LucidiTEE: Policy-based Fair Computing at Scale

Rohit Sinha
Visa Research
rohit.sinha@visa.com

Abstract—In light of widespread misuse of personal data, we
enable users to control the sharing and use of their data, even
when offline, by binding that data to policies. A policy specifies
the allowed function, conditions guarding the execution (based
on the history of all prior computations on that data), and
identities of the input providers and output recipients. For this
level of control, we aim for a compute system that ensures policy
compliance to the input providers, and fairness (i.e., either all
or no party gets the output) to the output recipients, without
requiring these parties to trust each other or the compute host.

Recently, trusted execution environments (TEEs), such as
Intel SGX and Sanctum enclaves, are finding applications in
outsourced computing on sensitive data. However, since TEEs are
at the mercy of an untrusted host for storage and network com-
munication, they are incapable of enforcing history-dependent
policies or fairness. For instance, against a user’s wish that
only an aggregate function over her entire data is revealed, an
adversarial host can repeatedly evaluate that aggregate function
on different subsets of her dataset, and learn the individual
records. The adversary may also collude and deliver the output
only to a subset of the output recipients, thus violating fairness.

This paper presents LUCidiTEE, the first system to enable
multiple parties to jointly compute on large-scale private data,
while guaranteeing that the aforementioned policies are enforced
even when the input providers are offline, and guaranteeing
fairness to all output recipients. To that end, LucidiTEE develops
a set of novel protocols between a network of TEEs and a shared,
append-only ledger. LUCIdITEE uses the ledger only to enforce
policies; it does not store inputs, outputs, or state on the ledger,
nor does it duplicate execution amongst the participants, which
allows it to scale to large data and large number of parties.

We demonstrate several policy-based applications including
personal finance, federated machine learning, fair n-party infor-
mation exchange, and private set intersection for medical records.

Index Terms—Privacy, Policy, Fairness, TEE, Blockchain

I. INTRODUCTION

Modern web services pose a growing public concern regard-
ing their lack of transparency in how they manage sensitive
user data. Aside from privacy policies specified in legalese,
users have little insight, let alone control, on how their data
is used or shared with third parties. It is not surprising that
(unbeknownst to the users) their sensitive data is proliferated,
misused, and at times lost to attackers in security breaches.

This work explores a way to govern the processing and
sharing of private user data. We study this problem in a general
setting where a stateful computation is performed on inputs
provided by one or more mutually distrusting parties, who
may be offline during the computation and also do not trust the
compute provider. Since inputs may be used at various steps of
a computation, the offline users need a system for enforcing

Sivanarayana Gaddam
Visa
sgaddam@visa.com

Ranjit Kumaresan
Visa Research
rkumaresan @visa.com

a policy, which specifies: 1) what function is evaluated, 2)
whether the evaluation is legal (via a logical condition that
depends on the computation’s history), and 3) the crypto-
graphic identities of all parties that provide inputs and receive
the outputs. The compute system must automatically enforce
policy compliance, in a publicly verifiable way. In addition, for
many applications [1], we stress that the compute system must
ensure fairness (i.e., either all or no parties get the output).

While protocols for multi-party computation [2], [3] ensure
that only the agreed-upon function over the inputs is revealed,
they require users to be online (or trust one or more third
parties to execute the protocol on the user’s behalf). Alter-
natively, recent blockchain platforms for privacy-preserving
smart contracts (e.g. Hawk [4], Ekiden [5]) do not naturally
allow users to be offline (i.e., inputs cannot be reused across
computations without manual interaction), nor scale due to
on-chain replication of data and computation. Another alter-
native is to perform the computation within trusted execution
environments (TEEs), which obviates any interaction after the
parties provision their inputs to the TEE; in addition to con-
fidentiality and integrity, TEEs implement remote attestation
to generate a publicly verifiable proof that the agreed-upon
function is (or will be later) performed. Prior works that have
this general design include Ryoan [6], VC3 [7], etc.

Since offline users cannot manually approve each step of a
computation, the system must automatically enforce policies
on how inputs are used. This is beyond the capability of
TEEs alone, due to their inherent inability to protect I/O —
an adversarial OS (controlled by the compute provider) can
rollback the persistent storage and tamper with the network
communication. For instance, against a user’s wish that only
an aggregate function over her dataset is revealed, an adversary
can repeatedly evaluate the aggregate function on different
subsets of her dataset, and infer information about individual
records. Based on this observation, we stress the need for
history-dependent policies, where compliance is determined
with respect to the computation’s history, with the associated
requirement that each computation is logged before revealing
the output. Furthermore, since the OS may deliver the output
only to a subset of colluding parties, we need a protocol to
ensure fair output delivery, even when all parties are malicious.

To that end, LucidiTEE makes the following contributions:
o definition and construction of a multi-party system for con-

current, stateful computations, with enforcement of history-

based policies for offline parties and fairness for all output
recipients, in a threat model with arbitrary corruptions.

Merchant ID Date

Amount

Alice Bank A

52544965 2014-06-03

13:37 PM g2ty

User’s
TX Data

2014-06-29
20:49 PM

12144989 $48.12

¢

Merchant Report

ID

Category

52544965 Restaurants
Acme’s
Proprietary

Data

12144989 Gas Stations

Bank B

Fig. 1: Privacy-enabled Personal Finance Application

« protocol for fair n-party information exchange, requiring a
shared, append-only ledger and n — 1 parties to own TEEs.
« scalable system that uses the ledger to only enforce policies;
by not replicating data or computation on-chain, we address
scalability challenges of related blockchain-based systems.

II. OVERVIEW OF LUcidiTEE
A. Motivating Example: Private Personal Finance

The open banking initiative [8] has fostered a variety of
third-party financial applications, such as Mint. However, by
getting access to raw transaction data, these third party ap-
plications pose major concerns of potential breaches and data
misuse, as there is lack of (publicly verifiable) transparency on
the sharing, use, and retention of this data. While there exists
an extreme option to not sign up for any third-party services,
LucidiTEE seeks to provide a realistic tradeoff for end users.

Figure 1 illustrates our setting. The user’s data consists
of a set of transaction records sorted by time, where each
record contains several sensitive fields such as the merchant
id, the amount spent, and the timestamp. This data can be
provided by the bank on behalf of the user (through OAuth-
based OFX API [8], for instance), or imported manually by
the user. Consider a fictitious financial application, Acme,
that maintains a proprietary database mapping merchant ids
to category labels, and uses it to provide a service for viewing
aggregate spending behavior (i.e., the proportion of spending
across categories for all transactions in that month). To per-
form this joint computation (denoted by the function f), Acme
hosts the users’ transaction data, and is inevitably trusted by
its users to adhere to a privacy policy specified in legalese.

From here on, we discuss a privacy-enabled version of
Acme, and a compute system needed by such an application.
We iterate on some strawman designs, thus successively mo-
tivating the various building blocks used within LucidiTEE.

Privacy

A privacy-seeking user, Alice, wishes for Acme to only
learn the output of function f, and nothing else about her

input (such as her spending profile at daily granularity or the
location patterns). This forms Alice’s privacy requirement. For
this reason, f cannot be evaluated by sharing Alice’s data
with Acme, or vice versa as Acme also wishes to maintain
secrecy of its proprietary database. In this setting, privacy
subsumes correctness in that f must be correctly evaluated
lest the computation reveal extra information about the private
inputs — note that f is assumed to be safely written, so we
only concern ourselves with executing f as given.

To achieve privacy in this 2-party setting (i.e., without a
trusted 3rd party), we introduce our first building block: an
ideal functionality for secure function evaluation, implemented
using secure multi-party computation (MPC) [2], [3] or hard-
ware enclaves [9], [10]. As we see later, To allow participants
to go offline, we use hardware enclaves (relying on sealing and
attestation primitives) instead of interactive MPC protocols.
In this case, the trusted processor is hosted by a compute
provider, such as Acme or a cloud provider. As a first step, one
may start with this strawman design: upon verifying (using
remote attestation) that the enclave implements the genuine
function f, Alice provisions her input to that enclave over a
TLS channel [11], which produces an output encrypted under
Alice’s and Acme’s public keys, and requests the host software
to deliver it to them. In the rest of this section, we refine
this strawman to support offline participation (which mandates
some form of policy enforcement) and fair output delivery.

Offline Participation

In practice, a computation may occur at a later point
when Alice is offline, and we cannot expect her to manually
provision the input or approve the evaluation of f. Instead,
Alice wishes to let Acme compute the approved function f
over her transactions — similarly, since Acme’s input is a large
database comprising millions of merchants, it wishes to not re-
transmit the database for each evaluation of f, for each user
that it services. To summarize, we must enable participants to
go offline after providing their inputs, yet enforce policies on
how they are used within stateful, multi-step computation.

To that end, we refine our strawman solution. Instead of
requiring Alice to provision her input during the evaluation
of f, she (or her bank) provisions transaction records a-priori
(rather, streamed to Acme as they are processed by the bank)
over an attested TLS channel [12] to an enclave implementing
f; Acme also provisions its database to that enclave. The
enclave encrypts these records using a sealing key [12] before
storing them on untrusted storage, with the hardware-backed
guarantee that only that same enclave program can later access
the sealing key to decrypt the records (see § III). At a later
time (e.g. end of the month), Acme launches this enclave
program to evaluate f over all transactions from that month.
This refined scheme provides the same privacy guarantee as
the earlier scheme, which needed all participants to be online.

History-based Policies

While this strawman ensures that Alice’s input is only used
for f, we show that this policy alone does not ensure privacy.

The enclave’s host software (e.g. the host application, OS,
etc.) is controlled by an untrusted party, who may launch
multiple instances of the enclave and rollback the persistent
storage. Even though the strawman restricts the attacker to
evaluate only f on Alice’s data, the attacker may repeat
the computation with progressively smaller subsets of Alice’s
transaction data from that month — note that each of these
computations is independently legal since it evaluates f on
an input containing Alice’s transactions that are timestamped
to the same calendar month. By observing the delta between
pairs of output reports, the attacker recovers the category and
amount of each transaction, and learns Alice’s spending at a
finer granularity'. Furthermore, when computing with random-
ness, the attacker uses a similar technique to learn secret inputs
or bias outputs. Thus, we strengthen our strawman solution
with history-based policies, which check whether an evaluation
is legal with respect to that computation’s entire history.

To that end, we introduce a second building block: an
append-only ledger, shared between Alice and Acme. The
ledger fulfills a dual purpose. First, a protocol forces the
compute provider to record the enclave’s evaluation of f on the
ledger to extract the output — for each function evaluation, the
ledger contains digests of the encrypted inputs (along with any
random bits), outputs, and intermediate state. Second, we use
this ledger to enforce a history-based policy ¢ all transaction
records within the input must be signed by Alice, have the
same calendar month, and must be fresh (i.e. they have never
been consumed by a prior evaluation of f). In general, we
find use of history-based policies in applications that 1) use
a privacy budget (e.g. differentially private databases, where
the policy ensures freshness of the application’s state), and 2)
read prior inputs (e.g. authorization logics [13], where access
control is determined by prior statements made by the users).

Stateful Computation amongst Multiple Parties

We wish to enable concurrent, (multi-step) stateful com-
putations amongst arbitrary sets of parties. This gives rise to
a computation (directed, acyclic) graph containing evaluation
of various functions, with inputs and outputs belonging to
multiple users. A user may use the output of a function f as
an input to another function f’, where f and f’ may receive
additional inputs from other users — we call this compute
chaining. For example, upon entering a domestic partnership
with Bob, Alice requests Acme for a cumulative monthly
report over both their transactions. To that end, we extend
the shared ledger between Alice and Acme to include Bob as
well. In general, to enable arbitrary groups of users to engage
in unforeseen computation, we allow our shared ledger to be
universally accessible (based on the set of allowed users), and
common to all concurrent computations.

lAlthough additional metadata, such as authenticated batches of inputs, can
remedy this attack, Alice’s data may be used for other Acme services, and
the privacy budget may be expressed collectively over all the computations.
Moreover, the application-specific metadata may not be provided by all banks.
2While ¢ may be inlined within f, we find that it is worthwhile distin-
guishing the two functions, as ¢ depends on the ledger whereas f does not.

Fairness

To receive lucrative mortgage plans, Alice and Bob wish to
have their reports sent automatically to chosen banks; so, in
addition to privacy, they seek a fairness guarantee: if any party
gets the output, then all honest parties must get the output. In
a malicious setting, we can rewrite this as follows: all or none
of the parties must get the output. Note that since parties must
be online to receive outputs, a computation may specify the
output recipients to be disjoint from the set of input providers.

Alice and Bob specify the output recipients to be Acme,
Bank A and Bank B, all of whom get the output — since
Alice wishes to remain offline, then she must trust one of
these parties to present her output in the future (this can be
Acme, who is incentivized to retain Alice as a user). Despite
malicious behavior, such as collusion between Acme and Bank
A, we must guarantee that all output recipients get the output.

As mentioned earlier, we must not trust the enclave’s host
software, as it is under Acme’s control. Since all network
communication is proxied via the host software, an enclave
cannot ensure that a message is sent over the network — in
that sense, an enclave must assume lossy links, which makes
reliable message delivery impossible [14]. As a result, fairness
cannot be guaranteed using enclaves alone. Therefore, we
develop a novel protocol (between a set of enclaves and the
shared ledger) to ensure fair delivery to all output recipients.

B. Personal Finance on LUCidiTEE

LucidiTEE implements a set of protocols (between enclaves
and a shared ledger) that ensure fair, policy-compliant com-
putation. It uses a shared ledger to record each computation’s
specification (which lists f and ¢), and record each function
evaluation within each (stateful) computation. Additionally, as
we will see later, LUCIAITEE uses various types of enclaves,
each fulfilling a distinct role in a computation’s life. This sub-
section illustrates the main ideas using the Acme application.

Managing Computations in LUCIAiTEE

Alice and Acme agree to the following computation:

computation {
id: 525600, /# unique id #*/
in: [("txs":vk_Alice), ("db":vk_Acme) 1,
out: [("rprt":[pk_Acme,pk_BankA,pk_BankB])],
policy: Oxcoff..eeee /% Vr € txs. fresh(r) */
func: 0x1337...c0de, /% aggregate function #*/

Any party may add this computation’s specification to the
shared ledger. The id field is a 64-bit value that uniquely
identifies this computation on LUCidiTEE. The in field lists
a set of named inputs, along with the public key of the input
provider (who is expected to sign those inputs). Similarly, the
out field lists a set of named outputs, where each output has
one or more recipients (the output will be encrypted under their
public keys). The input and output data structures can have one
of several types: file, list, key-value store, etc. The func field
uniquely identifies the function f using the hash measurement

of the enclave program implementing f. In our example, f is
evaluated over the inputs txs and db (and does not take the
ledger as input). Finally, we specify the guard ¢ within the
field policy. Similar to func, policy is specified by the
hash measurement of the enclave program implementing the
predicate ¢. In our example, ¢ encodes the freshness property
that no transaction within txs has been consumed by a prior
evaluation of f. Unlike f, ¢ takes the entire ledger as input.

Each computation is bound to a unique specification, and
it progresses via a potentially unbounded sequence of stateful
evaluations of f guarded by ¢. A computation is said to be
compliant if all constituent steps use the function f (with mea-
surement func) and satisfy ¢ (with measurement policy).

Binding Inputs to Computations

Alice must first protect her input such that only policy-
compliant computations are performed on it. That is, Alice
must encrypt her input txs such that it is only decrypted
within an enclave to perform a computation based on a
specification with desired id. To that end, she chooses a
key k to encrypt txs, and uploads the encrypted data to
an untrusted storage (e.g. Acme’s server or a cloud storage
service). Next, she provisions k and the computation’s id
over a TLS channel terminating within a key manager enclave
on LUCIdiTEE (see Figure 2), who then seals the key and
stores it locally. Note that Alice’s bank, should it provide
the functionality, can also perform these steps on her behalf.
The key manager enclave’s logic only reveals £ to an enclave
operating on a computation of the same id.

Invoking Computation

Acme provisions a TEE machine, and downloads Alice’s
and Acme’s encrypted inputs onto the machine’s local storage
— this expense may be amortized across function evaluations
within a computation, and across several computations. Next,
Acme must convince an enclave that the requested function
on Alice’s inputs is compliant, which requires checking: 1)
the computation’s specification exists on the ledger and has
not been revoked, and 2) the policy ¢ is satisfied. To that
end, Acme launches a policy checker enclave (see Figure 2),
which implements ¢, and provides it with a view of the
ledger. To evaluate ¢, the enclave must decrypt the inputs and
state, for which it contacts the key manager enclave — the
key manager enclave verifies using remote attestation that the
request originates from a genuine enclave (with the specified
hash measurement). On approval from ¢, Acme launches a
compute enclave, which implements f, and provides access to
the encrypted inputs and state (where the decryption keys are
provisioned by the policy checker enclave). f produces the
encrypted output and the next state, but the evaluation must
be recorded on the ledger before releasing the output.

Since LUCidiTEE uses trusted enclaves and an append-only
ledger to enforce the policy, any (malicious) compute provider
can bring TEE nodes and launch the aforementioned enclaves
to store keys, and evaluate ¢ and f. Hence, we emphasize that
LucidiTEE embodies a “bring-your-own-compute” paradigm.

Recording Computation

History-based policies necessitate that all function evalua-
tions within a computation are logged. To that end, LucidiTEE
implements a protocol (see § V) between the ledger and the
compute enclave that ensures atomicity of the following two
events: recording the evaluation on the ledger and revealing
the output to any party. The ledger record of an evaluation
contains cryptographic digests (e.g. Merkle tree root) of the
encrypted inputs, outputs, and state — LUcidiTEE is oblivious
to how or where the encrypted data is stored. By only storing
digests on the ledger, we stress that LUCIdITEE uses the
shared ledger only to enforce policies, and embodies a “bring-
your-own-storage” paradigm. This design allows LucidiTEE
to scale to large inputs (e.g. § IX-A2). Since the computation
is deterministic with respect to the inputs (which includes
randomness) and the prior state, a computation can be replayed
from the ledger, in case we need to recover from a crash.

Delivering Outputs

We develop a novel protocol for fair n-party message
delivery, using enclaves and a shared ledger (see § VI),
which is of independent interest beyond LUCidiTEE. The
protocol withstands a dishonest majority, allowing arbitrary
corruption thresholds amongst the n + 1 parties (containing
n output recipients and 1 compute provider), but requires the
n — 1 output recipients to possess a TEE machine. Once the
computation is recorded on the ledger, the compute enclave
engages in a protocol to deliver the output to all n output
recipients, who must be online to participate in the protocol.
In our example, the protocol ensures that if any party gets the
output from the compute enclave, then all n recipients can get
the output, even when the compute provider acts maliciously.

LucidiTEE can be used for one-time programs [15] and fair
n-party exchange [16] in a malicious setting (see § IX-A).

ITI. PRELIMINARIES
A. TEE

An enclave program is an isolated region of memory,
containing both code and data, protected by the TEE platform
(where trust is only placed in the processor manufacturer).
On both SGX and Sanctum, the CPU monitors all memory
accesses to ensure that non-enclave software (including OS,
Hypervisor, and BIOS / SMM / UEFI firmware) cannot access
the enclave’s memory — SGX also prevents hardware attacks
on DRAM by encrypting and integrity-protecting the enclave’s
cache lines before writing them to DRAM. LucidiTEE as-
sumes that the TEE platform provides the secure remote
execution guarantee defined by Subramanyan et al. [10].

In addition to isolated execution, we assume that the
TEE platform provides primitives for remote attestation (for
generating proofs attesting to the code identity (hash-based
measurement) of the enclave), and sealed storage (where the
sealing key is derived from the processor’s secret keys and the
enclave’s code identity). At any time, the enclave software may
request a signed message (called a quote) binding an enclave-
supplied value to that enclave’s hash-based measurement.

We model the TEE hardware as an ideal functionality HW,
adapted from [17] and [9], which maintains the internal state
of each active enclave in mem, and has the following interface:

o HW.Load(prog) loads program prog within TEE-protected
memory, and returns a unique id eid for that loaded program.
Additionally, the internal state is initialized mem[eid] = O .

o HW.Run(eid, in) executes enclave eid (from prior state
mem[eid]) under input in, producing an output out while
also updating state mem[eid]. The command returns the pair
(out, quote), where quote is a signature over u(prog) || out,
attesting that the value out originated from an enclave with
measurement u(prog) running on a genuine TEE machine.
We also write the quote as quotepw (prog, out).

o HW.QuoteVerify(quote) verifies the genuineness of quote
and returns a publicly verifiable signature o, such that
Verifyyw (o, quote) = true. Any party can check Verifygw
without invoking the functionality. For instance, SGX im-
plements this command using an attestation service, which
verifies the CPU-produced quote (which is itself a signature
in a group signature scheme) and returns a publicly verifi-
able signature o over quote || b (where b € {0,1} denotes
the validity of quote); then, any party can verify o (using the
IAS public key) without contacting the attestation service.
We assume that the remote attestation scheme is existen-

tially unforgeable under chosen message attacks, as defined

in [17]. Moreover, we assume that the HW functionality
implements ideal enclaves without any side channels; i.e., HW
only reveals out in the HW.Run command — the compute
enclave only reveals the output of f, and the policy checking
enclave only reveals the decision bit from evaluating ¢. This
assumption is discharged in part by using safer enclave pro-
cessors, such as RISC-V Sanctum, which has defenses for sev-
eral hardware side channels. Additionally, the developer can
compile f and ¢ using static and dynamic software defenses

(e.g., [18], [19], [20], [21], [22]), for eliminating software side

channels such as timing leaks and access patterns.

B. Shared, Append-only Ledger

We borrow the bulletin board abstraction of a shared ledger,
defined in [16], which lets parties get its contents and post
arbitrary strings on it. Furthermore, on successfully publishing
the string on the bulletin board, any party can request a
(publicly verifiable) proof that the string was indeed published,
and the bulletin board guarantees that the string will never be
modified or deleted — hence, the bulletin board implements
an append-only ledger. The shared, append-only ledger L is
modeled as an ideal functionality, with internal state containing
a list of entries, implementing the following interface:

o L.getCurrentCounter returns the current height of the ledger

o L.post(e) appends e to the ledger and returns (o, t), where
t is the new height and o is the proof that e has indeed been
added to the ledger. Specifically, o is an authentication tag
over the pair t||e such that Verify, (o, t|le) = true. Note that
Verify, is a public verification algorithm that can be run
locally at any party (i.e. without access to the ledger).

« L.getContent(t) returns the ledger entry (o, e) at height t,
or | if t is greater than the current height of the ledger.
The bulletin board abstraction is implemented by fork-

less blockchains, such as permissioned blockchains [23], and

potentially even by blockchains based on proof-of-stake [24].

C. Cryptographic Primitives and Assumptions

a) Hash Function: We use a hash function H (e.g. SHA-
256) that is collision-resistant and pre-image resistant.

b) Public Key Encryption: We assume a IND-CCA?2 [25]
public key encryption scheme PKE (e.g. RSA-OAEP) consist-
ing of the following polynomial-time algorithms:

o PKE.Keygen(1%) is a randomized algorithm for generating
a key pair (pk,sk) based on security parameter A.
o PKE.Enc(pk, m) is an encryption algorithm which takes a
public key pk and a message m, and outputs a ciphertext ct.
o PKE.Dec(sk,ct) is a deterministic decryption algorithm
which takes a secret key sk and a ciphertext ct, and outputs
the decrypted message m (if ct < PKE.Enc(pk,m) A
(pk,sk) «+ PKE.Keygen(l/\)) or L (denoting error).
c) Digital Signature Scheme: We assume a EUF-
CMA [26] digital signature scheme S (e.g. ECDSA scheme)
consisting of the following polynomial-time algorithms:

o S.Keygen(1?) is a randomized algorithm for generating a
key pair (sk,vk) based on security parameter \.

o S.Sig(sk,m) is a signing algorithm which takes a signing
key sk and message m, and outputs a signature o.

o S.Verify(vk, o, m) is a verification algorithm which outputs
true when o < S.Sig(sk,m) A (sk,vk) < S.Keygen(1%).

d) Symmetric Key Encryption: We assume a scheme

for authenticated encryption with associated data AEAD (e.g.

AES-GCM) that provides both IND-CPA and INT-CTXT [27].

The scheme consists of following polynomial-time algorithms:

o AEAD.Keygen(1?*) returns a uniformly random k € {0, 1}*.

o AEAD.Enc(k, m,ad) is an encryption algorithm which takes
a symmetric key k, a message m, and (optional) associated
data ad, and outputs a ciphertext ct. The associated data ad
is authenticated but not included within the ciphertext ct.

o AEAD.Dec(k,ct,ad) is a decryption algorithm which takes
a symmetric key k and ciphertext ct, and outputs the
message m (if ct + AEAD.Enc(k, m,ad)) or L (error).

IV. LucidiTEE SPECIFICATION
A. Participants and Threat Model

We define an ideal functionality that performs concurrent,
stateful computations amongst arbitrary sets of parties. The
universe of parties is an unbounded set, denoted by P*, of
which any subset of parties may engage in a computation. Each

computation involves a set of input providers {P},..., P"}
and a set of output recipients {P},...,P"}, which may
overlap, such that ({P},...,Pm}U{PL ..., P}) C P*.

We assume a polynomial-time adversary A that corrupts
any subset PA C P*, whose members behave maliciously
and deviate arbitrarily from the protocol. The attacker selects
the inputs and learns the output of each party in PA.

B. Ideal Functionality

We introduce an ideal functionality, Fpcrc, for policy-
compliant fair computations amongst multiple parties. A com-
putation is modeled as a state transition system, where each
step evaluates a transition function f if the history-dependent
policy ¢ (expressed over the inputs, state, and the computa-
tion’s history) is satisfied. Each computation is defined by a
unique specification ¢, which fixes f, ¢, and the identities of
the input providers {P},...,P™} and the output recipients
{PL,...,P?}. Since input providers may go offline after
binding their input to a computation c, they are not required
to authorize each step of ¢ — an input may be used for an
unbounded number of steps of c, as long as c.¢ approves each
step and ¢ has not been revoked by an input provider of c.
Moreover, inputs may also be bound to several computations,
avoiding duplication of the data. Fpcorc is defined below?:

7

PoLicY COMPLIANT FAIR COMPUTING: Fpcrc
Fpcrc services parties in P* by performing one of the following
commands. Moreover, it provides an entropy source, and maintains
private store and publicly readable 1dgr. Each computation c
gets inputs from m parties and chained computations ci, . .., ¢y, and
produces outputs to n parties and chained computations cy, . . ., Cz.
Let active(c) = (createl|c) € 1dgr A (revoke|c.id) ¢ 1dgr
e On command create_computation(c) from P € P*
send (create || c || P)to A
if 3¢ (create|l¢) € 1dgr A é.id=c.id {ret L to P }
ldgr.append(create || c); ret T to [P, A]
e On command revoke_computation(c) from P € c.in
send (revoke || c || P)to A
if — active(c) { ret L to [P, A] }
ldgr.append(revoke || c.id); ret T to [P, A]
e On command provide_input(z) from P € P*

storelh] i= (i, P, 0), where h < {0,1}256 is a fresh id
send (provide_input ||| i ||| k|| P) to A; ret h to P

e On command bind_input(c, h) from P € c.in
send (bind_input || P)to A
if (—active(c) V store[h] = L) { ret L to [A, P] }
let (z, P’, C) < store[h]; if (P’ #P) { ret L to [A, P] }
store[h] := (z, P, CUc); ret T to [A, P]

o On command compute(c,hs,h},.. .hT R, . .,h:y) from P € P*
send (compute || ¢ || hs || AL, ..., h7* || hS, ... kY || P) to A
if —active(c) or A denies then { ret L to [A, P] }
let (iz, Pz, Csz) < store[h?], for x € [1...m)]
let by « (Vo € [1...m). iz # L APy =P% Ac € Cy)
let (iz,Pz,Cs) < store[h?], for z € {c1...cy}
let by < (Vz € [c1...¢y]. ix # L Ac € Cy)
let (s,_,cs) < store[hs];letbs +— s# L Acs=c
let storec be a projection of store containing values bound to ¢
let by < c.¢(1dgr, storec, hs, h}, 00 0 (027 h?, h:y)
if (mby V —b2 V —b3 V —by) then { ret L to [A, P] }
et 7 <& {0,1}128
let (87,01, . . -,0n, Ocys. - ,0c,) = C.f(S, 91, - - -, Tm, Gegs - - - ic,, T)

for z € 1...7, let hg < {0,1}2% in store[hZ] := (o5, P2, 0)

for x € c1...cz, let hE & {0,1}256 in store[hZ] := (0g, L,x)

for next state s’, let h & {0,1}2%6 in store[hy]:= (s, L, {c})

7 < comp||c.id||hs, hyr, A .. AT RS RY RL . RD RE K

ldgr.append(r)

if Aok {forz €1l...nsend o, to P¥ }

send |o1|...|on|,|0¢ |- . |0 ||s" |toA retT toP

Fpcrc maintains a publicly readable log 1dgr and private
storage store. store provides protected storage of inputs,

3The ret statement performs a send and also terminates the command.

outputs, and computational state, and is indexed by unique
handles (producing L if the mapping does not exist). 1dgr
is an append-only ledger recording all function evaluations,
and the creation and revocation of all computations. Since
the specification ¢ does not contain secrets, it can be created
(using the command create_computation) by any party in the
universe P*. A computation can be revoked explicitly (using
the command revoke_computation) by any party listed as an
input provider in c.in, preventing future evaluations of c.f.

A party P uploads an input ¢ (using provide_input), which
Fpcro persists internally and returns a unique handle h —
at this point, ¢ is not bound to any computation. Next, using
bind_input, P binds & to a computation c, allowing that input ¢
to be consumed by c. f, without P having to resupply ¢ on each
evaluation of c.f (though each such evaluation must comply
with c.¢). P may bind ¢ to multiple computations concurrently,
as long as each of them list P as an input provider. We find
that these characteristics make Fpopc suitable for settings
where users make dynamic decisions to participate in new
computations and become offline after providing their inputs,
or when computing over large inputs, or in applications that
provide a common service to many parties (e.g. Acme).

We allow any party P € P* to invoke a function evaluation
(using compute), as only policy-compliant evaluations suc-
ceed. compute is invoked with handles pointing to the inputs
and the prior state. P can provide any handles of her choice,
as Fpcorco checks the guard c.¢ prior to evaluating c.f, in
addition to some sanity checks that the inputs are existent
and bound to the right computation c. Note that c.f produces
outputs oc,,...,0c, for the chained computations, and they
cannot be bound to other computations (as their ownership
is not assigned to any party). Before delivering the output,
Fpcro records the evaluation on the ldgr, including all
the relevant handles. A may prevent Fpcrc from sending
the output; however, should any party get the output, then all
recipients P} ... P" listed in c.out get the output. Fpcpc
guarantees the following properties for each computation:

* A does not learn an honest party’s input, beyond its size
and the function evaluations which have used that input.

* In any computation c, c.f is evaluated only if the policy
c.¢ is satisfied (given the state, inputs, and history of c).

* A learns the outcome of evaluating ¢, and learns the
outcome of f only if it controls a party in {P},... P"}.

* Parties in {P},...,P"} get the correct output with fairness.
Fair reactive computation is out of scope, since .4 can

deny executing the compute command and computations are

revocable. For brevity, we omit the command for “replaying”

from the 1dgr for crash recovery: resuming a computation

that is recorded on 1dgr, but has not yet delivered the outputs.

V. POLICY-COMPLIANT COMPUTATION

LucidiTEE realizes Fpcrc, assuming ideal functionalities
for secure hardware HW and shared, append-only ledger L.
Figure 2 illustrates the primary components of LucidiTEE.
Each entry on the shared, public ledger records either the

Ledger
(] .
w (1) create computation C
)
o)
QA
0,
"%, %,
® %,
) %
2
Key Manager Policy Checker Compute
Enclave Enclave Enclave
- ¢
Ep [P Eg [P €
k ¢ f state
ks
Persistent
Storage - ~
@ encrypted (D Q‘/
- \ input -
{ in } OUt }pkf}\cme
k pk_Banka

@ch pk_BankB

@ AR

pk_Alice pk_BankA pk_BankB pk_Acme

Fig. 2: Policy enforcement using enclaves and a shared ledger

creation or revocation of a computation (containing the spec-
ification c), or a function evaluation (which records fixed
sized digests of inputs, outputs, and state). We stress that the
ledger does not store the inputs or state, following the “bring-
your-own-storage” paradigm, and its contents only help us to
enforce policies. Computation involves three types of enclave
programs: 1) a key manager enclave &, (responsible for han-
dling keys that protect the computation’s state and the offline
users’ input); 2) a policy checker enclave £ (responsible for
checking whether a requested evaluation c. f is compliant with
c.9); 3) a compute enclave & (responsible for evaluating c. f,
delivering the outputs, and recording the computation on the
ledger). These enclaves are run on one or more physical TEE
machines, managed by any untrusted party called the compute
provider (following the “bring-your-own-compute” paradigm),
yet our protocols guarantee policy compliance and fairness to
all parties. Note that the computation is only performed by
one party. This section describes the phases of a computation,
from protecting inputs to checking policies, and then on to
executing and recording the computation on the ledger.

A. Specifying and Creating a Computation

A computation is defined by the function f, policy ¢,
and identities of the input providers and output recipients. A
computation’s specification c is a string with following syntax:

1d z == {0,1}64

Name n == [a—zA—7Z0-—9]+

Key k == {0,1}*

Input i == (n:k)|(n:(z,n))

Output o == (n:[(k,k),...,(k,K)]) | (n:(z,n))
State s u= n

Hash h == {0,1}"

Comp ¢ == computation {

id:z, func:h, policy:h,
in:[i,...,i], out:Jo,...,0],
state:s,...,s] }

A computation is identified by a unique 64-bit number
z. A data structure such as an input, output, or state is
named by a alphanumeric constant n. A key k is a finite
length binary string, and it represents either an encryption
key (e.g. RSA public key) or a signature verification key
(e.g. ECDSA public key). An input is denoted by the tuple
(n : k), containing its name n and the signature verification
key k of the input provider. Similarly, an output is denoted
by the tuple (n : [(k,k),..., (k,k)]), containing its name n
along with the list of key pairs (encryption and signature keys)
of all output recipients. An output may also be fed as an
input to a different future computation. We call this compute
chaining, and write it as (n : (z,n)), where z is the destination
computation’s identifier and the second n is the input’s name
in the destination computation — similarly, the destination
computation must have a corresponding tuple identifying the
output from the source computation. We use a hash h to encode
the expected measurement of enclaves containing the code of f
and ¢. Finally, we specify a computation c as a string with a set
of attributes: an id, hash of £¢ (func) implementing function
f, hash of £; (policy) implementing ¢, input description
in, output description out, and state variables state.

A party P can create a new multi-party computation using
the create_computation command in Fpcpre, which Lucidi-
TEE implements by having P execute the following:

P — & cl|lo, where (0,t) = L.post(create || ¢)

Here, having posted the specification c, P contacts the
compute provider P, € P*, who forwards the request to its
local instance of the key manager enclave &. & generates a
key kg used to protect the computation’s state across function
evaluations. Since ¢ does not contain any secrets, any party
can create a computation on the ledger. It is up to the input
providers to examine ¢ and choose to bind their inputs to it.

Any party P € c.in that is listed as an input provider
can revoke a computation using the revoke_computation com-
mand, which LUCIdiTEE implements by having P execute:

P: L.post(revoke || c.id)

Since we let parties revoke computations, we remark again that
LucidiTEE (and Fpcpe) do not provide fair reactive compu-
tation; however, fairness is guaranteed on output delivery.

B. Protecting Inputs, Outputs, and State

The input providers may go offline after providing inputs,
so they must be stored on an untrusted storage prior to any
computation®. In addition to the inputs, we must protect the
intermediate state of computations and their outputs, as they
are handled by the untrusted compute provider. Hence, Lu-
CIdiTEE cryptographically protects data with confidentiality,
integrity, and authenticity guarantees. We outline the cryp-
tographic scheme used within LUCidiTEE’s implementation
of the provide input command — the scheme is executed

4The attacker can always delete the inputs, and it is equivalent to denying
the compute command; as before, this only violates fair reactive computation.

locally by the input providers to protect inputs, and within the
compute enclave £¢ to protect state and outputs — producing
encrypted, authenticated data structures (uniquely identified by
hash digests) that are stored locally or on an untrusted storage.
Encryption: Inputs, outputs, and state in LUCidiTEE has
one of several data types: list, table, or unstructured file; new
types can be added as needed. Table I outlines the scheme
for encrypting data, where the use of authenticated encryption
(with associated data) ensures confidentiality and integrity.

TABLE I: Encryption of datatypes in LUCidiTEE

Plaintext Value Encrypted Value

List [v1,...,v;] List [AEAD.Enc(k,v1), ..., AEAD.Enc(k,vz)]
™| f, | ... Thl MAC((k, f1)
r Vi1 MAC(k,r1) | AEAD.Enc(k,v1,1,r1(/f1)
ro Va1 | ... MAC(k,r2) | AEAD.Enc(k,v2,1,r2(|f1)

File x € {0, 1}* File AEAD.Enc(k, x)

Authentication: While the use of AEAD in Table I gives
integrity and confidentiality at the record-level, it still lets the
attacker delete and reorder records (within the list and table
structures). We turn towards authenticated data structures, such
as hash chains and Merkle tries, to defend against these
attacks, but we must first discuss few practical requirements.
First, the authenticated structures must support efficient ap-
pends, to allow participants to efficiently produce new input
records. For instance, Alice’s bank should be able to upload
new transactions without significant computation (e.g. without
having to process previous transaction records). Second, the
authenticated structure must support efficient updates, while
protecting against rollback attacks to older versions; this
would allow compute enclaves, for instance, to efficiently
perform in-place updates in large databases. Authenticated
data structures is an orthogonal research problem [28], and we
borrow existing constructions. Table II lists the transformation
rules, applied to the encrypted values produced by Table I.

TABLE II: Authentication of datatypes in LUcidiTEE

Encrypted Value Authenticated, Encrypted Value Digest &

List [Cyy,---50v,] | [cy [[H(D), ..., %], % = cy, ||H(cv,_;) H(x)

Tbl te, . Thl tf, cee H(E it g,

tr Cvy 4 . tn Cvig | - e, H(Nroot)
File c cx || H(ex) H(cx)

Lists are authenticated using a hash chain. Tables are
authenticated using a Merkle trie, where the row identifier r;
acts as the keys in the trie structure. A file is authenticated
by building a Merkle tree over its constituent blocks (or a
hash over the entire encrypted file, in case of small files).
LucidiTEE uses succinct, collision-resistant digests § (see Ta-
ble II) to uniquely identify and cryptographically authenticate
the data. These digests play the role of handles in Fpcrc.

We write §;, d,, and §, to denote digests of the input, output,
and state values, respectively. As we see later, digests serve
two purposes. First, LUCIAITEE records each computation on
the ledger (writing the digests of all inputs, outputs, and
the next state), and uses those digests to enforce policies
in all future computations. Second, an input provider can
use compute chaining to force the digest of an input that a
computation must use, by using a separate computation whose
only purpose is to record the desired digest on the ledger.

C. Binding Inputs to Computations

Recall the bind_input command in Fpcrc, used to protect
a party’s input such that it is only accessed within those
computations that are approved by that party. By encrypting
the input, LUCIITEE reduces this problem to ensuring that
the encryption key is only provisioned to enclaves identified
within the computation’s specification (c.¢ and c.f). We refer
to this as binding a key k to a computation c, and it is
carried out via a protocol between the input provider P and
the compute provider (running the key manager enclave &):

&, — P :quoteyw (Ex, pk), where pk < PKE.Keygen(1*)
P — & :PKE.Enc(pk, c.id|k||n || S.Sig(skp,c.id]|k||n))

Here, P (with signing key skp) contacts the &, which
produces a fresh public key pk along with a quote attesting
the genuineness of &. Upon verifying the attestation quote, P
signs and encrypts c.id and k, along with n which specifies
the name of the input (from the list c.in). Following the
above interaction, & stores k locally, using the TEE’s sealing
feature, by writing AEAD.Enc(HW.GenSealKey(), k||n,c) to
a persistent storage — later, & will only reveal k to an enclave
that is computing on c, either for evaluating c.¢ or c.f.

By binding keys (rather than raw inputs) to computations,
LucidiTEE enables reuse of inputs across function evaluations
and across computations, without having to duplicate the data.

D. Invoking Computation

LucidiTEE allows a computation to succeed only if it is
compliant and executed within a genuine enclave. That is, any
compute provider P, € P* (not necessarily an input provider
or an output recipient listed in ¢) can launch enclaves &, and
&y to perform the computation, thus following the “bring-your-
own-compute” paradigm. First, P, downloads the encrypted
state and inputs® (from untrusted storage) for all the input
providers listed in c.in. Next, P, launches &4, which contacts
& in order to decrypt parts of the inputs and the prior state
(for evaluating ¢). The protocol executes as follows:

Ep — Ek :quotenw (€4, ¢ || pk), where pk « PKE.Keygen(1*)
Er — 543 :quoteHW(Sk, PKE.EnC(pk, ks || kz-l H - H k;n))

Ey uses k, to decrypt the state s, and keys k;,..., k" to
decrypt all inputs 1, ..., %,,. Since LUCIdiTEE must scale to
large data and enclaves have limited physical memory, the

5To amortize this overhead (e.g. in inference using a trained model), P,
may locally store the encrypted inputs and state to avoid re-downloading them.

encrypted inputs and state are placed in non-enclave memory,
and the accessed bits are authenticated, integrity-checked, and
decrypted on-demand within the enclave’s protected memory.

E. Policy Compliance Checking

& must check whether the requested evaluation of c.f is
compliant with c.¢, which requires checking the following:
1) Computation ¢ must have been added to the ledger L, and
not revoked at any later time by any party P € c.in.
2) Policy condition ¢ (evaluated over the ledger L, inputs
i1,...,%m, and the state s) must be satisfied.

To perform these checks, P. must provide £, with a view
to L, potentially by downloading the ledger’s contents locally.
Observe that the enclave-ledger interaction happens via the
untrusted host software controlled by P.; hence, an adversarial
‘P, may present a stale view (a prefix) of L to £, — we deal
with this attack in § V-G. For now, we task ourselves with
deciding compliance with respect to a certain height of L.
Our scheme roughly works as follows. To implement the
first check, we scan the ledger for create and revoke
entries on c.id. Here, &, asserts validity of the predicate:

Jt1. ((0,e) = L.getContent(t;) A
Verify,(o,t1]le) A e =create | c) A

Ytp. = (t2 > t1 A (0,e) = L.getContent(tz) A
Verify, (o,t2]le) A e = revoke | c.id)

To implement the second check, we evaluate c.¢ within &,
over the requested computation’s inputs and previous state,
along with the following sequence of relevant entries in L:

[e|t"€{0...t} A t=L.getCurrentCounter A
(0,e) = L.getContent(t*) A Verify (o, t"*||e) A

e = compute || c.id || ...]

As stated before, ¢ is an arbitrary function, ultimately
implemented in machine code with the enclave hash measure-
ment c.policy. As an example, consider the policy ¢ from
the Acme application: all transaction records in the input must
be signed by Alice, belong to the same month, and be fresh.
An efficient method of enforcing freshness is to propagate
state containing the timestamp of the latest transaction
record (from Alice’s input in the previous evaluation), and
then assert that all transaction records in the current input
have a later timestamp, thus inductively implying freshness.
To that end, we implement f such that it records (as the
computation’s state) the highest timestamp amongst the input
txs, and implement ¢ to inspect the last entry (call this e)
from the aforementioned list of ledger entries [e |...]. To
evaluate ¢, we ask P, to load the ¢’s state (which must produce
the digest §, recorded in e), and transfer control to ¢, which
takes each transaction record in the current input and compares
its timestamp with e’s state. Alternatively, ¢ can also load
the inputs from all prior computations (i.e., all of [e |...])
and check membership of each record in the current input;
this choice of ¢ would incur significantly more computation

and storage overhead. On that note, we stress that LUcidiTEE
simply provides the developers with the means to enforce
history-dependent policies. The performance and the privacy
guarantees ultimately depend on the developer’s choice of ¢.

In the design so far, the ledger L is naively stored as
a sequence of entries, which would force us to perform a
linear scan for evaluating the two compliance checks. Instead,
our implementation stores L locally as an authenticated key-
value database, whose index is the computation’s id c.id.
Creation of specification ¢ on the ledger inserts a new entry
at index c.id, and revocation marks it invalid. Each compu-
tation appends the ledger entry to the current value at c.id.
Now, instead of scanning through the entire ledger, the first
compliance check asserts the presence of key c.id, while the
second check reads the list of records at key c.id. Note that
this optimization does not impact security — Ey’s view of L
is still controlled by P,, and therefore potentially stale.

F. Performing the Computation

On approval from &4, P, launches the compute enclave &y,
which must have measurement c.func. £ requests & for the
key ks protecting c’s state and keys for each party’s input:

Er — & :quotenw (&, ¢ || pk), where pk +— PKE.Keygen(1%)
Ey — &5 :quotenw (Eg,t || k || 6, || 6F,...,6™)

where t = L.getCurrentCounter used in &

where k = PKE.Enc(pk, ks || k! || ... || k™)

In addition to the keys, £, transmits the ledger height t, and
the digests of the inputs and state, with which it checked policy
compliance. § V-G shows how we use t to defend against a
malicious P., who provides a stale view of L to £4.

Similar to £y, £ places the encrypted inputs and state in
non-enclave memory, and performs decryption on demand. £
also places the outputs in non-enclave memory, and performs
state updates in-place by directly modifying the data structure
holding the prior state. Throughout the evaluation of f, &
maintains the digest of the state Js and the output digests
8L, .., 6m, 0%, ..., 0% (which includes the digests of chained
outputs), as they are being written. As P, is responsible for
storing encrypted inputs, state, and outputs, we emphasize the
“bring-your-own-storage” paradigm embodied in LucidiTEE.

A randomized f needs an entropy source. Using the persis-
tent secret key k, (which was generated by & using the TEE’s
entropy source (e.g. rdrand on x64)), f can internally seed
a pseudo-random generator (e.g. PRF with key t®k;) to get a
fresh pseudo-random bitstream at each step (hence the xor with
t). This ensures that the random bits are private, yet allows
replaying computation from the ledger during crash recovery.

G. Recording Computation
Since history-based policies need all computation steps to
be logged, £ must record the evaluation of f on L before it
can reveal the output to any party. To that end, £ invokes:
L.post(quoteqw (&, compute || c.id || t | §))
where 6 = &, || 0},...,0m || 6,...,0"

Recall that t was given by £y, and it represents the height of
L with respect to which £, checked compliance. However, by
the time L receives the post command, it may have advanced
by several entries from t (let us call the new height t’). This
can be caused by a combination of reasons including: 1)
ledger entries from concurrent evaluations within ¢ and other
computations in LUCIdITEE, 2) time delay from executing ¢
and f, and 3) malicious P. causing &, to evaluate ¢ using
a stale view of L. Consequently, £,’s compliance check is
rendered invalid, and serializability of the stateful computation
— computations on LUCIdiTEE, even when executing concur-
rently, is equivalent to some serial execution — is violated.
To correct this, LUCIITEE imposes a validity predicate on
the ledger’s content, which we call the serializability check:

v, t',t*. t' = L.getCurrentCounter At < t* < t' =
—((o,e) = L.getContent(t*) A Verify (o,t*|le) A
(e = computel|c.id||... Ve = revoke|c.id))

Here, L checks that the computation c is still active and that no
other function evaluation (with c.id) is performed in between
t and the current height t’. The computation is rejected if the
check fails, and no entry is recorded on L. £ and & reject a
ledger (i.e., they refuse to compute) that does not satisfy the
serializability check. Therefore, the ledger (more accurately,
the ledger’s participants) are expected to deny entries that do
not satisfy serializability — however, they are not trusted to
do so, as each computation’s &£, repeats the check internally.

H. Chaining Computation

LucidiTEE supports concurrent, stateful computations
amongst arbitrary sets of parties. Moreover, via compute chain-
ing, outputs of a computation can serve as inputs in a different
computation in the future, thereby forming a (directed, acyclic)
graph composition of computations. For instance, Alice may
wish to compute a joint monthly report including Bob’s trans-
actions, by entering into a new computation involving Alice,
Bob, and Acme. To support compute chaining, we introduce
the following modifications to the protocols discussed so far.

First, in addition to the serializability check in § V-G, we
assert that no evaluation is performed between t and t’ on a
computation ¢* whose output is consumed by c, as follows:

vt',t*, ¢* € c.in. (t’ = L.getCurrentCounter At < t* < t')

= —((0,e) = L.getContent(t*) A Verify, (o,t"|le)
A e = compute || c".id | ...)

Second, we modify &) to maintain an additional key kS for

encrypting the chained output from c* to ¢ (which must not

be visible to any party). £ generates k¢ when either c* or

c is created, and transmits kS (along with {k},... k™} and

ks) to £, and & during policy checking and the evaluation.

VI. GUARANTEEING FAIRNESS

Once the computation is recorded on the ledger, the compute
enclave &;’s final task is to fairly deliver the output to all
n output recipients PL, ..., P? listed in c.out. Fairness is

10

Ledger
®m2 © o2

@ |®Woy
Compute
gf Enclave
@UEa"kA { - } @Uécme
out
N
vole Eq |-
©® o2 d d g2
ko @ gBanke @ 72,05 ko
5
pk_BankA pk_BankB pk_Acme

Fig. 3: Fair output delivery using enclaves and a shared ledger

non-trivial as the enclave’s communication with the external
world is controlled by an untrusted compute provider P,
who may collude with any party. LUCIJITEE implements a
novel protocol for fair n-party broadcast. Although fairness is
impossible in the standard setting with dishonest majority [29],
our protocol makes additional assumptions by using TEE and
ledger functionalities, and ensures fairness and correctness
(i.e., all parties receive the same output) even when any subset
of the n+1 parties (i.e., P, P}, ..., P?) act maliciously. The
protocol, illustrated in Figure 3, requires all n output recipients
to be online, and n — 1 of them to possess a TEE machine, on
which they launch a delivery enclave £; — in contrast, prior
work [16] required all parties to possess a TEE machine.
Though computations have multiple outputs, each of which
are sent to some subset of the n output recipients, we discuss
the simpler setting of delivering 1 output to all n parties, for
exposition. By encrypting the output under a fresh random
key k,, the problem reduces to fair n-party broadcast of k.
The core insight underlying our protocol is a construct or a
trigger that “simultaneously” allows all parties to attain the
key. We implement this construct by posting on the ledger L
a value that serves two purposes: 1) it contains the encryption
of k, under the public key of the non-TEE party P, and 2) it
triggers the n—1 &£, enclaves to release k, to their local parties.
The rest of this section outlines the steps of the protocol.

Signed Delivery of Encrypted Outputs and Keys: Ej
provisions k, to all n — 1 &; enclaves, who store it internally.

Eq — & : quoteyw(&q,c.id || S.Sig(skp:, epk) || epk)
Er — &4 : quotepw(Er,c.id || t || PKE.Enc(epk, ko))

P. delivers the encrypted output Enc(k,,out) (of digest J,)
to P € {PL, ..., P"}, and collects their receipt signatures.

P. — P’ : quotenw (&, compute|c.id][t]|d) || Enc(k,,out)
P, — P.: S.Sig(skpx,c.id || t || d,)

Posting Signatures on the Ledger: P. (on behalf of £;)
aggregates (e.g. using [30]) and posts all n signatures on L:

P, : L.post(my), which returns (o1, _)
w1 = S.Sig(skp1, c.id||t||d,) || ... || S-Sig(skpn,c.id]|t]|d,)

As an optimization, we combine 7; with the ledger record
of the computation (from § V-G) to reduce our usage of L.
Posting Encryption of Key k, on Ledger: Any of the n—1
parties controlling an &, enclave, on seeing 7, on the ledger,
can advance the protocol to its next phase — when n = 1,
P. launches a &; enclave to fulfill this role. On providing o
(which was produced by L upon posting 1), &; emits o,
containing an encryption of k, under P}'’s public key. Any
Pre{PL,...,PP~1} (or P. when n = 1) can post m on L.

P
7y = quotepw(Ey, deliver|c.id||t]|PKE.Enc(pkpn, ko))

Decrypting the Output: Finally, all parties PL, ..., P"
must decrypt the output. The n — 1 parties with £; provide
the proof oo (which was produced by L upon posting 73) to
their local &£, enclaves, allowing those enclaves to emit k,. P}’
simply retrieves 7o from L and decrypts PKE.Enc(pkpn, ko)
to attain k,. All parties now decrypt the output using k:.

L.post(m,), which returns (o3, _)

VII. DISCUSSION

Assuming ideal functionalities for secure hardware HW and
append-only ledger L, LUCIiTEE Fpcpe, thus providing
policy-compliant fair computation to all parties. However,
we draw attention to the subtlety of different blockchain
instantiations. While our fair delivery protocol tolerates a
corruption threshold of n amongst n+1 participants, the ledger
admits a weaker adversary (e.g. less than 1/3rd corruption in
PBFT-based permissioned blockchains, or honest majority of
collective compute power in permissionless blockchains). In
permissioned settings, this means that the n parties cannot
instantiate a shared ledger amongst themselves, and expect to
achieve fairness (of message delivery or information exchange)
— they need a larger set of participants on the ledger, and
require more than 2/3rd of that set to be honest. With that
said, this limitation is not unique to us, as the fair exchange
protocol in a prior work [16] also has the same limitation.

Fundamentally, forks on proof-of-work blockchains can
violate policies, as computation records can be lost (akin to
double spending in Bitcoin). Even the proof-of-publication
scheme in Ekiden [5], which uses a trusted timeserver to
enforce the rate of production of entries on the ledger, offers a
probabilistic guarantee of rollback prevention, which worsens
as the attacker’s computational power increases — a silo’d
powerful adversary can always mine ledger entries. Hence,
we deploy LUCIdiTEE on forkless ledgers (providing the L
abstraction), such as HyperLedger [23] and Tendermint [31].

LucidiTEE does not support fair reactive computation, and
is not suitable for applications such as Poker [1]. The primary
issue here is that the compute provider P, may collude with
any party to abort the computation and destroy its intermediate
state, thus preventing any honest party from making progress.

11

VIII. IMPLEMENTATION

We implement LucidiTEE with a heavy focus on modularity
and minimality of the trusted computing base.

We instantiate the shared ledger with a permissioned
blockchain, and evaluate using both Hyperledger [23] and
Tendermint [31]. Each participant’s logic is implemented as a
smart contract (in 200 lines of Go code), which internally uses
a key-value store (RocksDB [32]) to store the ledger’s entries
(indexed by the computation’s id, as described in § V-E).

To help developers write enclave-hosted applications
(specifically, the compute enclave & and policy checker
enclave &4 for each application), we developed an enclave
programming library libmoat, providing a narrow POSIX-style
interface for commonly used services such as file system,
key-value databases, and channel establishment with other
enclaves. libomoat is statically linked with application-specific
enclave code, ¢ and f, which together form the enclaves, £,
and & respectively — note that the developer is free to choose
any other library which respects LUCIAiITEE’s protocol for
interacting with the shared ledger L, and enclaves & and &;.
libmoat transparently encrypts and authenticates all operations
to the files and databases, using the scheme from § V-B —
it uses the keys provisioned by the key manager enclave &
for encryption, and implements authenticated data structures
(e.g. Merkle tries) to authenticate all operations. LucidiTEE
provides fixed implementations of £; and &, whose measure-
ments are hard-coded within the smart contract and within
libmoat, for use during remote attestation. Furthermore, lib-
moat implements the ledger interface L, which automatically
verifies the signature (using Verify) and TEE attestation of
all ledger entries (of type compute and deliver). libmoat
contains 3K LOC, in addition to Intel’s SGX SDK [33].

IX. EVALUATION
A. Case Studies

We demonstrate several applications where multiple dis-
trusting parties collaborate on large volumes of sensitive
data, while attaching policies governing the use of their data
and fairly attaining the output of the joint computation. In
addition to the applications described below, we build micro-
benchmarks such as one -time programs [15], digital lockboxes
(with limited passcode attempts), and a secure logging service.

1) Private Personal Finance Application: Acme’s finance
application is implemented on LUCidiTEE using the specifica-
tion shown below. Observe that Alice’s computation (id 1) is
chained with a computation (id 3) for producing a joint report
along with Bob’s expenses. The policy from computation 1
asserts that all transaction records belong to the same calendar
month and are fresh, and the policy from computation 3 asserts
that the input reports belong to the same calendar month.
Acme’s input is encoded as an encrypted key-value database,
indexed by the merchant id — with over 50 million merchants
worldwide that accept credit cards, this database can grow to
a size of several GBs (we use a synthetic database of size
1.6GB). We also implemented a client that uses the OFX

API [8] to download the author’s transactions from the bank’s
OFX service, encrypt them locally (to size 1.3MB), and upload
the encrypted file to a public AWS bucket.

computation {

id : 1,
inp : [("txs":vk_Alice), ("db":vk_Acme)],
out [("report™" [(pk_Acme, vk_Acme),
(pk_BnkA, vk_BnkA), (pk_BnkB, vk_BnkB)])
, ("report" (3, "alice_report™)) 1,
policy Oxcoff..eee, /% Vr € txs. fresh(r)x*/
func 0x1337...c0de /x aggregate function */

}

computation {

id : 3,

inp : [("alice_report" (1, "report")),
("bob_report" (2, "report")),

out [("joint_report" [pk_Acme]) 1,

policy 0xc000...10ff, /# same month? =/

func Oxlce..b00da /#* compare function x/

2) Policy-based Private Set Intersection: We implement a
patient information sharing service described in [34]. Two
hospitals A and B wish to share prescription records about
their common patients who have been prescribed both drugs 1
and 2, under the policy-encoded restrictions: 1) both hospitals
have the patient’s consent (due to HIPAA); 2) the patient must
have been treated by both drugs. Since both hospitals wish to
benefit from this service, they require a guarantee of fair output
delivery. We implement oblivious set intersection by adapting
Signal’s enclave-based private contact discovery service [35].
Our experiment uses a synthetic dataset with 1 million patient
records in each hospital’s database (size 15MB).

computation {

id : 4,

inp : [("A_db":vk_A), ("B_db":vk_B)],

out [("ab" [(pk_A,vk_A), (pk_B,vk_B)]1) 1,
policy : ., /#cond 1 & 2, and execute oncex*/
func 0x7331...ed0c /% oblivious psi */

3) Federated Machine Learning: Two organizations, A and
B, contribute private data to train a joint model. Since neither
party sees the other’s data, we use a policy that a model locally
trained on one party’s data alone must have sufficient accuracy.
Note that federated learning is an active area of research, with
schemes providing strong privacy (e.g. differential privacy);
our goal instead is to study the performance implications
(rather than the privacy guarantees) of such applications.

In our experiment, we have two hospitals, A and B, that
contribute patient records containing sensitive attributes and
ECG measurements, with the goal of learning a better model
for predicting the ECG class of a patient. We split the Arrhyth-
mia dataset from the UCI Machine Learning Repository [36]
into two halves, one for each hospital, and adapt the k-means
clustering algorithm and implementation from [37].

computation {
id : 5,

12

inp : [("recs_A":vk_A), ("recs_B":vk_B) 1,
out [("model": [(pk_A,vk_A), (pk_B,vk_B) 1)1,
policy : Oxdaff..0dll, /% check accuracy =/
func Oxfle...1d5 /# k-means clustering x/

4) Fair Information Exchange: Two parties perform a fair
exchange (denoted FX) of their private inputs (of size 1 KB).

computation {

id : 6,

inp : [("x" : vk_A), ("y" : vk_B)I],

out [("o": [(pk_A,vk_A), (pk_B,vk_B)I])1,
policy : Oxbad..beef, /* Yaiice (y) N YBob (x) =/
func Oxface...b00c /* f(x,y) = (y,x) */

Each party provides their private input, with along with
a condition v that the other party’s input must satisfy. The
program only proceeds if both parties’ conditions are met, and
fairly delivers the output to both parties. Note that while the
above policy is simplified to only include 2 parties, LucidiTEE
allows any number of parties (> 2) to perform fair exchange.

B. Performance Measurement

We study the latency, throughput, and storage requirement
of our applications, and compare to a baseline version where
the application runs without a ledger (i.e. without our protocols
for recording computation or output delivery) and without
the protections of TEE (i.e., we run the application in SGX
simulation mode). The baseline versions also inline the policy
checking logic ¢ within the compute function f. In this
baseline setting, the Acme, PSI, ML, and FX apps take 0.2,
8.24, 0.11, and 0.06 seconds, respectively, on each invocation.

1) End-to-end Latency and Throughput: Figure 4 reports
the latency and throughput (results aggregated over 100 runs)
on both HyperLedger [23] and Tendermint [31] ledgers (run-
ning with 4 peers), with 500 enclave clients concurrently
querying and posting ledger entries — we use a 4 core CPU
to run the ledger, and a cluster with 56 CPU cores to run the
enclaves. Recall that each evaluation on LUcidiTEE performs
at least one read query (to retrieve the specification and the
compute records) and two writes (to record the compute
and deliver entry) to the ledger. We found throughput
to be bound by the performance of the ledger, which was
highly dependent on parameters such as the batch size and
batch timeout [23]. Compared to the baseline, the latency also
suffered by several seconds due to the ledger, quite likely due
to the high volume of concurrent read and write requests.

2) Storage: Table III presents the off-chain and ledger stor-
age needs (where the measurement is for each function eval-
uation within that application). In comparison, Ethereum [38]
and Ekiden [5] store the inputs and the state on the ledger.

X. RELATED WORK

Secure Computation based on Enclave-Ledger Interaction

Ekiden [5], Coco [39], and Private Data Objects [40] are
the most closely related works, in that they rely on shared

HyperLedger Tendermint
11 { 11
10 : . 10
9 9
.
— 8 - 8
4 4
87 87
3 6 3 6
g5 g5
34 34
3 3
2 2
1 1
0 0
Acme ML PSI FX Acme ML PSI FX
HyperLedger Tendermint
140 140
5 130 130
3 120 3 120
E 110 A E 110
S 100 S 100
2 904 R
2 804 2 80
5 704 g 70
Z 60 [60
2 50 |2 504
S 404 2 40
£ 309 ERELR
= 204 = 204
104 10 4
0 0

Acme ML FX Acme ML FX

Fig. 4: End-to-end latency and throughput measurement

TABLE III: Storage Requirements

Application Ledger Input Output State
Acme Finance 2372 B 1.6 GB 1872 B 136 B
Federated ML 2052 B 132 KB 1088 B -

Policy-based PSI 2052 B 30 MB 8 MB -
2-party Fair Exchange 2052 B 2 KB 2 KB -

ledger and trusted hardware functionalities. They execute
smart contracts (e.g. Ekiden executes Ethereum bytecode)
within SGX enclaves, connected to a blockchain for persisting
the contract’s state. LUCIJITEE pursues a different goal of
enforcing policies on behalf of offline users (allowing their
inputs to be used in several multi-step computations, without
interaction) and fairness. The main improvements over Ekiden
lie in fairness and scalability — LucidiTEE does not put inputs
or state on the ledger, which is used only to enforce policies,
and therefore scales with the number of parties and the size
of their inputs. In addition to performance improvements,
their ideal functionalities have the following differences: 1)
all parties in Ekiden must interact with the functionality on
each state transition to provide inputs and receive outputs (like
Ethereum); 2) an attacker can prevent the ideal functionality
from fairly sending the output to a party. To our knowledge,
these differences carry over to Coco and Private Data Objects.

Hawk [4] enables parties to perform off-chain computation
(specified as smart contracts) with transactional privacy (which
protects the inputs), while proving correctness by posting zero

13

knowledge proofs on the ledger. Compared to LucidiTEE,
Hawk incurs significant computational overhead of generat-
ing zero-knowledge proofs (specifically zk-SNARKS [41]), is
not suitable for computing on large databases (computation
must be expressed as arithmetic circuits), and only provides
financial fairness (i.e., fairness with penalties to honest parties,
as opposed to perfect fairness in LUCIdiTEE). On that note,
several works prior to Hawk, specifically Bentov et al. [1],
Kumaresan et al. [42], Andrychowicz et al. [43], and Kaiyias
et al. [44], use Bitcoin [45] to ensure financial fairness in MPC
protocols, by constructing abstractions such as “multi-lock™
and “claim-or-refund” transactions. Pass et al. [9] develop a
protocol for 2-party fair exchange in the A-fairness model.
Recently, Choudhuri et al. [16] proposed a fair MPC pro-
tocol based on witness encryption (instantiated using SGX at
each of the n participants) and a shared ledger. We improve
their protocol by requiring n — 1 out of n output recipients
to possess TEE machines; for instance, two distrusting parties
can perform fair MPC on LucidiTEE requiring only one party
to own a TEE machine. Moreover, [16] requires all parties to
be online, and only considers secure function evaluation [46]
(i.e., one-shot MPC) as opposed to stateful computation, which
incurs added complexity in ensuring privacy, integrity, and safe
concurrency. A related work [47] augments stateless enclaves
with shared ledgers to perform secure stateful computation,
addressing well-known issues of state rollback (i.e., rewind-
and-fork) attacks. However, they do not support computation
amongst multiple parties or offline users, nor ensure fairness.

Data Processing Systems based on Trusted Hardware

Trusted execution environments (e.g. Intel SGX) have
recently found use in systems for outsourced computing:
M2R [48] and VC3 [7] for Map-Reduce jobs, Opaque [49]
for analytics, EnclaveDB [50] for SQL databases, etc. We find
these systems to be complementary, in that users can use them
to implement the compute function (i.e., f), while LucidiTEE
handles the policy enforcement and fair output delivery.

Secure Computation from Cryptographic Assumptions

MPC [2] [3] protocols implement a reactive secure compu-
tation functionality, but require parties to be online (or trust
one or more third parties to execute the protocol on their
behalf); furthermore, from Cleve’s impossibility result [29],
fairness is also impossible for general functions in the standard
model with dishonest majority (our fair exchange relies on
trusted hardware and shared ledgers). Goyal et al. [51] show
how blockchains can implement one time programs using
cryptographic obfuscation techniques.

XI. CONCLUSION

This paper presented LUCIAITEE, the first system to enable
multiple parties to jointly compute on private data, while
enforcing policies even when the participants are offline. Novel
protocols between TEE nodes and a shared ledger ensure
that all computations are fair, recorded on the ledger, and
compliant with user-defined, history-based policies. The ledger

is only used to record computations and enforce policies (i.e.,
it does not store inputs, outputs, or state, nor do the ledger’s
participants repeat the computation), allowing LUCidiTEE to
scale to big data applications and large number of participants.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

I. Bentov and R. Kumaresan, “How to use bitcoin to design fair
protocols,” in Advances in Cryptology — CRYPTO 2014. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 421-439.

A. C. Yao, “Protocols for secure computations,” in Proceedings of
the 23rd Annual Symposium on Foundations of Computer Science.
Washington, DC, USA: IEEE Computer Society, 1982, pp. 160-164.
A. C.-C. Yao, “How to generate and exchange secrets,” in Proceedings
of the 27th Annual Symposium on Foundations of Computer Science,
ser. SFCS ’86. Washington, DC, USA: IEEE Computer Society, 1986,
pp. 162-167.

A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in 2016 IEEE symposium on security and privacy (SP).
IEEE, 2016, pp. 839-858.

R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. M. Johnson,
A. Juels, A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contract execution,”
CoRR, vol. abs/1804.05141, 2018.

T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed
sandbox for untrusted computation on secret data,” in Proceedings of
the 12th USENIX Conference on Operating Systems Design and Imple-
mentation, ser. OSDI’16. Berkeley, CA, USA: USENIX Association,
2016, pp. 533-549.

F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “VC3: trustworthy data analytics in the cloud
using SGX,” in Proc. IEEE Symposium on Security and Privacy, 2015.
[Online]. Available: https://developer.ofx.com/

R. Pass, E. Shi, and F. Tramer, “Formal abstractions for attested
execution secure processors,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
2017, pp. 260-289.

P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia,
“A formal foundation for secure remote execution of enclaves,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS *17. New York, NY, USA: ACM,
2017, pp. 2435-2450.

E. Brickell and J. Li, “Enhanced privacy id from bilinear pairing,”
Cryptology ePrint Archive, Report 2009/095, 2009.

I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative
technology for cpu based attestation and sealing.”

B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication in
distributed systems: Theory and practice,” ACM Trans. Comput. Syst.,
vol. 10, no. 4, pp. 265-310, Nov. 1992.

M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374-382, Apr. 1985.

S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “One-time programs,”
in Advances in Cryptology — CRYPTO 2008, D. Wagner, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 39-56.

A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers,
“Fairness in an unfair world: Fair multiparty computation from public
bulletin boards,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS *17. New York,
NY, USA: ACM, 2017, pp. 719-728.

B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “Iron:
Functional encryption using intel sgx,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’17. New York, NY, USA: ACM, 2017, pp. 765-782.

A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution,” in 24th USENIX Security Symposium
(USENIX Security 15). Washington, D.C.: USENIX Association, 2015,
pp. 431-446.

R. Sinha, S. Rajamani, and S. A. Seshia, “A compiler and verifier for
page access oblivious computation,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2017. New York, NY, USA: ACM, 2017, pp. 649-660.

14

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]
[32]

(33]
[34]
[35]
[36]

(37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page
faults from telling your secrets,” in Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, ser. ASIA
CCS ’16. New York, NY, USA: ACM, 2016, pp. 317-328.

D. Zhang, A. Askarov, and A. C. Myers, “Predictive mitigation of
timing channels in interactive systems,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security, ser. CCS "11.
New York, NY, USA: ACM, 2011, pp. 563-574.

M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs,” 2017.

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukoli¢, S. W. Cocco, and J. Yellick,
“Hyperledger fabric: A distributed operating system for permissioned
blockchains,” in Proceedings of the Thirteenth EuroSys Conference, ser.
EuroSys "18. New York, NY, USA: ACM, 2018, pp. 30:1-30:15.

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles, ser. SOSP *17.
New York, NY, USA: ACM, 2017, pp. 51-68.

D. Hofheinz, K. Hovelmanns, and E. Kiltz, “A modular analysis of
the fujisaki-okamoto transformation,” Cryptology ePrint Archive, Report
2017/604, 2017, https://eprint.iacr.org/2017/604.

S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme
secure against adaptive chosen-message attacks,” SIAM J. Comput.,
vol. 17, no. 2, pp. 281-308, Apr. 1988.

M. Bellare and C. Namprempre, “Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm,” J.
Cryptol., vol. 21, no. 4, pp. 469—491, Sep. 2008.

R. Tamassia, “Authenticated data structures,” in Algorithms - ESA 2003,
G. Di Battista and U. Zwick, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 2-5.

R. Cleve, “Limits on the security of coin flips when half the processors
are faulty,” in Proceedings of the Eighteenth Annual ACM Symposium
on Theory of Computing, ser. STOC "86. New York, NY, USA: ACM,
1986, pp. 364-369.

C.-P. Schnorr, “Efficient signature generation by smart cards,” Journal
of cryptology, vol. 4, no. 3, pp. 161-174, 1991.

“Tendermint core in go,” https://github.com/tendermint/tendermint.
“RocksDB: A persistent key-value store for Flash and RAM storage,”
https://github.com/facebook/rocksdb.

“Intel sgx for linux,” https://github.com/intel/linux-sgx.

E. Stefanov, E. Shi, and D. Song, “Policy-enhanced private set intersec-
tion: Sharing information while enforcing privacy policies,” in Public
Key Cryptography. Springer Berlin Heidelberg, 2012, pp. 413-430.
M. Marlinspike, “Private contact discovery for signal.” [Online].
Available: https://signal.org/blog/private-contact-discovery/

D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

S. Chandra, V. Karande, Z. Lin, L. Khan, M. Kantarcioglu, and B. Thu-
raisingham, “Securing data analytics on sgx with randomization,” in
European Symposium on Research in Computer Security. Springer,
2017, pp. 352-369.

G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger.”

“The coco framework: Technical overview,” https://github.com/Azure/
coco-framework/.

M. Bowman, A. Miele, M. Steiner, and B. Vavala, “Private data objects:
an overview,” arXiv preprint arXiv:1807.05686, 2018.

E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in Proceed-
ings of the 23rd USENIX Conference on Security Symposium. Berkeley,
CA, USA: USENIX Association, 2014, pp. 781-796.

R. Kumaresan and I. Bentov, “How to use bitcoin to incentivize correct
computations,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2014, pp. 30-41.
M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,
“Secure multiparty computations on bitcoin,” in Security and Privacy
(SP), 2014 IEEE Symposium on. 1EEE, 2014, pp. 443-458.

A. Kiayias, H.-S. Zhou, and V. Zikas, “Fair and robust multi-party
computation using a global transaction ledger,” in Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 2016, pp. 705-734.

https://developer.ofx.com/
https://eprint.iacr.org/2017/604
https://github.com/tendermint/tendermint
https://github.com/facebook/rocksdb
https://github.com/intel/linux-sgx
https://signal.org/blog/private-contact-discovery/
http://archive.ics.uci.edu/ml
https://github.com/Azure/coco-framework/
https://github.com/Azure/coco-framework/

[45]
[46]

[47]

(48]

[49]

[50]

[51]

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
Z. Beerliova-Trubiniova, M. Fitzi, M. Hirt, U. Maurer, and V. Zikas,
“Mpc vs. sfe: Perfect security in a unified corruption model,” in
Proceedings of the 5th Conference on Theory of Cryptography, ser.
TCC’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 231-250.

G. Kaptchuk, I. Miers, and M. Green, “Giving state to the stateless:
Augmenting trustworthy computation with ledgers,” Cryptology ePrint
Archive, Report 2017/201, 2017, https://eprint.iacr.org/2017/201.

T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang,
“M2r: Enabling stronger privacy in mapreduce computation.” in USENIX
Security Symposium, 2015, pp. 447-462.

W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in Proceedings of the 14th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI'17. Berkeley, CA, USA:
USENIX Association, 2017, pp. 283-298.

C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure database
using sgx,” in EnclaveDB: A Secure Database using SGX. 1EEE, 2018.
R. Goyal and V. Goyal, “Overcoming cryptographic impossibility results
using blockchains,” in Theory of Cryptography Conference. Springer,
2017, pp. 529-561.

15

https://eprint.iacr.org/2017/201

	Introduction
	Overview of LucidiTEE
	Motivating Example: Private Personal Finance
	Personal Finance on LucidiTEE

	Preliminaries
	TEE
	Shared, Append-only Ledger
	Cryptographic Primitives and Assumptions

	LucidiTEE Specification
	Participants and Threat Model
	Ideal Functionality

	Policy-compliant Computation
	Specifying and Creating a Computation
	Protecting Inputs, Outputs, and State
	Binding Inputs to Computations
	Invoking Computation
	Policy Compliance Checking
	Performing the Computation
	Recording Computation
	Chaining Computation

	Guaranteeing Fairness
	Discussion
	Implementation
	Evaluation
	Case Studies
	Private Personal Finance Application
	Policy-based Private Set Intersection
	Federated Machine Learning
	Fair Information Exchange

	Performance Measurement
	End-to-end Latency and Throughput
	Storage

	Related Work
	Conclusion
	References

