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Abstract

We describe a somewhat homomorphic GSW-like encryption scheme, natively encrypting
matrices rather than just single elements. This scheme offers much better performance than
existing homomorphic encryption schemes for evaluating encrypted (nondeterministic) finite
automata (NFAs). Differently from GSW, we do not know how to reduce the security of this
scheme to LWE, instead we reduce it to a stronger assumption, that can be thought of as an
inhomogeneous variant of the NTRU assumption. This assumption (that we term iNTRU) may
be useful and interesting in its own right, and we examine a few of its properties. We also examine
methods to encode regular expressions as NFAs, and in particular explore a new optimization
problem, motivated by our application to encrypted NFA evaluation. In this problem, we seek
to minimize the number of states in an NFA for a given expression, subject to the constraint on
the ambiguity of the NFA.

Keywords. Finite Automata, Inhomogeneous NTRU, Homomorphic Encryption, Regular Ex-
pressions.

1 Introduction

Homomorphic encryption (HE) [39] enables computation on encrypted data even without knowing
the secret key. Ten years after Gentry described the first scheme capable of supporting arbitrary
computations [18], we now have an arsenal of several different schemes and variations, with various
capabilities and tradeoffs (see, e.g., [42, 9, 8, 31, 16, 21, 13] for a few examples).

Our original motivation for the current work is the simple example of encrypted virus scan:
consider a center that deploys many remote systems, operating in many different environments,
and wants to protect them against viruses that it knows about. The center would like to periodically
send updated virus signatures to all its systems, and have them scan their systems to check for
infections. The virus signatures, however, could be sensitive, perhaps because some of them are
not yet widely known and exposing the signatures could tip the hand of the center as it develops
countermeasures.

A plausible solution would have the center encrypt the virus signatures, the remote systems
could then perform the virus scan on the encrypted signatures, and report the (encrypted) re-
sults to the center. The center could then decrypt, and take appropriate actions when infections
are detected. As virus signatures usually take the form of many small regular expressions, this
application calls for a homomorphic encryption scheme that can quickly test for a match against
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many small regular expressions. Equivalently, it should quickly evaluate (many, encrypted) non-
deterministic finite automata (NFAs) on a given cleartext file. Notice that this is quite different
from, and incomparable to, the DFA computation problem studied in previous works on homomor-
phic encryption, like [17, 14, 15]. Specifically, nondeterminism aside, the crucial difference is that
those works consider the evaluation of a plaintext automaton on an encrypted file. In other words,
the roles of the input and the program are reversed. In our motivating application, the problem
studied in [17, 14, 15] would correspond to searching for arbitrary (possibly nonregular) patterns,
on files described by regular languages, a very unlikely scenario.

Evaluating an encrypted NFA on a cleartext string can be done by computing a product of
a single vector (representing the initial state of the NFA) by many matrices (representing the
transition matrices of the NFA associated to each input symbol). Namely the operation that we
want to support is computing

u := (

k∏
i=1

Mi)× v,

(with operations over the integers), where the matrices Mi and the vector v are encrypted.1 Most
of the HE schemes from above can be used to carry out this computation, but none of them is ideal
for the job. For practical purposes, the homomorphic schemes that offer the best performance are
either the BGV-type schemes (scale-invariant or not), or GSW-type schemes.

BGV-type schemes. These schemes have an advantage that they can use packed ciphertexts,
where each ciphertext encrypts not just one plaintext element but a vector of them, and each
ciphertext operation affects all the elements of the vector simultaneously, cf. [41]. Moreover, they
can even be made to support efficient matrix-vector operations, as was demonstrated in [22].2

However, for BGV-type schemes it is crucial to keep the computation multiplicative depth to a
minimum, which in our case means using a binary multiplication tree. But this means that we have
to use matrix-matrix multiplication3 (rather than the matrix-vector products that are computed
in the sequential procedure). This increases the total work (and hence the computation time) by a
factor equal to the dimension of these matrices — which must be substantial for security reasons.

GSW-type schemes. A major advantage of GSW-like schemes is the asymmetric noise growth,
that makes it possible to handle sequential processing of products [11]. For our purposes, it lets us
evaluate the product while performing only matrix-vector multiplications.

While “textbook GSW” can only encrypt individual elements, it is possible to adapt the
ciphertext-packing techniques from [41] also to GSW, as long as we have a priori bound on the size
of the plaintext vectors that occur in the computation. However porting the matrix-multiplication
optimizations from [22] is far from simple, and we expect significant overhead when trying to
implement it in practice.

1The initial vector v is not required to be encrypted, as it reveals no information about the automaton. However,
the intermediate vectors obtained after each matrix vector multiplication should be kept secret. So, we will need a
scheme supporting matrix-vector multiplication where both the matrix and the vector are encrypted.

2The techniques in [22] only handle multiplication of plaintext matrices by encrypted vectors, but many of these
tools can be adapted to the case of encrypted matrices.

3Technically, the nodes on the rightmost path of the tree can use matrix-vector multiplications, but this makes
hardly any difference on the efficiency of the overall computation.
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In [24], Hiromasa, Abe, and Okamoto proposed a GSW-like FHE scheme that is capable of en-
crypting square matrices and doing homomorphic matrix addition and multiplication. The HAO15
FHE scheme can be viewed as a matrix extension of the standard GSW-FHE scheme, where the
secret key S = [I| − S′] consists of a random secret matrix S′. Like in GSW [21], the decryption
invariant for a ciphertext C encrypting a message M relative to the secret key S is

S × C = M × S ×G+ E (mod q),

where E is a low-norm error and G is the “gadget matrix” from [35]. Notice that M and S are both
matrices in the matrix-FHE case, whereas in GSW M is a scalar and S is a vector. The GSW secu-
rity reduction [21] to the learning-with-errors (LWE) problem still applies to the HAO15 scheme,
except that an additional circular security assumption is required. Being able to encrypt matrices
in an atomic operation and support homomorphic matrix operations makes the HAO15 scheme
an interesting candidate to use in our application of homomorphic NFA evaluation. Moreover, as
we will show in Section 3.1, the HAO15 scheme with some modification can also encrypt vectors
and homomorphically multiply an encrypted matrix by an encrypted vector. However, the HAO15
scheme is not optimal due to overhead in the size of keys and ciphertexts. So we seek to find a
better solution that would allow us to scan longer strings with faster execution times in practice.

1.1 Our New HE Scheme

In this work we introduce a new scheme, that can be viewed as another GSW-type encryption for
matrices but with a different hardness assumption. (Alternatively, it can be viewed as a variant
of the GGH15 graded encoding [19], but with no zero-test parameter.) In addition, our scheme
can also encrypt vectors and natively support homomorphic matrix-vector multiplication. Similar
to the HAO15 scheme, the decryption invariant in our scheme for a ciphertext C ← EncS(M)
encrypting a matrix M is also S × C = MSG+E (mod q), where E is a low-norm error matrix.4

Differently from the HAO15 scheme, in our construction we assume that the key S is a square
invertible matrix, and so we can express the ciphertext as C := S−1(M × S ×G+E) mod q. As a
result, both keys and ciphertexts are smaller in our scheme.

The operations of the scheme, and the analysis of the noise development are identical to the
GSW scheme, except that here we typically cannot ensure that the plaintext size never grows, and
instead must use properties of the application to reason about the plaintext size.

When it comes to security, however, we can no longer use the GSW reduction [21] to the LWE
problem. That reduction relies heavily on the scalar M commuting with the vector S, which no
longer holds in our case. Instead, we reduce the security of this scheme to a stonger assumption,
that can be viewed as an inhomogeneous version of NTRU (or alternatively as an LWE instance
with an additional hint).

1.2 The iNTRU Hardness Assumption

Recall that in LWE, we are given two matrices A,B ∈ Zn×mq (m > n), with A a uniformly random
matrix, and need to decide if B is also a uniformly random matrix, or it is chosen as B = SA+E
with a uniform S ∈ Zn×nq and a low-norm E ∈ Zn×mq .

It is easy to see that this problem becomes easy if we are also given a trapdoor for the matrix A,
in this case it is even easy to recover the secret matrix S when B = SA+E. But what if we are given

4As we describe later, we use a slightly different variant to encrypt the vector v.
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a trapdoor for the matrix B instead? In this case we do not know of any effective distinguisher, so
we assume that the decision problem is still hard.

Once we know a trapdoor for B, we might as well consider the case where B is the gadget
matrix G (for which everyone knows a trapdoor). Namely we assume that the following decision
problem is hard:

iNTRU. As in LWE, we have the parameters n,m, q, with m > n log q and q > m. The input is
a matrix A ∈ Zn×mq , which is either uniform in Zn×mq , or is set as A := S−1(G − E) mod q (with
S ∈ Zn×nq a random invertible matrix, G the gadget matrix, and E a low-norm matrix). The goal
is to decide which is the case.

One can think of the above problem as an inhomogeneous version of NTRU, over matrices, as
follows. Recall that in the NTRU cryptosystem [25], the secret key is given by two polynomials
(or ring elements) with small coefficients f, g, and the corresponding public key is the product h =
f−1 ·g. The NTRU cryptosystem can be proved secure under the assumption that this public key h
is pseudorandom, i.e., indistinguishable from a uniformly random polynomial (or ring element) with
arbitrary coefficients. We extend this assumption as follows. First, we replace g with a sequence of
vectors g1, . . . , gk, chosen independently at random, with small coefficients. Then, the assumption is
that f−1g1, f

−1g2, . . . , f
−1gk is pseudorandom. This is a simple syntactic extension of NTRU (that

would allow, for example, the encryption of longer messages), akin to changing some parameter,
and not a qualitative change in the security assumption. Next, we add a (known, constant) “shift”,
replacing each gi with (2i−1− gi), and still requiring f−1(1− g1), f−1(2− g2), . . . , f−1(2k−1− gk) to
be indistinguishable from uniform. We call this the “inhomogeneous” NTRU assumption. Finally,
instead of working over a ring of polynomials of degree n, we replace each f, g1, . . . , gk with a
square n× n random matrix with small entries. Intuitively, moving from polynomial rings (which
are commutative) to the ring of matrices, should only make the assumption weaker, though we do
not know how to prove a formal relation between the two problems. This last problem is essentially
equivalent to the pseudorandomness of A = S−1(G−E), where E = [E0| . . . |Ek] is a random matrix
with small entries, and G = [0|I|2I| . . . |2k−1I] is a constant known matrix. In fact, putting A in
Hermite Normal Form [34] “cancels out” the S matrix, and gives a sequence of square matrices
−E−1

0 (2Ii−1Ei), corresponding to the matrix version of our inhomogeneous NTRU problem with
f = −E0 and gi = Ei.

1.3 From Regular Expression to NFAs

While our scheme directly supports the evaluation of (encrypted) NFAs, patterns (e.g., virus sig-
natures) are typically, and most conveniently, represented by regular expressions. Since the noise
growth of our homomorphic encryption scheme depends on the details of the NFA being evaluated
and its computations, the conversion of regular expressions to NFA is a critical part of our appli-
cation. In Section 5 we describe a specific conversion following the method of [12, 3] based on the
use of partial derivatives of regular expressions, which is both very elegant and efficient. Deriva-
tives of regular expressions [12] are themselves regular expressions and they are defined similarly
to formal derivatives of arithmetic expressions, e.g., da(e0 + e1) = da(e0) + da(e1) for the sum (set
union) operation, and da(e

∗) = da(e)e
∗ for exponentiation (Kleene star). Informally, when parsing

an input string according to regular expression e, the derivative da(e) represents the part of the
input to be expected after reading a first symbol “a”. A regular expression e can be converted
into an automaton with states labeled by derivatives (modulo a natural equivalence relation on
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regular expressions), and transitions of the form e
a→ da(e). A classical result of Brzozowski [12]

shows that this produces an automaton with a finite number of states, and, in fact, the minimal
DFA of the regular expression. As our homomorphic encryption scheme supports the evaluation
of nondeterministic automata, we are interested in the conversion of regular expressions to NFAs,
which are potentially much smaller than the equivalent minimal DFA. However, optimizing NFAs
in our application is far from trivial. To start with, in stark contrast to the DFA case, minimizing
the number of states of an NFA is a PSPACE-complete problem. Moreover, due to noise growth,
minimizing the number of states may not even be the right goal for our homomorphic encryption
application. We address the first issue by using the partial derivative construction of [3], where a
partial derivative ∂a(e) maps an expression e to a set of regular expressions (representing possi-
ble nondeterministic choices), and in particular ∂a(e0 + e1) = ∂a(e0) ∪ ∂a(e1). This construction
results in NFAs that, while not necessarily minimal, have a very small number of states, bounded
by the number of alphabet symbols in the input regular expression. In order to bound the noise
growth, we show that a simple optimization of the homomorphic NFA evaluation procedure5 allows
to relate the noise growth to the degree of ambiguity of the NFA, a standard quantity studied in
automata theory, which can be evaluated in polynomial time [44]. We reduce the problem of finding
an optimal noise to a variant of NFA minimization problem with bounded ambiguity. Although
solving this optimization problem is hard in general, we use techniques of determining ambiguity in
Section 5 to explore some tradeoffs between automata size and degree of ambiguity/noise growth.

1.4 Implementation and Performance

We implemented our scheme in C++ using the Number Theory Library (NTL) and describe its
details in Section 6. Despite being a simple implementation without optimizations, the on-line
pattern matching was exceptionally fast. For example, we could homomorphically match a 65536
bit string in 409 seconds on an encrypted NFA with 1024 states of size 59Mb. Using the same set
of parameters, we estimate that an HAO15 implementation can only match up to 16000 bits with
a slower execution time and a bigger program size.

1.5 Related Work

As already mentioned, the problem of homomorphically evaluating finite automata or branching
programs has been considered before [11, 17, 14, 15], but in a very different context, where the
branching program or automaton are publicly known, and the computation is performed homo-
morphically on an encrypted input string. This is motivated, for example, by applications to FHE
bootstrapping, where the program is specified by the publicly known decryption/refreshing proce-
dure, and the input in the (encrypted) secret key. In our setting, the role of the program and input
are reversed, and we want the computation to be homomorphic on the automaton, rather than
the input string. In the case of general computation, program and input are easily interchanged
using a universal Turing machine. But in the case of restricted models of computation, like finite
automata, swapping the program and the input results in a completely different problem.

On the relation with other matrix-FHE schemes. As we mentioned earlier, the HAO15 [24]
FHE scheme is also capable of encrypting square matrices and doing homomorphic matrix addition

5Namely, one can let the initial state vector v be an “errorless” encryption, because the initial state does not
reveal any information about the rest of the automaton.
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and multiplication on ciphertexts. In the private-key version of their scheme, the secrete key is
S = [Ir| − S′] for a secret matrix S′, and a matrix M ∈ Zr×r is encrypted as

C =

(
S′A+ E

A

)
+

(
MS

0

)
×G mod q,

where A← Zn×Nq , E ← χr×N for N = (n+ r) dlog qe.
It may be tempting to claim that our scheme is the same as the HAO15 scheme due to having the

same decryption invariant SC = MSG + E. However, these two schemes are not quite identical.
The relation between them is very similar to the relation between NTRU and RLWE Regev-
like schemes6, where the difference is that the secret key S is a small square matrix for NTRU
(representing multiply-by-s in the ring), whereas the secret key is S = [I|S′] in RLWE (where S′

represents multiply-by-s′ in the ring). Notice that, instead of the Regev invariant, both the HAO15
scheme and our scheme use the GSW-like invariant SC = MSG+ E for a small noise matrix E.

More specifically, in our scheme the secret key S is a small square matrix that must be invertible,
while in HAO15 we have S = [I| − S′] where S′ can be any random matrix. Consider the “leveled
versions” of the HAO15 scheme and our scheme, in which the secret key matrices S0, S1, . . . , SL
are generated such that Si is used to encrypt the matrices in level i of the computation. In both
schemes it holds that

SiCi = MSi+1G+ Ei.

The security of the HAO15 scheme can be reduced to the standard LWE assumption, while our
scheme relies on the NTRU-like assumption that we introduce. On the other hand, our scheme
is more efficient: we encrypt a matrix M ∈ Zr×rq in a ciphertext matrix of dimension max(r, λ),
whereas the HAO15 scheme requires a dimension r + λ ciphertext matrix. One can view our
scheme as an NTRU-like variant of the HAO15 scheme (or perhaps an NTRU-like variant of the
GSW scheme). From that viewpoint, we introduce in this work the assumption that lets us adapt
NTRU to get a GSW-like scheme.

When applied to homomorphically evaluating NFAs, the efficiency advantage of our scheme
is more significant. Note that the HAO15 scheme can be used to do homomorphic matrix-vector
multiplication as well. But, since we rely on an NTRU-like assumption, the noise bound in our
scheme is smaller than the noise bound in the HAO15 scheme, which allows us to homomorphi-
cally evaluate longer strings with the same lattice parameters. In terms of the complexity of the
homomorphic computation on encrypted NFAs, our scheme runs faster than the HAO15 scheme
in practice due to smaller ciphertexts. For more detailed performance comparison, we refer the
readers to Appendix C.

Recently, Wang et. al. [43] proposed another matrix-FHE scheme, similar to [8], that has
smaller ciphertexts than the HAO15 scheme and can be reduced to the standard LWE assumption.
We note that it is possible to perform homomorphic matrix-vector multiplication in their scheme.
However, their scheme relies heavily on tensor product to perform homomorphic multiplication, so
the security and the complexity of applying their scheme to homomorphic NFA computation is at
least on the same level as the HAO15 scheme.

6Consider writing both NTRU and RLWE-Regev in matrix form, representing ring elements by their matrices: In
both NTRU and RLWE-Regev we have a ciphertext matrix C encrypting a plaintext matrix M relative to the secret
matrix S (and plaintext space mod p) if SC = M + pE mod q.
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2 Preliminaries

2.1 Leftover Hash Lemma

A distribution D over a finite set X is ε-uniform if its statistical distance from the uniform distri-
bution is at most ε, where the statistical difference between two distributions D1,D2 over a finite
domain X is 1

2

∑
x∈X |D1(x) − D2(x)|. We denote by x ← D drawing x from the distribution D,

and for a set X we denote by x ← X drawing x uniformly at random from X. A distribution D
over X has min-entropy k if maxx∈X D(x) = 2−k. A family H of hash functions from X to Y (with
Y a finite set) is said to be 2-universal if for all distinct x, x′ ∈ X, Prh←H[h(x) = h(x′)] = 1/|Y |.

Lemma 2.1. (Leftover Hash Lemma [23]). Let H be a family of 2-universal hash functions from
X to Y , and let D be a distribution over X with min-entropy k. Suppose that h ← H and x ← D
are chosen independently, then, (h, h(x)) is (1

2

√
|Y |/2k)-uniform over H× Y .

In this work we apply Lemma 2.1 to the hashing family H : Zmq → Znq defined by

H = {hA(v) = Av mod q}A∈Zn×m
q

,

(which is clearly 2-universal). In particular we use the following corollary:

Corollary 2.2. Fix the integers k, n,m,m′, q, and let D1,D2, . . . ,Dm be independent distributions
over Zmq , all with min-entropy at least k. Let D be a distribution over matrices R ∈ Zm×m′q , where
the i’th column is drawn from Di. Then the distribution

{(A,AR mod q) : A← Zn×mq , R← D}

is (m
′

2

√
qn/2k)-uniform over Zn×mq × Zn×m′q .

2.2 Gadget Lattice Sampling

Definitions We consider the norm of a matrix as the length of its longest column in the l2 norm.
A lattice Λ is a discrete subgroup of Rn (we only consider full-rank, integer lattices). It can be
represented by a basis B ∈ Zn×n where the lattice is the set of all integer combinations of B’s
columns. Let G = [I|2I| · · · |2l−1I] ∈ Zn×nlq where l = dlog2(q)e. The G-lattice for a fixed modulus

q is Λ⊥q (G) = {x ∈ Znl : Gx mod q = 0}. The distribution sampled over Λ⊥q (G) and its integer
cosets is the discrete gaussian, a gaussian distribution conditioned on being in the lattice. The
probability a sample equals some lattice coset vector y is proportional to exp(−π‖y‖2/s2) where
s > 0 is the width of the gaussian (we are only concerned with 0-centered distributions). Denote
a discrete gaussian of width s on a lattice coset Λ + c as DΛ+c,s. We can efficiently sample from
DΛ⊥q (G)+v,s for any q ≥ 2 and s ≥

√
5 ln(2nl + 4)/π (Theorem 4.1 [35] and Lemma 2.3 [10]). We

denote G−1(v) as a discrete gaussian vector y such that Gy = v mod q. Further, we assume the
width is set just above twice the smoothing parameter (defined below) of the G-lattice.

Concentration and min-entropy. The smoothing parameter [36] of a lattice is needed for our
purposes, and it is denoted as ηε(Λ) for an ε > 0. Informally, this is the smallest width for which a
discrete gaussian shares many properties of the continuous gaussian distribution. If B is a basis with
minimum Gram-Schmidt norm, we can bound the smoothing parameter ηε(Λ) ≤ ‖B̃‖ω(

√
log n) for

negligible ε(n) = n−ω(1) [20]. Discrete gaussian samples’ l2 norms are bounded by their width as
follows.
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Lemma 2.3. (Lemma 1.5 [5]) Let Λ ⊂ Rn be a lattice, r ≥ ηε(Λ) for some ε ∈ (0, 1), and c ∈ Rn.
Then,

Pr(‖DΛ+c,r ≥ r
√
n‖) ≤ 2−n ·

(
1 + ε

1− ε

)
.

Therefore, we can efficiently sample a discrete gaussianG−1(·) with length less than Õ(
√
n log q)7

with overwhelming probability, and assume G−1(·)’s support is Znlq . Since we will be using the
leftover hash lemma on discrete gaussian input, we will use the following lemma on the min-entropy
of a discrete gaussian.

Lemma 2.4. (Lemma 2.11 [37]) Let Λ + v ⊂ Rn be a lattice coset, c > 0, and s ≥ 21+cηε(Λ) for
ε ∈ (0, 1). Then for any y ∈ Λ + v and for an x sampled from DΛ+v,s,

Pr(x = y) ≤ 2−n(1+c)

(
1 + ε

1− ε

)
.

Leftover Hash Lemma with G−1(·). Let m = nl, now we can replace the distributions Di
in Corollary 2.2 with independent discrete gaussian samples G−1(v) (with potential repeats in
the coset vector v). Let R ← G−1(X) in Corollary 2.2 for some X ∈ Zn×m′q with R’s columns
sampled independently. Then by the lemmas above, the min-entropy a column of R is at least
n(1 + c) log q − 2 whenever G−1(·)’s width is just above twice ηε(Λ

⊥
q (G)) for any ε ∈ (0, 1/2]. Say

we let c = logq(2) in Lemma 2.4. This implies the distribution

{(A,AR mod q) : A← Zn×mq , R← G−1(X)}

is O(m′2−n/2)-uniform for any X ∈ Zm×m′q .

3 The Schemes

Given an NFA M of r states over a finite alphabet Σ, we denote by Mσ ∈ {0, 1}r×r the transition
matrix of M for each input symbol σ ∈ Σ, and let v ∈ {0, 1}r be the vector representing the
initial states. To check if a string w ∈ Σ∗ is accepted by M, we simply check whether there are
any non-zero entries in the vector (

∏1
i=kMwi) × v that corresponds to final states. So we need a

scheme that can compute matrix-vector multiplication homomorphically over encrypted matrices
and vectors.

3.1 The HAO15 matrix-FHE scheme [24]

The FHE scheme from [24] can be extended to support homomorphic matrix-vector multiplication.
We first recall the private-key version of the HAO15 scheme, and we then slightly extend it for
vector encryption and homomorphic matrix-vector multiplication. For a given security parameter
λ, choose lattice parameters n,m, q and a noise distribution χ over Zq. Let ` = dlog qe, m =
(n + r) log q, and N = (n + r)`. Here we describe a leveled version of the HAO15 scheme that
supports multiplication depth up to k ≥ 1. We abuse notation and have G = [I|2I| · · · |2l−1] in this
subsection.

7Õ(·) hides poly-logarithmic factors in n.

8



Key generation. In HAO15, the secret key for level i ≥ 0 is set to ski := Si = [Ir| − S′i], where
Ai ← Zn×mq and S′i ← χr×n.

Matrix encryption. Given a plaintext matrix M ∈ Zr×rq and a level i ≥ 0, to encrypt it for the
i-th level of computation, the HAO15 scheme outputs

C := HAO.MatEncski(M) =

(
S′iA

′ + E

A′

)
+

(
MSi−1

0n×(n+r)

)
G mod q,

where A′ ← Zn×Nq and E ← χr×N . For i = 0, we consider S−1 = [Ir|0r×n]. Notice that C ∈
Z(r+n)×N
q . The decryption procedure is exactly the same as in [24], but we skip it as it is not

needed in our application.

Vector encryption and decryption. For a vector v ∈ Zrq, we can follow the same idea as in
the matrix encryption procedure, except that we do not multiply v by S nor G. We always encrypt
a vector using the secret key for the first level:

c := HAO.VecEncsk0(v) =

(
S′0a + e

a

)
+

(
v

0n

)
mod q,

where a ← Znq and e ← χr. The ciphertext vector has dimension r + n. To decrypt a ciphertext
vector c from the i-th level of a computation, output the vector

v′ := HAO.VecDecski(c) = dSicc2 .

Homomorphic operations. To add and multiply two ciphertext matrices C1 and C2, we fol-
low [24]: HAO.Add(C1, C2) = C1 + C2, and HAO.Mul(C1, C2) = C1 × G−1(C2). To multiply a
ciphertext matrix C by an encrypted vector c, output

HAO.Mul(C,v) := C ×G−1(c).

The security of this extended scheme can be proved in the same way as in [24], reducing to
the standard DLWEn,m,q,χ hardness assumption. It is easy to check that, if C is an encryption of
M ∈ {0, 1}r×r for level i and c is an encryption of v of level i−1, then Si×(C×G−1(c)) = Mv+e′ for
some low norm error vector e′. More generally, for any Mi ∈ {0, 1}r×r for i = 1, . . . , k and v ∈ Zrq,
if Ci ← MatEncski(Mi) with an error matrix Ei for each i, c0 ← VecEncsk0(v) with an error vector
e, and ci ← HAO.Mul(Ci, ci−1) for i = 1, . . . , k, then Sk × ck = (

∏1
j=kMj)v + ek where

ek = EkG
−1(ck−1) +

k∑
i=2

(
i∏

j=k

Mj)Ei−1G
−1(ci−2) + (

1∏
j=k

Mj)e.

The l∞ norm of ek can be bounded by

‖ek‖∞ ≤ χN(1 + k max
1≤i≤k

‖
i∏

j=k

Mj‖∞).

To successfully decrypt ck, we require ‖ek‖∞ ≤ q/8 as in [24].
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3.2 Our new matrix-HE scheme

To achieve sufficient level of security and a desired capability of homomorphic NFA evaluation, we
may need to use a large lattice dimension n in practice. The above extension of the HAO15 scheme
seems to be suboptimal with an overhead n in ciphertext dimension. In this section we describe a
new matrix homomorphic encryption scheme that supports atomic matrix and vector encryption
and matrix-vector multiplication. Our scheme is more efficient in practical applications.

Fix integer parameters n,m, q (to be determined later) and an error distribution χ over Zq that
outputs with high probability integers of magnitude � q. For our application we use two variants
of (private-key) encryption, one for matrices and the other for vectors. Both variants share a noise-
sampling procedure, that takes as input the secret key and another vector (that comes from the
plaintext) and outputs a noise vector for use in the encryption (which may be different than just
sampling from χ). We denote this procedure by e← NoiseSamp(sk,v), and will describe it later in
this section.

Key generation. We draw two matrices using χ, a square matrix S ∈ χn×n and a rectangular
E ∈ χn×m (which is only used in the NoiseSamp procedure). We insist that S is invertible, and
re-sample if it is not (which happens with a small probability ≈ 1/q). The secret key is sk = (S,E).

The NoiseSamp procedure. To prove semantic security of our encryption method, we need a
somewhat convoluted procedure for sampling the noise. Specifically, the procedure NoiseSamp((S,E),v)
begins by sampling r← G−1(v), then outputs e := E × r mod q.

Basic “encryption” transformation. Underlying both the vector and matrix encryption pro-
cedure, is the following “encryption” procedure (in quotes, since it does not have a matching
decryption procedure). Given the secret key sk = (S,E) and a vector v ∈ Znq , we draw a noise
vector e← NoiseSamp(sk,v), then output the “ciphertext”

c := Enc∗sk(v) = S−1(v + e).

We remark that the low-order bits of v are lost in this transformation, due the added noise. Still,
the “ciphertext” satisfies the property that Sc ≈ v, up to the low-norm noise vector e.

Later in the paper we prove that the procedure above provides semantic security for v, under
the inhomogeneous NTRU hardness assumption.

Vector encryption and decryption. As with Regev encryption [38], to convert the above to
real encryption we just need to multiply v by a large enough scalar δ so that ‖e‖∞ < δ with high
probability. Let b be an upper bound on the `∞ norm of vectors that can be dealt with (which
depends on the application), we assume that b� q and set δ := bq/bc.

To encrypt a vector v ∈ Znb we just set c := VecEncsk(v) = Enc∗sk(δ · v). To decrypt we set
u := S × c = δ · v + e (mod q), then decode each entry of u to the nearest multiple of δ. Namely,
we decrypt as

v := VecDecsk(c) =

⌈
b · (S × c mod q)

q

⌋
.
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Matrix encryption and decryption. Matrix encryption is similar, except that instead of just
multiplying by a large scalar, we use the GSW technique of redundant encoding using G.

The “native plaintext space” consists of square matrices M ∈ Zn×nq . To encrypt M we first
compute M ′ = M ×G mod q and let m′j be the j’th column of M ′ (j = 1, . . . ,m). Then we set

cj := Enc∗sk(m
′
j), and C := MatEncsk(M) = [c1|c2| . . . |cm].

Note that the ciphertext C has the form C = S−1 × (MG+E′), where E′ is the low-norm matrix
consisting of all the noise vectors that were drawn inside of Enc∗sk. In other words, the property
that this ciphertext satisfies is S × C ≈M ×G, up to the low-norm error matrix E′.

In our application we never need to decrypt matrices, but note that we could compute U :=
S×C = MG+E′ (mod q), and then recover M from U (since E′ is low norm and G is the gadget
matrix that has a known trapdoor).

3.3 A Leveled NFA-Homomorphic Scheme

Computing a single product chain. To enable homomorphic computation of a product of
k matrices by a vector, (

∏k−1
i=0 Mi) × v, we choose k + 1 secret keys as above, ski = (Si, Ei),

i = 0, 1, . . . , k. We then encrypt the vector v under the last key skk, and for i < k we use ski to
encrypt the matrix M ′i = Mi × Si+1. In other words, we prepare the ciphertexts

c = S−1
k × (δv + e) mod q, and Ci = S−1

i × (MiSi+1G+ Ei) mod q, i = 0, 1, . . . , k − 1,

where the noise vectors/matrices are all low-norm. To perform the homomorphic computation, we
initialize ck := c, and then repeatedly set

ci−1 := Ci−1 ×G−1(ci) mod q,

outputting the final vector ciphertext c0. We now show (by induction) that for every i, the vector
ciphertext ci is a valid encryption of the plaintext vector vi = (

∏k−1
j=i Mj) × v under the key ski.

This holds by definition for vk = v, so we now assume that it holds for i and show for i − 1. By
assumption we have

ci = S−1
i × (δvi + ei),

for some low-norm noise vector ei. Hence we get

ci−1 = Ci−1 ×G−1(ci) = S−1
i−1 × (Mi−1SiG+ Ei−1)×G−1(ci)

= S−1
i−1 ×

(
Mi−1Si × ci + Ei−1 ×G−1(ci)

)
= S−1

i−1 ×
(
Mi−1Si × S−1

i × (δvi + ei) + Ei−1 ×G−1(ci)
)

= S−1
i−1 ×

(
Mi−1(δvi + ei) + Ei−1 ×G−1(ci)

)
= S−1

i−1 ×
(
δMi−1vi︸ ︷︷ ︸

vi−1

+Mi−1ei + Ei−1 ×G−1(ci)︸ ︷︷ ︸
ei−1

)
.

Since ei, Ei−1, and G−1(ci) are all low norm, then ei−1 will be low norm as long as Mi−1 is. We
conclude that c0 = S−1

0 (δv0 + e0) (mod q), where the noise term is

e0 =
( k−1∏
j=0

Mj

)
e +

k−2∑
i=0

( i∏
j=0

Mj

)
Ei+1G

−1(ci+2) + E0G
−1(c) (mod q). (1)

Hence as long as all the products
∏i
j=0Mj have low norm, the final noise term e0 will also have

low norm.
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Encrypting and evaluating an NFA. To be able to evaluate this NFA on strings of up to k sym-

bols, we set the parameters so that δ = bq/bc is sufficiently larger than maxw∈Σ≤k ‖
∏|w|
i=0Mwi‖∞,

then choose k + 1 secret keys ski, i = 0, . . . , k. We encrypt the vectors v under skk, and encrypt
each of the matrices Mσ under all the other keys. Namely we set

c = VecEncskk(v), and Cσ,i = MatEncski(MσSi+1), i = 0, 1, . . . , k − 1.

Clearly this method provides semantic security for the NFA, so long as the basic “encryption”
transformation from above is semantically secure.

To evaluate the encrypted NFA on a k-symbol string σ1σ2 . . . σk, we apply the chain-product
procedure from above to evaluate homomorphically the product (

∏1
i=kMσi) × v. Namely we set

c′k = c and then c′i−1 = Cσk−i+1,i−1 × G−1(c′i). At the end of the evaluation, we decrypt the final
ciphertext c′0 to u = VecDecsk0(c′0) and check if the computation is accepting.

Circular Security for Better Efficiency. As usual, we can improve efficiency by assuming
circular security of the encryption. Namely, instead of choosing all the secret keys independently,
we choose just a single secret key and use it everywhere. This means that we only need the
ciphertexts

c = S−1 × (δv + e), and Cσ = S−1 × (MσSG+ Eσ) for each σ ∈ Σ.

3.4 The Parameters

To determine the parameters that are needed for certain NFA (or a class of NFAs) on k-symbol
strings, we first need an upper bound on the size of the plaintext, specifically

Bptxt ≥ max
w∈Σ≤k

‖
|w|∏
i=0

Mwi‖∞.

(See Section 5 for methods of converting regular expressions to NFAs while keeping this bound
small.) Once we have the bound Bptxt, we use it to compute a high probability bound on the
expression

B∗ ≥ ‖Bptxt · e + k ·Bptxt · E ×G−1(c)‖,

where e, E are noise terms that are output by the NoiseSamp procedure. This value B∗ bounds
with high probability the size of the noise that we can get when evaluating the NFA, and so we
need to choose q > B∗ ·Bptxt (since our plaintext can be as large as Bptxt).

At the same time, we need to set n large enough relative to q to ensure the required security
level (say q < 2n/λ), and m > O(n log q) (since we rely on the leftover hash lemma). As usual with
lattice-based systems, there is a weak circular dependence between these constraints, but it is not
hard to find values that satisfy them all.

4 Security Analysis

Below we define (two variants of) the inhomogeneous NTRU problem, one over a ring and one
over integer matrices. We describe some properties of this problem, and show that hardness of the
matrix variant implies the security of our encryption scheme.
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4.1 Inhomogeneous NTRU

We begin with the ring variant of our hardness assumption. Fix a ring R, a modulus q, and an
error distribution χ over R, producing with overwhelming probability elements with norm� q and
−χ = χ. Denoting ` = dlog qe, the iNTRU distribution with these parameters is defined as follows:

iNTRU =


draw s← R/qR, and ei ← χ, for i = 0, . . . , `,
set a0 := e0/s mod q,
and ai := (2i−1 − ei)/s mod q for i = 1, . . . , `,

output (a0, . . . , a`−1)

 . (2)

The inhomogeneous NTRU problem is to distinguish between this distribution and the uniform
distribution over (R/qR)`.

In the matrix variant of this assumption, the ring elements s, ei are replaced by n-by-n integer
matrices, and the ai’s are similarly replaced with matrices A0 := S−1×E0, Ai := S−1×(2iI−Ei). In
matrix notation, letm′ = n(`+1) andG′ be the gadget matrix8 G′ = [0|I|2I|4I|, . . . |2`−1I] ∈ Zn×m′ ,
and let χ be a distribution over Z, producing with overwhelming probability integers of magnitude
� q. The matrix-iNTRU distribution (MiNTRU) with these parameters is defined as follows:

MiNTRU =

{
draw S ← Zn×nq , and E′ ← χn×m

′
,

output A′ := S−1 × (G′ − E′) mod q

}
. (3)

As before, the hardness assumption says that MiNTRU is pseudorandom, namely that the matrix
A′ is indistinguishable from a matrix uniform in Zn×m′q .

4.1.1 Small-Secret Inhomogeneous NTRU

Similarly to LWE, here too we can prove that the Inhomogeneous NTRU problem remains hard
even when the secret is chosen from the error distribution. We lose a little on parameters in the
conversion, specifically the extra block at the beginning of G′. With the parameters n,m′, q, χ as
above, let m = n dlog qe = m′ − n, and G = [I|2I|4I|, . . . |2`−1I] ∈ Zn×m. The matrix iNTRU
distribution with small secret is as follows:

MiNTRUs =

{
draw S ← χn×n, and E ← χn×m,

output A := S−1 × (G− E) mod q

}
. (4)

Lemma 4.1. For the parameters n,m,m′, q, χ as above, if MiNTRU is pseudorandom in Zn×m′q ,
then MiNTRUs is pseudorandom in Zn×mq .

Proof. (sketch) We show that if we could distinguish MiNTRUs from random then we could also
distinguish MiNTRU from random. Given a MiNTRU instance that we want to distinguish, A′ =
[A′0|A′1| . . . |A′`] (with A′i ∈ Zn×nq ), we set

Ai = A′
−1
0 ×A′i mod q for i = 1, . . . , `,

(aborting if A′0 is not invertible), then run the MiNTRUs distinguisher on A = [A1|A2| . . . |A`].
Observe that if A′ is uniform then so is A, and if A′ is chosen from the MiNTRU distribution then

Ai = A′0
−1 ×A′i = −E′−1

0 × S × S−1 × (2i−1I − E′i) = −E′−1
0 × (2i−1I − E′i),

for i = 1, . . . , ` as needed.
8We use a slightly larger gadget matrix than usual, with an extra first block. The reason will become clear when

we prove Lemma 4.1 below.
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4.2 Security Reduction

We next show that pseudorandomness of MiNTRUs (or equivalently MiNTRU) with some error
distribution χ, implies the semantic security of our scheme with a related error distribution (but
not quite the same). Specifically, let n,m, q, χ be the parameters of the MiNTRUs distribution
above. For a fixed pair of matrices E, Y ∈ Zn×mq , consider the distribution

ψ[E, Y ] = {R← G−1(Y ), output E ×R mod q}.

In the provable version of our scheme, the secret key includes the square invertible matrix S ← χn×n,
and in addition a fixed error matrix E ← χn×m, and we use the error distribution ψ[E,M × G]
when encrypting a matrix M ∈ Zn×nq . Namely we draw a sample R ← G−1(MG) ∈ Zm×mq , then
output the ciphertext C := S−1 × (MG− ER) mod q.

Proposition 4.2. If MiNTRUs is pseudorandom, then our encryption scheme using the error
distribution ψ[E,M ×G] is semantically secure.

Proof. (sketch) We use the “real-or-random” formulation of semantic security for secret-key en-
cryption [6]. Namely, we have a challenger that chooses a secret key S ← χn×n, E ← χn×m and
a bit σ, then the adversary repeatedly chooses messages Mi ∈ Zn×nq and sends to the challenger,
who replies either with a uniformly random Ci ∈ Zn×mq if σ = 0, or with Ci := S−1× (MiG+Ei) if
σ = 1, where Ei ← ψ[E,MiG]. The adversary eventually outputs a guess σ′ for σ, and is considered
successful if σ′ = σ with probability significantly larger than 1/2.

We show that an adversary Adv with a noticeable advantage ε can be transformed into a
distinguisher between MiNTRUs and uniform, with advantage close to ε. The distinguisher D
receives as input an instance of MiNTRUs, A ∈ Zn×mq , and it interacts with the adversary Adv as
follows:

When receiving a matrix Mi from Adv, the distinguisher D draws a sample R ← G−1(MiG),
and replies with the “ciphertext” C := AR mod q. When Adv eventually outputs a guess σ′, the
distinguisher D outputs the same guess. We next show that the distinguishing advantage of D is
very close to ε.

If A was a uniform matrix in Zn×mq then each Ci = A × G−1(something) mod q is statistically
close to uniform in Zn×mq and independent of A, by the leftover hash lemma. On the other hand,
if A = S−1 × (G− E), then we have

Ci = A×G−1(MiG) = S−1 ×
(
G×G−1(MiG)− E ×G−1(MiG)

)
= S−1 ×

(
MiG− E ×G−1(MiG)

)
,

which is identical to the distribution of the encryption scheme.

5 Converting Regular Expressions to Automata

In real world applications, regular languages or finite automata are often represented by regular
expressions, which have a very compact form and are convenient to store. So it is important for
our scheme to be useful when NFAs are specified using regular expressions. In this section we
present an efficient method to convert regular expressions to NFAs of relatively small sizes, and we
discuss how to find a suitable NFA to bound the noise growth. We assume the reader has some
familiarity with regular languages, regular expressions, and finite automata. See Appendix A for
basic notation and definitions.
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Partial derivatives and NFAs Let Σ be a finite alphabet, and RE be the set of all regular
expressions over Σ. We consider the basic operations such as union (“+”), concatenation (“·”),
and Kleene star (“∗”) on regular expressions. To convert a regular expression to a NFA, we start
with Antimirov’s partial derivative construction [3], which is an elegant extension of Brzozowski’s
derivative construction [12] to NFAs. For any symbol a ∈ Σ, the partial derivative of e w.r.t. a,
denoted as ∂a(e), is a set of regular expressions defined inductively as

∂a(ε) = ∅, ∂a(e0 + e1) = ∂a(e0) ∪ ∂a(e1), ∂a(e
∗) = ∂a(e)e

∗

∂a(ai) =

{
{ε} if ai = a
∅ otherwise

∂a(e0 · e1) =

{
∂a(e0)e1 ∪ ∂a(e1) if ε ∈ L(e0)
∂a(e0)e1 otherwise

where e, e0, e1 range over RE. The partial derivative of e w.r.t. any string is ∂ε(e) = {e} and
∂ua(e) =

⋃
{∂a(f) | f ∈ ∂u(e)} where u ∈ Σ∗ and a ∈ Σ. A regular expression e′ is a partial

derivative term of e if e′ is an element of ∂w(e) for some w ∈ Σ∗.

Definition 1 (Partial derivative NFA). For any regular expression e, the partial derivative NFA
of e is MPD(e) = (Q,Σ, δ, QI , QF ), where Q = ∂(e), QI = {e}, QF = {e′ ∈ ∂(e) | ε ∈ L(e′)}, and
for any e′ ∈ Q and a ∈ Σ, δ(e′, a) = ∂a(e

′).

Remark. It was shown in [3] that, the set ∂(e) of all partial derivative terms of e is a finite set
(with respect to syntactic equality on regular expressions). In fact, |∂(e)| ≤ n + 1 where n is the
number of occurrences of alphabet symbols in e.

The language of e satisfies L(e) =
⋃
a∈Σ a · ∂a(e). It follows that the language accepted by

MPD(e) is exactly L(e).

Ambiguity measure As will be shown later, when evaluating an encrypted NFA on a string,
the noise growth is closely related to the amount of nondeterministic choices of the NFA. Here
we describe some notions that characterize this quantity. Let M = (Q,Σ, δ, QI , QF ) be a NFA.
For any string w = w1 · · ·wk where w1, . . . , wk ∈ Σ, a path of w from state s to state t is a finite
sequence of states s = si0 , si1 , . . . , sik = t such that sij ∈ δ(sij−1 , wj) for all 1 ≤ j ≤ k. A path
is accepting if s ∈ QI and t ∈ QF . The degree of ambiguity of M , denoted as da(M,k), is the
maximal number of accepting paths for a string of length k. If da(M,k) ≤ 1 for all k > 0, then
we say M is unambiguous.9 Clearly da(M,k) ≤ |Q|k+1. We say that M is finitely ambiguous if
sup{da(M,k) | k ≥ 0} <∞, and M is infinitely ambiguous otherwise. To upper bound the quantity
da(M,k) using a function of k, we can define the degree of growth of ambiguity of M , denoted as
deg(M), to be the minimal degree of a polynomial h(·) such that da(M,k) ≤ h(k) for all k ≥ 0. If
no such polynomial exists, we simply set deg(M) = ∞. Note that M is finitely ambiguous if and
only if deg(M) = 0. It was shown in [44] that deg(M) can be computed in time O(n6|Σ|) for any
NFA M with n states.

On optimizing NFA For our application of evaluating encrypted NFA, an optimal NFA should
be such that its encryption can be correctly evaluated on as many strings as possible. Concretely,
we want to find a NFA such that the noise term at the end of evaluation is small enough for a

9Notice that a DFA M has da(M,k) ≤ 1 for all k ≥ 0, but the converse is not necessarily true. An NFA can have
multiple nondeterministic choices at every state but still satisfies da(M,k) ≤ 1, in such cases at most one of these
choices could lead to a final state.
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successful decryption. As we assume the first state will be the only initial state in all our NFAs,
we can encrypt the initial state vector with no noise. As a result, we obtain the following bounds
on the noise due to homomorphic evaluation of NFAs, which can be bounded using the ambiguity
measures of M .

Proposition 5.1. For any n ≥ 1, if M is an NFA with n states s1, . . . , sn, and w a string of
length k, the noise vector e at the end of homomorphic evaluation of encrypted M on w satisfies
the following bounds:

• If M is finitely ambiguous, then ‖e(k)‖∞ ≤ bn2kχ logb q.

• If M is infinitely ambiguous, then ‖e(k)‖∞ ≤ bnkdeg(M)+1χ logb q.

Notice that both the number of states and the degree of ambiguity contribute to the bound on
the noise growth. To find a small noise growth for the general case of processing an arbitrary long
input string, we can try to solve the following optimization problem on NFA minimization with
bounded ambiguity.

Definition 2 (NFA Minimization with Bounded Ambiguity Problem). For a given NFA of n states
and a function N : N→ N, find an equivalent NFA M with a minimal number of states such that
da(M,k) ≤ N(k) for all k ≥ 1.

A closely related problem is to find a minimal NFA M with a given bound on deg(M). Con-
versely, we can consider a similar minimization problem of finding an NFA M with minimal deg(M)
when given a regular expression and a bound on the number of states. These problems seem to
be hard in general as evidenced by several exponential separation results in automata theory, and
we briefly mention a few. It was shown in [29] that, for each n > 0, there exists a NFA of n
states such that the minimal equivalent NFA M ′ of bounded deg(M ′)10 have 2n− 1 states. With a
more strict bound on the ambiguity, it was known [27] that there exist NFAs of n states such that

the equivalent finitely ambiguous NFAs have at least 2Ω(n1/3) states. A more tractable problem of
finding a minimal unambiguous NFA is NP-complete [28, 7].

On the other hand, unambiguous NFAs can have much smaller size than equivalent DFAs. A
well-known example is the language Ln = (a+ b)∗a(a+ b)n−2 for any n ≥ 2: its partial derivative
NFA has n states and is unambiguous, but its minimal equivalent DFA requires 2n−1 states [33].
The exponential upper bound 2n can actually be met: it was shown in [30] that there exists a series
{Mn}n≥1 of unambiguous NFAs such that Mn has n states but the minimal equivalent DFA of Mn

has 2n states. Notice that, if the size of the given regular expression is small, the bound on the size
of the noise is dominated by the degree of ambiguity, which is same for unambiguous NFAs and
DFAs. So we can exploit the fact that our scheme supports homomorphic encryption of NFAs and
try to find a small unambiguous NFA, which can be more efficient than encrypting DFAs.

A particular useful class of NFA’s is the pattern matching languages L = Σ∗KΣ∗ where K is
a finite set of strings, called the pattern. One can check using the criterion in [44] that the partial
derivative NFA for such a language is unambiguous, but its minimal equivalent DFA may have
2n states and such upper bound is tight, where n is the length of the regular expression for K.
Even if K can be specificied using a DFA of m states, the minimal equivalent DFA of L may still
have 2m−2 + 1 states. As our scheme supports encryption of NFAs, pattern matching on encrypted
patterns can be much more efficient than previous approaches via DFAs.

10Note that deg(M ′) is bounded if and only if da(M ′, k) is at most a polynomial in k for all k > 0.
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6 Implementation and Performance

Description This section describes a proof of concept implementation of our scheme on short
inputs in C++ using the NTL library (version 10.5.0) for a power of two modulus, q, on an Intel
i7-2600 3.4 GHz CPU. The implementation is naive in that it only uses NTL’s native functionality
with no further optimizations. It can be done in a few hundred lines of code and a few days’
programming effort. There are many opportunities for optimization since the code was written for
simplicity and not efficiency. Despite this, we noticed exceptionally fast evaluation times as listed
in Table 1

We conducted tests on N -state NFA’s accepting the string-matching languages (a + b)∗a(a +
b)N−1 with low ambiguity, for some N smaller than the lattice dimention n. Notice that the
equivalent minimal DFA’s have 2N−1 states. We set lattice parameters to n = 1024 and q = 242.
We kept the modulus both as a power of two and as a power of b in order to take advantage
of bit-shifting instead of multiplications and divisions modulo q. In the experiments, we pad the
transition matrices to n-dimensional matrices by adding transitions from nonreachable states to
final states to increase ambiguity, and hence we effectively obtain an n-state NFA. The strings
scanned were randomly generated. At the end of each scan, our code checked for any decryption
errors. We observed no decryption errors nor noise overflow. The experiment results for N = 11
are listed in Table 1, where time was measured using C++’s “time.h” library.

The noise matrices Ei ∈ Zn×nq and the secret keys S ∈ Zn×nq were chosen as uniformly random
binary matrices with the latter being invertible modulo q. We used NTL’s pseudorandom number
generator “Random ZZ” for all random matrices.

Program Size and the NFA Minimization with Bounded Ambiguity Problem Consider
the case where the NFA has infinite ambiguity, but bounded degree of growth of ambiguity. Then,
‖e(m)‖∞ ≤ bnmdeg(M)+1χ logb q as discussed in the previous section. By setting the modulus just
above the error growth, we see that the bit length of the modulus is linear in deg(M) + 1. Now
as we view total memory for the encrypted NFA, n2|Σ| log2(q) logb(q) bits, we see that efficiency is
quadratic in NFA’s number of states and quadratic in the degree of growth of ambiguity (though we
have some control over logb(q) by choosing a large base b). This gives us an exact relation between
the number of states, the NFA’s ambiguity, and performance.

MiNTRUs can be cryptanalyzed by NTRU attacks like dimension reduction [32] and the hybrid
attack [26] for key recovery. Therefore, we use the uSVP attack to estimate the time for a key
recovery attack as in [1] and set the LWE noise parameter as α =

√
2n/q in the on-line LWE bit

security estimator11. Rough estimates for the bit-securities in the 750, and 1024-state settings are
80 bits of security, and 100 bits of security respectively.

Potential Optimizations One potential optimization is parallelization through the unused
states. Say we must evaluate a long string (10000 bits) but only use a 100 state NFA. Then,
we can evaluate ten such NFAs in parallel by setting the transition matrix for character a ∈ Σ as
the block diagonal matrix with the blocks as the smaller transition matrices in the small parameter
setting. The total number of states must stay above a few hundred for this corresponds to the
lattice dimension of the underlying lattice problem.

11https://bitbucket.org/malb/lwe-estimator
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States (n) and Input Length (4N) NFA Enc. Time Matching Enc. NFA RAM used

1024 states and 256 bit S.L. 16.35 sec 1.53 sec 66Mb 172Mb

1024 states and 512 bit S.L. 16.66 sec 3.34 sec 66Mb 172Mb

1024 states and 1024 bit S.L. 16.53 sec 6.63 sec 66Mb 172Mb

1024 states and 16384 bit S.L. 16.76 sec 98.97 sec 66Mb 172Mb

1024 states and 65536 bit S.L. 16.42 sec 394.47 sec 66Mb 172Mb

Table 1: Running times for each function along with memory. “NFA Enc. Time” is the time to
encrypt an NFA with n states, “Matching” is the time to evaluate an encrypted NFA on an input
of N characters, “Enc. NFA” is the memory storage for the encrypted NFA, and the last column
measures the total RAM used during encryption, evaluation, and decryption. Total RAM usage
was measured with the “sys/resource.h” library in unix.

Let G = In ⊗ gt for gt = (1, b, · · · , blogb(q)−1) as in [35]. We expect to see smaller noise growth
via a randomized bit decomposition for the decomposition of the encrypted state vector, as used in
[2]. This can be done with a simple tweak to Babai’s nearest plane algorithm [4] on the G-matrix’s
null lattice Λ⊥q (G) = {x ∈ Zm : Gx = 0 mod q} and its cosets.
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A Definitions on Regular Expressions and NFA

We recall some standard definitions about regular languages and finite automata [45]. Let Σ be a
finite alphabet, and Σ∗ the free monoid generated by Σ. A string w is an element of Σ∗, which can
be written as a finite sequence of symbols w = w1w2 · · ·wk where w1, . . . , wk ∈ Σ, and its length is
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|w| = k. The empty string is denoted by ε, which is the neutral element of Σ∗. The concatenation
of two strings u = u1 · · ·um and v = v1 · · · vn is a string uv = u1 · · ·umv1 · · · vn. A language over Σ
is a subset of Σ∗. For any languages L and K, we consider the following regular operations: (union)
L ∪K, (product) LK = {uv | u ∈ L, v ∈ K}, and (Kleene star) L∗ = ∪i≥0L

i, where L0 = {ε}, and
Li = LLi−1 for i > 0. Regular languages are the smallest class of languages containing the basic
languages ∅, {ε}, and {ai} for all ai ∈ Σ that are closed under regular operations.

A nondeterministic finite automaton (NFA) over Σ is a quintuple M = (Q,Σ, δ, QI , QF ), where
Q = {s1, . . . , sn} is a finite set of states, δ : Q × Σ → ℘(Q) is a transition function, QI ⊆ Q is
the set of initial states, and QF ⊆ Q is the set of final states. We can extend δ to a function
δ : Q× Σ∗ → ℘(Q) over strings in the natural way. Without loss of generality, we assume that all
our NFAs have a single initial state s1. A string w ∈ Σ∗ is accepted by a NFA M if δ(s1, w)∩QF 6= ∅.
The set of all the strings accepted by a NFA M is called the language of M , and it is denoted by
L(M). A deterministic finite automaton (DFA) is a NFA such that δ(s, ai) is a singleton set for all
s ∈ Q and ai ∈ Σ, and |QI | = 1.

A regular expression over Σ is a formal expression generated by the following grammar rules:

RE→ ε | ai | (RE + RE) | (RE · RE) | (RE)∗,

where ai ranges over Σ. The operator ∗ takes the highest precedence, followed by ·, and then by
+. The parentheses can be omitted when there is no ambiguity. The operator · is usually omitted
as well, and concatenations can be written as juxtapositions of regular expressions. For a regular
expression e, its language L(e) can be defined inductively as follows:

L(ε) = {ε}, L(ai) = {ai},
L(e0 + e1) = L(e0) ∪ L(e1), L(e0 · e1) = {uv | u ∈ L(e0), v ∈ L(e1)},
L(e∗) = ∪i≥0L(e)i,

where ai ranges over Σ, and e0, e1 are regular expressions. For any set R of regular expressions, let
L(R) = ∪e∈RL(e). It is well known that the languages defined by regular expressions are exactly
the regular languages, which are exactly the languages accepted by finite automata.

For any sets R, T of regular expressions, we write RT for the set of regular expressions

RT = {e · f | e ∈ R, f ∈ T},

and we write Re = {f · e | f ∈ R} and eR = {e · f | f ∈ R}; in particular, ∅T = R∅ = ∅e = e∅ = ∅.

B Proofs

In this section we present proofs that are omitted in the main paper.

Proof of Proposition 5.1. Let M = (Q,Σ, δ, {s1}, QF ) be an NFA with n states s1, . . . , sn. For any
t ∈ Q let Mt = (Q,Σ, δ, Q, {t}) be the NFA obtained from M by setting all states to be initial and
t the only final state. Notice that da(Mt, `) is an upper bound on the total number of paths in M
on a string of length ` from any state to t.
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Let Q = {s1, . . . , sn} be the set of states of M , and let w = w1 · · ·wk. For all 1 ≤ i ≤ k, the
encrypted state vector q(i) after reading wi is:

q(i) =

logb q∑
j=0

Cwi,jq
(i−1)
j = βS−1Vwi · · ·Vw1v + S−1(Vwie

(i−1) +

logb q∑
j=0

Ewi,jq
(i−1)
j ),

where e(i−1) is the noise term after reading the previous symbol wi−1. As in our assumption, s1

is always the sole initial state in M , we can set the initial noise e(0) = 0 without leaking any
additional information about the NFA M . By expanding all the noise terms, we get

e(k) =
k∑
`=2

Vwk
· · ·Vw`

logb q∑
j=0

Ew`−1,jq
(`−2)
j +

logb q∑
j=0

Ewk,jq
(k−1)
j . (5)

Notice that, for any symbol a ∈ Σ, the (t, s)-th entry of Va is 1 if t ∈ δ(s, a) and it is 0 otherwise.
So the (t, s)-th entry of the product Vwi · · ·Vw`

counts the number of paths from s to t on the string
w` · · ·wi, where 1 ≤ ` ≤ i. Let 1 be the vector whose entries are all 1. Then the t-th entry of the
vector Vwi · · ·Vw`

1 counts the total number of paths from an arbitrary state to t on this string,
which is at most da(Mt, i− `+ 1). Thus we have

‖Vwk
· · ·Vw`

logb q∑
j=0

Ew`−1,jq
(`−2)
j ‖∞ ≤ bnχ logb q ·max

t∈Q
{da(Mt, k − `+ 1)}.

It follows that the final noise vector e(k) can be bounded by

‖e(k)‖∞ ≤ bnχ logb q ·
k−1∑
`=1

max
t∈Q
{da(Mt, `)}+ bnχ logb q (6)

If M is finitely ambiguous, then for all s, t ∈ Q, the number of paths of w from s to t is at
most 1 [44]. So da(Mt, `) ≤ n for all t ∈ Q and ` ≥ 0, and e(k) can be bounded by

‖e(k)‖∞ ≤ bkn2χ logb q.

For the case where M is infinitely ambiguous, notice that da(Mt, `) ≤ `deg(M) for all ` ≥ 1, and
we have

‖e(k)‖∞ ≤ bχ logb q
k−1∑
`=1

`deg(M) + bχ logb q

≤ bnkdeg(M)+1χ logb q

C Performance comparisons with HAO15

In this section we present a brief analysis of applying the matrix-FHE scheme of HAO15 [24] to
the case of homomorphic evaluation of NFA.
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Fix a NFA M of r states and with an alphabet Σ, and let Mσ ∈ {0, 1}r×r for σ ∈ Σ be its
transition matrices on symbol σ. Recall the “leveled version” of the HAO15 scheme as described in
Section 3.1. To encrypt M for homomorphic evaluation on any string of length at most k, we let
the key generation procedure sample k + 1 random matrices S′i ← χr×n and sets the secret key for
level i to be Si = [Ir| − S′i] for 0 ≤ i ≤ k. For each σ ∈ Σ, encrypt Mσ with all keys Si for i ∈ [k]:

Cσ,i =

(
S′iAσ,i + Eσ,i

Aσ,i

)
+

(
MSi−1

0

)
×G mod q,

where N = (n + r) dlog qe, Aσ,i ← Zn×Nq , Eσ,i ← χr×N . We also encrypt the initial state vector
v = (1, 0, . . . , 0)t in a ciphertext c ∈ Zn+r

q :

c =

(
S′0a + e

a

)
+
(v

0

)
mod q,

for a uniformly random vector a← Znq and a noise vector e← χr.
To evaluate the NFA, let c0 = c, and let ci = Cwi,i � ci−1 = Cwi,i × G−1(ci−1). Then each

ciphertext ci satisfies Sici = (
∏1
j=iMwj )× v + ei for some noise vector ei. The final ciphertext is

ck with a noise vector ek as follows:

ek = Ewk,kG
−1(ck−1) +

k∑
i=2

(
i∏

j=k

Mwj )Ewi−1,i−1G
−1(ci−2) + (

1∏
j=k

Mwj )e.

The l∞ norm of ek can be bounded by

‖ek‖∞ ≤ χN + χN

k∑
`=2

da(M, `) + χda(M,k),

which must be bounded away from q/4.
For performance comparison, consider two cases of the ambiguity measures of M :

• M is finitely ambiguous: We have da(M, `) ≤ r for all 1 ≤ ` ≤ k, so w.h.p.

‖E‖∞ ≤ αq(n+ r)(kr + 1) log q,

where α =
√

2n/q is the LWE noise parameter. Thus, in the HAO15 scheme we can homo-
morphically evaluate M on strings of length k ≤ 1

α(n+r)r log q . For example, assuming at least
100 bit of security is needed, for a NFA of 10 states on strings of length up to 1000, we must
choose n = 750 and q = 234, and for a NFA of 1000 states on strings of length up to 1000,
we need n = 1024 and q = 242. On the other hand, using our scheme we can evaluate M
on strings of length k ≤ q

b2nχr logb q
. So, using our scheme with the above sets of parameters,

we can homomorphically evaluate a NFA of 10 states on strings of length up to 8000 in the
former case, and we can evaluate a NFA of 1000 states on strings of length up to 12000 in
the latter case.

• M is infinitely ambiguous: We have da(M, `) ≤ `deg(M), so w.h.p.

‖E‖∞ ≤ αq(n+ r) log q · (
k∑
`=1

`deg(M) + 1) ≤ αq(n+ r) log qkdeg(M)+1
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Using the same parameters as the above to achieve at least 100 bit of security, and assuming
that deg(M) = 2 for the NFA M , we can homomorphically evaluate strings of length up to
25 in the HAO15 scheme, whereas we can homomorphically evaluate strings of length up to
55 in our scheme.

Moreover, the computational complexity of k homomorphic matrix multiplications, assuming
naive matrix-vector multiplication of complexity O(n2), is O(k(r + n)2 log q). On the other hand,
the complexity of our homomorphic evaluation procedure is O(kn2 log q).

D Hardness of MiNTRU from LWE with a Trapdoor

Here we prove the reduction alluded to in Section 1.2. We define a trapdoor oracle for an arbitrary
matrix B ∈ Zn×mq as an oracle which takes as input B, a vector v ∈ Znq , and outputs a discrete
Gaussian integer vector x ∈ Zm conditioned on Bx mod q = v. Repeated calls to the oracle are
assumed to use independent random coins. Further, we assume the oracle’s distribution samples
above the smoothing parameter of

Λ⊥q (B) = {x ∈ Zm : Bx = 0 mod q}

for a uniformly random B, for some negligible functon ε(n). In general, the smoothing parameter
of Λ⊥q (B) is just above the smoothing parameter of Zm, for some negiligible ε(n), when m > n log q,
[35, Lemma 2.4].

Let n-secret LWE define the distribution

{(A,B = SA+ E) : A← Zn×mq , S ← Zn×nq , E ← χn×m}

for some distribution χ. Next, we show the pseudorandomness of MiNTRU follows from the n-secret
LWE distribution with a trapdoor oracle for B. Let G ∈ Zn×m′q be any formulation of the gadget

matrix. (G = [0|2I| · · · |2log q−1I] ∈ Zn×n(log q+1)
q in the MiNTRU definition.)

Proposition D.1. Let n ∈ N, q < 2poly(n), χ be a distribution over Zq, m ≥ n log q, and m′ be
the number of columns in the G-matrix. Further, let q = ω(

√
m). Then, the pseudorandomness

MiNTRU with error distribution χn×m ·B−1(G) follows from the pseudorandomness n-secret LWE
with a oracle for B.

Proof. Given (A,B), we call the orcale m′ times to get X ← B−1(G). Then we return AX mod q.
Notice when (A,B) are generated uniformly and independently, then AX mod q is negligibly close
to uniformly random by the LHL, along with Lemmas 2.3 and 2.4. Conversely, we have S−1 ∈ Zn×nq

exists with high probability and A = S−1(B −E) mod q when (A,B) are sampled as the n-secret
LWE distribution. Therefore,

AB−1(G) = S−1(G− EB−1(G)) = S−1(G− E′) mod q.

Remark. There is an identical reduction reducing n-secret LWE with a trapdoor with small secrets
to MiNTRUs.

25


	Introduction
	Our New HE Scheme
	The iNTRU Hardness Assumption
	From Regular Expression to NFAs
	Implementation and Performance
	Related Work

	Preliminaries
	Leftover Hash Lemma
	Gadget Lattice Sampling

	The Schemes
	The HAO15 matrix-FHE scheme DBLP:conf/pkc/HiromasaAO15
	Our new matrix-HE scheme
	A Leveled NFA-Homomorphic Scheme
	The Parameters

	Security Analysis
	Inhomogeneous NTRU
	Small-Secret Inhomogeneous NTRU

	Security Reduction

	Converting Regular Expressions to Automata
	Implementation and Performance
	Definitions on Regular Expressions and NFA
	Proofs
	Performance comparisons with HAO15
	Hardness of MiNTRU from LWE with a Trapdoor

