. In Section 6, we briefly discuss one
of the essential requirements that the Gazelle protocol has to
satisfy in order to be secure, namely, circuit privacy.

High-Level Comparison. In contrast to prior work, we pro-
pose a DL-secure computation co-design approach. To the
best of our knowledge, DeepSecure [13] is the only solu-
tion that preprocesses the data and network before the secure
computation protocol. However, this preprocessing step is
unrelated to the underlying cryptographic protocol and com-
pacts the network and data. Moreover, in this mode, some
information about the network parameters and structure of
data is revealed. Compared to mixed-protocol solutions,
not only XONN provides a more efficient solution but also
maintains the constant round complexity regardless of the
number of layers in the neural network model. It has been
shown that round complexity is one of the important crite-
ria in designing secure computation protocols [49] since the
performance can significantly be reduced in Internet settings
where the network latency is high. Another important ad-
vantage of our solution is the ability to upgrade to the secu-
rity against malicious adversaries using cut-and-choose tech-
niques [29, 30, 31]. As we show in Section 7, XONN outper-
forms all previous solutions in inference latency. Table 2
summarizes a high-level comparison between state-of-the-
art oblivious inference frameworks.

Table 2: High-Level Comparison of oblivious inference
frameworks. “C”onstant round complexity. “D”eep learn-
ing/secure computation co-design. “I”ndependence of sec-
ondary server. “U”pgradeable to malicious security using
standard solutions. “S”upporting any non-linear layer.

Framework Crypto. Protocol C D I U S

CryptoNets [14] HE 3 7 3 7 7
DeepSecure [13] GC 3 3 3 3 3
SecureML [8] HE, GC, SS 7 7 7 7 7
MiniONN [9] HE, GC, SS 7 7 3 7 3
Chameleon [7] GC, GMW, SS 7 7 7 7 3
EzPC [25] GC, SS 7 7 3 7 3
Gazelle [10] HE, GC, SS 7 7 3 7 3
XONN (This work) GC, SS 3 3 3 3 3

6 Circuit Privacy

In Gazelle [10], for each linear layer, the protocol starts with
a vector m that is secret-shared between client m1 and server
m2 (m=m1+m2). The protocol outputs the secret shares of
the vector m′ = A ·m where A is a matrix known to the server
but not to the client. The protocol has the following proce-
dure: (i) Client generates a pair (pk,sk) of public and secret
keys of an additive homomorphic encryption scheme HE. (ii)
Client sends HE.Encpk(m1) to the server. Server adds its
share (m2) to the ciphertext and recovers encryption of m:
HE.Encpk(m). (iii) Server homomorphically evaluates the
multiplication with A and obtains the encryption of m′. (iv)
Server secret shares m′ by sampling a random vector r and
returns ciphertext c =HE.Encpk(m′− r) to the client. The
client can decrypt c using private key sk and obtain m′− r.

Gazelle uses the Brakerski-Fan-Vercauteren (BFV)
scheme [50, 51]. However, the vanilla BFV scheme does
not provide circuit privacy. At high-level, the circuit privacy
requirement states that the ciphertext c should not reveal any
information about the private inputs to the client (i.e., A and
r) other than the underlying plaintext A ·m− r. Otherwise,
some information is leaked. Gazelle proposes two methods
to provide circuit privacy that are not incorporated in
their implementation. Hence, we need to scale up their
performance numbers for a fair comparison.

The first method is to let the client and server engage in
a two-party secure decryption protocol, where the input of
client is sk and input of server is c. However, this method
adds communication and needs extra rounds of interaction.
A more widely used approach is noise flooding. Roughly
speaking, the server adds a large noise term to c before re-
turning it to the client. The noise is big enough to drown any
extra information contained in the ciphertext, and still small
enough to so that it still decrypts to the same plaintext.

For the concrete instantiation of Gazelle, one needs to
triple the size of ciphertext modulus q from 60 bits to 180
bits, and increase the ring dimension n from 2048 to 8192.
The (amortized) complexity of homomorphic operations in
the BFV scheme is approximately O(logn logq), with the
exception that some operations run in O(logq) amortized
time. Therefore, adding noise flooding would result in a
3-3.6 times slow down for the HE component of Gazelle.
To give some concrete examples, we consider two networks
used for benchmarking in Gazelle: MNIST-D and CIFAR-10
networks. For the MNIST-D network, homomorphic encryp-
tion takes 55% and 22% in online and total time, respec-
tively. For CIFAR-10, the corresponding figures are 35%,
and 10%2. Therefore, we estimate that the total time for
MNIST-D will grow from 0.81s to 1.16-1.27s (network BM3
in this paper). In the case of CIFAR-10 network, the total
time will grow from 12.9s to 15.48-16.25s.

2these percentage numbers are obtained through private communica-
tion with the authors.

11

7 Experimental Results

We evaluate XONN on MNIST and CIFAR10 datasets, which
are two popular classification benchmarks used in prior
work. In addition, we provide four healthcare datasets to
illustrate the applicability of XONN in real-world scenarios.
For training XONN, we use Keras [37] with Tensorflow back-
end [52]. The source code of XONN is compiled with GCC
5.5.0 using O3 optimization. All Boolean circuits are synthe-
sized using Synopsys Design Compiler 2015. Evaluations
are performed on (Ubuntu 16.04 LTS) machines with Intel-
Core i7-7700k and 32GB of RAM. The experimental setup
is comparable (but has less computational power) compared
to the prior art [10]. Consistent with prior frameworks, we
evaluate the benchmarks in the LAN setting.

7.1 Evaluation on MNIST
There are mainly three network architectures that prior
works have implemented for the MNIST dataset. We convert
these reference networks into their binary counterparts and
train them using the standard BNN training algorithm [19].
Table 3 summarizes the architectures for the MNIST dataset.

Table 3: Summary of the trained binary network architec-
tures evaluated on the MNIST dataset. Detailed descriptions
are available in Appendix A.2, Table 13.

Arch. Previous Papers Description

BM1 SecureML [8], MiniONN [9] 3 FC

BM2 CryptoNets [14], MiniONN [9],
DeepSecure [13], Chameleon [7] 1 CONV, 2 FC

BM3 MiniONN [9], EzPC [25] 2 CONV, 2MP, 2FC

Analysis of Network Scaling: Recall that the classification
accuracy of XONN is controlled by scaling the number of
neurons in all layers (Section 3.1). Figure 9a depicts the in-
ference accuracy with different scaling factors (more details
in Table 11 in Appendix A.2). As we increase the scaling
factor, the accuracy of the network increases. This accuracy
improvement comes at the cost of a higher computational
complexity of the (scaled) network. As a result, increasing
the scaling factor leads to a higher runtime. Figure 9b depicts
the runtime of different BNN architectures as a function of
the scaling factor s. Note that the runtime grows (almost)
quadratically with the scaling factor due to the quadratic in-
crease in the number of Popcount operations in the neural
network (see BM3). However, for the BM1 and BM2 net-
works, the overall runtime is dominated by the constant ini-
tialization cost of the OT protocol (∼ 70 millisecond).
GC Cost and the Effect of OCA: The communication cost
of GC is the key contributor to the overall runtime of XONN.
Here, we analyze the effect of the scaling factor on the total
message size. Figure 10 shows the communication cost of

(a) (b)

Figure 9: Effect of scaling factor on (a) accuracy and (b) in-
ference runtime of MNIST networks. No pruning was ap-
plied in this evaluation.

GC for the BM1 and BM2 network architectures. As can
be seen, the message size increases with the scaling factor.
We also observe that the OCA protocol drastically reduces
the message size. This is due to the fact that the first layer
of BM1 and BM2 models account for a large portion of the
overall computation; hence, improving the first layer with
OCA has a drastic effect on the overall communication.

Figure 10: Effect of OCA on the communication of the BM1
(left) and BM2 (right) networks for different scaling factors.
No pruning was applied in this evaluation.

Comparison to Prior Art: We emphasize that, unlike pre-
vious work, the accuracy of XONN can be customized by
tuning the scaling factor (s). Furthermore, our channel/neu-
ron pruning step (Algorithm 2) can reduce the GC cost in
a post-processing phase. To provide a fair comparison be-
tween XONN and prior art, we choose a proper scaling factor
and trim the pertinent scaled BNN such that the correspond-
ing BNN achieves the same accuracy as the previous work.
Table 4 compares XONN with the previous work in terms of
accuracy, latency, and communication cost (a.k.a., message
size). The last column shows the scaling factor (s) used to in-
crease the width of the hidden layers of the BNN. Note that
the scaled network is further trimmed using Algorithm 2.

In XONN, the runtime for oblivious transfer is at least
∼ 0.07 second for initiating the protocol and then it grows
linearly with the size of the garbled tables; As a result, in
very small architectures such as BM1, our solution is slightly
slower than previous works since the constant runtime dom-
inates the total runtime. However, for the BM3 network
which has higher complexity than BM1 and BM2, XONN

12

achieves a more prominent advantage over prior art. In sum-
mary, our solution achieves up to 7.7× faster inference (av-
erage of 3.4×) compared to Gazelle [10]. Compared to Min-
iONN [9], XONN has up to 62× lower latency (average of
26×) Table 4. Compared to EzPC [25], our framework is
34× faster. XONN achieves 37.5×, 1859×, 60.4×, and 14×
better latency compared to SecureML [8], CryptoNets [14],
DeepSecure [13], and Chameleon [7], respectively.

Table 4: Comparison of XONN with the state-of-the-art for
the MNIST network architectures.

Arch. Framework Runtime (s) Comm. (MB) Acc. (%) s

BM1

SecureML 4.88 - 93.1 -
MiniONN 1.04 15.8 97.6 -

EzPC 0.7 76 97.6 -
Gazelle 0.09 0.5 97.6 -
XONN 0.13 4.29 97.6 1.75

BM2

CryptoNets 297.5 372.2 98.95 -
DeepSecure 9.67 791 98.95 -
MiniONN 1.28 47.6 98.95 -
Chameleon 2.24 10.5 99.0 -

EzPC 0.6 70 99.0 -
Gazelle 0.29 8.0 99.0 -
XONN 0.16 38.28 98.64 4.00

BM3

MiniONN 9.32 657.5 99.0 -
EzPC 5.1 501 99.0 -

Gazelle 1.16 70 99.0 -
XONN 0.15 32.13 99.0 2.00

7.2 Evaluation on CIFAR-10
In Table 5, we summarize the network architectures that we
use for the CIFAR-10 dataset. In this table, BC1 is the bina-
rized version of the architecture proposed by MiniONN. To
evaluate the scalability of our framework to larger networks,
we also binarize the Fitnet [53] architectures, which are de-
noted as BC2-BC5. We also evaluate XONN on the popular
VGG16 network architecture (BC6). Detailed architecture
descriptions are available in Appendix A.2, Table 13.

Table 5: Summary of the trained binary network architec-
tures evaluated on the CIFAR-10 dataset.

Arch. Previous Papers Description

BC1
MiniONN[9], Chameleon [7],

EzPC [25], Gazelle [10] 7 CONV, 2 MP, 1 FC

BC2 Fitnet [53] 9 CONV, 3 MP, 1 FC
BC3 Fitnet [53] 9 CONV, 3 MP, 1 FC
BC4 Fitnet [53] 11 CONV, 3 MP, 1 FC
BC5 Fitnet [53] 17 CONV, 3 MP, 1 FC
BC6 VGG16 [54] 13 CONV, 5 MP, 3 FC

Analysis of Network Scaling: Similar to the analysis on
the MNIST dataset, we show that the accuracy of our binary
models for CIFAR-10 can be tuned based on the scaling fac-
tor that determines the number of neurons in each layer. Fig-
ure 11a depicts the accuracy of the BNNs with different scal-

ing factors. As can be seen, increasing the scaling factor en-
hances the classification accuracy of the BNN. The runtime
also increases with the scaling factor as shown in Figure 11b
(more details in Table 12, Appendix A.2).

(a) (b)

Figure 11: (a) Effect of scaling factor on accuracy for
CIFAR-10 networks. (b) Effect of scaling factor on runtime.
No pruning was applied in this evaluation.

Comparison to Prior Art: We scale the BC2 network with
a factor of s = 3, then prune it using Algorithm 2. Details
of pruning steps are available in Table 10 in Appendix A.1.
The resulting network is compared against prior art in Ta-
ble 6. As can be seen, our solution achieves 2.7×, 45.8×,
9.1×, and 93.1× lower latency compared to Gazelle, EzPC,
Chameleon, and MiniONN, respectively.

Table 6: Comparison of XONN with prior art on CIFAR-10.

Framework Runtime (s) Comm. (MB) Acc. (%) s
MiniONN 544 9272 81.61 -
Chameleon 52.67 2650 81.61 -

EzPC 265.6 40683 81.61 -
Gazelle 15.48 1236 81.61 -
XONN 5.79 2599 81.85 3.00

7.3 Evaluation on Medical Datasets

One of the most important applications of oblivious infer-
ence is medical data analysis. Recent advances in deep learn-
ing greatly benefit many complex diagnosis tasks that require
exhaustive manual inspection by human experts [55, 56, 57,
58]. To showcase the applicability of oblivious inference in
real-world medical applications, we provide several bench-
marks for publicly available healthcare datasets summarized
in Table 7. We split the datasets into validation and training
portions as indicated in the last two columns of Table 7. All
datasets except Malaria Infection are normalized to have 0
mean and standard deviation of 1 per feature. The images of
Malaria Infection dataset are resized to 32×32 pictures. The
normalized datasets are quantized up to 3 decimal digits. De-
tailed architectures are available in Appendix A.2, Table 13
We report the validation accuracy along with inference time
and message size in Table 8.

13

Table 7: Summary of medical application benchmarks.

Task Arch. Description # of Samples
Tr. Val.

Breast Cancer [59] BH1 3 FC 453 113
Diabetes [60] BH2 3 FC 615 153

Liver Disease [61] BH3 3 FC 467 116

Malaria Infection [62] BH4
2 CONV,

2 MP, 2 FC
24804 2756

Table 8: Runtime, communication cost (Comm.), and accu-
racy (Acc.) for medical benchmarks.

Arch. Runtime (ms) Comm. (MB) Acc. (%)
BH1 82 0.35 97.35
BH2 75 0.16 80.39
BH3 81 0.3 80.17
BH4 482 120.75 95.03

8 Conclusion
We introduce XONN, a novel framework to automatically
train and use deep neural networks for the task of oblivi-
ous inference. XONN utilizes Yao’s Garbled Circuits (GC)
protocol and relies on binarizing the DL models in order to
translate costly matrix multiplications to XNOR operations
that are free in the GC protocol. Compared to Gazelle [10],
prior best solution, XONN achieves 7× lower latency. More-
over, in contrast to Gazelle that requires one round of inter-
action for each layer, our solution needs a constant round of
interactions regardless of the number of layers. Maintaining
constant round complexity is an important requirement in In-
ternet settings as a typical network latency can significantly
degrade the performance of oblivious inference. Moreover,
since our solution relies on the GC protocol, it can provide
much stronger security guarantees such as security against
malicious adversaries using standard cut-and-choose proto-
cols. XONN high-level API enables clients to utilize the
framework with a minimal number of lines of code. To fur-
ther facilitate the adaptation of our framework, we design a
compiler to translate the neural network description in Keras
format to that of XONN.

Acknowledgements We would like to thank the anony-
mous reviewers for their insightful comments.

References

[1] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and
Thomas Ristenpart. Stealing machine learning models via
prediction APIs. In USENIX Security, 2016.

[2] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully
homomorphic encryption from (standard) lwe. SIAM Journal
on Computing, 43(2):831–871, 2014.

[3] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(leveled) fully homomorphic encryption without bootstrap-

ping. ACM Transactions on Computation Theory (TOCT),
6(3):13, 2014.

[4] Andrew Yao. How to generate and exchange secrets. In
FOCS, 1986.

[5] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
play any mental game. In Proceedings of the nineteenth an-
nual ACM symposium on Theory of computing, pages 218–
229. ACM, 1987.

[6] Pascal Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages
223–238. Springer, 1999.

[7] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,
Ebrahim M Songhori, Thomas Schneider, and Farinaz
Koushanfar. Chameleon: A hybrid secure computation
framework for machine learning applications. In ASI-
ACCS’18, 2018.

[8] Payman Mohassel and Yupeng Zhang. SecureML: A system
for scalable privacy-preserving machine learning. In IEEE
S&P, 2017.

[9] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious
neural network predictions via MiniONN transformations. In
ACM CCS, 2017.

[10] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-
drakasan. GAZELLE: A low latency framework for secure
neural network inference. USENIX Security, 2018.

[11] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, Andrew Rabinovich, et al. Going deeper with
convolutions. CVPR, 2015.

[12] Vladimir Kolesnikov and Thomas Schneider. Improved gar-
bled circuit: Free XOR gates and applications. In ICALP,
2008.

[13] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz
Koushanfar. DeepSecure: Scalable provably-secure deep
learning. DAC, 2018.

[14] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin
Lauter, Michael Naehrig, and John Wernsing. CryptoNets:
Applying neural networks to encrypted data with high
throughput and accuracy. In ICML, 2016.

[15] Michael O Rabin. How to exchange secrets with oblivious
transfer. IACR Cryptology ePrint Archive, 2005:187, 2005.

[16] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.
Extending oblivious transfers efficiently. In Annual Inter-
national Cryptology Conference, pages 145–161. Springer,
2003.

[17] Donald Beaver. Correlated pseudorandomness and the com-
plexity of private computations. In STOC, 1996.

[18] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and
Michael Zohner. More efficient oblivious transfer and ex-
tensions for faster secure computation. In ACM CCS, 2013.

[19] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Binarized neural networks: Train-
ing deep neural networks with weights and activations con-
strained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[20] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. XNOR-net: Imagenet classification using
binary convolutional neural networks. In European Confer-
ence on Computer Vision, pages 525–542. Springer, 2016.

14

[21] Mohammad Ghasemzadeh, Mohammad Samragh, and Fari-
naz Koushanfar. ReBNet: Residual binarized neural net-
work. In 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM),
pages 57–64. IEEE, 2018.

[22] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate
binary convolutional neural network. In Advances in Neural
Information Processing Systems, pages 345–353, 2017.

[23] Song Han, Jeff Pool, John Tran, and William Dally. Learn-
ing both weights and connections for efficient neural network.
In Advances in neural information processing systems, pages
1135–1143, 2015.

[24] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for re-
source efficient inference. arXiv preprint arXiv:1611.06440,
2016.

[25] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul
Sharma, and Shardul Tripathi. EzPC: Programmable, ef-
ficient, and scalable secure two-party computation. IACR
Cryptology ePrint Archive, 2017/1109, 2017.

[26] Yehuda Lindell and Benny Pinkas. A proof of security of
Yao’s protocol for two-party computation. Journal of Cryp-
tology, 22(2):161–188, 2009.

[27] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model
inversion attacks that exploit confidence information and ba-
sic countermeasures. In ACM CCS. ACM, 2015.

[28] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine
learning models. In S&P. IEEE, 2017.

[29] Yehuda Lindell and Benny Pinkas. Secure two-party compu-
tation via cut-and-choose oblivious transfer. Journal of Cryp-
tology, 25(4):680–722, 2012.

[30] Yan Huang, Jonathan Katz, and David Evans. Efficient se-
cure two-party computation using symmetric cut-and-choose.
In Advances in Cryptology–CRYPTO 2013, pages 18–35.
Springer, 2013.

[31] Yehuda Lindell. Fast cut-and-choose-based protocols for
malicious and covert adversaries. Journal of Cryptology,
29(2):456–490, 2016.

[32] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and
Phillip Rogaway. Efficient garbling from a fixed-key block-
cipher. In IEEE S&P, 2013.

[33] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy pre-
serving auctions and mechanism design. In ACM Conference
on Electronic Commerce, 1999.

[34] Samee Zahur, Mike Rosulek, and David Evans. Two halves
make a whole. In EUROCRYPT, 2015.

[35] Peter Rindal. libOTe: an efficient, portable, and easy to
use Oblivious Transfer Library. https://github.com/
osu-crypto/libOTe.

[36] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza
Sadeghi, Thomas Schneider, and Farinaz Koushanfar. Tiny-
Garble: Highly compressed and scalable sequential garbled
circuits. In IEEE S&P, 2015.

[37] François Chollet et al. Keras. https://keras.io, 2015.
[38] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Re-

becca N Wright. Privacy-preserving machine learning as a
service. Proceedings on Privacy Enhancing Technologies,
2018(3):123–142, 2018.

[39] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Al-
bert Haque, and Li Fei-Fei. Faster CryptoNets: Leveraging
sparsity for real-world encrypted inference. arXiv preprint
arXiv:1811.09953, 2018.

[40] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep
learning. In ACM CCS, 2015.

[41] Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz.
Deep models under the GAN: information leakage from col-
laborative deep learning. In ACM CCS, 2017.

[42] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio
Marcedone, H Brendan McMahan, Sarvar Patel, Daniel Ra-
mage, Aaron Segal, and Karn Seth. Practical secure aggrega-
tion for privacy-preserving machine learning. In ACM CCS,
2017.

[43] M Sadegh Riazi, Bita Darvish Rouhani, and Farinaz
Koushanfar. Deep learning on private data. IEEE Security
and Privacy (S&P) Magazine., 2019.

[44] M Sadegh Riazi and Farinaz Koushanfar. Privacy-preserving
deep learning and inference. In Proceedings of the Inter-
national Conference on Computer-Aided Design, page 18.
ACM, 2018.

[45] Payman Mohassel and Peter Rindal. ABY3: a mixed protocol
framework for machine learning. In ACM CCS, 2018.

[46] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Se-
cureNN: Efficient and private neural network training, 2018.

[47] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo
Song. Secure outsourced matrix computation and application
to neural networks. In ACM CCS, 2018.

[48] Amartya Sanyal, Matt Kusner, Adria Gascon, and Varun
Kanade. TAPAS: Tricks to accelerate (encrypted) prediction
as a service. In International Conference on Machine Learn-
ing, pages 4497–4506, 2018.

[49] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimiz-
ing semi-honest secure multiparty computation for the inter-
net. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 578–590.
ACM, 2016.

[50] Zvika Brakerski. Fully homomorphic encryption without
modulus switching from classical gapsvp. In Advances in
cryptology–crypto 2012, pages 868–886. Springer, 2012.

[51] Junfeng Fan and Frederik Vercauteren. Somewhat practi-
cal fully homomorphic encryption. IACR Cryptology ePrint
Archive, 2012:144, 2012.

[52] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gor-
don Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasude-
van, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: A system for large-scale machine
learning. In Operating Systems Design and Implementation
(OSDI), 2016.

[53] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014.

[54] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

15

[55] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar,
Volodymyr Kuleshov, Mark DePristo, Katherine Chou, Claire
Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean. A guide
to deep learning in healthcare. Nature medicine, 25(1):24,
2019.

[56] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko,
Susan M Swetter, Helen M Blau, and Sebastian Thrun.
Dermatologist-level classification of skin cancer with deep
neural networks. Nature, 542(7639):115, 2017.

[57] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and
Brendan J Frey. Predicting the sequence specificities of dna-
and rna-binding proteins by deep learning. Nature biotech-
nology, 33(8):831, 2015.

[58] Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M Dai, Nis-
san Hajaj, Michaela Hardt, Peter J Liu, Xiaobing Liu, Jake
Marcus, Mimi Sun, et al. Scalable and accurate deep learning
with electronic health records. npj Digital Medicine, 1(1):18,
2018.

[59] Breast Cancer Wisconsin, accessed on 01/20/2019.
https://www.kaggle.com/uciml/
breast-cancer-wisconsin-data.

[60] Pima Indians Diabetes, accessed on 01/20/2019.
https://www.kaggle.com/uciml/
pima-indians-diabetes-database.

[61] Indian Liver Patient Records, accessed on
01/20/2019. https://www.kaggle.com/uciml/
indian-liver-patient-records.

[62] Malaria Cell Images, accessed on 01/20/2019.
https://www.kaggle.com/iarunava/
cell-images-for-detecting-malaria.

A Experimental Details
A.1 Network Trimming Examples
Table 9 and 10 summarize the trimming steps for the MNIST
and CIFAR-10 benchmarks, respectively.

Table 9: Trimming MNIST architectures.

Network Property Trimming Step Changeinitial step 1 step 2 step 3

BM1
(s=1.75)

Acc. (%) 97.63 97.59 97.28 97.02 -0.61%
Comm. (MB) 4.95 4.29 3.81 3.32 1.49× less

Lat. (ms) 158 131 114 102 1.54× faster

BM2
(s=4)

Acc. (%) 98.64 98.44 98.37 98.13 -0.51%
Comm. (MB) 38.28 28.63 24.33 15.76 2.42× less

Lat. (ms) 158 144 134 104 1.51× faster

BM3
(s=2)

Acc. (%) 99.22 99.11 98.96 99.00 -0.22%
Comm. (MB) 56.08 42.51 37.34 32.13 1.75× less

Lat. (ms) 190 165 157 146 1.3× faster

Table 10: Trimming the BC2 network for CIFAR-10.

Property Trimming Step Changeinitial step 1 step 2 step 3
Acc. (%) 82.40 82.39 82.41 81.85 -0.55%

Com. (GB) 3.38 3.05 2.76 2.60 1.30× less
Lat. (s) 7.59 6.87 6.23 5.79 1.31× faster

A.2 Accuracy, Runtime, and Communication
Runtime and communication reports are available in Ta-
ble 11 and Table 12 for MNIST and CIFAR-10 benchmarks,
respectively. The corresponding neural network architec-
tures are provided in Table 13. Entries corresponding to a
communication of more than 40GB are estimated using nu-
merical runtime models.

Table 11: Accuracy (Acc.), communication (Comm.), and
latency (Lat.) for MNIST dataset. Channel/neuron trimming
is not applied.

Arch. s Acc. (%) Comm. (MB) Lat. (s)

BM1

1 97.10 2.57 0.12
1.5 97.56 4.09 0.13
2 97.82 5.87 0.13
3 98.10 10.22 0.14
4 98.34 15.62 0.15

BM2

1 97.25 2.90 0.10
1.50 97.93 5.55 0.12

2 98.28 10.09 0.14
3 98.56 21.90 0.18
4 98.64 38.30 0.23

BM3

1 98.54 17.59 0.17
1.5 98.93 36.72 0.22
2 99.13 62.77 0.3
3 99.26 135.88 0.52
4 99.35 236.78 0.81

Table 12: Accuracy (Acc.), communication (Comm.), and
latency (Lat.) for CIFAR-10 dataset. Channel/neuron trim-
ming is not applied.

Arch. s Acc. (%) Comm. (MB) Lat. (s)

BC1

1 0.72 1.26 3.96
1.5 0.77 2.82 8.59
2 0.80 4.98 15.07
3 0.83 11.15 33.49

BC2

1 0.67 0.39 1.37
1.5 0.73 0.86 2.78
2 0.78 1.53 4.75
3 0.82 3.40 10.35

BC3

1 0.77 1.35 4.23
1.5 0.81 3.00 9.17
2 0.83 5.32 16.09
3 0.86 11.89 35.77

BC4

1 0.82 4.66 14.12
1.5 0.85 10.41 31.33
2 0.87 18.45 55.38
3 0.88 41.37 123.94

BC5

1 0.81 5.54 16.78
1.5 0.85 12.40 37.29
2 0.86 21.98 65.94
3 0.88 49.30 147.66

BC6

1 0.67 0.65 2.15
1.5 0.74 1.46 4.55
2 0.78 2.58 7.91
3 0.80 5.77 17.44

16

Table 13: Evaluated network architectures.
BM1

1 FC [input: 784, output: 128s] + BN + BA
2 FC [input: 128s, output: 128s] + BN + BA
3 FC [input: 128s, output: 10] + BN + Softmax

BM2
1 CONV [input: 28×28×1, window: 5×5, stride: 2, kernels: 5s,

output: 12×12×5s] + BN + BA
2 FC [input: 720s, output: 100s] + BN + BA
3 FC [input: 100s, output: 10] + BN + Softmax

BM3
1 CONV [input: 28×28×1, window: 5×5, stride: 1, kernels: 16s,

output: 24×24×16s] + BN + BA
2 MP [input: 24×24×16s, window: 2×2, output: 12×12×16s]
3 CONV [input: 12×12×16s, window: 5×5, stride: 1, kernels: 16s,

output: 8×8×16s] + BN + BA
4 MP [input: 8×8×16s, window: 2×2, output: 4×4×16s]
5 FC [input: 256s, output: 100s] + BN + BA
6 FC [input: 100s, output: 10] + BN + Softmax

BC1
1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 64s,

output: 30×30×64s] + BN + BA
2 CONV [input: 30×30×64s, window: 3×3, stride: 1, kernels: 64s,

output: 28×28×64s] + BN + BA
3 MP [input: 28×28×64s, window: 2×2, output: 14×14×64s]
4 CONV [input: 14×14×64s, window: 3×3, stride: 1, kernels: 64s,

output: 12×12×64s] + BN + BA
5 CONV [input: 12×12×64s, window: 3×3, stride: 1, kernels: 64s,

output: 10×10×64s] + BN + BA
6 MP [input: 10×10×64s, window: 2×2, output: 5×5×64s]
7 CONV [input: 5×5×64s, window: 3×3, stride: 1, kernels: 64s,

output: 3×3×64s] + BN + BA
8 CONV [input: 3×3×64s, window: 1×1, stride: 1, kernels: 64s,

output: 3×3×64s] + BN + BA
9 CONV [input: 3×3×64s, window: 1×1, stride: 1, kernels: 16s,

output: 3×3×16s] + BN + BA
10 FC [input: 144s, output: 10] + BN + Softmax

BC2
1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
2 CONV [input: 32×32×16s, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
3 CONV [input: 32×32×16s, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
4 MP [input: 32×32×16s, window: 2×2, output: 16×16×16s]
5 CONV [input: 16×16×16s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
6 CONV [input: 16×16×32s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
7 CONV [input: 16×16×32s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
8 MP [input: 16×16×32s, window: 2×2, output: 8×8×32s]
9 CONV [input: 8×8×32s, window: 3×3, stride: 1, kernels: 48s,

output: 6×6×48s] + BN + BA
10 CONV [input: 6×6×48s, window: 3×3, stride: 1, kernels: 48s,

output: 4×4×48s] + BN + BA
11 CONV [input: 4×4×48s, window: 3×3, stride: 1, kernels: 64s,

output: 2×2×64s] + BN + BA
12 MP [input: 2×2×64s, window: 2×2, output: 1×1×64s]
13 FC [input: 64s, output: 10] + BN + Softmax

BC3
1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
2 CONV [input: 32×32×16s, window: 3×3, stride: 1, kernels: 32s,

output: 32×32×32s] + BN + BA
3 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 32s,

output: 32×32×32s] + BN + BA
4 MP [input: 32×32×32s, window: 2×2, output: 16×16×32s]
5 CONV [input: 16×16×32s, window: 3×3, stride: 1, kernels: 48s,

output: 16×16×48s] + BN + BA
6 CONV [input: 16×16×48s, window: 3×3, stride: 1, kernels: 64s,

output: 16×16×64s] + BN + BA
7 CONV [input: 16×16×64s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
8 MP [input: 16×16×80s, window: 2×2, output: 8×8×80s]
9 CONV [input: 8×8×80s, window: 3×3, stride: 1, kernels: 96s,

output: 6×6×96s] + BN + BA
10 CONV [input: 6×6×96s, window: 3×3, stride: 1, kernels: 96s,

output: 4×4×96s] + BN + BA
11 CONV [input: 4×4×96s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
12 MP [input: 2×2×128s, window: 2×2, output: 1×1×128s]
13 FC [input: 128s, output: 10] + BN + Softmax

BC4
1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 32s,

output: 32×32×32s] + BN + BA
2 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 48s,

output: 32×32×48s] + BN + BA
3 CONV [input: 32×32×48s, window: 3×3, stride: 1, kernels: 64s,

output: 32×32×64s] + BN + BA
4 CONV [input: 32×32×64s, window: 3×3, stride: 1, kernels: 64s,

output: 32×32×64s] + BN + BA
5 MP [input: 32×32×64s, window: 2×2, output: 16×16×64s]
6 CONV [input: 16×16×64s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
7 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
8 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
9 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA

10 MP [input: 16×16×80s, window: 2×2, output: 8×8×80s]
11 CONV [input: 8×8×80s, window: 3×3, stride: 1, kernels: 128s,

output: 6×6×128s] + BN + BA
12 CONV [input: 6×6×128s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
13 CONV [input: 4×4×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
14 MP [input: 2×2×128s, window: 2×2, output: 1×1×128s]
15 FC [input: 128s, output: 10] + BN + Softmax

BC5
1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 32s,

output: 32×32×32s] + BN + BA
2 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 32s,

output: 32×32×32s] + BN + BA
3 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 32s,

output: 32×32×32s] + BN + BA
4 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 48s,

output: 32×32×48s] + BN + BA
5 CONV [input: 32×32×48s, window: 3×3, stride: 1, kernels: 48s,

output: 32×32×48s] + BN + BA
6 MP [input: 32×32×48s, window: 2×2, output: 16×16×48s]
7 CONV [input: 16×16×48s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
8 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
9 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
10 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
11 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
12 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
13 MP [input: 16×16×80s, window: 2×2, output: 8×8×80s]
14 CONV [input: 8×8×80s, window: 3×3, stride: 1, kernels: 128s,

output: 8×8×128s] + BN + BA
15 CONV [input: 8×8×128s, window: 3×3, stride: 1, kernels: 128s,

output: 8×8×128s] + BN + BA
16 CONV [input: 8×8×128s, window: 3×3, stride: 1, kernels: 128s,

output: 8×8×128s] + BN + BA
17 CONV [input: 8×8×128s, window: 3×3, stride: 1, kernels: 128s,

output: 6×6×128s] + BN + BA
18 CONV [input: 6×6×128s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
19 CONV [input: 4×4×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
20 MP [input: 2×2×128s, window: 2×2, output: 1×1×128s]
21 FC [input: 128s, output: 10] + BN + Softmax

BC6
1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
2 CONV [input: 32×32×16s, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
3 MP [input: 32×32×16s, window: 2×2, output: 16×16×16s]
4 CONV [input: 16×16×16s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
5 CONV [input: 16×16×32s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
6 MP [input: 16×16×32s, window: 2×2, output: 8×8×32s]
7 CONV [input: 8×8×32s, window: 3×3, stride: 1, kernels: 64s,

output: 8×8×64s] + BN + BA
8 CONV [input: 8×8×64s, window: 3×3, stride: 1, kernels: 64s,

output: 8×8×64s] + BN + BA
9 CONV [input: 8×8×64s, window: 3×3, stride: 1, kernels: 64s,

output: 8×8×64s] + BN + BA
10 MP [input: 8×8×64s, window: 2×2, output: 4×4×64s]
11 CONV [input: 4×4×64s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
12 CONV [input: 4×4×128s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
13 CONV [input: 4×4×128s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
14 MP [input: 4×4×128s, window: 2×2, output: 2×2×128s]
15 CONV [input: 2×2×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
16 CONV [input: 2×2×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
17 CONV [input: 2×2×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
18 MP [input: 2×2×128s, window: 2×2, output: 1×1×128s]
19 FC [input: 128s, output: 512s] + BN + BA
20 FC [input: 512s, output: 512s] + BN + BA
21 FC [input: 512s, output: 10] + BN + Softmax

BH1
1 FC [input: 30, output: 16] + BN + BA
2 FC [input: 16, output: 16] + BN + BA
3 FC [input: 16, output: 2] + BN + Softmax

BH2
1 FC [input: 8, output: 20] + BN + BA
2 FC [input: 20, output: 20] + BN + BA
3 FC [input: 20, output: 2] + BN + Softmax

BH3
1 FC [input: 10, output: 32] + BN + BA
2 FC [input: 32, output: 32] + BN + BA
3 FC [input: 32, output: 2] + BN + Softmax

BH4
1 CONV [input: 32×32×3, window: 5×5, stride: 1, kernels: 36,

output: 28×28×36] + BN + BA
2 MP [input: 28×28×36, window: 2×2, output: 14×14×36]
3 CONV [input: 14×14×36, window: 5×5, stride: 1, kernels: 36,

output: 10×10×36] + BN + BA
4 MP [input: 10×10×36, window: 2×2, output: 5×5×36]
5 FC [input: 900, output: 72] + BN + BA
6 FC [input: 72, output: 2] + BN + Softmax

17

B Attacks on Deep Neural Networks
In this section, we review three of the most important attacks
against deep neural networks that are relevant to the context
of oblivious inference [1, 27, 28]. In all three, a client-server
model is considered where the client is the adversary and at-
tempts to learn more about the model held by the server. The
client sends many inputs and receives the inference results .
He then analyzes the results to infer more information about
either the network parameters or the training data that has
been used in the training phase of the model. We briefly re-
view each attack and illustrate a simple defense mechanism
with negligible overhead based on the suggestions provided
in these works.
Model Inversion Attack [27]. In the black-box access
model of this attack (which fits the computational model of
this work), an adversarial client attempts to learn about a pro-
totypical sample of one of the classes. The client iteratively
creates an input that maximizes the confidence score corre-
sponding to the target class. Regardless of the specific train-
ing process, the attacker can learn significant information by
querying the model many times.
Model Extraction Attack [1]. In this type of attack, an ad-
versary’s goal is to estimate the parameters of the machine
learning model held by the server. For example, in a logis-
tic regression model with n parameters, the model can be
extracted by querying the server n times and upon receiv-
ing the confidence values, solving a system of n equations.
Model extraction can diminish the pay-per-prediction busi-
ness model of technology companies. Moreover, it can be
used as a pre-step towards the model inversion attack.
Membership Inference Attack [28]. The objective of this
attack is to identify whether a given input has been used in
the training phase of the model or not. This attack raises cer-
tain privacy concerns. The idea behind this attack is that the
neural networks usually perform better on the data that they
were trained on. Therefore, two inputs that belong to the
same class, one used in the training phase and one not, will
have noticeable differences in the confidence values. This
behavior is called overfitting. The attack can be mitigated
using regularization techniques that reduce the dependency
of the DL model on a single training sample. However, over-
fitting is not the only contributor to this information leakage.
Defense Mechanisms. In the prior state-of-the-art oblivi-
ous inference solution [9], it has been suggested to limit the
number of queries from a specific client to limit the informa-
tion leakage. However, in practice, an attacker can imper-
sonate himself as many different clients and circumvent this
defense mechanism. Note that all three attacks rely on the
fact that along with the inference result, the server provides
the confidence vector that specifies how likely the client’s in-
put belongs to each class. Therefore, as suggested by prior
work [1, 27, 28], it is recommended to augment a filter layer
that (i) rounds the confidence scores or (ii) selects the index

of a class that has the highest confidence score.
1. Rounding the confidence values: Rounding the values

simply means omitting one (or more) of the Least Sig-
nificant Bit (LSB) of all of the numbers in the last layer.
This operation is in fact free in GC since it means Garbler
has to avoid providing the mapping for those LSBs.

2. Reporting the class label: This operation is equivalent to
computing argmax on the last layer. For a vector of size
c where each number is represented with b bits, argmax
is translated to c · (2b+ 1) many non-XOR (AND) gates.
For example, in a typical architecture for MNIST (e.g.,
BM3) or CIFAR-10 dataset (e.g., BC1), the overhead is
1.68E-2% and 1.36E-4%, respectively.

Note that the two aforementioned defense mechanisms can
be augmented to any framework that supports non-linear
functionalities [7, 9, 13]. However, we want to emphasize
that compared to mixed-protocol solutions, this means that
another round of communication is usually needed to sup-
port the filter layer. Whereas, in XONN the filter layer does
not increase the number of rounds and has negligible over-
head compared to the overall protocol.

18

