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Abstract

At Real World Crypto 2017, Joan Daemen won the Levchin Prize
and announced that he believed permutation-based crypto was the future
of symmetric cryptography. At the same conference Mike Hamburg in-
troduced Strobe, a symmetric protocol framework capable of protecting
sessions as well as building symmetric cryptographic primitives for the
single cost of Joan Daemen’s permutation Keccak. The next year, at Real
World Crypto 2018 Trevor Perrin came to talk about the Noise proto-
col framework, a modern TLS-like protocol with similar traits but with a
focus on flexibility, offering many handshake patterns to choose from in
order to authenticate peers of a connection in different ways. Disco is the
natural merge of the two projects, creating a new protocol based solely on
two unique primitives: Curve25519 and the Keccak permutation (or more
correctly its wrapper Strobe). Experimental results show that a library
based on Disco can be implemented on top of these two cryptographic
primitives with only a thousand lines of code. This, while offering both a
flexible way to encryption sessions and a complete cryptographic library
for all of an application’s needs.

Keywords: Session Encryption, Embedded Devices, SHA-3, Keccak, Du-
plex construction, Permutation-Based Cryptography, Strobe, Noise, Pro-
tocol Framework, Disco, SSL, TLS
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1 Introduction
The SHA-3 competition[12] started more than 10 years ago and came to an end
in 2012 with the nomination of the Keccak[13] algorithm built from a sponge
construction hosting a permutation at its core. Later, a more generic construc-
tion was invented called the duplex construction[2], which led to the invention
of the Strobe protocol framework[7], a wrapper around the construction that
can be used to construct symmetric protocols. On the other side of the field,
the Noise protocol framework[14] is a project aiming at making the creation of
secure protocols (like SSL/TLS) more flexible, easier to analyze and easier to
implement. This paper attempts to merge the two frameworks Noise and Strobe
into what we call Disco, a complete protocol framework aiming at simplifying
secure protocols and minimizing the need to rely on several cryptographic prim-
itives. The result of this experiment is a cryptographic library that holds in
1000 lines of code. The library can be used to setup (flexible) secure communi-
cations between endpoints and as a typical cryptographic library for operations
like hashing, deriving keys, signing, encrypting, authenticating, etc.

Section 2 introduces the algorithm behind SHA-3 (a sponge and a permutation),
while section 3 presents a similar construction (the duplex construction) and one
of its real world applications (Strobe). Section 4 summarizes the efforts behind
the Noise protocol framework. Finally, section 5 merges the effort from the
previous two sections into one: Disco. Section 6 concludes with experimental
results.

2 SHA-3 and Keccak
In 2007, the NIST organized the SHA-3 competition[12]. Unlike the SHA-1 and
SHA-2 algorithms that had previously been designed by the NSA, SHA-3 would
be open to anyone willing to publicly share their design. 64 teams from all
around the world entered the competition in hopes of becoming the new Secure
Hashing Algorithm. Five years later, in 2012, Keccak (invented by a Belgian/I-
talian team including Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles
Van Assche) was designated as the winner[13]. The other candidates who made
it to the last round were BLAKE, Grøstl, JH, Skein.

While the NIST had many reason to choose Keccak, an interesting one was its
departure in design from previously seen hash algorithms. Indeed, Keccak is
built from a sponge, a construction that was invented during the course of the
competition.
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Figure 1: A simplified representation of the sponge construction.

As can be seen in Figure 1, a sponge is a very simple construction. At its core,
a permutation f takes an input state of size b (8 bits in the above example)
and randomizes it. f is used repeatedly to take on a larger initial input by way
of XOR’ing. Recall that our construction is a sponge, so we naturally call this
phase "absorbing". To obtain an output, the permutation is used again until
enough bits have been obtained, we naturally call this phase "squeezing". The
security of the construction comes from the segregation applied to input and
output states of the permutation: their first part (top, of 5 bits in our example)
is called the rate, their second part (bottom, of 3 bits in our example) is called
the capacity. As can be observed, the capacity is never touched and only the
rate is mixed with the original input and read to produce the final output. More
details (like padding, size of the capacity, etc.) are involved but for the sake of
simplicity we omit them here.

A full security proof[5] exists over the security of the sponge, provided that the
permutation used in the construction has no structural distinguishers. Unfor-
tunately, we have no known ways of mathematically proving this property on
the permutation and as with the study of block ciphers, cryptanalysts must be
invoked and thrown at the algorithm for years in order to obtain an estimation
of its security posture as well as to tweak its parameters. As the inventors of
Keccak had experience with block ciphers –Joan Daemen being the co-inventor
of AES (with Vincent Rijmen)– the design of Keccak-f (Keccak’s permutation)
follows similar patterns.

3 The duplex construction and Strobe
One can wonder if there must only be one absorbing phase and one squeezing
phase. And indeed, a construction introduced as the sister of the sponge, called
the duplex, breaks this boundary:
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Figure 2: A simplified representation of the duplex construction.

While a set of formal proofs shows security equivalence to the sponge, the duplex
construction is quite different in practice. It allows for the construction of more
varied symmetric cryptographic primitives like re-seedable pseudorandom num-
ber generator, authenticated encryption schemes and the idea of sessions. The
latter one encouraged the idea that a secure protocol could be formed around
the construction, and thus the Strobe protocol framework was born. At its
core is a set of public commands permitting access to the duplex functionalities
by continuously mutating an internal state.

Figure 3: All of the functions publicly exported by the API of Strobe.

These commands can be combined (see figure 3) to produce symmetric cryp-
tographic primitives as well as to build more involved protocols. The Strobe
protocol framework is first and foremost a specification around a standardized
and common usage of the duplex construction. Once implemented, it typically
takes around a thousand lines of code, and that includes the permutation
Keccak-f as well. These two qualities make Strobe an excellent choice for em-
bedded devices that have memory limitations as well as high-trust systems that
do not want to rely on too many cryptographic primitives. In addition, imple-
mentations are easy to audit and to use as developers can consider Strobe as a
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black box.

Figure 4: A session built from the duplex construction. Each tag not only authenticate
the previous encryption, but any operation that has happened prior to it.

The next section forgets about SHA-3, Keccak-f, the sponge and the duplex
construction for a bit, but they will make a return (with Strobe) in section 5.

4 The Noise Protocol Framework
The Noise protocol framework is a specification[14] to build TLS-like protocols.
One can implement only parts of it to form a secure communication proto-
col. While there are limited options for cryptographic primitives (X25519 or
X448? Chacha20-Poly1305 or AES-GCM? SHA-256 or BLAKE2s?), the docu-
ment specifies dozens of handshake patterns to chose from. These different
patterns allow peers to authenticate each other in different ways, and will conse-
quently provide different security properties at different point of the handshake.
Once set on a handshake and a set of cryptographic primitives, the protocol
is locked-in and can be implemented in a very linear way. All of this is de-
scribed in the Noise specification as well as formally verified (with Tamarin[6,
16], ProVerif[8] and CryptoVerif[9]) by different community efforts.

Handshake patterns are a series of directional messages containing tokens that
must be digested one by one (on both sides of the connection) by a linear state
machine. These patterns do not enforce the use of a public key infrastructure
(PKI) and/or x.509 certificates and can be used to authenticate peers with plain
keys, pre-shared secrets and even session fingerprints.

NX:
-> e
<- e, ee, s, es

Figure 5: The NX handshake pattern: both sides use ephemeral keys (e), but only the
server authenticates itself by sending its long-term public key (s).

Implementers have to choose what pattern to use and implement the relevant
subset of the specification. Once peers decide to eventually use the protocol to
secure a communication, the handshake is started and each token is processed
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by the peers, dictating to them what needs to be done. For example, e means
that the sender (resp. receiver) needs to generate an ephemeral keypair and send
the public part (resp. receive a public key) whereas es means that a peer has
to compute the Elliptic Curve Diffie-Hellman (ECDH) key exchange between
the client’s ephemeral key and the server’s static key. Internally, a running
hash h continuously absorbs all messages that are being sent or received by
the protocol, and is authenticated at the end of each turn, effectively providing
transcript consistency to the session.

Figure 6: The running hash absorbs every message that transits through the network.

At the same time, a chaining key ck is used continuously with outputs of
the different key exchanges (that happen during the handshake) to derive new
keys. These different keys are used to encrypt messages during and after the
handshake.

Figure 7: The chaining key is given as input to HKDF along with the key exchange
output, the result is used to derive an encryption key as well as the next chaining key.

The following dense diagram is a graphical simplified representation of the NX
handshake pattern, chosen to illustrate our work as it is closely resembling the
typical TLS key exchange between a web browser and a web server.
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Figure 8: A simplified representation of the NX handshake pattern of the Noise pro-
tocol framework. As can be seen, three different states are maintained by a peer, one
used to store asymmetric keys, one used to store the running hash and the chaining
key, one used to store derived keys used for encryption.

As can be seen, while the standard is quite simple compared to something
like TLS, and while the state machine is truly linear, neither analyzing nor
implementing the protocol appear to be straightforward tasks. The next section
will attempt to use Strobe as a black box primitive in order to replace all of the
symmetric primitives of Noise (HKDF, HMAC, SHA-2, BLAKE2, AES-GCM,
Chacha20-Poly1305) with the Keccak-f permutation.

5 Noise + Strobe = Disco
In the description of the running hash h, we purposefully used the word "ab-
sorbing" to point out that a sponge or a duplex construction could be used.
Furthermore, the duplex construction also supports the derivation of keys, re-
seeding and authenticated encryption. This leads us to believe that Strobe could
be used to replace all of the complex machinery we’ve seen in figure 8.

Indeed, this is what we propose with our contribution, that we naturally call
Disco.
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Figure 9: The NX pattern within Disco. Both the CipherState and SymmetricState
have been removed in favor of a unique and simple StrobeState.

The send_CLR (resp. recv_CLR) operation can be used to absorb messages being
sent (resp. received) while the similar AD operation can be used to absorb key
exchange outputs. send_AEAD and recv_AEAD are used to encrypt and decrypt
messages. These functions do not exist in Strobe and are used as shorthands to
represent a send_ENC (resp. recv_ENC) operation followed by a send_MAC (resp.
recv_MAC) operation.

The duplex construction naturally absorbs every operation. No more key deriva-
tion is needed as encryption/decryption is influenced by everything that was
absorbed previously. A stronger session consistency is obtained in the same
way. Finally, we note that from an implementer’s perspective, the protocol now
seems drastically simpler. From a trust perspective, we now only rely on one
single symmetric primitive: Keccak-f.
The construction is so graceful that we can "zoom-in" and discern the internals
of the duplex construction during the same handshake.
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Figure 10: The Disco NX handshake pattern view from the inside. Absorption has
been simplified: if the input is larger than the rate, the state needs to be permuted in
between smaller absorptions.

Disco is currently being proposed as an extension to Noise[18]. It defines a new
SymmetricState and a set of functions that acts on a stored Strobe state:

InitializeSymmetric(protocol_name) calls InitializeStrobe(protocol_name)
on the Strobe state.

MixKey(input_key_material) calls AD(input_key_material) on the Strobe
state.

MixHash(data) calls AD(data) on the Strobe state.

MixKeyAndHash(input_key_material) calls AD(input_key_material) on the
Strobe state.

GetHandshakeHash() calls PRF(32). This function should only be called at the
end of a handshake, i.e. after the Split() function has been called. This function
is used for channel binding[14, Section 11.2].

EncryptAndHash(plaintext) returns a ready to be sent payload to the caller
by using the send_ENC() and send_MAC() functions on the Strobe state.

DecryptAndHash(ciphertext) returns the received payload by using the recv_ENC()
and recv_MAC() functions on the Strobe state.

Split() clones the strobe state and differentiates each one of them via the rec-

9



ommendations given in [7, Appendix C.1.]. It then returns the pair of Strobe
states for encrypting transport messages.

In practice, this SymmetricState transparently replaces Noise’s SymmetricState
and CipherState. More details are available on the specification of Disco it-
self[18].

6 Experimental Results
To obtain a better understanding of our contribution, we have implemented
Disco in Golang[20] and in C[19]. The protocol was independently implemented
in C#[10], Python[11] and Rust[15] as well. The process is pretty straight-
forward, first implement or re-use a Strobe library, then implement the Noise
protocol framework (or modify an existing library) using the Disco specification.
The C implementation of Disco is around 1000 lines of code which includes
everything it needs: an X25519 implementation and Strobe (which contains an
implementation of Keccak-f and a variant of Schnorr’s signature algorithm with
X25519). On the other hand, OpenSSL1 is around 700,000 lines of code and
already lists 165 CVEs2 on its page.

Figure 11: A scaled representation of the lines-of-code count of different codebases.

The Golang implementation was released as a more complete cryptographic li-
brary, offering a plug-and-play experience to connect two peers (with a choice of
different handshake patterns) and a set of stand-alone cryptographic primitives
for all of an application’s need. Its implementation is 1000 lines of code. Add
Strobe (which contains an implementation of the Keccak-f permutation) and
that’s a total of 2000 lines of code. Add an implementation of X25519 and we
end up with a total of 4000 lines of code. On the other hand, Golang’s standard

1https://www.openssl.org/
2https://www.openssl.org/news/vulnerabilities.html
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crypto/tls3 library is 5000 lines of code not including certificate parsing and the
numerous cryptographic primitives it needs to operate.

In order to test the impact of the protocol on embedded devices, some tests for
the NX pattern have been executed on STM32MCUs, specifically an STM32L073RZT6
(Cortex-M0+, running at 32MHz) and an STM32F429ZIT6 (Cortex-M4, run-
ning at 180MHz), both compiled with Atollic TrueSTUDIO 9.2.0 (arm-gcc) and
optimized with -Os option.

Performance for a client sending 1024 byte payloads are shown in Table 1: for
each type of CPU, performance are provided both optimized for space and for
time. In the former case, we used the default C code for Keccak and Curve25519
that is provided by [19], while in the latter case we took ASM code for Keccak
(eXtended Keccak Code Package4) and Curve25519 (two different versions for
the Cortex-M0+5 and for the Cortex-M46) from other public domain reposito-
ries, assuring state-of-the-art performance.
A note regarding RAM footprint: those values have been taken with 1B (and
not 1024B) messages, in order to benchmark only the protocol minimum RAM
usage. The size of the messages will depend, instead, on the application.

CPU ASM opt. Footprint (B) Clock Cycles
Flash RAM Handshake Payload

M0+ – 6,192 5,169 398,918,083 517,536
X 23,892 3,465 17,807,320 247,515

M4 – 6,046 5,097 89,824,263 347,560
X 15,894 3,401 2,077,886 129,143

Table 1: Results on some Cortex-M MCUs

7 Formal Verification
While the focus of this paper is not on formal verification, we include some
preliminary results in this section. We modeled the IK handshake of Disco with
Tamarin Prover[1], a security protocol verification tool, and have open sourced
the models[17]. While the results are not yet conclusive (and might be published
later in an update), formal verification is an helpful process in order to make
sure that the security properties of Disco retain the security properties of the
Noise protocol framework.

Modeling Strobe. Thanks to built-ins for diffie-hellman and the XOR opera-
tion, most of the operations of Disco except for Strobe can easily be modeled.

3https://golang.org/pkg/crypto/tls/
4https://github.com/XKCP/XKCP
5http://munacl.cryptojedi.org/curve25519-cortexm0.shtml
6https://github.com/Emill/X25519-Cortex-M4
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In order to model Strobe calls, we need to model the underlying duplex con-
struction. We note that the security of the duplex construction is equivalent to
the one of the sponge construction (as seen in [3, lemma 3]), and that a keyed
sponge construction can be modeled as a random oracle[4]. For this reason,
we model each calls to Strobe as a single call to a random oracle function in
Tamarin Prover via functions: sponge\1. For example, if we previously ab-
sorbed input1 we model a call to send_ENC() followed by a call to send_MAC()
as:

1 input2 = <’ENC’, input1>
2 ciphertext = sponge(input2) ⊕ plaintext
3 input3 = <plaintext, input2>
4 input4 = <’MAC’, input3>
5 tag = sponge(input4)
6 input5 = <’0000000000000000’, input4>

Figure 12: Tamarin code for successive calls to send_ENC() and send_MAC()

The sponge call on line 5 is equivalent to:

sponge(<’MAC’, plaintext, ’ENC’, input1>)

Note that to circumvent the pair notation of Tamarin Prover we are forced to ab-
sorb inputs in the reverse order, which does not matter as this is an abstraction
of the sponge calls. For the same reason, we use ’MAC’ as a marker of the oper-
ation, abstracting Strobe’s padding and ignoring the destination (’recv_MAC’
or ’send_MAC’) as this is an implementation-specific concern.

Strobe forces permutations for operations involving the network, this is to make
sure that previous operations are absorbed prior to involving new sensitive op-
erations. To model this in Tamarin Prover we call the sponge() function at
this point in time. This can be seen on line 2 and line 5 of figure 12.

Formally proving the Noise security properties. In order to prove the
security properties of the IK handshake, we wrote four type of lemmas:

1. Sanity checks. To obtain confidence in the translation to Tamarin, we
wrote a few lemmas that checks that the protocol is correctly modeled
and can properly run.

2. Standard security properties. To ensure that session keys cannot be leaked
from the protocol, and that long-term keys remain secret to active adver-
saries, generic protocol security lemmas were written.

3. Payload security properties. [14, Section 7.7 of the Noise Protocol Frame-
work] claims specific security properties like forward-secrecy, KCI-resistance
and replay-resistance on each of the handshake pattern messages, as well
as the post-handshake messages.
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4. Identity hiding properties. [14, Section 7.8 of the Noise Protocol Frame-
work] claims specific properties about an adversary’s knowledge of the
peers’ long term static public keys.

We currently have proved all lemmas except for the payload security ones (3).
This is due mostly to a lack of time as the use of the XOR built-in in Tamarin
Prover make advances dramatically slow. For comparison, NoiseExplorer doc-
uments that the analysis of IKpsk2 with proverif took 21 days to complete7.
Due to these limitations, the work needs to be completed at a later point in
time. This is nonetheless encouraging results, and shows that modeling a Disco
handshake in formal verification tools is quite natural.

8 Conclusion and Future Work
In this document We have introduced Disco, a simple protocol to encrypt ses-
sions based on both Noise and Strobe. Disco can be implemented in only a
thousand lines of code and its trust can be traced back directly to two solid
cryptographic primitives: Curve25519 and Keccak-f. At the same time, thanks
to the use of Strobe, an entire cryptographic library results from implementa-
tions of Disco in different programming languages. Future work includes proving
all useful Disco handshakes formally, developing and testing new implementa-
tions of Disco, deciding on a signature algorithm (Ed25519, qDSA, Strobe’s
schnorr-variant, etc.) and standardizing the protocol as an RFC.
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