
LucidiTEE: Policy-Compliant Fair Computing at Scale
Rohit Sinha
Visa Research

jsmith@affiliation.org

Sivanarayana Gaddam
Visa

sgaddam@visa.com

Ranjit Kumaresan
Visa Research

rakumare@visa.com

ABSTRACT

We seek a system that provides transparency and control to users
by 1) enforcing agreed-upon policies on what functions can be
evaluated over private data (even when the users are offline), and
2) enforcing the set of parties with whom the results are shared.
For this level of control, the system must ensure policy compli-
ance, and we demonstrate, using modern applications, the need
for history-based policies, where any decision to compute on users’
data depends on prior use of that data. Moreover, the system must
algorithmically ensure fairness: if any party gets the output, then so
do all honest parties. It is an open research challenge to construct a
system that ensures these properties in a malicious setting.

While trusted execution environments (TEEs), such as Intel SGX
and Sanctum enclaves, offer partial solutions, they are at the mercy
of an untrusted host software for storage and network I/O, and
are therefore incapable of enforcing history-dependent policies or
fairness. This paper presents LucidiTEE, the first system to enable
multiple parties to jointly compute on large-scale private data, while
guaranteeing policy-compliance even when the input providers are
offline, and fairness to all output recipients. A key contribution is
our protocol (with a formal proof of security) for fair n-party infor-
mation exchange, which tolerates an arbitrary corruption threshold
t < n, and requires only t parties to possess a TEE node (an improve-
ment over prior result that requires TEEs from alln parties) — in our
case studies, this result provides a practical benefit as end users on
commodity devices can enjoy fairness when engaging with service
providers. We define an ideal functionality for policy-compliant
fair computing, FPCFC , which is the first to study history-based
policies, and we develop novel protocols based on a network of
TEEs and a shared ledger to enforce history-based policies.

LucidiTEE realizes FPCFC with a heavy focus on efficiency. It
uses the ledger only to enforce policies; i.e., it does not store inputs,
outputs, or state on the ledger, which allows it to scale to large data
and large number of parties. We demonstrate several policy-based
applications including a personal finance app, federated machine
learning, and policy-based surveys amongst unknown participants.

KEYWORDS

Privacy, Policy, Fairness, Trusted Execution Environment, Blockchain

1 INTRODUCTION

Modern web services pose a growing public concern regarding
their lack of transparency. Aside from privacy policies specified in
legalese, users have little insight, let alone control, on how their
data is used or shared with third parties. It is not surprising that (un-
beknownst to users) their sensitive data is proliferated and misused.
While increased transparency and control would require significant
changes across the board (including business models, regulations,
etc.), there is still progress to be made on the technical front.

We observe that several services can be modeled as a stateful
computation over data from multiple parties (comprising both the
end users and the service provider). Moreover, a typical service
performs computation over large datasets, on behalf of a large
number of users, and allows users to go offline during the compu-
tation. For such a service to provide transparency and control to
all parties, we need a system that (at the very least): 1) enforces
agreed-upon policies on what functions can be evaluated over the
joint datasets, along with an option for any party to revoke further
use of their data, and 2) enforces the set of parties with whom
the results are shared. Specifically, rather than relying solely on
trust or legal recourse, protocols within the system must enforce
policy compliance even when the input providers go offline during
the computation, and ensure fairness towards the agreed-upon set
of output recipients (i.e. if any party gets the output, then so do
all honest parties). It is an open research challenge to construct
a system that ensures both policy compliance and fairness to all
parties, in a setting where any subset of the parties act maliciously,
and where the computation is carried out by a malicious provider.

We first consider some potential solutions to this end. Since poli-
cies impose restrictions on how the input data is used, as a first
step, the system must encrypt the data under keys controlled by
the input providers — this prevents a compute provider from per-
forming arbitrary computation and sharing of the raw data. Next,
to perform computation over the encrypted data, we look towards
functionalities such as multi-party computation (MPC) [1–3] and
trusted execution environments (TEEs) [4, 5]. While protocols for
MPC ensure that only the agreed-upon function over the inputs is
revealed, they require parties to either be online to engage in an
interactive protocol or trust one or more compute providers to exe-
cute the protocol on their behalf (using a secret sharing scheme, for
instance). Alternatively, we can perform the computation within a
TEE, based on one of several recent frameworks such as Ryoan [6],
VC3 [7], Opaque [8], etc. This approach obviates any interaction
after the user provides the input to a TEE, and also performs better
on general-purpose computation over large data. However, nei-
ther policy compliance nor fairness can be fulfilled by TEEs alone,
due to their inherent inability to protect I/O — a malicious com-
pute provider (controlling the system software, such as the OS)
can rollback the persistent storage and tamper with the network
communication. For instance, the attacker can rollback the storage
to violate a privacy budget policy (e.g. limited passcode attempts
for a digital lockbox, or the privacy budget in differentially private
database), or intercept network communication to deliver the out-
put only to a subset of colluding parties. Addressing these threats,
this paper presents LucidiTEE, a system for policy-compliant fair

computation using protocols based on TEEs and a shared ledger.
A key contribution is an ideal functionality definition FPCFC in

the UC framework [9] for policy-compliant fair computation, which
is realized by LucidiTEE. We believe that FPCFC ’s interface lends

itself to building applications that process large data and service
large number of users (e.g. personal finance application in § 9.1.1),
where the entire set of participating users may not be known apriori
(e.g. private survey in § 9.1.4) and the users cannot be expected to
be online (beyond providing inputs or retrieving outputs in future).

A key concept in FPCFC is history-based policies, and a pro-
tocol for enforcing their compliance in the presence of a malicious
compute provider.FPCFC maintains an audit log of all function eval-
uations (across all concurrent computations), and a computation-
specific policy check uses this log to determine whether to allow
any further function evaluation, thus enabling policies based on
the computation’s history. As we show in § 9.1, example history-
based policies include privacy budget [10], k-time programs [11],
freshness of inputs, “democratic" accounting of all participating
users’ inputs (such as in voting), policies across multiple computa-
tions (e.g. survey only open to users of an app), etc. Finally, FPCFC
ensures fairness on output delivery, i.e., should any party get the
output, then all honest parties must also get the output (although a
malicious provider can deny sending the results to any party).

We develop LucidiTEE, a system that realizes FPCFC , using
protocols based on ideal functionalities of TEE [12] and a shared
ledger [13] to achieve both policy-compliance and fairness. By re-
ducing fair computation to fair reconstruction (inspired by [14, 15]),
LucidiTEE divides the computation into distinct phases: 1) provid-
ing input, 2) function evaluation producing encrypted outputs, 3)
fair reconstruction for attaining the output. With this design, no
interaction is needed from input providers and output recipients
beyond providing inputs and retrieving outputs, respectively. Of
independent interest is our protocol for fair n-party exchange

(used in fair reconstruction) that withstands arbitrary corruption
threshold t < n, requiring only t out of n output recipients to pos-
sess a TEE machine and access the shared ledger — this improves
upon a prior result [13] for fair MPC using a shared ledger that
requires all n parties to possess a TEE machine. This improvement
provides a practical benefit, especially in bilateral service relation-
ships between a user and a service provider (see § 9.1.1 and § 9.1.3),
where the user enjoys fairness without owning a TEE machine.

LucidiTEE records the cryptographic hash digests of the (en-
crypted) inputs, outputs, and the updated state on the ledger af-
ter each function evaluation. We use the ledger only to enforce
history-based policies, keeping both computation and storage off-
chain, thus fostering applications with large number of users and
large data. Our protocols withstand arbitrary corruption thresh-
old amongst the participants of a computation, and allow for a
malicious compute provider, as we defend against attacks such as
providing a stale view of the ledger to TEE programs, aborts, etc.

Recent ledger-based systems use cryptographic primitives and/or
TEEs to provide private computation. Hawk [16] and Zexe [17]
support limited types of smart contracts, and their use of zero-
knowledge proofs [18] adds significant computational overhead;
moreover, Hawk only provides financial fairness based on penalties.
Ekiden [19] supports generic smart contracts, but does not ensure
fairness nor history-based policies (across computations), and is
not efficient for large data computation, as inputs and state are
stored on-chain. To our knowledge, LucidiTEE is the first system to
provide history-based policies, and we demonstrate applications
(§ 9.1) of such policies that cannot be implemented on Ekiden.

Merchant
ID Date Amount

52544965 2014-06-03 
13:37 PM $23.00

… … …

12144989 2014-06-29 
20:49 PM $48.12

Merchant  
ID Category

52544965 Restaurants

… …

12144989 Gas Stations

Acme’s  
Proprietary

Data

Alice’s
Transaction 

 Data

Lu
ci
di
TE

E

Report

Alice Bank A

Bank BAcme

Figure 1: Privacy-enabled Personal Finance Application

In summary, this paper makes the following novel contributions:
• definition of an ideal functionalityFPCFC formulti-party, concur-
rent, stateful computations, with enforcement of history-based
policies for offline parties and fairness for all output recipients
• LucidiTEE, a system that realizes this ideal functionality, using
TEEs and a shared ledger, and scales to large data applications
• protocol for fair n-party exchange, requiring a shared ledger and
t parties to control a TEE (for any corruption threshold t < n)
• evaluation of several applications on LucidiTEE, including a per-
sonal finance application (serving millions of users), federated
machine learning over crowdsourced data, and a private survey.
We also implement micro-benchmarks including one-time pro-
grams, digital lockboxes, and fair n-party information exchange.

2 OVERVIEW OF LUCIDITEE
2.1 Motivating Example: Personal Finance App

The open banking initiative [20] has fostered a variety of personal
financial applications. However, by getting access to raw transac-
tion data, some of these applications pose major public concerns
of data breaches and misuse [21], as there is lack of (verifiable)
transparency on the sharing, use, and retention of this data.

Figure 1 illustrates a sample financial application, Acme, that
provides a service for viewing aggregate spending behavior (i.e.,
the proportion of spending across categories for all transactions
in a month), along with the feature to share this aggregate report
with third parties (such as lending institutions). To perform this
joint computation, Acme maintains a proprietary database mapping
merchant ids to category labels; Alice’s data consists of a set of
transaction records sorted by time, where each record contains sev-
eral sensitive fields such as the merchant id, the amount spent, and
the timestamp. The aggregation function (denoted f) is evaluated
over inputs from Alice and Acme, and the output is shared with
Alice and two lending institutions (BankA and BankB). Alice’s data
is either imported manually by her, or more conveniently, provided
by Alice’s bank, via an OAuth-based OFX API [20] that pushes
transaction data one-by-one as they are generated by her. Today,

2

an application like Acme often hosts the users’ raw data to provide
the service, and is inevitably trusted to adhere to a legalese policy.

The rest of this section proceeds as follows. We first discuss the
requirements of a transparent Acme, while iterating on strawman
system designs and motivating the building blocks used by Lucidi-
TEE. Next, we discuss how Acme is implemented on LucidiTEE.

2.2 Requirements of Acme

Privacy through Transparency
We find that transparency and control — i.e., enforcing which func-
tions can be evaluated, and with whom the outputs are shared —
are necessary for enforcing any measure of privacy. Without this
basic enforcement, an attacker can proliferate arbitrary functions
of sensitive user data. In our example, Alice wishes that the ap-
proved output recipients only learn the output of function f (on
one months’ worth of transaction data), and nothing else about her
transaction data (such as her spending profile at daily granularity
or the location patterns). For this reason, f cannot be evaluated by
sharing Alice’s plaintext data with Acme, or vice versa as Acme
also wishes to maintain secrecy of its proprietary database. For
this discussion, f is assumed to be safely written with functional
correctness, so we are only concerned with executing f as given.

Strawman 1

To restrict how their input data is used, both parties must
first encrypt their data before uploading it to a compute
provider (who may be Acme or a cloud service). Next, to
allow the agreed-upon evaluation of function f on their
data, both parties establish a TLS channel (based on remote
attestation) with an enclave program (loaded with function
f) running on an untrusted host software at the compute
provider, and share the decryption keys to the enclave. At
some point in future, the enclave program evaluates f , and
produces an output encrypted under the public keys of all
output recipients, which is then delivered to them.

As a first step towards transparency and control, this design
ensures that only f is computed on inputs from Alice and Acme,
and that no other party beyond Alice, BankA, and BankB can ob-
serve the output. Note that the input providers can go offline after
providing their inputs, and the output recipients come online only
to retrieve the outputs. There are several TEE-based systems that
fit this general design, such as VC3 [7], Opaque [8], StealthDB [22],
Ryoan [6], etc., which we can use to implement the function f .

History-based Policies
While this strawman ensures that only f can be evaluated on Alice’s
input, we show that this policy alone is insufficient for privacy.

Recall that Alice’s bank (we can treat Alice and her bank as one
logical party) uploads encrypted transaction records to the com-
pute provider (using the OFX API [20]), one-by-one as they are
generated by Alice. The enclave’s host software is controlled by
an untrusted compute provider, who may perform attacks such as
rewinding the persistent storage and launching multiple instances
of the enclave program. Hence, an adversarial compute provider
may repeat the computation with progressively smaller subsets of

Alice’s transaction data from that month (and collude to send the
output to a corrupt party) — note that each of these computations
is independently legal since it evaluates f on an input containing
Alice’s transactions that are timestamped to the same calendar
month. By comparing any pair of output reports, the attacker infers
more information about the transactions than what is leaked by the
monthly aggregate report; for instance, one may learn that Alice
tends to spend frivolously towards the end of the month1. In gen-
eral, such rewind-and-fork attacks are detrimental for applications
that maintain a privacy budget (e.g. digital lockboxes, differentially
private databases), and applications that use secret randomness.

To counter such attacks, we enforce history-based policies, where
the decision to execute the next step in a (stateful) computation
depends on that computation’s entire history — to our knowledge,
this is the first work to study such policies. In Acme’s example,
Alice uses the following history-based policy ϕ2: all transaction
records must 1) be fresh, in that they have never been consumed
by a prior evaluation of f , and 2) belong to the same month.

In general, history-based policies find use in applications that
maintain state, have privacy budgets, or make decisions based on
prior inputs. We urge the reader to look at other applications of
history-based policies in § 9.1, such as private surveys amongst un-
known participants with policies across computations (e.g. survey
only open to users who participated in a previous survey, or only
open to Acme users) — applications on Ekiden [19] cannot access
the ledger, and therefore cannot implement such behaviours.

Strawman 2

Enforcement of such policies require an audit log of all
function evaluations. To that end, we modify the ear-
lier Strawman 1 design to include an append-only ledger,
shared between Alice and Acme. The ledger fulfills a dual
purpose. First, a protocol forces the compute provider to
record the enclave’s evaluation of f on the ledger before ex-
tracting the encrypted output from the enclave — for each
function evaluation, we record some metadata (e.g. hash
digests or accumulators) of the encrypted inputs, outputs,
and intermediate state. Second, enclave programs read this
ledger to evaluate the history-based policy predicate ϕ.

The Strawman 2 design shares the ledger between Alice and
Acme. In practice, a user may use the output of a function f as an
input to another function f ′, where f and f ′may receive additional
inputs from other users — we call this compute chaining. This gives
rise to a computation (directed, acyclic) graph containing evaluation
of various functions, with inputs and outputs belonging to multiple
users. For example, upon entering a domestic partnership with Bob,
Alice requests Acme for a cumulative monthly report over both
their transactions. To that end, we extend the shared ledger between
Alice andAcme to include Bob aswell. In general, to enable arbitrary
groups of users to engage in unforeseen computation, we share the
ledger amongst all parties and all concurrent computations. Details

1Although metadata, such as authenticated batches of inputs, can remedy this specific
attack, banks may be unwilling to generate metadata specific to each application.
2While ϕ may be inlined within f , we find that it is worthwhile distinguishing the
two functions, as ϕ depends on the ledger whereas f does not.

3

on policy enforcement are given in § 5, but we emphasize that this
design enforces policies even when the input providers are offline.

Fairness
Policies provide a mechanism for input providers to restrict the use
of their data; on the other hand, our desiderata for a transparent
Acme also includes enforcing the set of output recipients (Alice,
BankA, and BankB). Simply encrypting the output under their
public keys ensures that other parties cannot observe the results of
the computation (assuming confidentiality of enclave execution).
However, a malicious compute provider can collude with a subset of
output recipients, and deliver the encrypted outputs to only those
parties — since all network communication is proxied via the host
software, an enclave cannot ensure that a message is sent over the
network, and therefore, must assume lossy links, making reliable
message delivery impossible [23]. For Acme to be transparent, we
argue that it must ensure fairness: if any party gets the output,
then all honest parties must get the output. Choudhuri et al [13]
provide a fair MPC protocol that requires all parties to possess a
TEE machine, but it is unreasonable to place such a burden on Alice.

Without having to trust Acme, Alice wishes to have her aggre-
gate monthly reports sent automatically to a set of chosen banks,
perhaps to receive lucrative mortgage plans. To that end, we de-
velop a novel protocol to ensure fair delivery to all output recipients,
in a malicious setting where any subset of parties are corrupt.

Strawman 3

We reduce fair computation to fair reconstruction, inspired
by [15]. First, we use the Strawman 2 system to produce
the output, encrypted under the public keys of all output
recipients, while also checking the history-based policy.
Next, to send the decryption key to all parties, we design
a protocol for fair n-party broadcast that withstands an
arbitrary corruption threshold t < n; the protocol requires
t (out of n output recipients) to use a TEE machine that
they control, and all n parties to access the shared ledger.

In general, many services have a bilateral relationship (2-party
computation) between a user and the service provider, where fair-
ness can be achieved with only 1 TEE node at the service provider,
allowing the user to use commodity devices. With this successive
refinement of the strawman solutions, we now arrive at LucidiTEE.

2.3 Acme on LucidiTEE
LucidiTEE implements a set of protocols (between TEE enclaves and
a shared ledger) that guarantee fair, policy-compliant computation.
We walk through how Acme is deployed on LucidiTEE.

Specifying and Creating Computations
A computation is specified by a string, which any party can post to
the ledger. For instance, Acme creates the following computation:

computation { id: 42, /* unique id */
input: [("txs": pk_Alice), ("db": pk_Acme)],
output: [("rprt": [pk_Alice, pk_BankA, pk_BankB])],

policy: 0xcoff..eeee, /* ∀r ∈ txs. fresh(r) */
func: 0x1337...c0de /* aggregate function */ }

The id field is a 64-bit value that uniquely identifies this computa-
tion on LucidiTEE. The in field lists a set of named inputs, along
with the public key of the input provider (who is expected to sign
those inputs). Similarly, the out field lists a set of named outputs,
where each output has one or more recipients (the output will be
encrypted under their public keys). The func field uniquely iden-
tifies the function f using the hash measurement of the enclave
program implementing f . The history-based policy predicate ϕ is
specified within the field policy. Similar to func, it contains the
hash measurement of the enclave program implementing ϕ.

A computation progresses via a potentially unbounded sequence
of stateful evaluations of f guarded by ϕ, and it is said to be com-
pliant if all constituent steps use the function f (with measurement
func) and satisfy ϕ (with measurement policy). In our example,
f is evaluated over the inputs txs and db. Unlike f , ϕ takes the
entire ledger as input. In our example, ϕ encodes the freshness
property that no transaction within txs has been consumed by a
prior evaluation of f ; we implement ϕ by performing membership
test for each transaction in the txs within the input consumed by
prior evaluations of f in computation of id 42, or more efficiently,
by maintaining state tracking the latest processed transaction.

Encrypting and Binding Inputs to Computations
Alice wishes to provide her input with the guarantee that only
policy-compliant computation is performed on it. As a first step,
she chooses a key k to encrypt txs, and uploads the encrypted data
to an untrusted storage (e.g. Acme’s server). Next, Alice needs to
bind the use of key k to computation of id 42, which may execute
when she is offline. To that end, we introduce a key manager enclave
in LucidiTEE (see Figure 2), which is run by any party such as the
compute provider, andwhose role is to protectk and reveal it only to
an enclave evaluating func from a computation of user-specified id.
Alice provisions k and the computation’s id 42 over a TLS channel
terminating within a key manager enclave, who then seals the key
and stores it locally. Note that Alice’s bank, should it provide the
functionality, can also perform these steps on her behalf.

Invoking and Recording Computation
The compute provider provisions a TEEmachine, and downloads Al-
ice’s and Acme’s encrypted inputs onto the machine’s local storage
— this expense may be amortized across several function evalua-
tions. Next, Acme must convince an enclave that the requested
function on Alice’s inputs is compliant, which requires checking:
1) the computation’s specification exists on the ledger and has not
been revoked, and 2) the policy ϕ is satisfied. To that end, Acme
launches an enclave implementing the policy predicate ϕ, and pro-
vides it with a view of the ledger. To evaluate ϕ, the enclave must
decrypt the inputs and state, for which it contacts the key manager
enclave — the key manager enclave verifies using remote attesta-
tion that the request originates from a genuine enclave (with hash
measurement specified in the policy field of the computation’s
specification). On approval from ϕ, Acme launches an enclave to
evaluate f , and provides access to the encrypted inputs and state

4

(where the decryption keys are given by the prior enclave that
evaluated ϕ). Evaluation of f produces encrypted values of the out-
put and the next state, but the evaluation must be recorded on the
ledger before releasing them, for the sake of history-based policies.

To that end, LucidiTEE implements a protocol (see § 5) between
the ledger and the enclave that ensures atomicity of the following
events: recording the evaluation on the ledger and revealing the
output to any party. We record cryptographic digests (e.g. Merkle
tree root) of the encrypted inputs, outputs, and state.

LucidiTEE is oblivious to how or where the encrypted data is
stored, and the ledger size is independent of the size of the inputs.
Therefore, we stress that LucidiTEE uses the ledger only to enforce
policies, and embodies a “bring-your-own-storage" paradigm. More-
over, since LucidiTEE uses trusted enclaves and an append-only
ledger to enforce the policy, any (malicious) compute provider can
bring TEE nodes and evaluate ϕ and f . Hence, we emphasize that
LucidiTEE also embodies a “bring-your-own-compute" paradigm.

Fair Reconstruction of Outputs
As described in the Strawman 3 solution, we develop a novel proto-
col for fair n-party exchange (see § 6), which the n output recipients
use to reconstruct the decryption key that protects the output. The
protocol may execute at any time after the computation (e.g., when
Alice comes online), and requires the parties to interact only with
the compute provider or the shared ledger. By default, we set a max-
imum corruption threshold t = n − 1, in which case only BankA
and BankB control a TEE node, and Alice only interacts with the
ledger. In general, we demonstrate services with bilateral relation-
ships between a user and a service provider (see § 9.1.1 and § 9.1.3),
where the user can enjoy fairness without owning a TEE machine.

3 LUCIDITEE SPECIFICATION

3.1 Participants and Threat Model

We define an ideal functionality that performs concurrent, stateful
computations amongst arbitrary sets of parties. The universe of
parties is an unbounded set, denoted by P∗, of which any subset of
parties may engage in a computation. Each computation c involves
a set of input providers Pcin and a set of output recipients P

c
out, which

may overlap, such that (Pcin ∪ P
c
out) ⊆ P∗. We assume a polynomial-

time static adversaryA that corrupts any subset PA ⊆ P∗, who act
maliciously and deviate arbitrarily from the protocol. The attacker
selects the inputs and learns the output of each party in PA .

3.2 Ideal Functionality

We introduce an ideal functionality, FPCFC , for policy-compliant
fair computations. A computation is modeled as a state transition
system, where each step evaluates a transition function f if allowed
by the history-dependent policy ϕ (expressed over the inputs, state,
and a log of all prior function evaluations). Each computation is
defined by a specification c, which fixes f , ϕ, and the identities
of the input providers Pcin and the output recipients Pcout. Due to
compute chaining, c also specifies the set of computations from
which it receives inputs (denoted Cc

in), and computations which
consume its outputs (denoted Cc

out). Since input providers may go
offline after binding their input to a computation c, they are not

required to authorize each step of c — an input may be used for
an unbounded number of steps of c (such as in Acme), as long as
c.ϕ approves each step and c has not been revoked. Moreover, an
input may be bound to several computations concurrently, avoiding
unnecessary duplication of the data. FPCFC is defined as follows:

Policy Compliant Fair Computing: FPCFC
The functionality has a private storage db and a publicly readable
log ldgr. db is indexed by handles, and supports an add(x) inter-
face (which returns a unique handle h from the set {0, 1}poly(λ))
and a update(h,x) interface. On parsing c, we get the set of chained
computations Cc

in and Cc
out, and the set of parties P c

in and P c
out.

The ret statement performs send and terminates the command.
Let active(c) � (create∥c) ∈ ldgr ∧ (revoke∥c.id) < ldgr
Let data(h) � x if (x, _, _) ∈ db[h] else ⊥

• On command create_computation(c) from p ∈ P ∗

send (create ∥ c ∥ p) to A
if ∃c′ (create ∥ c′) ∈ ldgr ∧ c′.id = c.id { ret ⊥ to p }
ldgr.append(create ∥ c); ret ⊤ to [p , A]
• On command revoke_computation(c.id) from p ∈ Pcin
send (revoke ∥ c.id ∥ p) to A
if ¬active(c) { ret ⊥ to [p , A] }
ldgr.append(revoke ∥ c.id); ret ⊤ to [p , A]
• On command provide_input(x) from p ∈ P ∗

h ← db.add((x , p , ∅))
send (provide_input ∥ | x | ∥ h ∥ p) to A; ret h to p
• On command bind_input(c.id, h) from p ∈ Pcin
send (bind_input ∥ p ∥ c.id ∥ h) to A
if (¬active(c) ∨ db[h] = ⊥) { ret ⊥ to [A, p] }
let (x , p′, C)← db[h]; if (p′ , p) { ret ⊥ to [A, p] }
db.update(h, (x , p , C ∪ {c}));
ldgr.append(bind ∥ c.id ∥ p ∥ h); ret ⊤ to [A, p]
• On command compute(c.id, Hin) from p ∈ P ∗

send (compute ∥ c.id ∥ Hin ∥ p) to A
if A denies or ¬active(c) then { ret ⊥ to [A, p] }
let hs be the handle to the latest state of c , based on the ldgr
let s ← data(hs), and let X ← { data(h) }h∈Hin
let bound← ∀h ∈ Hin ∃(_, _, C) = db[h] ∧ c ∈ C
let owned← ∀p ∈ Pcin ∃(_, p′, _) = db[Hin[p]] ∧ p′ = p
let compliant← c.ϕ(ldgr, s , X , Hin)
if ¬(bound ∧ owned ∧ compliant) then { ret ⊥ to [A, p] }

let (s′, Y)← c.f (s , X ; r), where r
$
←− {0, 1}λ

let hs′ ← db.add((s′, ⊥, {c}))
let Hout ← { db.add((y, ⊥, ∅)) }y∈Y
for c ∈ Cc

out { db.update(Hout[c], (Y [c], ⊥, {c})) }
ldgr.append(compute ∥ c.id ∥ hs′ ∥ Hin ∥ Hout)
send { | y | }y∈Y ∥ | s′ | to A; ret ⊤ to p
• On command get_output(c.id, h) from p ∈ Pcin
send (output ∥ h ∥ p) to A; send ⊤ to p
if ∃p ∈ Pcin that hasn’t called get_output or A denies then { ret }
send data(h) to all p ∈ P c

out; ldgr.append(output ∥ c.id ∥ h)

FPCFC maintains a publicly readable log ldgr and a private
storage db. db provides protected storage of inputs and outputs
(including chained outputs) and computational state, and is indexed
by unique handles — accesses to db produce ⊥ if the mapping does
not exist. ldgr is an append-only log of all function evaluations,
creation and revocation of computations, and binding of input
handles. Since the specification c does not contain secrets, it can
be created (via create_computation) by any party. A computation

5

can be revoked (via revoke_computation) by any party listed as an
input provider in c.inp, preventing future evaluations of c. f .

A party p uploads an input x (using provide_input), which
FPCFC persists internally and returns a unique handle h — at this
point, x is not bound to any computation. Next, using bind_input,
p binds h to a computation c, allowing the input x to be consumed
by c. f . From here on, x may be consumed by multiple stateful eval-
uations of c. f without p having to resupply x at each step (though
each step must comply with c.ϕ, and as such, a policy can enforce
one-time programs [11]). Party p may bind x to multiple compu-
tations concurrently, as long as each of them list p as an input
provider. We find that these characteristics make FPCFC suitable
for settings where parties make dynamic decisions to participate in
new computations and become offline after providing their inputs,
or when parties compute over large inputs, or in applications that
provide a common service to many parties (e.g. Acme).

As only policy-compliant evaluations succeed, we allow any
party p ∈ P∗ to invoke a function evaluation (using compute),
by providing handles Hin referring to the inputs (from both input
providers Pcin and chained computations Cc

in). Since ldgr records
the handle for the state after each evaluation, FPCFC uses ldgr to
retrieve the most recent state. Party p can provide any handles of
her choice, as FPCFC checks the guard c.ϕ prior to evaluating c. f ,
in addition to some sanity checks that the inputs are existent and
bound to the invoked computation c. Observe that c. f operates
over the inputs, prior state, and a random string r , and produces
outputs (bound to output recipients Pcout and chained computations
Cc
out) — we create new handles Hout for the outputs, and hs ′ for the

next state. Outputs to chained computations are not revealed to any
party, and they cannot be bound to other computations (as they
are not owned by any party). Before returning, FPCFC records the
evaluation on ldgr, along with the relevant handles.

The output recipients initiate fair output delivery by invoking
get_output, and the output is sent once all parties have invoked
the command. A may prevent FPCFC from sending the output;
however, should any party get the output, then all recipients in Pcout
get the output. In summary, FPCFC guarantees that:
* A does not learn an honest party’s input, beyond its size and the
function evaluations which have used that input.

* In any computation c, f is evaluated only if ϕ is satisfied.
* A learns the outcome of evaluating ϕ, and learns the outcome of
f only if it controls a party in Pcout.

* Parties in Pcout get the correct output with fairness.
Fair reactive computation is out of scope, since A can deny

executing the compute command and computations are revocable.

4 BUILDING BLOCKS

4.1 Trusted Execution Environment (TEE)

An enclave program is an isolated region of memory, containing
both code and data, protected by the TEE platform (where trust is
only placed in the processor manufacturer). On TEE platforms such
as Intel SGX and Sanctum, the CPU monitors all memory accesses
to ensure that non-enclave software (including OS, Hypervisor, and
BIOS or SMM firmware) cannot access the enclave’s memory —
SGX also thwarts hardware attacks on DRAM by encrypting and
integrity-protecting the enclave’s cache lines before writing them

to DRAM. In addition to isolated execution, we assume that the TEE
platform provides a primitive for remote attestation. At any time,
the enclave software may request a signed message (called a quote)
binding an enclave-supplied value to that enclave’s code identity
(i.e., its hash-based measurement). We model the TEE hardware
as an ideal functionality HW, adapted from [24]. HW maintains
the memory contents of each enclave program in the internal state
variable mem, and supports the following interface:
• HW.Load(prog) loads the enclave prog code within the TEE-
protected region. It returns a unique id eid for the loaded enclave
program, and sets the enclave’s private memory mem[eid] = −→0 .
• HW.Run(eid, in) executes enclave eid (from prior state mem[eid])
under input in, producing an output out while also updating
mem[eid]. The command returns the pair (out, quote), where
quote is a signature over µ(prog) ∥ out, attesting that out origi-
nated from an enclave with hash measurement µ(prog) running
on a genuine TEE.We alsowrite the quote as quoteHW(prog, out).
• HW.QuoteVerify(quote) verifies the genuineness of quote and
returns another signatureσ (such thatVerifyHW(σ , quote) = true)
that is publicly verifiable. Any party can check VerifyHW without
invoking the HW functionality. For instance, SGX implements
this command using an attestation service, which verifies the
CPU-produced quote (in a group signature scheme) and returns
a publicly verifiable signature σ over quote ∥ b, where b ∈ {0, 1}
denotes the validity of quote. Any party can verify σ (using
Intel’s public key) without contacting Intel’s attestation service.
We assume that the remote attestation scheme is existentially

unforgeable under chosen message attacks [24]. LucidiTEE assumes
ideal TEE platforms that provide secure remote execution, as defined
in [25]. Though side channel attacks pose a realistic threat, we
consider their defenses to be an orthogonal problem. This assump-
tion is discharged in part by using safer enclave processors such as
RISC-V Sanctum, which implement defenses for several hardware
side channels, and in part by compiling f and ϕ using software
defenses (e.g., [26], [27], [28], [29], [30]). From here on, we assume
that HW only reveals the explicit output out; i.e., in a computation,
the enclaves only reveal the output produced by ϕ and f .

4.2 Shared, Append-only Ledger

We borrow the bulletin board abstraction of a shared ledger, defined
in [13], which lets parties get its contents and post arbitrary strings
on it. Furthermore, on successfully publishing the string on the
bulletin board, any party can request a (publicly verifiable) proof
that the string was indeed published, and the bulletin board guar-
antees that the string will never be modified or deleted. Hence, the
bulletin board is an abstraction of an append-only ledger. We model
the shared ledger as an ideal functionality L, with internal state
containing a list of entries, implementing the following interface:
• L.getCurrentCounter returns the current height of the ledger
• L.post(e) appends e to the ledger and returns (σ , t), where t is
the new height and σ is the proof that e has indeed been added
to the ledger. Specifically, σ is an authentication tag over the pair
t∥e such that VerifyL(σ , t∥e) = true, where VerifyL is a public
algorithm that any party can run without access to L.
• L.getContent(t) returns the ledger entry (σ , e) at height t, or ⊥
if t is greater than the current height of the ledger.

6

 Ledger
…

in{ }

record 

computation

encrypted  
input

Key Manager 
Enclave

Policy Checker 
Enclave

Compute 
Enclave

state{ }

out{ }

create computation

, ,

Untrusted Storage

state{ }
in{ } out{ }

Figure 2: Policy enforcement using TEEs and a shared ledger

The bulletin board abstraction can be instantiated using fork-less
blockchains, such as permissioned blockchains [31], and potentially
even by blockchains based on proof-of-stake [32].

4.3 Cryptographic Primitives and Assumptions

Hash Function. We use a hash function H (e.g. SHA-256) that
is collision-resistant and pre-image resistant. We also assume a
commitment scheme com with hiding and binding properties.

Public Key Encryption. We assume a IND-CCA2 [33] public key
encryption scheme PKE (e.g. RSA-OAEP) consisting of polynomial-
time algorithms PKE.Keygen(1λ), PKE.Enc(pk,m), PKE.Dec(sk, ct).

Digital Signature Scheme. We assume a EUF-CMA [34] digital
signature scheme S (e.g. ECDSA) consisting of polynomial-time
algorithms S.Keygen(1λ), S.Sig(sk,m), S.Verify(vk,σ ,m).

Symmetric Key Encryption. We use a scheme for authenticated
encryption AE (e.g. AES-GCM) that provides IND-CCA2 and INT-
CTXT [35]. It consists of polynomial-time algorithmsAE.Keygen(1λ),
AE.Enc(k,m), AE.Dec(k, ct).

5 POLICY-COMPLIANT COMPUTATION

LucidiTEE realizes FPCFC , assuming ideal functionalities for TEE
hardware HW and shared ledger L. By reducing fair computation
to fair reconstruction, LucidiTEE decomposes a computation into
distinct phases: 1) providing and binding the input to the compu-
tation, 2) evaluating ϕ and f , producing encrypted outputs, and 3)
fair reconstruction for attaining the output. This section describes
the first two phases, leaving the fairness protocol to § 6.

Figure 2 illustrates the primary components of LucidiTEE. Each
entry on the shared, public ledger records either the creation or
revocation of a computation (along with its specification), or a
function evaluation (which records fixed sized digests of inputs,
outputs, and state). We stress that the ledger does not store the
inputs or state, and its contents only help us to enforce policies.
Computation involves three types of enclave programs: 1) a key

manager enclave Ek (responsible for handling keys that protect
the computation’s state and the offline users’ input); 2) a policy
checker enclave Eϕ (responsible for checking whether a requested
evaluation f is compliant with the policy ϕ); 3) a compute enclave
Ef (responsible for evaluating f , and recording the computation
on the ledger). These enclaves are run on one or more physical
TEE machines, managed by any untrusted party called the compute
provider, yet our protocols guarantee policy compliance and fairness
to all parties (who may also act maliciously). Computation happens
off-chain, and is decoupled from the ledger’s consensus mechanism.

5.1 Specifying and Creating a Computation

A computation’s specification is a string with following syntax:

Name n ::= [a − zA − Z0 − 9]+
Party p ::= {0, 1}∗

Input i ::= (n : p) | (n : ρ?) | (n : (z, n))
Output o ::= (n : [p, . . . , p]) | (n : (z, n))
Hash h ::= {0, 1}∗

Comp c ::= computation { id : {0, 1}∗, policy : h,
func : h, inp : [i, . . . , i], out : [o, . . . , o] }

A computation is identified by a unique 64-bit number z. Each
input and output data structure is named by an alphanumeric con-
stant n. Each party p is cryptographically identified by their public
keymaterial (e.g. RSA or ECDSA public key), which is a finite length
binary string. An input is denoted by the tuple (n : p), containing
its name n and the cryptographic identity of the input provider
p — if the set of input providers is unknown at the time of speci-
fying the computation (e.g. surveys), we write (n : ρ?). Similarly,
an output is denoted by the tuple (n : [p, . . . , p]), containing its
name n along with the list of all output recipients. An output may
also be fed as an input to a different future computation. We call
this compute chaining, and write it as (n : (z, n)), where z is the
destination computation’s identifier and the latter n is the input’s
name in the destination computation — similarly, the destination
computation must have a corresponding tuple identifying the out-
put from the source computation. We use a hash h to encode the
expected measurement of enclaves containing the code of f and ϕ.
Finally, we specify a computation c by a string with fields: an id,
hash of Ef (func) implementing function f , hash of Eϕ (policy)
implementing ϕ, input description inp, and output description out.

A partyp can create a newmulti-party computation (specified by
the string c) using the create_computation(c) command in FPCFC ,
which LucidiTEE implements by having p execute the following:

p → Ek : c ∥ σ , where (σ , t) = L.post(create ∥ c)

Having posted the specification c, p contacts the compute provider
pc , who forwards the request to its local instance of the keymanager
enclave Ek . Ek generates a key ks used to protect the computation’s
state across all function evaluations. Since c does not contain any
secrets, any party can post it on the ledger, and it is up to the input
providers to examine c and choose to bind their inputs to it.

Any party p ∈ Pcin (i.e., p is listed as an input provider in c.inp)
can revoke a computation by invoking revoke_computation(c.id),
which LucidiTEE implements by having p execute the following:

p : L.post(revoke ∥ c.id)
7

5.2 Providing Inputs

Aparty submits data to a computation by invoking provide_input(x),
which returns a unique handle to the input data. FPCFC maintains
privacy of that data, and guarantees that the data is unmodified
when later used by a computation (even when the input provider
is offline). To that end, LucidiTEE’s implementation must store the
data on an untrusted storage accessible by the compute provider,
while also protecting the data — the attacker can always delete
the inputs, but that is equivalent to denying compute. The crypto-
graphic protection must not only ensure confidentiality, integrity,
and authenticity of the data, but also cryptographically bind it to
its unique handle. To that end, the input provider chooses a ran-
dom key k, and computes AE.Enc(k,x). We derive the handle h by
computing a cryptographic digest, using hash functions or authenti-
cated data structures such as a Merkle tree, over the ciphertext (e.g.
H(AE.Enc(k,x))), and return h to the calling party. Generally, Lu-
cidiTEE uses cryptographic hash digests to assign handles to inputs,
output, and state values, where the digest is computed over the
encrypted value to protect values from low-entropy distributions.

5.3 Binding Inputs to Computations

Recall the bind_input(c.id,h) command in FPCFC , whichmakes the
user-provided input x (referred by h) accessible by computation c.
By encrypting the input with user-chosen key k, LucidiTEE reduces
this problem to ensuring that the key k is only provisioned to
enclaves identified within the computation’s specification. Binding
the use of key k to a computation c is carried out via a protocol
between the input provider p , ledger L, and the compute provider
pc (who is running an instance of the key manager enclave Ek):

p : L.post(bind ∥ c.id ∥ h ∥ S.Sig(skp , c.id ∥ h))

pc → p : quoteHW(Ek , pk),where pk← PKE.Keygen(1λ)

p → pc : PKE.Enc(pk, c.id ∥ k ∥ n ∥ S.Sig(skp , c.id∥k∥n))

First, p creates a ledger entry binding the data handle h (returned
by bind_input) to computation c. Next, p contacts pc , whose in-
stance of Ek produces a fresh public key pk along with a quote
attesting to the genuineness of Ek . Upon verifying the attestation
quote, p (with signing key skp) signs and encrypts c.id and k, along
with n which specifies the name of the input (from the list c.inp).
The logic of Ek is such that it will only later reveal the key k to an
enclave that is computing on c.id, either for evaluating ϕ or f .

By binding handles to computations, we can reuse inputs across
function evaluations and computations, without having to clone
the data or require input providers to store a local copy of the data.

5.4 Checking Policy-Compliance

Any party pc ∈ P∗ can invoke compute(c.id, Hin) on chosen inputs
(referenced by handles Hin), so we implement a protocol to ensure
policy compliance even when pc acts maliciously, as follows.

To evaluate f , pc must first launch Eϕ to evaluate ϕ. First, pc
downloads the encrypted state and inputs (from untrusted storage)
for all the input providers listed in c.inp. Eϕ contacts Ek in order to
get the decryption keys for inputs x1, . . . ,xm and state s , as follows:

Eϕ → Ek :quoteHW(Eϕ , c.id ∥ pk),where pk← PKE.Keygen(1λ)

Ek → Eϕ :quoteHW(Ek ,PKE.Enc(pk, ks ∥ kx1 ∥ . . . ∥ kxm))

Next, Eϕ must check whether the requested evaluation of f is
compliant with ϕ, which requires checking three conditions:

(1) active: c is created on the ledger, and not yet revoked.
(2) bound: data for each h ∈ Hin is bound to computation c
(3) compliant: policyϕ (evaluated over the ledger contents, prior

state s , inputs x1, . . . ,xm , and input handles Hin) is valid.
To perform these checks, pc must provide Eϕ with a read-only view
of L, by downloading the ledger’s contents locally, in which case
the enclave-ledger interaction is mediated by the host software
on Eϕ ’s machine (which is fully controlled by pc). Although using
VerifyL allows Eϕ to detect arbitrary tampering of L’s contents, an
adversarial pc may still present a stale view (i.e., a prefix) of L to
Eϕ . We mitigate this attack in § 5.6. For now, we task ourselves
with deciding compliance with respect to a certain height of L.

The policy ϕ is an arbitrary function, implemented as an en-
clave program with the hash measurement listed in c.policy. As
an example, consider the policy ϕ from the Acme application: all
transaction records in the input must be signed by Alice, belong
to the same month, and be fresh. An efficient method of enforcing
freshness is to propagate state containing the timestamp of the
latest transaction record (from Alice’s input in the previous evalu-
ation), and then assert that all transaction records in the current
input have a later timestamp, thus inductively implying freshness.
To that end, we implement f such that it records the highest times-
tamp amongst the input txs within the computation’s state, and
use ϕ to prevent rollback of state. To evaluate ϕ, we ask pc to pro-
vide Eϕ with c’s encrypted state (which must have the handle hs
recorded in most recent entry of c.id on the ledger), and transfer
control to the entry-point of ϕ within Eϕ , which takes each trans-
action record in the current input txs and compares its timestamp
with the previous state. Alternatively, ϕ can load the inputs from
all prior computations and check membership of each record in the
current input txs; this choice of ϕ would incur significantly more
computation and storage overhead. On that note, we stress that
LucidiTEE simply provides the developers with the means to en-
force history-dependent policies. The performance and the privacy
guarantees ultimately depend on the developer’s choice of ϕ.

5.5 Producing Encrypted Output

On approval from Eϕ , pc launches the compute enclave Ef , which
must have measurement c.func. Ef requests Eϕ for the key ks
protecting c’s state and the keys protecting each party’s input:

Ef → Eϕ : quoteHW(Ef , c.id ∥ pk),where pk← PKE.Keygen(1λ)

Eϕ → Ef : quoteHW(Eϕ , t ∥ k̂ ∥ hs ∥ Hin)

where t � L.getCurrentCounter used in Eϕ
where k̂ � PKE.Enc(pk, ks ∥ kx1 ∥ . . . ∥ kxm)

Recall that Eϕ checked compliance of ϕ with respect to a certain
height of the ledger t (albeit potentially stale), and with respect to
input handles Hin. Therefore, Eϕ transmits these values to Ef , in
addition to the decryption keys protecting the state and inputs.

A randomized f needs an entropy source. Using secret key ks
(which was generated by Ek using the TEE’s entropy source, such
as rdrand on SGX), f can internally seed a pseudo-random gen-
erator (e.g. PRF with key H(t ∥ ks)) to get a fresh pseudo-random

8

bitstream at each step of the computation (hence the use of t). This
ensures that the random bits are private to Ef , yet allows replaying
computation from the ledger during crash recovery, for instance.

Once f produces the output y and next state s ′, Ef encrypts s ′
using ks , and encrypts output y in a way that requires all output
recipients to participate in a fair reconstruction protocol (§ 6) to
decrypt the ciphertext. In the case of Acme, Ef emits AE.Enc(k1 ⊕
k2⊕k3, rprt) ∥ PKE.Enc(pk_Alice, k1) ∥ PKE.Enc(pk_BankA, k2) ∥
PKE.Enc(pk_BankB, k3), where k1, k2, and k3 are randomly chosen.
Moreover, Ef emits commitments to help enforce correctness in our
reconstruction protocol. More generally, Ef emits the following:

AE.Enc(
⊕
p ∈P c

out

kp ,y) ∥ { com(kp ;ωp)∥PKE.Enc(pkp , kp ∥ωp) }p ∈P c
out

5.6 Recording Computation on Ledger

As history-based policies need a log of all function evaluations, the
compute provider pc must post Ef ’s evaluation to the ledger before
the output recipients can engage in fair reconstruction, as follows:

L.post(quoteHW(Ef , compute ∥ c.id ∥ t ∥ hs ′ ∥ Hin ∥ Hout))

The use of quoteHW ensures that the computation was performed
for c.id in a genuine TEE, consuming inputs with handles Hin, and
producing outputs with handlesHout and next state with handlehs ′ .
Moreover, the quote contains the ledger height t, with respect to
which Eϕ checked compliance. However, by the time L receives the
post command, it may have advanced by several entries from t to t′.
This can be caused by a combination of reasons including: 1) ledger
entries from concurrent evaluations of c and other computations on
LucidiTEE, 2) execution time of ϕ and f , and 3) malicious pc causing
Eϕ to evaluate ϕ using a stale view of L. This may potentially
invalidate Eϕ ’s compliance check, but instead of simply rejecting
the computation (which would unnecessarily limit concurrency),
we assert the following validity predicate on the ledger’s contents:

∀t, t′, t∗. t′ = L.getCurrentCounter ∧ t < t∗ < t′ ⇒

¬((σ , e) = L.getContent(t∗) ∧ VerifyL(σ , t
∗∥e) ∧

(e = compute∥c.id∥ . . . ∨ e = bind∥c.id∥ . . . ∨ e = revoke∥c.id))

Here, L checks that the computation c is still active and that no
new function evaluation or bind for c.id is performed in between t
and the current height t′. The computation is rejected if the check
fails, and no entry is recorded on L. This validity predicate may
be checked by the ledger’s participants before appending any new
entry, but that would be outside the scope of the bulletin-board
abstraction; instead, we rely on our trusted enclaves, Eϕ and Ef
(and Ed from § 6) to assert the validity predicate, and abort any
computation (i.e., avoid posting entries) on an invalid ledger.

5.7 Chaining Computation

LucidiTEE supports concurrent, stateful computations amongst ar-
bitrary sets of parties. Moreover, via compute chaining, outputs
of a computation can serve as inputs in another computation (of
different id), thereby forming a (directed, acyclic) graph composi-
tion of computations. For instance, the output model of a training
phase can be used as an input during the inference phase, where

the history-based policy ensures that inference uses the most re-
cently trained model. To support compute chaining, we introduce
the following modifications to the protocols discussed so far.

First, in addition to asserting the validity check presented in § 5.6,
we assert that no evaluation is performed between t and t′ on a
computation c∗ whose output is consumed by c, as follows:

∀t′, t∗, c∗ ∈ c.inp. (t′ = L.getCurrentCounter ∧ t < t∗ < t′)

⇒ ¬((σ , e) = L.getContent(t∗) ∧ VerifyL(σ , t
∗∥e)

∧ e = compute ∥ c∗.id ∥ . . .)

Second, wemodify Ek to maintain an additional key kc
∗

c for encrypt-
ing the chained output from c∗ to c (which must not be visible to
any party). Ek generates kc

∗

c when c∗ is created, and transmits kc
∗

c
(along with {kx1 , . . . , kxm } and ks) to Eϕ and Ef in an evaluation.

6 FAIR COMPUTATION

At any time after the evaluation of f terminates, the output recip-
ients (Pcout � {p1, . . . ,pn } listed in c.out) engage in a fair recon-
struction protocol to decrypt the output, with fairness: if any party
gets the output, then so do all honest parties. Fairness is non-trivial
as the enclave’s I/O is controlled by an untrusted compute provider
pc , who may collude with any party. LucidiTEE implements fair
reconstruction using a novel protocol for fair n-party exchange,
that withstands arbitrary corruption threshold t < n amongst the
n output recipients, and ensures both fairness and correctness (i.e.,
all parties receive the same output). Although fairness is impossible
in the standard setting with dishonest majority [36], our protocol
makes additional assumptions by using TEE and ledger function-
alities, requiring t (≤ n − 1) out of n output recipients to possess
a TEE machine — in contrast, prior work by Choudhuri et al. [13]
requires all n parties to possess a TEE machine to avail fairness.

Our protocol works as follows. Recall from § 5.5 and § 5.6 and that
Ef emits an encrypted output along with the ledger-bound quote,
which must first be posted on the ledger for the fair reconstruction
protocol to commence— further recall that the outputy is encrypted
under key ky � kp1 ⊕ . . .⊕ kpn , where each party pi ∈ Pcout is given
kpi . First, we introduce a new enclave program containing the
reconstruction protocol’s logic, called the delivery enclave Ed , and
we make the t parties with TEE nodes launch a local instance of Ed .
Next, each party pi in Pcout transmits her secret key kpi to each Ed ,
thus reconstructing ky in each Ed . Finally, we must engage in a
fair broadcast of ky out of Ed to all parties in Pcout. Our key insight
is a construct that “simultaneously" allows all parties to attain the
key, which is accomplished by posting on the ledger L a value that
serves a dual purpose: 1) it contains the encryption of ky under the
public keys of the non-TEE parties {pt+1, . . . ,pn }, and 2) it triggers
the t Ed enclaves to release ky to their local parties {p1, . . . ,pt }.
Our key insight is that by requiring t TEE nodes for corruption
threshold t , we avoid the case where we have two corrupt parties,
one with and one without TEE, who can abort and collude to get
ky . Figure 3 illustrates our protocol for Acme’s example (where we
set t = n − 1, thus obviating Alice’s responsibility to bring a TEE
node). The rest of this section details the steps of this protocol.

1 Signed Delivery of Encrypted Outputs and Keys. As a first
step, we must ensure that all n output recipients have received

9

Ledger
…

= Epk_Alice(ky){ }out

Figure 3: Fair reconstruction using TEEs and a shared ledger

the encrypted output AE.Enc(ky ,y), and that the t parties with
TEEs have received all key shares {kp1 , . . . , kpn } within their local
instance of Ed . We open commitments produced by Ef within Ed
to ensure correctness of key shares. We do not prescribe a specific
mechanism for transmitting these values; any party can act as a
leader and broadcast them, or parties can form pairwise channels.

pi → pj : quoteHW(Ed , c.id ∥ pk), where pk← PKE.Keygen(1λ)

pj → pi : S.Sig(skpj , hy ∥ PKE.Enc(pk, kpj ∥ ωpj))

2 Posting Signatures on the Ledger. Each party computes a hash
digest of their local copy of the encrypted output, and compares
with the quote produced by Ef . Furthermore, the t parties have
their local Ed verify the commitment of the key shares. If both
checks succeed, the party produces a signature, acknowledging
their receipt of the encrypted output and key shares (held within
Ed). Any one of the n parties can collect signatures from all parties
and post them on the ledger, as follows:

p : L.post(π1), which returns (σ1, _)
π1 � S.Sig(skp1 , c.id ∥ hy) ∥ . . . ∥ S.Sig(skpn , c.id ∥ hy)

The n signatures are computed on the same message, and can be
aggregated (e.g., by using [37]). As an optimization, we combine
the post of π1 with Ef ’s quote (from § 5.6) to reduce our usage of L.

3 Posting Encryption of Key ky on Ledger. Any of the t parties
with a TEE, on seeing π1 on the ledger, can advance the protocol to
the next phase using the proof σ1 (produced by L upon posting π1,
or by invoking L.getContent). On providing σ1 as input, Ed emits
π2, containing an encryption of ky under the public keys of n − t
parties {pt+1, . . . ,pn }, which can be posted on L.

p∈{p1, . . . ,pt } : L.post(π2), which returns (σ2, _)
π2 � quoteHW(Ed , c.id ∥ hy ∥ {PKE.Enc(pkp , ky)}p ∈{pt+1, ...,pn })

4 Decrypting the Output. Each of the n parties can now attain
ky to decrypt the output. The t parties with Ed provide the proof
σ2 (produced by L upon posting π2, or by invoking L.getContent)
to their local Ed enclaves, allowing those enclaves to emit ky . The

n − t parties without TEE simply retrieve π2 from L and decrypt
using their private key skpi to attain ky .

?? presents a formal protocol in the Gatt-hybrid model [12, 13].

7 DISCUSSION

Wemust draw attention to the subtlety of blockchain instantiations.
While our fair delivery protocol tolerates a corruption threshold of
t amongst n participants, the ledger admits a weaker adversary (e.g.
less than 1/3rd corruption in PBFT-based permissioned blockchains,
or honest majority of collective compute power in permissionless
blockchains). In permissioned settings, this means that the n parties
cannot instantiate a shared ledger amongst themselves, and expect
to achieve fair information exchange — they need a larger set of
participants on the ledger, and require more than 2/3rd of that set
to be honest. With that said, this limitation is not unique to us, as
the fair exchange protocol in [13] also has the same limitation.

Fundamentally, forks on proof-of-work blockchains can violate
policies, as computation records can be lost (akin to double spend-
ing in Bitcoin). Even the proof-of-publication scheme in Ekiden [19],
which uses a trusted timeserver to enforce the rate of production
of ledger entries, offers a probabilistic guarantee of rollback pre-
vention, which worsens as the attacker’s computational power
increases. Hence, we deploy LucidiTEE on forkless ledgers (pro-
viding the bulletin-board abstraction L), such as HyperLedger [31]
and Tendermint [38], though we can potentially deploy on public
forkless blockchains based on proof-of-stake [32].

LucidiTEE does not support fair reactive computation, and is
not suitable for applications such as Poker [15]. The primary issue
here is that the compute provider pc may collude with any party
to abort the computation and destroy its intermediate state, thus
preventing any honest party from making progress.

8 IMPLEMENTATION

We implement LucidiTEE with a heavy focus on modularity and
minimality of the trusted computing base.

If the ledger is naively stored as a sequence of entries, it would
force us to perform a linear scan for evaluating policy compliance.
Instead, our implementation stores the ledger locally as an authenti-
cated key-value database [39], whose index is the computation’s id.
We instantiate the shared ledger with a permissioned blockchain,
and evaluate using both Hyperledger [31] and Tendermint [38].
The ledger participant’s logic is implemented as a smart contract
(in 200 lines of Go code), which internally uses RocksDB [40].

To help developers write enclave-hosted applications (specifi-
cally, the compute enclave Ef and policy checker enclave Eϕ for
each application), we developed an enclave programming library
libmoat, providing a narrow POSIX-style interface for commonly
used services such as file system, key-value databases, and channel
establishment with other enclaves. libmoat is statically linked with
application-specific enclave code, ϕ and f , which together form the
enclaves, Eϕ and Ef respectively — note that the developer is free
to choose any other library which respects LucidiTEE’s protocol
for interacting with the shared ledger L, and enclaves Ek and Ed .
libmoat transparently encrypts and authenticates all operations to
the files and databases, using the scheme from § 5.2 — it uses the
keys provisioned by the key manager enclave Ek for encryption,

10

and implements authenticated data structures (e.g. Merkle tries) to
authenticate all operations. LucidiTEE provides fixed implementa-
tions of Ed and Ek , whose measurements are hard-coded within
the smart contract and within libmoat, for use during remote at-
testation. Furthermore, libmoat implements the ledger interface
L, which automatically verifies the signature (using VerifyL) and
TEE attestation of all ledger entries (of type compute and deliver).
libmoat contains 3K LOC, in addition to Intel’s SGX SDK [41].

9 EVALUATION

9.1 Case Studies

We demonstrate applications which require history-based policies
and fairness. In addition to the following applications, we build
micro-benchmarks such as one-time programs [11], digital lock-
boxes (with limited guesses), and 2-party fair information exchange.

9.1.1 Personal Finance Application. We implement Acme’s
personal finance application using the following specification.

computation { id : 1,
inp : [("txs":pk_Alice), ("db":pk_Acme)],
out : [("rprt" : [pk_Alice, pk_BankA, pk_BankB])

,("rprt" : (3, "rprt_alice"))],
policy : 0xcoff..eee, /* ∀r ∈ txs. fresh(r)*/
func : 0x1337...c0de /* aggregate function */ }

computation { id : 3,
inp : [("rprt_alice":(1,"rprt")), ("rprt_bob":(2,"rprt"))],
out : [("joint" : [pk_Alice, pk_Bob, pk_BnkA, pk_BnkB])],
policy : 0xc000...10ff, /* same month? */
func : 0x1ce..b00da /* joint report function */ }

Alice’s computation (id 1) is chained with a computation (id 3)
for producing a joint report along with Bob’s expenses. The policy
from computation 1 asserts that all transaction records belong to
the same calendar month and are fresh (i.e., not used in a prior
evaluation by Acme), and the policy from computation 3 asserts
that the input reports belong to the same calendar month. Acme’s
input is encoded as a key-value database indexed by the merchant
id — with over 50 million merchants worldwide, this database can
grow to a size of several GBs (we use a synthetic database of size
1.6GB). We also implemented a client that uses the OFX API [20]
to download the user’s transactions from their bank, and encrypt
and upload the file (order of few MBs) to a public AWS S3 storage.

9.1.2 Private Survey. We conduct two surveys (with a simple
tallying function), both amongst an unknown set of participants,
with the history-based policy that only parties who voted on survey
1 can participate in survey 2. Moreover, for democratic reasons,
both surveys require that all submitted votes be tallied — this is
also a history-based policy expressed over the set of bind_input
commands on the ledger. We use the following specification:

computation { id : 1,
inp : [("vote": ρ?)], out : [("result" : [pk_Acme])],
policy : 0xcoff..eee, /* use all votes */
func : 0x1337...c0de /* vote tally function */ }

computation { id : 2,
inp : [("vote": ρ?)], out : [("result" : [pk_Acme])],

policy : 0xc000...10ff, /* use all votes that voted on 1 */
func : 0x1ce..b00da /* vote tally function */ }

9.1.3 Federated Machine Learning. A hospital sets up a com-
putation for any user to avail the prediction of a model (specifically
the ECG class of a patient, used to detect Arrhythmia), in exchange
for submitting their data for use in subsequent retraining of the
model — we require a fair exchange of user’s ECG data and the
model’s output, which we achieve without requiring the user to
possess a TEE node. Retraining happens for batches of new user
data, so when a user submits their ECG data, they wish to use the
latest model — this acts as our history-based policy. For the experi-
ment, we use the UCI Machine Learning Repository [42], and adapt
the k-means clustering algorithm and implementation from [43].

computation { id : 4,
inp : [("training_data": pk_Hospital)],
out : [("model" : (5: "model"))],
policy : 0xdaff..0d11, /* good accuracy on test set */
func : 0xf1e...1d5 /* k-means clustering */ }

computation { id : 5,
inp : [("model": (4, model)), ("input": ρ?)],
out : [("result" : [pk_Hospital, ρ?])],
policy : 0xdaff..0d11, /* latest model produced by cid 4 */
func : 0xf1e...1d5 /* k-means inference */ }

Observe the use of ρ? to denote an unknown user, whose public
key is established only at the time of bind_input and compute.

9.1.4 Policy-based Private Set Intersection. Two hospitals A
and B wish to share prescription records about their common pa-
tients, which we model as a private set intersection. Moreover, they
require a guarantee of fair output delivery, and use a one-time
program policy to prevent data misuse. We implement oblivious
set intersection by adapting Signal’s enclave-based private contact
discovery service [44]. Our experiment uses a synthetic dataset
with 1 million patient records for each hospital (totalling 15GB).

9.2 Performance Measurement

We study the performance of our applications, and compare to a
baseline version where the application runs without a ledger, and
without our policy compliance and fairness protocols. The baseline
versions of Acme, survey, ML, and PSI apps take 0.02, 0.41, 0.006,
and 8.24 seconds, respectively, for each function evaluation of f
(ignoring ϕ), using the aforementioned input for each application.

9.2.1 End-to-end Latency and Throughput. Figure 4 reports the
latency and throughput (results aggregated over 100 runs) on both
HyperLedger [31] and Tendermint [38] ledgers (running with 4
peers), with 500 enclave clients concurrently querying and post-
ing ledger entries — we use a 4 core CPU to run the ledger, and a
cluster with 56 CPU cores to run the enclaves. We measure end-
to-end latency, from launching Eϕ to terminating Ed . Recall that
each evaluation on LucidiTEE performs at least one read query
(often more in order to evaluate ϕ) and two writes (to record the
compute and deliver entry) to the ledger. We found throughput
to be bound by the performance of the ledger, which was highly

11

 Acme ML PSI Survey
0

1

2

3

4

5

6

7

8

9

10

11

La
te

nc
y

(s
ec

s)

Hyperledger
Tendermint
Centralized

Acme ML PSI Survey

102

103

104

Th
ro

ug
hp

ut
 (c

om
pu

ta
tio

ns
 /

se
c)

Hyperledger
Tendermint
Centralized

Application Ledger Input Output State

Acme Finance 2372 B 1.6 GB 1872 B 136 B
Federated ML 2052 B 132 KB 1088 B -

Policy-based PSI 2052 B 30 MB 8 MB -
Private Survey 526.4 MB 954.4 MB 2 KB -

Figure 4: Latency, Throughput, and Storage Overheads

dependent on parameters such as the batch size and batch time-
out [31], with the exception of the PSI application (where each
function call took roughly 8.2 seconds) which was compute bound.
For that reason, we also evaluate on a “centralized" ledger, which
is a local logging service, demonstrating throughput and latency
with an ideally-performant ledger. Compared to the baseline, the
latency also suffered by several seconds, as the ledger faced a high
volume of concurrent read and write requests, causing wait time.

9.2.2 Storage. Figure 4 presents the off-chain and on-chain storage,
which we compute for each function evaluation (including calls
to bind_input, get_output, and compute). Observe that the survey
amongst 1million participants incurred 1million calls to bind_input,
incurring a high on-chain storage cost. In other applications, the size
of inputs are orders of magnitude greater than the ledger storage;
in comparison, Ekiden [19] stores inputs and state on the ledger.

10 RELATEDWORK

TEEs, such as Intel SGX, are finding use in systems for outsourced
computing, such as M2R [45], VC3 [7], Opaque [8], EnclaveDB [46],
etc. We find these systems to be complementary, in that users
can use them to implement the compute function (i.e., f), while
LucidiTEE handles history-based policy enforcement and fairness.

Ekiden [19], Coco [47], and Private Data Objects [48] are themost
closely related works, in that they rely on shared ledger and trusted
hardware functionalities. Ekiden executes smart contracts within

SGX enclaves, connected to a blockchain for persisting the con-
tract’s state. On the practical front, LucidiTEE improves efficiency
by not placing inputs or state on the ledger, which is used only to
enforce policies, and therefore scales with the number of parties and
the size of their inputs. In addition to performance improvements,
the ideal functionalities differ in: 1) FPCFC enforces history-based
policies (both within and across computations, whereas Ekiden
smart contracts do not read the ledger); 2) an attacker can prevent
Ekiden’s ideal functionality from sending the output to a party.
To our knowledge, none of [19], [47], or [48] provide fairness in a
malicious setting with arbitrary corruption threshold.

Hawk [16] enables parties to perform off-chain computation
with transactional privacy, while proving correctness by posting
zero knowledge proofs on the ledger. As mentioned in [19], Hawk
supports limited types of computation, and only provides financial
fairness (i.e., fairness with penalties, as opposed to perfect fair-
ness provided by LucidiTEE and [13]). On that note, several works
prior to Hawk, specifically Bentov et al. [15], Kumaresan et al. [49],
Andrychowicz et al. [50, 51], and Kaiyias et al. [52], use Bitcoin [53]
to ensure financial fairness in MPC protocols. Pass et al. [12] de-
velop a protocol for 2-party fair exchange in the ∆-fairness model.

MPC [1] [2] [54] protocols implement a reactive secure com-
putation functionality, but require parties to be online (or trust
one or more third parties to execute the protocol on their behalf).
furthermore, from Cleve’s impossibility result [36], fairness is also
impossible in the standard model with dishonest majority. Recently,
Choudhuri et al. [13] proposed a fair MPC protocol based on wit-
ness encryption (instantiated using SGX at each of the n partici-
pants) and a shared ledger. We improve their protocol by requiring
t (corruption threshold) out of n output recipients to possess TEE
machines; for instance, two distrusting parties can perform fair
MPC on LucidiTEE requiring only one party to own a TEE machine.
Moreover, [13] requires all parties to be online, and only considers
one-shot MPC as opposed to stateful computation with policies.
[55] augments stateless enclaves with shared ledgers, addressing
the issue of rewind-and-fork attacks. However, they do not support
multi-party computation or offline parties, nor ensure fairness.

While attribute-based encryption (ABE) supports ciphertext poli-
cies [56] and key policies [57], FPCFC supports richer history-based
policies, which are required in all of our applications, and our poli-
cies can be expressed over the plaintext. Moreover, both functional
encryption [24] and ABE reveal the plaintext after the decryption
or evaluation operations, whereas FPCFC allows chaining of com-
putations, and enforcing policies on further use of the output. Goyal
et al. [58] show how blockchains can implement one time programs
using cryptographic obfuscation.

11 CONCLUSION

LucidiTEE enables parties to jointly compute on private data, using
protocols (between TEEs and a shared ledger) to ensure that all
computations provide fairness and comply with history-based poli-
cies, even when any subset of parties act maliciously. The ledger is
only used to enforce policies (i.e., it does not store inputs, outputs,
or state), letting us scale to large number of parties and large data.

12

REFERENCES

[1] A. C. Yao, “Protocols for secure computations,” in Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science. Washington, DC, USA: IEEE
Computer Society, 1982, pp. 160–164.

[2] A. C.-C. Yao, “How to generate and exchange secrets,” in Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, ser. SFCS ’86. Washing-
ton, DC, USA: IEEE Computer Society, 1986, pp. 162–167.

[3] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game or A
completeness theorem for protocols with honest majority,” in STOC, 1987, pp.
218–229.

[4] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue,
and U. R. Savagaonkar, “Innovative instructions and software model for isolated
execution,” in Proc. 2nd International Workshop on Hardware and Architectural
Support for Security and Privacy (HASP’13), 2013.

[5] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in Proc. 25th USENIX Security
Symposium (Security’16). Austin, TX: USENIX Association, 2016, pp. 857–
874. [Online]. Available: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/costan

[6] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed sandbox
for untrusted computation on secret data,” in Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementation, ser. OSDI’16. Berkeley,
CA, USA: USENIX Association, 2016, pp. 533–549.

[7] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz, and
M. Russinovich, “VC3: trustworthy data analytics in the cloud using SGX,” in
Proc. IEEE Symposium on Security and Privacy, 2015.

[8] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and I. Stoica,
“Opaque: An oblivious and encrypted distributed analytics platform,” in Proceed-
ings of the 14th USENIX Conference on Networked Systems Design and Implemen-
tation, ser. NSDI’17. Berkeley, CA: USENIX Association, 2017, pp. 283–298.

[9] R. Canetti, “Universally composable security: A new paradigm for cryptographic
protocols,” in FOCS, 2001, pp. 136–145.

[10] C. Dwork, “Differential privacy,” in 33rd International Colloquium on Automata,
Languages and Programming, part II (ICALP 2006), ser. Lecture Notes in Computer
Science, vol. 4052. Springer Verlag, July 2006, pp. 1–12. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/differential-privacy/

[11] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “One-time programs,” in Advances
in Cryptology – CRYPTO 2008, D. Wagner, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 39–56.

[12] R. Pass, E. Shi, and F. Tramer, “Formal abstractions for attested execution secure
processors,” in Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2017, pp. 260–289.

[13] A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers, “Fairness in
an unfair world: Fair multiparty computation from public bulletin boards,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17. New York, NY, USA: ACM, 2017, pp. 719–728.

[14] S. D. Gordon, Y. Ishai, T. Moran, R. Ostrovsky, and A. Sahai, “On complete
primitives for fairness,” in TCC, 2010, pp. 91–108.

[15] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair protocols,” in
Advances in Cryptology – CRYPTO 2014. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 421–439.

[16] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts,” in 2016 IEEE
symposium on security and privacy (SP). IEEE, 2016, pp. 839–858.

[17] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu, “Zexe: Enabling
decentralized private computation,” Cryptology ePrint Archive, Report 2018/962,
2018, https://eprint.iacr.org/2018/962.

[18] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-interactive zero
knowledge for a von neumann architecture,” in Proceedings of the 23rd USENIX
Conference on Security Symposium. Berkeley, CA, USA: USENIX Association,
2014, pp. 781–796.

[19] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. M. Johnson, A. Juels, A. Miller,
and D. Song, “Ekiden: A platform for confidentiality-preserving, trustworthy,
and performant smart contract execution,” CoRR, vol. abs/1804.05141, 2018.

[20] [Online]. Available: https://developer.ofx.com/
[21] “Fintech apps and data privacy: New insights from consumer research,” 2018.
[22] A. Gribov, D. Vinayagamurthy, and S. Gorbunov, “Stealthdb: a scalable encrypted

database with full sql query support,” arXiv preprint arXiv:1711.02279, 2017.
[23] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed

consensus with one faulty process,” J. ACM, vol. 32, no. 2, pp. 374–382, Apr. 1985.
[24] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “Iron: Functional

encryption using intel sgx,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’17. New York, NY, USA:
ACM, 2017, pp. 765–782.

[25] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia, “A formal
foundation for secure remote execution of enclaves,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’17.

New York, NY, USA: ACM, 2017, pp. 2435–2450.
[26] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels through

obfuscated execution,” in 24th USENIX Security Symposium (USENIX Security 15).
Washington, D.C.: USENIX Association, 2015, pp. 431–446.

[27] R. Sinha, S. Rajamani, and S. A. Seshia, “A compiler and verifier for page access
oblivious computation,” in Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ser. ESEC/FSE 2017. New York, NY, USA: ACM,
2017, pp. 649–660.

[28] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page faults
from telling your secrets,” in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, ser. ASIA CCS ’16. New York, NY, USA:
ACM, 2016, pp. 317–328.

[29] D. Zhang, A. Askarov, and A. C. Myers, “Predictive mitigation of timing channels
in interactive systems,” in Proceedings of the 18th ACM Conference on Computer
and Communications Security, ser. CCS ’11. New York, NY, USA: ACM, 2011,
pp. 563–574.

[30] M.-W. Shih, S. Lee, T. Kim, andM. Peinado, “T-sgx: Eradicating controlled-channel
attacks against enclave programs,” 2017.

[31] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy,
B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou,
M. Vukolić, S. W. Cocco, and J. Yellick, “Hyperledger fabric: A distributed operat-
ing system for permissioned blockchains,” in Proceedings of the Thirteenth EuroSys
Conference, ser. EuroSys ’18. New York, NY, USA: ACM, 2018, pp. 30:1–30:15.

[32] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling
byzantine agreements for cryptocurrencies,” in Proceedings of the 26th Symposium
on Operating Systems Principles, ser. SOSP ’17. New York, NY, USA: ACM, 2017,
pp. 51–68.

[33] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A modular analysis of the fujisaki-
okamoto transformation,” Cryptology ePrint Archive, Report 2017/604, 2017,
https://eprint.iacr.org/2017/604.

[34] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme secure
against adaptive chosen-message attacks,” SIAM J. Comput., vol. 17, no. 2, pp.
281–308, Apr. 1988.

[35] M. Bellare and C. Namprempre, “Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm,” J. Cryptol., vol. 21,
no. 4, pp. 469–491, Sep. 2008.

[36] R. Cleve, “Limits on the security of coin flips when half the processors are faulty,”
in Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
ser. STOC ’86. New York, NY, USA: ACM, 1986, pp. 364–369.

[37] C.-P. Schnorr, “Efficient signature generation by smart cards,” Journal of cryptol-
ogy, vol. 4, no. 3, pp. 161–174, 1991.

[38] “Tendermint core in go,” https://github.com/tendermint/tendermint.
[39] R. Sinha and M. Christodorescu, “Veritasdb: High throughput key-value store

with integrity,” Cryptology ePrint Archive, Report 2018/251, 2018, https://eprint.
iacr.org/2018/251.

[40] “Rocksdb,” https://github.com/facebook/rocksdb.
[41] “Intel sgx for linux,” https://github.com/intel/linux-sgx.
[42] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,” 2017.

[Online]. Available: http://archive.ics.uci.edu/ml
[43] S. Chandra, V. Karande, Z. Lin, L. Khan, M. Kantarcioglu, and B. Thuraisingham,

“Securing data analytics on sgx with randomization,” in European Symposium on
Research in Computer Security. Springer, 2017, pp. 352–369.

[44] M. Marlinspike, “Private contact discovery for signal.” [Online]. Available:
https://signal.org/blog/private-contact-discovery/

[45] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang, “M2r: Enabling
stronger privacy in mapreduce computation.” in USENIX Security Symposium,
2015, pp. 447–462.

[46] C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure database using sgx,”
in EnclaveDB: A Secure Database using SGX. IEEE, 2018.

[47] “The coco framework: Technical overview,” https://github.com/Azure/
coco-framework/.

[48] M. Bowman, A. Miele, M. Steiner, and B. Vavala, “Private data objects: an
overview,” arXiv preprint arXiv:1807.05686, 2018.

[49] R. Kumaresan and I. Bentov, “How to use bitcoin to incentivize correct compu-
tations,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 30–41.

[50] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek, “Secure
multiparty computations on bitcoin,” in Security and Privacy (SP), 2014 IEEE
Symposium on. IEEE, 2014, pp. 443–458.

[51] M. Andrychowicz, S. Dziembowski, D. Malinowski, and Łukasz Mazurek, “Fair
two-party computations via bitcoin deposits,” Cryptology ePrint Archive, Report
2013/837, 2013, https://eprint.iacr.org/2013/837.

[52] A. Kiayias, H.-S. Zhou, and V. Zikas, “Fair and robust multi-party computation
using a global transaction ledger,” inAnnual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2016, pp. 705–734.

[53] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

13

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.microsoft.com/en-us/research/publication/differential-privacy/
https://eprint.iacr.org/2018/962
https://developer.ofx.com/
https://eprint.iacr.org/2017/604
https://github.com/tendermint/tendermint
https://eprint.iacr.org/2018/251
https://eprint.iacr.org/2018/251
https://github.com/facebook/rocksdb
https://github.com/intel/linux-sgx
http://archive.ics.uci.edu/ml
https://signal.org/blog/private-contact-discovery/
https://github.com/Azure/coco-framework/
https://github.com/Azure/coco-framework/
https://eprint.iacr.org/2013/837

[54] X. Wang, S. Ranellucci, and J. Katz, “Global-scale secure multiparty computation,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17. New York, NY, USA: ACM, 2017, pp.
39–56. [Online]. Available: http://doi.acm.org/10.1145/3133956.3133979

[55] G. Kaptchuk, I. Miers, and M. Green, “Giving state to the stateless: Augment-
ing trustworthy computation with ledgers,” Cryptology ePrint Archive, Report
2017/201, 2017, https://eprint.iacr.org/2017/201.

[56] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based en-
cryption,” in 2007 IEEE symposium on security and privacy (SP’07). IEEE, 2007,
pp. 321–334.

[57] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption
for fine-grained access control of encrypted data,” in Proceedings of the
13th ACM Conference on Computer and Communications Security, ser. CCS
’06. New York, NY, USA: ACM, 2006, pp. 89–98. [Online]. Available:
http://doi.acm.org/10.1145/1180405.1180418

[58] R. Goyal and V. Goyal, “Overcoming cryptographic impossibility results using
blockchains,” in Theory of Cryptography Conference. Springer, 2017, pp. 529–561.

14

http://doi.acm.org/10.1145/3133956.3133979
https://eprint.iacr.org/2017/201
http://doi.acm.org/10.1145/1180405.1180418

	Abstract
	1 Introduction
	2 Overview of LucidiTEE
	2.1 Motivating Example: Personal Finance App
	2.2 Requirements of Acme
	2.3 Acme on LucidiTEE

	3 LucidiTEE Specification
	3.1 Participants and Threat Model
	3.2 Ideal Functionality

	4 Building Blocks
	4.1 Trusted Execution Environment (TEE)
	4.2 Shared, Append-only Ledger
	4.3 Cryptographic Primitives and Assumptions

	5 Policy-compliant Computation
	5.1 Specifying and Creating a Computation
	5.2 Providing Inputs
	5.3 Binding Inputs to Computations
	5.4 Checking Policy-Compliance
	5.5 Producing Encrypted Output
	5.6 Recording Computation on Ledger
	5.7 Chaining Computation

	6 Fair Computation
	7 Discussion
	8 Implementation
	9 Evaluation
	9.1 Case Studies
	9.2 Performance Measurement

	10 Related Work
	11 Conclusion
	References

