
Zero-Correlation Attacks on Tweakable Block
Ciphers with Linear Tweakey Expansion

Ralph Ankele1,4, Christoph Dobraunig2,3, Jian Guo4, Eran Lambooij5,
Gregor Leander6 and Yosuke Todo7

1 Royal Holloway University of London, UK
2 Graz University of Technology, Austria

3 Digital Security Group, Radboud University, Nijmegen, The Netherlands
4 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore
5 University of Haifa, Israel

6 Ruhr-Universität Bochum, Germany
7 NTT Secure Platform Laboratories, Japan

ralph.ankele.2015@live.rhul.ac.uk, cdobraunig@cs.ru.nl, guojian@ntu.edu.sg,
eranlambooij@gmail.com, Gregor.Leander@rub.de, todo.yosuke@lab.ntt.co.jp

Abstract. The design and analysis of dedicated tweakable block ciphers is a quite
recent and very active research field that provides an ongoing stream of new insights.
For instance, results of Kranz, Leander, and Wiemer from FSE 2017 show that the
addition of a tweak using a linear tweak schedule does not introduce new linear
characteristics. In this paper, we consider — to the best of our knowledge — for the
first time the effect of the tweak on zero-correlation linear cryptanalysis for ciphers
that have a linear tweak schedule. It turns out that the tweak can often be used
to get zero-correlation linear hulls covering more rounds compared to just searching
zero-correlation linear hulls on the data-path of a cipher. Moreover, this also implies
the existence of integral distinguishers on the same number of rounds. We have
applied our technique on round reduced versions of Qarma, Mantis, and Skinny.
As a result, we can present — to the best of our knowledge — the best attack (with
respect to number of rounds) on a round-reduced variant of Qarma.
Keywords: Symmetric-key cryptography · tweakable block ciphers · zero-correlation
· integral cryptanalysis · Qarma · Mantis · Skinny

1 Introduction
Tweakable block ciphers are constructions, which have — compared to traditional block
ciphers — an additional input called tweak. Ideally, each different choice of the tweak
produces a different instance of a block cipher. This concept has first been introduced
by Schroeppel in the Hasty pudding cipher [Sch98] and was formally treated by Liskov,
Rivest and Wagner [LRW02, LRW11]. The concept of tweakable block ciphers allows
for very clean modes of operations for authenticated encryption like: ΘCB3 [KR11],
or Counter-in-Tweak [PS16]. When using such a mode, one faces two choices, either
use a construction that takes an ordinary block cipher as building block to build a
tweakable block cipher [KR11, LST12, Men15, WGZ+16], or use a dedicated tweakable
block cipher [JNP14, BJK+16, Ava17].
One can expect that designing a tweakable block cipher from scratch results in more
efficient designs rather than reusing a block cipher to create a tweakable block cipher.
However, when designing dedicated tweakable block ciphers, it has to be kept in mind that

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Symmetric Cryptology ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–43
DOI:XXXXXXXX

mailto:ralph.ankele.2015@live.rhul.ac.uk
mailto:cdobraunig@cs.ru.nl
mailto:guojian@ntu.edu.sg
mailto:eranlambooij@gmail.com
mailto:Gregor.Leander@rub.de
mailto:todo.yosuke@lab.ntt.co.jp
http://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXXX

the tweak is an additional publicly known input, which can potentially be influenced by an
attacker. This leads to a new challenge in the analysis of such schemes, since in a chosen
plaintext/related tweak model, the extra input provides additional freedom for the attacker.
This freedom can be exploited in attacks. The most self-evident attack vector that is
influenced by the tweak is differential cryptanalysis [BS91]. By introducing differences in
the tweak, the attacker is able to introduce differences in-between rounds, which typically
leads to longer differential characteristics that hold with a good probability. Naturally,
this increases the number of rounds that can be covered in a key-recovery attack.
Besides this, there is a constant evaluation of known attack vectors on tweakable block
ciphers that exploit the tweak. There are for example: Boomerang attacks [CHP+17, DL17],
meet-in-the-middle attacks [TAY16], impossible differential attacks [DL17, Sas18] and
integral attacks [DEM16]. A positive result with respect to the security of tweakable block
ciphers is that the addition of a tweak, using a linear tweak schedule, does not require
additional considerations with respect to linear cryptanalysis [KLW17].

Research Gap and Contribution. Attacks on dedicated tweakable block ciphers exploit
the additional freedom introduced by the tweak to extend a distinguisher in the data-path
of a cipher. In this work, we follow this general idea to derive distinguishers not only on
the data-path but also by considering the tweak schedule, which can be used to improve
the attacks. In particular, we exploit zero-correlation linear hulls [BW12, BR14] on the
data-path plus tweak. The fact that a lot of state-of-the-art tweakable block cipher
constructions not only use a tweak schedule that is linear, but also have very limited
diffusion in the tweak bits, becomes an advantage for an attacker. This allows us to search
for zero-correlation linear hulls with the help of the miss-in-the-middle approach. In our
attacks the miss (contradiction) occurs within the tweak schedule.
These zero-correlation linear hulls typically cover more rounds than zero-correlation linear
hulls that only consider the data-path. Next to that, the relation between zero-correlation
and integral distinguishers [SLR+15, BLNW12] allows us to observe an integral property
in the data-path. This property can then be exploited in key-recovery attacks.
In this paper, we first examine the effects of zero-correlation linear cryptanalysis on tweak-
able block ciphers having a linear tweak schedule. We focus on the implications on tweakable
block ciphers following the Superpostion Tweakey (STK) constructions [JNP14]. After
that, we give examples for zero-correlation linear hulls for three dedicated tweakable block
ciphers Qarma [Ava17], Mantis [BJK+16] and Skinny [BJK+16]. As shown in Table 1,
the newly acquired distinguishers allow for attacks covering more rounds compared to
previous attacks in the case of round-reduced Qarma [Ava17]. Qarma is the tweakable
block cipher used for pointer authentication in some ARM processors [Qua17].
Note that some of the attacks shown in Table 1 require more than 2n data for an n-bit
block size. In contrast to standard block ciphers where 2n is the natural limit per key (i.e.
the full-codebook is reached), tweakable block ciphers allow to gather the amount of 2n
data per tweak and hence, a total of 2n+t data can be collected considering a t-bit tweak.
Our attacks on Skinny require data above 2n, but we do not collect the full-codebook
under one fixed tweakey. Hence, we can recover unknown tweakey-information that has
not been queried in our key-recovery attacks.
Apart from the dedicated attacks, this new way of searching for integral distinguishers
provides further insights in the design of tweakable block ciphers. One of the new insights
is a better intuition on how the number of positions and the locations of the tweak addition
influences the security of a tweakable block cipher. For instance, consider the case of a
cipher where the addition of the tweak is just performed for a few rounds at the beginning
and the end of the cipher, while for the rounds in the middle just the round-keys are added.
Such a construction can lead to the unfortunate situation, that the zero-correlation linear
hulls are independent of the number of keyed middle-rounds.

2

Table 1: Overview on previous and proposed key-recovery attacks on variants of Qarma-64, Man-
tis, Skinny-64/128 , and Skinny-64/192. MITM/ID/ZC/Inv. = Meet-in-the-Middle/Impossible
Differentials/Zero-Correlation/Invariants

Cipher Rounds Attack type Time Data Memory Ref.

Qarma-64 4/4∗ MITM 290 216 290 [LJ18]
Qarma-64 4/5∗ MITM 289 216 289 [LJ18]
Qarma-64 4/6∗ MITM 270.1 253 2116 [ZD16]
Qarma-64 3/8∗ ID 264.4 261 - [ZDW18]
Qarma-64 4/7∗ ID 2120.4 261 2116 [YQC18]
Qarma-64 4/8∗ ZC/Integral 266.2 248.4 253.70 This Work

Mantis 5/5∗ Inv. 256 29.3 - [Bey18]
Mantis 6/6∗ Diff. 238 228 - [DEKM16]
Mantis 7/7∗ Diff. 253.94 253.94 - [EK17]
Mantis 4/8∗ ZC/Integral 266.2 248.4 253.70 This Work

Skinny-64/128 18 ZC 2126 262.68 264 [SMB18]
Skinny-64/128 19 ID 2119.8 262 2110 [YQC17]
Skinny-64/128 20 ID 2121.08 247.69 247.69 [TAY17]
Skinny-64/128 20 ZC/Integral 297.5 268.4† 282 This Work
Skinny-64/128 23 ID 2124 262.47 277.47 [SMB18]
Skinny-64/128 23 ID 2125.9 262.5 2124.0 [LGS17]
Skinny-64/128 23 ID 279 271.4† 264.0 [ABC+17]
Skinny-64/192 21 ID 2180.5 262 2170 [YQC17]
Skinny-64/192 22 ID 2183.97 247.84 274.84 [TAY17]
Skinny-64/192 23 ZC/Integral 2155.6 273.2† 2138 This Work
Skinny-64/192 27 Rectangle 2165.5 263.5 280 [LGS17]

Related Work. The conversion [SLR+15] of zero-correlation linear hulls to what is
commonly referred to as integral distinguishers is not the only method to find such
distinguishers. Another common approach to find integral distinguishers is to exploit
knowledge about upper bounds of the algebraic degree of a function as shown in higher-
order differential cryptanalysis [Lai94]. Later on, methods that exploit the structure of
a cipher in a more direct manner have been introduced in an attack on the block cipher
Square [DKR97] which became known under the name integral cryptanalysis [KW02].
Moreover, the division property [Tod15b] and bit-based division property [TM16] provide
a powerful improvement in the search for integral distinguishers that for example lead to
attacks on full Misty-1 [Tod15a, Tod17].
It is worth mentioning that Table 1 just shows key-recovery attacks and thus, does not
represent a complete list of results that provide insight into the security of Qarma,
Mantis and Skinny. For instance Leander, Tezcan, and Wiemer [LTW18] provide results
regarding the length of subspace trails for various ciphers including Qarma and Skinny.

∗We state the number of S-box layers in the inbound/outbound phase of the cipher.
†The attack requires more than 2n data, where n is the block size. The full-codebook in a tweakable

block cipher is exceeded by using more than 2n+t data, considering a t-bit tweak.

3

T L : Ft2 → (Fn2)r+1

P

T0

R1

T1

R2 Rr

Tr

C

Figure 1: Key-alternating tweakable block cipher with linear tweak schedule.

Furthermore, Cid et al. [CHP+18] use their new tool called Boomerang Connectivity Table
to re-evaluate existing related-tweakey boomerang characteristics of Skinny. Further works
give more insight into the security of Skinny against differential cryptanalysis [AK19] and
impossible differential cryptanalysis [ST17] and the security of Skinny and Mantis against
invariant attacks [BCLR17]. Eskandari et al. [EKKT19] search for integral distinguishers
based on the division property for Qarma-64, Mantis, and Skinny-64. Furthermore,
Zhang and Rijmen [ZR17] give integral distinguishers for 10 rounds of Skinny-64 based
on the division property.
The property of linear hulls under the related-key setting was also discussed by Bogdanov
et al. in [BBR+13]. They showed that there exist linear hulls such that their bias are
invariant under key difference. More concretely, when some bits in the secret-key must
be inactive of a given linear hull, then there exists another linear hull with the same
correlation, where the key difference is induced into the inactive bits. In comparison
to our work, we review this property from zero-correlation linear hulls. By considering
zero-correlation linear hulls, we can construct non-trivial distinguishers even if all bits in
the secret-key/tweak are active. Therefore, our attacks are less restricted and improve
over the results of Bogdanov et al. [BBR+13].

Outline. The paper is organized as follows. After briefly revisiting the necessary prelimi-
naries on tweakable block ciphers, linear and zero-correlation cryptanalysis in Section 2,
we explain the generic zero-correlation attack on tweakable block cipher in full detail in
Section 3. Moreover, we apply the attack to Qarma, Mantis and Skinny in Section 4, 5
and Section 6, respectively. Finally, Section 7 concludes this work.

2 Preliminaries
2.1 Tweakable Block Cipher and TWEAKEY Framework
Tweakable block ciphers were initially introduced by the Hasty pudding cipher [Sch98],
and then, they were formally defined by Liskov, Rivest and Wagner [LRW11]. When
the block and key lengths are n and κ bits, respectively, a conventional block cipher
(C = Ek(P)) is defined as a function from Fn2 × Fκ2 → Fn2 . A tweakable block cipher
(C = Ek(P, T) = ETk (P)) has an additional input called tweak and it is defined as a function
from Fn2 × Fκ2 × Ft2 → Fn2 when the tweak length is t bits. Responding to the high demand,
many dedicated tweakable block ciphers have been proposed [JNP14, BJK+16, Ava17].
Throughout the paper, we consider the case of a tweakable round based block cipher with
a linear tweak-scheduling L : Ft2 → (Fn2)r+1 mapping the (master)-tweak to the sub-tweaks,
as outlined in Fig. 1. Those sub-tweaks are then XORed to the current state of the cipher.
The Tweakey framework [JNP14], as illustrated in Fig. 2, is often used to design dedicated
tweakable block ciphers, where the key and tweak are basically treated as one object called
tweakey. Moreover, each sub-tweakey is generated by applying the same permutation

4

f

h

g g g g g

f

h

f

h

P C

tk

TWEAKEY Scheduling Algorithm

Figure 2: The Tweakey framework.

f

h′

h′

h′

XOR

α1

α2

αp

f

h′

h′

h′

XOR

α1

α2

αp

f

h′

h′

h′

XOR XOR

α1

α2

αp

h′

h′

h′

XORC0 C1 C2 CR-1 CR

P C

KT1

KT2

KTp

Figure 3: STK construction: Example with TK-p.

recursively. Based on this framework, there are several dedicated tweakable block ciphers
such as Kiasu-BC [JNP15c], Deoxys [JNP15a], Joltik [JNP15b] and Skinny [BJK+16].
Figure 2 shows the Tweakey framework, where the tweakey scheduling algorithm is used
instead of the key scheduling algorithm of the block cipher. The Tweakey framework
consists of a sub-tweakey extraction function g, internal update permutation f , and
tweakey state update function h. A ciphertext is computed from a plaintext by applying
the permutation f iteratively, and the sub-tweakey is XORed with the internal state every
round. A class of tweakable block cipher denoted by TK-p is introduced when the size of
the tweakey is (p × n) bits. Then, TK-1 is suited to the simple single-key block cipher
with n-bit key, and TK-2 is suited to the tweakable block cipher with n-bit key and n-bit
tweak.
Jean et al. [JNP14] gave practical subclass of the Tweakey framework named Super-
position Tweakey (STK), and Fig. 3 shows the construction with TK-p. In the STK
construction, the internal state and tweakey state are partitioned into n/c and pn/c c-bit
nibbles, respectively. The function h is decomposed into two functions h′ and αj , where h′
is a nibble position substitution function and a non-zero coefficient αj is multiplied with
each c-bit nibble over the finite field GF (2c). The function g is a simple XOR of p n-bit
states, and an additional round constant Ci is XORed. We want to highlight that the
tweakey scheduling algorithm of the STK construction is fully linear.

2.2 Evaluating the Security of Dedicated Tweakable Block Ciphers
The main goal in cryptanalysis is to provide as much insight as possible into the security
of symmetric cryptographic primitives. Since full versions of proposed cryptographic
primitives are usually computationally hard to attack, it is common to study and evaluate
the security of cryptographic primitives by analysing round-reduced versions of those
primitives. The difference between the highest number of rounds that can be attacked for
a round-reduced variant and the proposed number of rounds specifies the security margin
of the primitive.
Another important aspect in the analysis of a scheme is the freedom an attacker has. In
the case of a block cipher (Ek(P) = C) this actually depends on the specific use of the
block cipher, e.g., in which mode of operation it is used. Thus, an attacker might only

5

E
0‖N‖0
K E

0‖N‖1
K E

0‖N‖l−1
K E

1‖N‖l
K

C1 C2 Cl Tag

P1 P2 Pl

∑
Pi

E
2‖0
K E

2‖1
K E

2‖la−1
K

A1 A2 Ala

0

Figure 4: Sketch of the tweakable-block-cipher-based authenticated encryption scheme
Deoxys-I [JNP15a].

know the ciphertext C, can make queries with plaintexts and ciphertexts of the attacker’s
choice [MvV96], or is even able to choose key-relations (related-key attacks [Bih94]). While
it is debatable if block ciphers have to withstand powerful models like related-key attacks,
it is good to know which do and which do not. However, it is usually expected that a good
block cipher withstands attacks where the key is secret, but the attacker can freely choose
the ciphertexts and plaintexts.
In the case of a tweakable block cipher (Ek(P, T) = C), we have an additional input called
the tweak T . If we take a look at the existing analysis of dedicated tweakable block ciphers,
e.g, [ABC+17, DL17, Sas18, DEKM16, EK18], we see that in most cases, an attacker is
not only allowed to choose plaintexts P and ciphertexts C, but also knows and can pick
the tweak T . But does this make sense in practical applications? To evaluate this, let
us have a look at the authenticated encryption scheme Deoxys-I [JNP15a] in Figure 4, a
CAESAR [CAE14] candidate utilizing Deoxys-BC as the underlying block cipher.
The nonce-based authenticated encryption scheme Deoxys-I takes a public nonce N ,
associated data A and plaintext P as input and returns a ciphertext C together with
the tag Tag (Ek(N,A, P)→ (C,Tag) and the quadruple (N,A,C,Tag) is transmitted and
visible to an attacker. As indicated in Figure 4, the tweak T used in the tweakable block
cipher is the concatenation of a constant, the nonce N , and a block counter and thus, is
at least known to an attacker. Furthermore, if we consider that CAESAR requires an
authenticated encryption algorithm to be secure, independent of the choice of the nonce
(except that the nonce just be used once), we can evaluate a worst-case scenario, where
an attacker has control over the nonce N and the plaintext P including the length and
hence, has also control over the tweak input. In [DEM16] attacks that utilize the resulting
(somewhat) chosen-tweak scenario on reduced KIASU6= are shown, which uses a similar
mode as Deoxys-I.
While in other typical use-cases for tweakable block ciphers like memory encryption [Ava17]
the control of the attacker over the tweak might be more limited, designers of dedicated
tweakable block ciphers usually do not restrict their claims to limited control. For instance,
the designers of the tweakable block ciphers Mantis [BJK+16], and Qarma [Ava17]
that we examine in this paper claim security under chosen tweaks. For instance in the

6

f

h

g g g

f

h

0 0

Figure 5: Differential model.

case of Mantis: “For MANTIS7, we claim that any adversary who in possession of 2n
chosen plaintext/ciphertext pairs which were obtained under chosen tweaks, but with a fixed
unknown key, needs at least 2126−n calls to the encryption function in order to recover the
secret key” [BJK+16].
The attacks that we show on round-reduced versions of the tweakable block ciphers Mantis
and Qarma do not require the power of an attacker to choose the tweaks, instead they
happen in a related-tweak scenario. Since our attacks make use of integral distinguishers,
we require tweaks to be partially fixed to any value that does not have to be chosen by the
attacker, while the other part iterates over all values for several plaintexts of the attacker’s
choice. This is arguably a lighter scenario than choosing the tweaks and such a behaviour
of the tweak might naturally happen in modes of operation that use a counter in the
tweak to, e.g., encrypt more than one block or in memory encryption schemes that use the
address as tweak input.

2.3 Differential Cryptanalysis
For all tweakable block ciphers discussed in this paper, an XOR is used to mix the sub-
tweakey and internal state. This allows an attacker to cancel a difference of an internal
state by XORing the same difference of a sub-tweakey to the same position. As a result,
one round function is passed for free (i.e., see Fig. 5). In general, such a related-tweak
setting allows for controlling differences of certain internal states. The probability of the
obtained related-tweak/(twea)key differential characteristics is usually higher than that of
single-key characteristics. Therefore, such attacks have been well discussed in the context
of both related-key attacks on block ciphers and related-tweakey attacks on tweakable
block ciphers.

2.4 Linear Cryptanalysis
Linear cryptanalysis makes use of correlations between linear combinations between input
and output bits of a block cipher with a fixed key. More specifically, given a function

F : Fn2 → Fm2 ,

an input mask α ∈ Fn2 , and an output mask β ∈ Fm2 we consider

corF (α, β) := 2 · Prob (〈α, x〉+ 〈β, F (x)〉 = 0)− 1,

where the probability is taken over uniformly distributed inputs x. Traditionally, a high
correlation is used as a distinguisher and then extended to a key-recovery attack [Mat94].
Moreover, we like to mention that for the understanding of our attacks, it might be helpful
to have in mind two special cases for the propagation of masks, namely how linear masks
propagate through an XOR-operation and a branching as illustrated in Fig. 6. In the
formula, for the XOR operation

Fn2 ×Fn2 → Fn2
X(x, y) = x+ y

7

α

α

α α β

α+ β

Figure 6: Left: Propagation of linear masks through XOR. Right: Propagation of linear masks
through a branching point.

it holds that
corX (((α1, α2) , β)) 6= 0 iff α1 = α2 = β,

and for the branching operation

Fn2 ×Fn2 → Fn2
B(x) = (x, x)

it holds that
corB (α, ((β1, β2))) 6= 0 iff α+ β1 + β2 = 0.

Linear Hull

In the case of a round-based block cipher, the concept of linear hull ([Nyb95, Nyb01]) or
correlations matrices ([Dae95]) are important tools to understand how the correlation is
composed. Given a function F as the composition of r functions Ri, that is

F (x) = Rr(Rr−1(. . . R1(x) . . .))

it is known that the correlation of F can be expressed as follows

corF (α, β) =
∑

Γ∈(Fn2)r−1

Γ0=α,Γr=β

CΓ

where CΓ is defined as
CΓ =

∏
corRi(Γi−1,Γi).

The value Γ, capturing all intermediated masks is what is referred to as the linear trail (or
characteristics, path) and CΓ is referred to as the trail correlation.

Zero-Correlation Linear Cryptanalysis

Zero-correlation linear cryptanalysis was introduced by Bogdanov and Rijmen [BR14]. Let
α and β be the linear mask for a plaintext and ciphertext, respectively, zero-correlation
attacks exploit the pair (α, β) with correlation exactly zero. One clear drawback of the basic
zero-correlation linear cryptanalysis is its huge data complexity. In order to detect that
the correlation is exactly zero, it is necessary to encrypt (almost) every possible message.
Later, the data complexity was reduced by exploiting multiple or multidimensional zero-
correlation linear approximations [BW12, BLNW12]. When there are ` zero-correlation
linear approximations for an n-bit block cipher, the required data complexity is roughly
estimated as O(2n/

√
`).

The main technique to derive zero-correlation linear approximations is very similar to
deriving impossible differentials, that is a miss-in-the-middle approach. In a nutshell,

8

SB SR MC AK

SB SR MC AK

SB SR MC AK

SB

zero-correlation

inactive

any

Figure 7: Zero-correlation linear hull on 4-round AES.

starting with a given input and output mask, one propagates the input mask forward
and the output mask backwards through the encryption (resp. decryption) process. This
propagation usually does not capture all linear trails with non-zero correlation in both
direction exactly as this might easily get very difficult to handle, but rather captures an
easy to describe super-set of all those trails. The fact that the linear approximation is
then derived by deducing that those supersets of forward and backward linear trails have
an empty intersection. As an illustration, we recall the well known zero-correlation linear
hull on 4 rounds of the AES. Here, all bytes of the input mask are non-zero except for one
diagonal, and the output linear mask is non-zero for only one byte. This then causes a
contradiction in the second round MixColumns operation because of its branch number of
5.

Link From Zero-Correlation Linear to Integral

Several mathematical links among different types of cryptanalysis have been discussed,
and here we focus on the link between zero-correlation linear cryptanalysis and integral
cryptanalysis [BLNW12, SLR+15].

Theorem 1 (Link from zero-correlation linear hull to integral [SLR+15]). Let F : Fn2 → Fn2
be a function, and A be a subspace of Fn2 and β ∈ Fn2 \ {0}. Suppose that (α, β) is a zero
correlation linear approximation for any α ∈ A, then for any λ ∈ Fn2 , 〈β, F (x + λ)〉 is
balanced on A⊥ = {x ∈ Fn2 |〈α, x〉 = 0, α ∈ A}.

Theorem1 is proven in [SLR+15]. The Theorem shows that when there exists a zero-
correlation linear hull, it implies an integral distinguisher. The required number of texts
is 2n−m, where m denotes the dimension of the subspace A. Recall the zero-correlation
linear hull on 4-round AES (see Fig. 7). The zero-correlation linear hull can be converted
into the integral distinguisher with 232 texts, which is the exactly same as the well-known
integral distinguisher of the 4-round AES [DKR97, KW02].
The known-plaintext assumption is used in the naive key-recovery of (multidimensional)
zero-correlation linear cryptanalysis. If we assume a chosen-plaintext scenario, we can
reduce the required data complexity by linking to the integral attack from zero-correlation
linear cryptanalysis. In this work, when the key-recovery is taken into consideration, we
convert the zero-correlation linear hull into integral distinguisher.

9

Key Recovery Technique for Integral Attacks

When N texts are required in the integral distinguisher and κ-bits of the secret-key are
involved to evaluate balanced bits, the trivial key-recovery requires a time complexity
of N × 2κ. There are two improved techniques to reduce the time complexity, i.e., the
first one is the partial-sum technique [FKL+01] and the other is the FFT key recovery
technique [TA14]. In the partial-sum technique, we first store the frequency of ciphertexts
into a memory. Then, the ciphertexts are partially decrypted by guessing the part of
involved keys, and the size of the memory is reduced. Since the complexity is the product
of the memory size and the partially guessed key size, the attacker can reduce the whole
complexity by partial decryption and compressing the data size step-by-step. The FFT
key-recovery technique has a simpler description than the partial-sum technique, and
thus, we can estimate the time complexity only by enumerating the involved key bits and
ciphertext bits. Assuming that we need to evaluate

⊕
fk1(c⊕ k2), where k1 is the κ-bit

round-key and c and k2 are `-bit (partial) ciphertext and the last round-key, respectively,
the time complexity is estimated as 3` × 2κ+`. Unfortunately, the FFT key-recovery
technique cannot reduce the time complexity if some parts of the round-key are not mixed
with the state. For example, in the AddRoundTweakey function of Skinny just the two
topmost rows of the tweakey are XORed with the full state. In such a case, the partial-sum
technique is more efficient than the FFT key-recovery technique.

3 Zero-Correlation Linear on Tweakable Block Ciphers
In the case of a tweakable block cipher

Ek : Fn2 ×Ft2 → Fn2 ,

we consider the tweak to be an additional input from which we can include the tweak bits
into the linear combination of input bits, when considering linear approximations. More
precisely, the input mask α now consists of two parts, α1 ∈ Fn2 and α2 ∈ Ft2 and we have
to consider

corEk ((α1, α2) , β) := 2 · Prob (〈α1, P 〉+ 〈α2, T 〉+ 〈β,Ek(P, T)〉 = 0)− 1

where now the probability is taken over uniformly distributed inputs P and T .
Let L : Ft2 → (Fn2)r+1 be a linear tweak-schedule, as was shown in [KLW17]. The
corresponding linear hull for this setting becomes

corF ((α1, α2), β) =
∑

Γ∈(Fn2)r−1,Γ0=α1,Γr=β

LT (Γ)=α2

CΓ (1)

where LT is the adjoint linear layer of L, i.e., the unique linear mapping such that

〈x, L(y)〉 = 〈LT (x), y〉

for all x, y. If we represent L as a matrix multiplication, then LT is the transposed
matrix. This was used in [KLW17] to argue that, in contrast to differential cryptanalysis,
no new linear trails are introduced by the tweak. Thus, in order to protect against
linear cryptanalysis, no fundamental new tools have to be developed. However, given the
additional restriction on linear trails in the hull for tweakable ciphers, the formula actually
already hints that zero-correlation might be more effective in this case.
As a first example consider the simple case of a two round tweakable cipher, where the
tweak is just XORed to the state as illustrated in Fig. 8.

Ek : Fn2 ×Fn2 → Fn2
Ek(x, t) = R2(R1(x+ t) + t) + t

10

T

m R1 R2 c

α2 = Γ0 + Γ1 + Γ2

α1 = Γ0 Γ0

Γ0

Γ1 Γ1

Γ1

Γ2 Γ2 = β

Γ2

Figure 8: Propagation of masks in a simple two round tweakable block cipher.

Here, the tweak-scheduling is clearly linear and the mapping is simply

L : Fn2 → Fn2 ×Fn2 ×Fn2
L(t) = (t, t, t).

The adjoint linear layer, is the mapping

LT : Fn2 ×Fn2 ×Fn2 → Fn2
LT (t1, t2, t3) = t1 + t2 + t3.

Now, consider the linear hull for Ek with input mask (α1, α2) and output mask β. Note,
that the input and output masks are independent [BBR+13]. Here α1 is the mask for
the data input and α2 is the input mask for the tweak. According to Equation (1), the
correlation of Ek becomes

corEk (((α1, α2) , β)) =
∑

Γ∈(Fn2)3,Γ0=α,Γ2=β

LT (Γ)=β

CΓ.

Now as
LT (Γ) = LT (Γ0,Γ1,Γ2) = Γ0 + Γ1 + Γ2

and Γ0 = α as well as Γ2 = β, we see that Γ1 = α1 + α2 + β and the linear hull reduces to
a single trail, namely

corEk ((α1, α2) , β) = corR1(α1, α1 + α2 + β) corR2(α1 + α2 + β, β) (2)

Thus, for a given α1 and β by choosing α2 such that either corR1(α1, α1 + α2 + β) or
corR2(α1 + α2 + β, β) equals zero, we derived a zero-correlation linear approximation.
Thus, as long as there exist a zero-correlation linear approximation for R1 (resp. R2) the
corresponding tweakable cipher has a zero-correlation linear approximation for any choice
of R2 (resp. R1). This is the basic observation we are going to use throughout the paper
for our attacks.
In the general case, we are going to use forward and backward propagation to get a
superset S ⊂ (Fn2)r+1 of all characteristics with non-zero correlation. Next, we check if
L(S) ⊂ F`2 is not the full space. If so, we get a zero correlation by picking the mask for
the tweak in Fr2 \S. Note that, this becomes easier when the tweak-scheduling actually
operates on single nibbles, as is the case for the tweakey setting STK as we will explain in
Subsection 3.1.

From Zero-Correlation To Integral

In order to make the link between zero-correlation and integral cryptanalysis in the case
of tweakable block ciphers more clear, we will demonstrate how to apply it to a simple

11

S

S

Figure 9: Propagation of masks in a simple two round tweakable block cipher with two S-boxes.

two-round tweakable block cipher as illustrated in the example in Fig. 8. For this, consider
the case where R1 consists of two parallel applications of a permutation S : Fn2 → Fn2 , i.e.

R1(x, y) = (S(x), S(y)).

The entire function then becomes

E : (Fm2 ×Fm2)× (Fm2 ×Fm2) → (Fm2 ×Fm2)
E(x1, x2, t1, t2) = (c1, c2)

with x1, x2 (resp. (t1, t2)) being the two m-bit parts of the 2m bit message (resp. tweak).
Splitting R2 into its two components

R2 : Fm2 ×Fm2 → Fm2 ×Fm2
R2(y1, y2) =

(
R

(1)
2 (y1, y2), R(2)

2 (y1, y2)
)

we get

c1 = R
(1)
2 (S(x1 + t1) + t1, S(x2 + t2) + t2) + t1

c2 = R
(2)
2 (S(x1 + t1) + t1, S(x2 + t2) + t2) + t2

Figure 9 shows the propagation of the simple tweakable block cipher. We now fix any
nonzero vector β ∈ Fm2 and consider the output mask (β, 0). As input masks for the
message we take (0, γ1) and for the tweak mask (0, γ2). In this case we get

corR1((0, γ1), (β, γ1 ⊕ γ2) = corS(0, β) corS(γ1, γ1 + γ2)

which, as S is a permutation and β is non-zero, is zero for any choice of γ1, γ2. Thus,
Equation (2) implies

corE (((0, γ1) , (0, γ2)) , (β, 0)) = 0

for any choice of γ1, γ2. Thus, the space of input masks with zero-correlation in this case is

A = {((0, γ1), (0, γ2)) | γ1, γ2 ∈ Fm2 }

and its dual is
A⊥ = {((x, 0), (y, 0)) | x, y ∈ Fm2 }.

According to Theorem 1, the function

(m, t) 7→ 〈(β, 0) , Ek(m, t)〉

12

f f f

C0 C1 C2 CR-1 CR

P C

KT [i] 1

Γ 0 Γ R

Γ [i]0

expand expand expand expand expand

Figure 10: Zero-correlation linear hull on the STK with TK-1.

is balanced on each coset of A⊥, that is for each λ, µ ∈ Fm2 on each set

Aλ,µ := {((x, λ), (y, µ)) | x, y ∈ Fm2 }

Thus, fixing the second half of both the message and the tweak, results in a function that
is balanced (i.e. 0 and 1 appear equally often). For completness, we note that this can
also be deduced directly as follows.

Tβ,λ,µ =
∑

(x,y)∈Aλ,µ

(−1)〈(β,0),Ek(x,y)〉

=
∑

x1,t1∈Fm2

(−1)〈β,R
(1)
2 (S(x1+t1)+t1,S(λ+µ)+λ)+t1〉

=
∑

x′,t1∈Fm2

(−1)〈β,R
(1)
2 (S(x′)+t1,S(λ+µ)+λ)+t1〉

=
∑

x′′,t1∈Fm2

(−1)〈β,R
(1)
2 (x′′+t1,S(λ+µ)+λ)+t1〉

=
∑

x′′′,t1∈Fm2

(−1)〈β,R
(1)
2 (x′′′,S(λ+µ)+λ)+t1〉

=
∑

x′′′∈Fm2

(−1)〈β,R
(1)
2 (x′′′,S(λ+µ)+λ)〉

 ∑
t1∈Fm2

(−1)〈β,t1〉

= 0.

We subsequently replaced the variables and finally used that β is non-zero.

3.1 Zero-Correlation Linear Hull on STK with TK-1
When we consider the zero-correlation linear hull on general tweakable block ciphers, the
domain space is expanded to n+ t. This implies that we need to collect a huge amount of
data, even if we can find a non-trivial zero-correlation linear hull. However, many dedicated
tweakable block ciphers are designed based on the STK construction of the TWEAKEY
framework. In that case, the domain expansion of the zero-correlation linear hull is limited
to a smaller size, and the number of chosen plaintexts and tweaks that we need to collect
can be reduced.
Figure 10 shows the zero-correlation linear hull on the STK construction with TK-1. The
tweakey schedule of the STK construction with TK-1 consists of two functions, h and
g as shown in Figure 2. The g function (denoted expand in Figure 10), is a subtweakey
extraction function that extracts the individual round keys from the tweakey state and
incorporates it to the internal state. The h′ function is the tweakey update function, where
the nibble positions are simply permuted. Therefore, different nibbles are never mixed in

13

SB SR MC

SB SR MC

SB SR MC

SB SR MC

SB

inactive

non-zero active

active

Figure 11: Zero-correlation linear hull on the toy cipher.

the tweakey scheduling algorithm, and we can focus on the ith c-bit nibble in KT1. Then,
given a pair of input and output linear masks (Γ0,ΓR), we enumerate all possible linear
characteristics (Γ0,Γ1, . . . ,ΓR) and evaluate a set S such that

S =
{

Λ[i] =
R⊕
r=0

Γr[h′r(i)] | ∀ (Γ0[i],Γ1[h′(i)], . . . ,ΓR[h′R(i)])
}
,

where Γj [i] denotes the linear mask of the ith nibble in Γj , for 0 ≤ j ≤ R. If the complement
Fc2 \ S is not empty, it causes a contradiction when Λ[i] ∈ Fc2 \ S. Note that the tweakey
except for the ith c-bit nibble is independent of this linear hull, and it can be fixed to a
(secret) constant. Furthermore, this implies that the domain expansion is only n+ c not
n+ t. Practically, we can use a miss-in-the-middle like algorithm to find such a linear hull.

Definition 1 (Γ sequence). The forward and backward propagations with probability one
are evaluated from the given input linear mask Γ0 and output linear mask Γr, respectively.
Then, for any i, the Γ sequence is defined by the (R+1) sequence, where whether Γr[h′r(i)]
is active, inactive, or any is stored in the rth element.

When the Γ sequence is inactive for any i, it causes a contradiction when Λ[i] is an active
mask. Moreover, when there is one active value in the Γ sequence, it causes a contradiction
when Λ[i] is the zero mask. We use the following toy cipher to demonstrate the Γ sequence
and show how to find a zero-correlation linear hull.

Example 1 (Toy Cipher). The round function is exactly the same as the AES round
function. A simple tweakey scheduling algorithm is adopted instead of the AES key
scheduling algorithm. The full tweak state is XORed when AddRoundKey is originally
applied, and it uses h′ = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7], which is the same as
the permutation PT of Skinny.

Figure 11 shows the 5-round zero-correlation linear hull, where we focus on the first byte
in KT1. Then, the Γ sequence is (0, 1, 0, 0), where 0 and 1 denotes inactive and active,
respectively. Therefore, if a zero linear mask is applied to the first byte of KT1, it derives
the zero-correlation linear hull. Moreover, we convert the zero-correlation linear hulls to
the corresponding integral distinguisher, as shown in [SLR+15]. Zero linear masks are
applied to (32 + 8) bits, and any linear mask can be applied to the remaining 96 bits.
Therefore, the required data complexity of the corresponding integral distinguisher is 240,
and the discovered distinguisher can cover 5 rounds. We have practically verified such a
distinguisher on a variant of the toy cipher with 4-bit nibbles using 220 texts. More details

14

f f fP C

KT [i] 1

KT [i] 2

KT [i] p

Γ 0

Γ [i]0

expand expand expand expand expand

XOR XOR XOR XORXORC0 C1 C2 CR-1 CR

α1

α2

αp

α1

α2

αp

α1

α2

αp

Figure 12: Zero-correlation linear hull on the STK with TK-p.

can be found in Appendix A. An interesting observation is that the second round function
is independent of the zero-correlation linear hull. In other words, this distinguisher even
holds if the second round function is replaced with any random permutation.

3.2 Zero-Correlation Linear Hull on TK-p
The STK construction with TK-p has p lines in the tweakey scheduling algorithm, and the
same nibble position substitution function h′ is applied to each line. However, a different
coefficient αj is multiplied with each c-bit nibble over GF (2c) in every line. Similarly to
the case of the zero-correlation linear hull on the STK with TK-1, we can focus on the
ith nibble in KT1,KT2, . . . ,KTp. Sub-tweakeys are generated by the XOR of p lines and
all branches connected by XOR must have the same linear mask. Therefore,

Λ1[i]
Λ2[i]
...

Λp[i]

 =

1 αT1 (αT1)2 · · · (αT1)R

1 αT2 (αT2)2 · · · (αT2)R
...

...
...

1 αTp (αTp)2 · · · (αTp)R

×

Γ0[i]
Γ1[h′(i)]
Γ2[h′2(i)]

...
ΛR[h′R(i)]

where αTj : Fc2 → Fc2 denotes the adjoint linear mapping of αj , i.e., the mapping such that

〈x, αj(y)〉 = 〈αTj (x), y〉, ∀ x, y ∈ Fc2.

We finally enumerate all possible linear characteristics (Γ0,Γ1, . . . ,ΓR) from a given pair
of input and output linear masks (Γ0,ΓR). If the complement of the set of all possible
(Λ1[i]‖Λ2[i]‖ · · · ‖Λp[p]) is not empty, there exists a zero-correlation linear hull. Practically,
we can use the same method as in the case for TK-1. This is, choose Γ0 and Γr, we
evaluate the Γ sequence for any i. Then, we can show that the following proposition holds.

Proposition 1. If there is a pair of linear masks (Γ0,Γr) and the nibble position i such
that the Γ sequence has at most p linearly active values, the tweakable block cipher has a
non-trivial zero-correlation linear hull.

Proof. We consider two cases: the Γ sequence is either inactive or active. The first case is
trivial, and active linear mask Λj [i] causes a contradiction. In the second case, we exploit
the structure of the p× (R+ 1) matrix. In the STK construction, αj is chosen such that

15

the matrix
1 α1 (α1)2 · · · (α1)R

1 α2 (α2)2 · · · (α2)R
...

...
...

1 αp (αp)2 · · · (αp)R

becomes MDS. Then, the matrix

1 αT1 (αT1)2 · · · (αT1)R

1 αT2 (αT2)2 · · · (αT2)R
...

...
...

1 αTp (αTp)2 · · · (αTp)R

also becomes MDS, as — using a suitable choice for the inner product — the adjoint
linear mapping αTj is identical to αj , and thus the matrix is unchanged. Therefore, in
order to satisfy Λj [i] = 0 for all j ∈ {1, 2, . . . , p}, the Γ sequence must have at least p+ 1
linearly active nibbles. In other words, if there are at most p linearly active nibbles in the
Γ sequence, it causes a contradiction when all Λj [i] = 0.

Proposition 1 implies that the condition to find non-trivial zero-correlation linear hull is
relaxed if there are more lines in the Tweakey construction (i.e., if p becomes larger in
TK-p). More details can be found in Appendix A. For example, we can find a 5-round
zero-correlation linear hull on a TK-1 construction, but we can further extend the number
of rounds to a 6-round zero-correlation linear hull if a TK-2 construction is used.

4 Application to QARMA
We apply our technique to the Qarma family of lightweight tweakable block ciphers [Ava17].
Qarma has a block size of 64 or 128 bits, a key length of 128 or 256 bits, and a tweak length
of 64 or 128 bits, respectively. We can successfully attack Qarma-64 whose numbers of
forward and backward rounds are reduced to 4 and 8, respectively, under the related-tweak
and chosen plaintext setting. More accurately, only 1 out of 16 cells of the tweak is active,
while the other 15 cells take a known constant value. Our attack is currently the best
known attack with respect to the number of total rounds.

4.1 Description of QARMA
An encryption of Qarma consists of forward round functions, a central construction, and
backward round functions. In the specifications, the designer defines Qarmar as Qarma
whose numbers of forward and backward rounds are r + 1. In this paper however, for
simplicity, we use a different notation denoted by Qarmar1,r2 , where the numbers of
forward and backward rounds are r1 and r2, respectively. Thus, Qarmar corresponds to
Qarmar+1,r+1.
The state of Qarma is represented as a 4× 4 matrix, where each index is defined as

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

 .

16

k0

c

S

h ω

h ω

w0

w1k0

c

τ M S

h ω

k0

c

τ M S

h ω

k0

c

τ M S

h ω

k0

cr-

k0

c

w1

k0

c

k0

c

k0

c

k0

cr-
w0

τ M S τ M S τ

Q

h ω

P

C

T

h ω h ω h ω h ω

ααααα

Figure 13: Structure of Qarma.

Every cell takes a 4 or 8-bit value in Qarma-64 and Qarma-128, respectively. In the
state denoted by X, let X[i1, i2, . . . , im] be (si1 , si2 , . . . , sim) of X.
One round of Qarma consists of the following round operations (illustrated in Fig. 13):

• SubCells (S): substitutes each cell x by an involutory S-box. The following in-
volutory 4-bit S-box σ1 is directly applied for Qarma-64, and the 8-bit S-box in
Qarma-128 is constructed by placing two σ1 in parallel.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

σ1(x) a d e 6 f 7 3 5 9 8 0 c b 1 2 4

• AddRoundTweakey : adds the (full) round-tweakey to the internal state.

• ShuffleCells (τ): applies the cell permutation of Midori as given below:

τ = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2].

• MixColumns (M): multiplies each column of the state by the binary matrix from
Midori M as shown below:

M = circ(0, ρa, ρb, ρc) =

0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

 ,

For Qarma-64 and Qarma-128, M = circ(0, ρ, ρ2, ρ) and M = circ(0, ρ, ρ4, ρ5) are
used, respectively.

The tweak schedule consists of two functions, h and ω, where the h function is defined
as simple permutation h = [6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11]. Moreover, the ω
function is a bit-based LFSR. The LFSR is however irrelevant for our attack, as we only
consider cell-based linear masks that are either inactive, active or any. Moreover, in this
paper we focus on Qarma-64.

4.2 Zero-Correlation Linear Hull on QARMA4,5

Figure 14 shows two zero-correlation linear hulls on Qarma4,5. Any linear masks are
applied to 6 cells of the state, i.e., (s2, s7, s8, s12, s13, s15). Moreover, active linear masks

17

Any

Inactive

Active
S

τ M S

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

2 1 10 11

6 5 14 15

3 8 9 0

7 12 13 4

14 5 13 4

2 1 10 11

15 7 12 6

3 8 9 0

τ M S

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

τ M S

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

τ M

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

τ̄

τ̄M̄S̄

τ̄M̄S̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

14 5 13 4

2 1 10 11

15 7 12 6

3 8 9 0

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

τ̄M̄S̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

τ̄M̄S̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

6 5 14 15

0 1 2 3

7 12 13 4

8 9 10 11

6 5 14 15

0 1 2 3

7 12 13 4

8 9 10 11

S̄

tweak

2 1 10 11

6 5 14 15

3 8 9 0

7 12 13 4

Any

Inactive

Active
S

τ M S

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

τ M S

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

τ M S

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

τ M

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

τ̄

τ̄M̄S̄

τ̄M̄S̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

τ̄M̄S̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

τ̄M̄S̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

S̄

tweak

2 1 10 11

6 5 14 15

3 8 9 0

7 12 13 4

14 5 13 4

2 1 10 11

15 7 12 6

3 8 9 0

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

14 5 13 4

2 1 10 11

15 7 12 6

3 8 9 0

6 5 14 15

0 1 2 3

7 12 13 4

8 9 10 11

6 5 14 15

0 1 2 3

7 12 13 4

8 9 10 11

2 1 10 11

6 5 14 15

3 8 9 0

7 12 13 4

Figure 14: Two zero-correlation linear hulls on Qarma4,5.

are applied to s0 and s8 of the output, as shown in Figure 14. Then, we focus on the tweak
cell labelled 12. As illustrated in cells highlighted by red frames, the Γ sequence has just
one active cell. Therefore, applying an inactive mask to the tweak cell labelled 12 causes a
contradiction due to Proposition 1. Note that we do not need to activate any of the other
15 cells in the tweak and they can take any fixed value. Thus, the domain space of the
zero-correlation linear hull becomes at most 17 (= 16 + 1) cells.
The attack assumption of the naive algorithm using zero-correlation linear hull is the
known-plaintext and tweak setting, but it usually requires a huge data complexity. If we
assume a chosen-plaintext and related-tweak setting, the required data complexity can be
reduced by linking to integral distinguishers as described in Section 3. Any linear masks
are applied to six cells in the two zero-correlation linear hulls, and inactive linear masks
are applied to the other 11 (= 10 + 1) cells. Therefore, the corresponding related-tweak
integral distinguisher requires 210×4 = 240 chosen plaintexts over 24 related tweaks, and
the total data complexity is 240+4 = 244. Here, the relation of the tweak is defined in such
a way that the 4-bit cell labelled 12 takes all values. Both zero-correlation linear hulls
outlined in Fig. 14 share the same input linear mask, and the output in position s0 and s8
is balanced at the same time‡.

4.3 Key-Recovery Attacks on QARMA4,8

In the key recovery, we first add pre-whitening before the integral distinguisher. Let P
and T denote the states of plaintext and tweak, respectively. We first prepare a set of
plaintexts and tweaks, where 10 cells at position P [0, 1, 3, 4, 5, 6, 9, 10, 11, 14] and 1 cell at

‡s10 is also balanced at the same time.

18

S

τ̄M̄S̄

τ̄M̄S̄

S̄

TP

w1 k0

C
C

C

B

B

C C C

Integral Distinguisher

M(τ(k0))

M(τ(k0))

τ̄M̄S̄

M(τ(k0))

YX

C

Figure 15: Key-recovery attacks on Qarma4,8.

position T [12] are active. Moreover, we choose the input such that P [12] = T [12], and
then, (P ⊕ T)[12] becomes constant, and further coincides to the input of the integral
distinguisher.
We can append three rounds after the integral distinguisher. Figure 15 shows the key-
recovery, and let X and Y be the states defined in Fig. 15. Due to the integral distinguisher,
both s0 and s8 in X are balanced at the same time. Then

X0

X4

X8

X12

 =

0 ρ ρ2 ρ

ρ 0 ρ ρ2

ρ2 ρ 0 ρ

ρ ρ2 ρ 0

Y0

Y4

Y8

Y12

 =

ρY4 + ρ2Y8 + ρY12

ρY0 + ρY8 + ρ2Y12

ρ2Y0 + ρY4 + ρY12

ρY0 + ρ2Y4 + ρY8

 ,

and ⊕
(X0 +X8) =

⊕
(ρY4 + ρ2Y8 + ρY12)⊕ (ρ2Y0 + ρY4 + ρY12)

=
⊕

(ρ2Y0 + ρ2Y8) = 0.

Moreover ρ2 is the rotation function,
⊕

(Y0 + Y8) = 0.
We use the meet-in-the-middle technique for the integral attacks [SW13], where

⊕
Y0 and⊕

Y8 are evaluated independently, and round keys satisfying
⊕
Y0 =

⊕
Y8 are recovered.

The size of the involved secret-key is 56(= 14×4) bits in w1⊕k0 and 28(= (1 + 6)×4) bits
in M(τ(k0)), which gives a total of 84 key-bits that can be recovered. Since one structure

19

R1 R2 R3 R4 R5 R6 S M S R−1
6 R−1

5 R−1
4 R−1

3 R−1
2 R−1

1

h h h h h h h−1 h−1 h−1 h−1 h−1 h−1

k1k1 k1 k1 k1 k1 k1 k̄1 k̄1 k̄1 k̄1 k̄1 k̄1 k̄1k0

m

T

c

k
′
0

S P M

TK

M P S

TK

Figure 16: Illustration of the tweakable block cipher Mantis.

removes incorrect secret-key bits by a factor of 2−4, we need 84/4 = 21 structures to
uniquely determine the secret-key.
To compute

⊕
Y0, cells labelled red and green are involved, where 36-bit of ciphertexts,

36-bit of w1 ⊕ k0, and 16-bit of M(τ(k0)) are involved. We first store the frequency of
36-bit (C[4, 6, 7, 8, 9, 11, 12, 13, 14]) into memory. Then, we use the FFT key-recovery
technique [TA14], and the time complexity can be evaluated as

21× 4× (216 × (3× 36× 236)) ≈ 265.2.

As a result, we generate a list whose size is 236+16 = 252 and each value takes ((21× 4) +
16 + 4) = 104 bits, where (21 × 4)-bit are the concatenation of

⊕
X0 in 21 structures,

16-bit are (w1 ⊕ k0)[6, 7, 12, 13], and 4-bit are M(τ(k0))[5].
Similarly, cells labelled blue and green are involved to compute

⊕
X8, where 36-bit of

ciphertexts, 36-bit of w1 ⊕ k0, and 16-bit of M(τ(k0)) are involved. Then, we store the
frequency of 36-bit (C[0, 2, 5, 6, 7, 10, 12, 13]‖C[15]⊕ T ′[15]) into memory. Again, the FFT
key-recovery technique enables us to compute the sum with 265.2 computations, and we
generate a similar list as in the case of

⊕
Y0. Finally, we compare these lists to find a

match, and the time complexity is 252.
Thus, the total time complexity is 2× 265.2 + 252 ≈ 266.2, and the required data complexity
is 21 × 244 ≈ 248.4. The memory complexity is determined by storing our two lists
and is 2 × 104/64 × 252 = 253.70 64-bit blocks. We already recover 56-bit w1 ⊕ k0 and
28-bit M(τ(k0)), and there are still 44 bits of the secret-key, remaining. Finally, we
exhaustively guess these bits, but the complexity, i.e., 244, is negligible compared with 266.2.
The security of Qarma-64 is claimed as 2128−d−2 where 2d chosen or known {plaintext,
ciphertext, tweak} triples, i.e., 2128−48.46−2 = 277.54 in our case. Therefore, our attack
against Qarma4,8 is valid.

5 Application to MANTIS
In this section, we apply the attack to a reduced-round version of Mantis8, where the
number of forward and backward rounds are reduced to 4 and 8, respectively. Our attack
assumption is the same as the case of Qarma, where only 1 cell in the tweak is activated
and the other 15 cells can take any known constant.

5.1 Description of MANTIS
Mantis is a family of lightweight tweakable block ciphers proposed together with Skinny
by Beierle et al. [BJK+16]. Mantis has a block size of 64 bits, a key length of 128 bits,
and a tweak length of 64 bits, respectively. The structure of Mantis follows the design of
Prince [BCG+12] and is aimed to achieve low-latency. While it is rather easy to turn the
cipher into a tweakable cipher by using the Tweakey framework, the designers reused

20

components of Midori [BBI+15] to achieve low-latency. One round of Mantis consists
of the following round operations (illustrated in Fig. 16):

• SubCells (SC): substitutes each nibble x by the involutory Midori S-box Sb0(x)
which is given below:

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

• AddConstant (AC): adds a round constant RCi to the state. The constants are
similarly generated as in Prince.

• AddRoundTweakey (ART): adds the (full) round tweakey to the internal state.

• PermuteCells (PC): applies the cell permutation of Midori as given below:

P = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2].

• MixColumns (MC): multiplies each column of the state by the binary matrix from
Midori M as shown below:

M =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

The state is represented as a 4× 4 matrix, where each index is defined as

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

 .

In the state denoted by X, let X[i1, i2, . . . , im] be (si1 , si2 , . . . , sim) of X. The encryption
of Mantis consists of a forward round function, a central construction, and backward
round function, similar as in Qarma. The designers of Mantis defines Mantisr as
Mantis whose numbers of forward and backward rounds are r. For simplicity, we use a
different notation denoted by Mantisr1,r2 , where the numbers of forward and backward
rounds are r1 and r2, respectively.

5.2 Zero-Correlation Linear Hull on MANTIS4,5

The zero-correlation linear hulls and the consequential integral distinguishers for Mantis4,5
are identical to the distinguishers on Qarma4,5. This is because, we can re-arrange the
components of the round function in Mantis so that the overall structure of Mantis is
the same as for Qarma. We can define Mantisr ∼ Qarmar by changing the applications
of the round components from

MixColumns ◦ PermuteCells ◦ AddTweakeytk ◦ AddConstancti ◦ SubCells

to
SubCells ◦ MixColumns ◦ PermuteCells ◦ AddTweakeytk ◦ AddConstancti

21

Table 2: Comparison between Mantis and Qarma.

Qarma Mantis

Round
function τ M S

TK

S P M

TK

S-box σ1 = [a, d, e, 6, f, 7, 3, 5, 9, 8, 0, c, b, 1, 2, 4] Sb0 = [c, a, d, 3, e, b, f, 7, 8, 9, 1, 5, 0, 2, 4, 6]
τ = [0, b, 6, d, a, 1, c, 7, 5, e, 3, 8, f, 4, 9, 2] P = [0, b, 6, d, a, 1, c, 7, 5, e, 3, 8, f, 4, 9, 2]

Linear
Layer M =

0 ρ ρ2 ρ

ρ 0 ρ ρ2

ρ2 ρ 0 ρ

ρ ρ2 ρ 0

 M =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

that is equivalent to the round structure of Qarma. Moreover, as the first and last round
of Qarma are partial rounds (omitting ShuffleCells and MixColumns), this works for the
beginning of the forward/backward rounds. Furthermore, as Qarma employs one forward
and one backward round in the central construction, ShuffleCells and MixColumns can
be added from Mantis to complete the last round of the forward/backward rounds. The
remaining S-box of Qarma is then equivalent to the application of the S-box in the middle
construction of Mantis.
Since our attack is of a general nature, and the components of Mantis and Qarma are
very similar (see the differences in Table 2), the distinguishers of Qarma can be re-used.
All operations of both Mantis and Qarma are in a nibble-by-nibble fashion, and the
alignment of the state words is the same. Moreover, in the search for the zero-correlation
linear hulls, we consider the m-bit S-box as an arbitrary S-box and do not consider the
structure of a particular S-box. Similar the linear layer of Mantis and Qarma just differ
by some entries of the MixColumns matrix M , but again as we consider nibble-by-nibble
operations and the matrices have the same structure (with an all zero-diagonal), so again
there are no differences in the distinguisher. Finally, the additional application of an LFSR
ω in the tweak-update function of Qarma also does not change the distinguisher, with a
similar argument as for the differences in the MixColumns matrix M .
Figure 24 in Appendix C explicitly shows the zero-correlation linear hull for Mantis4,5,
where cells s0 and s8 after MixColumns are linearly active, respectively.

5.3 Key-Recovery Attacks on MANTIS4,8

Since our attacks are general against the Tweakey framework, and we can reuse the
distinguishers of Qarma on Mantis, we can further reuse the key-recovery for Mantis.
Qarma uses a 128-bit master key K that is initially partitioned as w0||k0, where wi are
the whitening keys and ki are the core keys, respectively, for i ∈ {0, 1}. For encryption,
k0 = k1 and w1 = (w0 ≫ 1)⊕ (w0 � (64− 1)).
Mantis uses a 128-bit master key K that is split into k0||k1 that is then further extended
to the 192-bit key

(k0||k′0||k1) = (k0||(k0 ≫ 1)⊕ (k0 � 63)||k1)

where k0, k
′
0 are the whitening keys and k1 is the round key for all rounds in Mantis.

In the key-recovery of Qarma we recover 56-bit of w1 ⊕ k0 and 28-bit of M(τ(k0)). Since
w1

Qarma = k′0Mantis
and k0

Qarma = k̄1Mantis we can recover the same key information as in
Qarma (i.e., we can recover 56-bit of k′0 ⊕ k̄1 and 28-bit of M(P (k̄1))). Equally, as in the
attack on Qarma4,8 the complexities to attack Mantis4,8 are 266.2 for time complexity,
248.4 for data complexity, and 253.64 64-bit blocks for the memory complexity. Figure 25 in

22

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Figure 17: Round function of the tweakable block cipher Skinny.

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Figure 18: Tweakey schedule of Skinny.

Appendix C explicitly shows the key-recovery for Mantis4,8.

6 Application to SKINNY
In this section, we apply the attack to reduced-round versions of Skinny-64/128 and
Skinny-64/192. Skinny [BJK+16] is designed according to the STK construction with
TK-p, where p ∈ {1, 2, 3}. We show attacks on 20 rounds of Skinny-64/128 and 23 rounds
of Skinny-64/192.

6.1 Description of SKINNY
Skinny is a family of lightweight tweakable block ciphers introduced by Beierle et
al. [BJK+16]. Skinny has a block size n of 64 or 128 bits, and a tweakey size of n/2n/3n,
where the tweakey can be both tweak and key. The aim of Skinny is to achieve the
performance of the NSA ciphers Simon and Speck [BSS+13], while still offering strong
security bounds against differential/linear cryptanalysis. One round of Skinny consists of
the following round operations (illustrated in Fig. 17):

• SubCells (SC): substitutes each nibble x by the S-box S(x) which is given below:

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

• AddRoundConstants (AC): adds LFSR-based round constants to cells 0,4, and 8 of
the state.

• AddRoundTweakey (ART): adds the round tweakey to the first two rows of the state.

• ShiftRows (SR): rotates the ith row, for i = 0 ≤ i ≤ 3, by i positions to the right.

• MixColumns (MC): multiplies each column of the state by the binary matrix M :

M =

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

23

The state is represented as a 4× 4 matrix, where each index is defined as
s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

 .

In the state denoted by X, let X[i1, i2, . . . , im] be (si1 , si2 , . . . , sim) of X. In this paper, we
just consider Skinny-64, however, the attack should easily be applicable to Skinny-128,
as we just consider cell-based operations and consider an arbitrary cell-size S-box. For
two tweakey words (i.e., TK-2) the designers of Skinny recommend 36 rounds, for three
tweakey words (i.e., TK-3) the designers recommend 40 rounds.

6.2 Zero-Correlation Linear Hull on SKINNY-64/128
We searched the zero-correlation linear hull by using the miss-in-the-middle like algorithm.
As a result, we found a 13-round zero-correlation linear hull for Skinny-64/128. Here,
active linear masks are applied to two cells (s0, s3) at the input, and active linear masks
are applied to cells s7 and s11 in the state before MixColumns at the output, as shown in
Fig. 19. Then, we focus on the tweak cell labelled 9, where the Γ sequence is depicted by
using a red frame. Since the Γ sequence has just two active cells and Skinny-64/128 is
based on TK-2, applying an inactive mask to the before mentioned tweak cell causes a
contradiction due to Proposition 1. Note that the remaining 15×2 cells in the tweakey can
take any constant, and the domain of our zero-correlation linear hull is 64 + 8 = 72 bits.
We can link the zero-correlation linear hull to a related-tweakey integral distinguisher.
We apply any linear mask to the two cells (s0, s3) in the zero-correlation linear hulls as
illustrated in Fig. 19 and apply inactive linear masks to the remaining 14 cells. Moreover,
we apply inactive linear masks to the 2× 4 = 8-bit tweak cell labelled 9. Therefore, the
corresponding related-tweakey integral distinguisher requires 214×4 = 256 chosen plaintexts
over 28 related tweakeys, and the total data complexity is 256+8 = 264. Here, the relation
of the tweakey is defined in such a way that the 2× 4 = 8-bit cell labelled 9 takes all values.
The integral distinguishers share the same input linear masks Γ0, and the output in cell
s11 in the state after MixColumns is balanced.

6.3 Key-Recovery Attacks on SKINNY-64/128
Our attack model is a related-tweakey attack, where 28 related tweakeys are exploited. Then,
there exist generic key-recovery attack with the time complexity of 2128−8 = 2120 [BMV11].
Therefore, the time complexity of a non-trivial key-recovery attack must be at most 2120.
In the key-recovery, we can prepend 1 round and append 6 rounds to the integral distin-
guisher. In total the attack reaches 20 rounds. Figure 20 shows the key-recovery, and let
Xi, Yi, and Zi be the states defined in Fig. 20. Let P and T be the states of plaintext
and tweak, respectively. We first prepare a set of chosen Z1, where 14 cells are active, i.e.,
Z1[1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Moreover, we need the tweak cell T [1] in the two
lines to be active, as it will propagate to cell T [9] after 1 round, which coincides with the
beginning of both integral distinguishers as shown in Fig. 19. Note that the consistent set
of chosen plaintexts and tweaks is computed from Z1 and T [1] without guessing any bits,
since Skinny does not have a whitening-key addition at the beginning.

24

Any

Inactive

Active

SC

TK1

ART SR MC

TK1

SC

TK2

ART SR MC

TK2

SC

TK3

ART SR MC

TK3

SC

TK4

ART SR MC

TK4

SC

TK5

ART SR MC

TK5

SC

TK6

ART SR MC

TK6

SC

TK7

ART SR MC

TK7

SC−1

TK8

ART−1 SR−1 MC−1

TK8

SC−1

TK9

ART−1 SR−1 MC−1

TK9

SC−1

TK10

ART−1 SR−1 MC−1

TK10

SC−1

TK11

ART−1 SR−1 MC−1

TK11

SC−1

TK12

ART−1 SR−1 MC−1

TK12

SC−1

TK13

ART−1 SR−1 MC−1

TK13

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

4

0

10

9

5

1

14

15

6

2

12

8

7

3

11

13

10

9

2

1

14

15

6

7

12

8

4

0

11

13

3

5

2

1

8

15

6

7

12

11

4

0

10

9

3

5

13

14

8

15

0

7

12

11

4

3

10

9

2

1

13

14

5

6

0

7

9

11

4

3

10

13

2

1

8

15

5

6

14

12

9

11

1

3

10

13

2

5

8

15

0

7

14

12

6

4

1

3

15

13

2

5

8

14

0

7

9

11

6

4

12

10

15

13

7

5

8

14

0

6

9

11

1

3

12

10

4

2

7

5

11

14

0

6

9

12

1

3

15

13

4

2

10

8

11

14

3

6

9

12

1

4

15

13

7

5

10

8

2

0

3

6

13

12

1

4

15

10

7

5

11

14

2

0

8

9

13

12

5

4

15

10

7

2

11

14

3

6

8

9

0

1

Any

Inactive

Active

SC

TK1

ART SR MC

TK1

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

SC

TK2

ART SR MC

TK2

4

0

10

9

5

1

14

15

6

2

12

8

7

3

11

13

SC

TK3

ART SR MC

TK3

10

9

2

1

14

15

6

7

12

8

4

0

11

13

3

5

SC

TK4

ART SR MC

TK4

2

1

8

15

6

7

12

11

4

0

10

9

3

5

13

14

SC

TK5

ART SR MC

TK5

8

15

0

7

12

11

4

3

10

9

2

1

13

14

5

6

SC

TK6

ART SR MC

TK6

0

7

9

11

4

3

10

13

2

1

8

15

5

6

14

12

SC

TK7

ART SR MC

TK7

9

11

1

3

10

13

2

5

8

15

0

7

14

12

6

4

SC−1

TK8

ART−1 SR−1 MC−1

TK8

1

3

15

13

2

5

8

14

0

7

9

11

6

4

12

10

SC−1

TK9

ART−1 SR−1 MC−1

TK9

15

13

7

5

8

14

0

6

9

11

1

3

12

10

4

2

SC−1

TK10

ART−1 SR−1 MC−1

TK10

7

5

11

14

0

6

9

12

1

3

15

13

4

2

10

8

SC−1

TK11

ART−1 SR−1 MC−1

TK11

11

14

3

6

9

12

1

4

15

13

7

5

10

8

2

0

SC−1

TK12

ART−1 SR−1 MC−1

TK12

3

6

13

12

1

4

15

10

7

5

11

14

2

0

8

9

SC−1

TK13

ART−1 SR−1 MC−1

TK13

13

12

5

4

15

10

7

2

11

14

3

6

8

9

0

1

Figure 19: Two 13-round zero-correlation linear hulls for Skinny-64/128.

Due to the integral distinguisher, both s7 and s11 in Y14 are balanced. Then
Z14[3]
Z14[7]
Z14[11]
Z14[15]

 =

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

Y14[3]
Y14[7]
Y14[11]
Y14[15]

 =

Y14[3] + Y14[11] + Y14[15]

Y14[3]
Y14[7] + Y14[11]
Y14[3] + Y14[11]

 ,

and ⊕
Z14[11] =

⊕
(Y14[7]⊕ Y14[11]) = 0

In Skinny, the full tweakey is not XORed with the internal state (i.e., just the top two
rows of the tweakey are XORed to the state), and then, the FFT key-recovery technique

25

SC ART SR MC

6

2

12

8

3

0

13

9

5

4

14

10

1

7

15

11

12-round Distinguisher Round 2-13

SC ART SR

P T

MC B

5

4

14

10

7

2

11

8

3

6

13

12

0

1

9

15

SCB ART SR MC

14

10

6

2

11

8

3

0

13

12

5

4

9

15

1

7

SC ART SR MC

6

2

12

8

3

0

13

9

5

4

14

10

1

7

15

11

SC ART SR MC

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

SC ART SR MC

4

0

10

9

5

1

14

15

6

2

12

8

7

3

11

13

SC ART SR MC

10

9

2

1

14

15

6

7

12

8

4

0

11

13

3

5

SC ART SR MC

2

1

8

15

6

7

12

11

4

0

10

9

3

5

13

14

X14

TK1

TK1

TK14

TK15

TK16

TK17

TK18

TK19

TK20

TK14

TK15

TK16

TK17

TK18

TK19

TK20

Y14 Z14

Z1

X15 Y15 Z15

X16 Y16 Z16

X17 Y17 Z17

X18 Y18 Z18

X19 Y19 Z19

X20 Y20 Z20

Figure 20: Key-recovery attack on 20 rounds of Skinny-64/128.

is less efficient [TA14]. Therefore, we estimate the time complexity to recover round keys
satisfying

⊕
Y11 = 0 in detail by using the partial-sum technique [FKL+01]. The size

of the involved secret key is (7 + 6 + 4 + 2 + 1 + 0) × 4 = 80 bits, and one structure
filters incorrect secret-key guesses by a factor of 2−4. Therefore, we need about 80/4 = 20
structures to uniquely determine the secret key.
Table 3 summarizes the procedure of the partial-sum technique, where the time complexity
can be computed as

3× 264 + 272 + 276 + 2× 280 + 284 + 2× 292 + 4× 288 ≈ 293.2

We need to repeat this procedure 20 times to recover the secret-key. Thus, the total time
complexity is 297.5, the data complexity is 20× 264 ≈ 268.4, and the memory complexity is
1/64 · 288 = 282 64-bit blocks. Note that our attack requires a data complexity above 264,
however, we do not need to collect the full-codebook under a fixed tweakey.

6.4 Zero-Correlation Linear Hull on SKINNY-64/192
We can reuse parts of the zero-correlation linear hull for Skinny-64/128 in the TK-2
setting for that of Skinny-64/192 in the TK-3 setting. Therefore, we apply any linear
mask to cells (s0, s3) in the input mask Γ0. In contrast to the case for Skinny-64/128, we

26

Table 3: Procedure for the key-recovery on Skinny-64/128

Step Guessed key Data Stored Texts Memory (bits) Complexity

0 256 X20[0,1,3,4,5,6,7,8,10,11,12,13,14,15] 256 264

1 TK20[1,5] 252 X20[0,3,4,6,7,8,10,11,12,14,15],Y19[1,5] 252+8 = 260 256+8 = 264

2 TK20[6] 252 X20[0,3,4,7,8,11,12,15],Y19[1,5,6,10,14] 252+12 = 264 252+12 = 264

3 TK20[0,4] 248 X20[3,7,11,15],Y19[0,1,4,5,6,10,12,14] 248+20 = 268 252+20 = 272

4 TK20[3,7] 244 Y19[0,1,3,4,5,6,10,11,12,14,15] 244+28 = 272 248+28 = 276

- 244 X19[0,1,3,4,5,7,8,9,12,13,15]
5 TK19[0,4] 236 X19[1,3,5,7,9,13,15],Y18[4,12] 236+36 = 272 244+36 = 280

6 TK19[3,7] 232 X19[1,5,9,13],Y18[3,4,12,15] 232+44 = 276 236+44 = 280

7 TK19[1,5] 232 Y18[1,3,4,5,9,12,13,15] 232+52 = 284 232+52 = 284

- 232 X18[1,3,4,7,11,12,13,15]
8 TK18[3,7] 224 X18[1,4,12,13],Y17[7,15] 224+60 = 284 232+60 = 292

9 TK18[1] 220 X18[4,12],Y17[7,13,15] 220+64 = 284 224+64 = 288

10 TK18[4] 220 Y17[0,7,8,13,15] 220+68 = 288 220+68 = 288

- 220 X17[0,6,10,12,14]
11 TK17[6] 212 X17[0,12],Y16[6] 212+72 = 284 220+72 = 292

12 TK17[0] 28 Y16[6,12] 28+76 = 284 212+76 = 288

12 TK16[5] 24 Z14[11] 24+80 = 284 28+80 = 288

now apply active linear masks to only cell s9 in the state before MixColumns, as shown in
Fig. 21. Then, we focus on the tweakey cell labelled 7, and the Γ sequence has now three
active cells. Again, by using Proposition 1 and applying an inactive mask to the before
mentioned tweakey cell, this causes a contradiction. Note that the remaining 15× 3 cells
in the tweakey can take any constant, and the domain of our zero-correlation linear hull is
64 + 12 = 76 bits.
Again, we link the zero-correlation linear hull to a related-tweakey integral distinguisher.
We apply any linear mask to the two cells (s0, s3) in the zero-correlation linear hulls as
illustrated in Fig. 21 and apply inactive linear masks to the remaining 14 cells. Moreover,
we apply inactive linear masks to the 3× 4 = 12-bit tweak cell labelled 7. Therefore, the
corresponding related-tweakey integral distinguisher requires 214×4 = 256 chosen plaintexts
over 212 related tweakeys, and the total data complexity is 256+12 = 268. Here, the relation
of the tweakey is defined in such a way that the 3× 4 = 12-bit tweak cell labelled 7 takes
all values. The cell s9 before MixColumns is balanced because any linear mask is applied
to the cell.

6.5 Key-Recovery Attacks on SKINNY-64/192
Our integral distinguisher uses 212 related tweakeys, and then, there exist generic key-
recovery attack with a time complexity of 2192−12 = 2180 [BMV11]. Therefore, the time
complexity of a non-trivial key-recovery attack must be at most 2180.
In the key-recovery, we can prepend 1 round and append 8 rounds to the integral distin-
guisher. In total the attack reaches 23 rounds. Figure 22 shows the key-recovery, and let
Xi, Yi, and Zi be the states as defined in Fig. 20. Let P and T be the states of plaintext
and tweak, respectively. We first prepare a set of chosen Z1, where 14 cells are active,
i.e., Z1[1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Moreover, we need the tweak cell T [11] in
all three lines of the tweak-schedule to be active, as it will propagate to cell T [7] after

27

Any

Inactive

Active

SC

TK1

ART SR MC

TK1

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

SC

TK2

ART SR MC

TK2

4

0

10

9

5

1

14

15

6

2

12

8

7

3

11

13

SC

TK3

ART SR MC

TK3

10

9

2

1

14

15

6

7

12

8

4

0

11

13

3

5

SC

TK4

ART SR MC

TK4

2

1

8

15

6

7

12

11

4

0

10

9

3

5

13

14

SC

TK5

ART SR MC

TK5

8

15

0

7

12

11

4

3

10

9

2

1

13

14

5

6

SC

TK6

ART SR MC

TK6

0

7

9

11

4

3

10

13

2

1

8

15

5

6

14

12

SC−1

TK7

ART−1 SR−1 MC−1

TK7

9

11

1

3

10

13

2

5

8

15

0

7

14

12

6

4

SC−1

TK8

ART−1 SR−1 MC−1

TK8

1

3

15

13

2

5

8

14

0

7

9

11

6

4

12

10

SC−1

TK9

ART−1 SR−1 MC−1

TK9

15

13

7

5

8

14

0

6

9

11

1

3

12

10

4

2

SC−1

TK10

ART−1 SR−1 MC−1

TK10

7

5

11

14

0

6

9

12

1

3

15

13

4

2

10

8

SC−1

TK11

ART−1 SR−1 MC−1

TK11

11

14

3

6

9

12

1

4

15

13

7

5

10

8

2

0

SC−1

TK12

ART−1 SR−1 MC−1

TK12

3

6

13

12

1

4

15

10

7

5

11

14

2

0

8

9

SC−1

TK13

ART−1 SR−1 MC−1

TK13

13

12

5

4

15

10

7

2

11

14

3

6

8

9

0

1

SC−1

TK14

ART−1 SR−1 MC−1

TK14

5

4

14

10

7

2

11

8

3

6

13

12

0

1

9

15

SC−1

TK15

ART−1 SR−1 MC−1

TK15

14

10

6

2

11

8

3

0

13

12

5

4

9

15

1

7

Figure 21: Zero-correlation linear hull for Skinny-64/192.

one round, which coincides with the beginning of both integral distinguishers as shown in
Fig. 21. Note that the consistent set of chosen plaintexts is computed from Z1 without
guessing any bits.

28

SC ART SR MC

6

2

12

8

3

0

13

9

5

4

14

10

1

7

15

11

14-round Distinguisher Round 2-15

SC ART SR MCB

14

10

6

2

11

8

3

0

13

12

5

4

9

15

1

7

SC ART SR MC

6

2

12

8

3

0

13

9

5

4

14

10

1

7

15

11

SC ART SR MC

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

SC ART SR MC

4

0

10

9

5

1

14

15

6

2

12

8

7

3

11

13

SC ART SR MC

10

9

2

1

14

15

6

7

12

8

4

0

11

13

3

5

SC ART SR MC

2

1

8

15

6

7

12

11

4

0

10

9

3

5

13

14

X16
TK16

TK16

TK1

TK1

Y16 Z16

X17
TK17

TK17

Y17 Z17

X18
TK18

TK18

Y18 Z18

X19
TK19

TK19

Y19 Z19

X20
TK20

TK20

Y20 Z20

X21
TK21

TK21

Y21 Z21

SC ART SR MC

X22
TK22

TK22

Y22 Z22

P TZ1

8

15

0

7

12

11

4

3

10

9

2

1

13

14

5

6

SC ART SR MC

X23
TK23

TK23

Y23 Z23

0

7

9

11

4

3

10

13

2

1

8

15

5

6

14

12

Figure 22: Key-recovery attack on 23-rounds of Skinny-64/192.

Due to the integral distinguisher s9 in Y16 is balanced. Then
Z16[1]
Z16[5]
Z16[9]
Z16[13]

 =

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

Y16[1]
Y16[5]
Y16[9]
Y16[13]

 =

Y16[1] + Y16[9] + Y16[13]

Y16[1]
Y16[5] + Y16[9]
Y16[1] + Y16[9]

 ,

and ⊕
Z16[5] + Z16[13] =

⊕
Y16[9] = 0

Similarly to the attack against Qarma, we use the meet-in-the-middle technique for
the integral attack [SW13], where

⊕
Z16[5] and

⊕
Z16[13] are independently evaluated,

and round-tweakeys satisfying
⊕
Z16[5] =

⊕
Z16[13] are recovered. The size of involved

secret-tweakey is 148(= 37 × 4) bits. Since one structure removes incorrect secret-key
guesses by a factor of 2−4, we need 148/4 = 37 structures to uniquely determine the
secret-key.

29

Table 4: Procedure for the key-recovery of
⊕

Z16[5] on Skinny-64/192.

Step Guessed key Data Stored Texts Memory (bits) Complexity

0 268 X23[0, 1, 2, . . . , 15],∆TK22[0] 268 268

1 TK23[0, . . . , 7] 268 X22[0, 1, 2, . . . , 15],∆TK22[0] 268+32 = 2100 268+32 = 2100

2 TK22[0, . . . , 7] 264 X21[0, 1, 2, . . . , 15] 264+64 = 2128 268+64 = 2132

3 TK21[0, 4] 256 X21[1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15], Y20[0, 12] 256+72 = 2128 264+72 = 2136

4 TK21[1, 5] 248 X21[2, 3, 6, 7, 10, 11, 14, 15], Y20[0, 5, 12, 13] 248+80 = 2128 256+80 = 2136

5 TK21[2, 6] 248 X21[3, 7, 11, 15], Y20[0, 2, 5, 6, 10, 12, 13, 14] 248+88 = 2136 248+88 = 2136

6 TK21[3, 7] 244 Y20[0, 2, 3, 5, 6, 10, 11, 12, 13, 14, 15] 244+96 = 2140 248+96 = 2144

- 244 X20[0, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15]
7 TK20[0, 4] 236 X20[2, 3, 5, 9, 13, 14, 15], Y19[4, 12] 236+104 = 2140 244+104 = 2148

8 TK20[5] 236 X20[2, 3, 14, 15], Y19[1, 4, 5, 9, 12] 236+108 = 2144 236+108 = 2144

9 TK20[2] 232 X20[3, 15], Y19[1, 4, 5, 9, 12, 14] 232+112 = 2140 236+112 = 2144

10 TK20[3] 228 Y19[1, 4, 5, 9, 12, 14, 15] 228+116 = 2144 232+116 = 2148

- 228 X19[1, 4, 7, 11, 12, 13, 15]
11 TK19[4] 224 X19[1, 7, 11, 13, 15], Y18[8] 224+120 = 2144 228+120 = 2148

12 TK19[1] 220 X19[7, 11, 15], Y18[8, 13] 220+124 = 2144 224+124 = 2148

13 TK19[7] 212 Y18[7, 8, 13] 212+128 = 2140 220+128 = 2148

- 212 X18[6, 10, 14]
14 TK18[6] 24 Y17[6] 24+132 = 2140 212+132 = 2144

- 24 X17[5]
15 TK17[5] 24 Z16[5] 24+136 = 2140 24+136 = 2140

To compute
⊕
Z16[5], all cells labelled red and green are involved. We use the partial-

sum technique to recover
⊕
Z16[5], and the procedure is summarized in Table 4. Here,

∆TK22[0] is computed from the relation of tweakeys. Then, the time complexity can be
computed by

268 + 2100 + 2132 + 3× 2136 + 2140 + 4× 2144 + 5× 2148 ≈ 2150.4

We also need to compute
⊕
Z16[13], but the time complexity is clearly negligible compared

with that for
⊕
Z16[5]. Nevertheless, the procedure to recover

⊕
Z16[13] is shown in

Table 5, where we consider all cells labelled blue and green. Again, we use the partial-sum
technique to recover

⊕
Z16[13], and the time complexity can be computed by

268 + 284 + 2112 + 3× 2108 + 5× 2104 + 2× 2100 ≈ 2112.3

We need to repeat these two procedures for 37 times to recover the secret-key. Thus, the
total time complexity can be computed by

37× (2150.4 + 2112.3) ≈ 2155.6

the data complexity is 37× 268 ≈ 273.2, and the memory complexity is 1/64 · 2144 = 2138

64-bit blocks. Finally, we compare these lists and find a match. Similarly to the attack
against Skinny-64/128, our attack requires a data complexity above 264, however, we do
not need to collect the full-codebook under a fixed tweakey.

30

Table 5: Procedure for the key-recovery of
⊕

Z16[13] on Skinny-64/192.

Step Guessed key Data Stored Texts Memory (bits) Complexity

0 256 X23[0, 1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15],∆TK22[0] 256 268

1 TK23[0, 1, 2, 4, 5, 6, 7] 256 X22[0, 1, 2, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15],∆TK22[0] 256+28 = 284 256+28 = 284

2 TK22[0, 1, 2, 4, 5, 6, 7] 244 X21[0, 1, 4, 6, 7, 8, 10, 12, 13, 14, 15] 244+56 = 2100 256+56 = 2112

3 TK21[0, 4] 236 X21[1, 6, 7, 10, 13, 14, 15], Y20[4, 12] 236+64 = 2100 244+64 = 2108

4 TK21[1] 232 X21[6, 7, 10, 14, 15], Y20[4, 12, 13] 232+68 = 2100 236+68 = 2104

5 TK21[6] 228 X21[7, 15], Y20[2, 4, 6, 12, 13] 228+72 = 2100 232+72 = 2104

6 TK21[7] 224 Y20[2, 4, 6, 11, 12, 13] 224+76 = 2100 228+76 = 2104

- 224 X20[2, 5, 7, 9, 13, 14]
7 TK20[5] 216 X20[2, 7, 14], Y19[5] 216+80 = 296 224+80 = 2104

8 TK20[2] 212 X20[7], Y19[5, 14] 212+84 = 296 216+84 = 2100

9 TK20[7] 212 Y19[3, 5, 14] 212+88 = 2100 212+88 = 2100

- 212 X19[3, 4, 15]
10 TK19[4] 212 X19[3, 15], Y18[0] 212+92 = 2104 212+92 = 2104

11 TK19[3] 28 Y18[0, 15] 28+96 = 2104 212+96 = 2108

- 28 X18[0, 12]
12 TK18[0] 24 Y17[12] = X17[13] = Z16[13] 24+100 = 2104 28+100 = 2108

7 Conclusion
In this paper, we study zero-correlation attacks on tweakable block ciphers and consider
for the first time the effect of the tweak. Kranz, Leander and Wiemer [LTW18] showed
that the addition of the tweak, that is updated by a linear key schedule, does not introduce
new linear characteristics, which is quite different to the differential model. However, the
given additional restrictions from the linear tweak schedule allow us to efficiently find
zero-correlation linear hulls for tweakable block ciphers.
Turning the zero-correlation distinguisher into integral distinguishers allows us to show new
attacks on round-reduced variants of Qarma, Mantis and Skinny, where the attack on
Qarma is currently the best attack (with respect to number of rounds) on a round-reduced
variant of Qarma. This new way of searching for distinguishers on tweakable block ciphers
does not only allow attackers to find longer distinguishers, but also provides designers of
tweakable block ciphers with new insights. For example in tweakable reflection ciphers like
Mantis or Qarma, where the tweak is added just in the forward and backward rounds,
while in the middle rounds just round-keys are added, the additional middle rounds do not
provide extra security with respect to our attacks. This is because the zero-correlation
linear hulls over the tweaks are independent of the number of keyed middle rounds.

Acknowledgments. The research leading to the presented results started during the
Flexible Symmetric Cryptography workshop at the Lorentz Center in Leiden, the Nether-
lands. Christoph Dobraunig is supported by the Austrian Science Fund (FWF): J 4277-N38.
This research is supported by the National Research Foundation, Prime Minister’s Office,
Singapore under its Strategic Capability Research Centres Funding Initiative, Singapore
Ministry of Education under Research Grant M4012049, and Nanyang Technological
University under Grant M4082123. Ralph Ankele is supported by the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. H2020-
MSCA-ITN-2014-643161 ECRYPT-NET.

31

References
[ABC+17] Ralph Ankele, Subhadeep Banik, Avik Chakraborti, Eik List, Florian Mendel,

Siang Meng Sim, and Gaoli Wang. Related-key impossible-differential attack on
reduced-round skinny. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi,
editors, ACNS 17: 15th International Conference on Applied Cryptography and
Network Security, volume 10355 of Lecture Notes in Computer Science, pages
208–228, Kanazawa, Japan, July 10–12, 2017. Springer, Heidelberg, Germany.

[AK19] Ralph Ankele and Stefan Kölbl. Mind the gap - A closer look at the security
of block ciphers against differential cryptanalysis. In Carlos Cid and Michael J.
Jacobson Jr:, editors, SAC 2018: 25th Annual International Workshop on
Selected Areas in Cryptography, volume 11349 of Lecture Notes in Computer
Science, pages 163–190, Calgary, AB, Canada, August 15–17, 2019. Springer,
Heidelberg, Germany.

[Ava17] Roberto Avanzi. The QARMA block cipher family. IACR Transactions on
Symmetric Cryptology, 2017(1):4–44, 2017.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology – ASIACRYPT 2015, Part II, volume 9453 of Lec-
ture Notes in Computer Science, pages 411–436, Auckland, New Zealand,
November 30 – December 3, 2015. Springer, Heidelberg, Germany.

[BBR+13] Andrey Bogdanov, Christina Boura, Vincent Rijmen, Meiqin Wang, Long Wen,
and Jingyuan Zhao. Key difference invariant bias in block ciphers. In Kazue
Sako and Palash Sarkar, editors, Advances in Cryptology – ASIACRYPT 2013,
Part I, volume 8269 of Lecture Notes in Computer Science, pages 357–376,
Bengalore, India, December 1–5, 2013. Springer, Heidelberg, Germany.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knežević, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications
- extended abstract. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology – ASIACRYPT 2012, volume 7658 of Lecture Notes in Com-
puter Science, pages 208–225, Beijing, China, December 2–6, 2012. Springer,
Heidelberg, Germany.

[BCLR17] Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella. Proving
resistance against invariant attacks: How to choose the round constants.
In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Computer Science,
pages 647–678, Santa Barbara, CA, USA, August 20–24, 2017. Springer,
Heidelberg, Germany.

[Bey18] Tim Beyne. Block cipher invariants as eigenvectors of correlation matrices.
In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology –
ASIACRYPT 2018, Part I, volume 11272 of Lecture Notes in Computer Science,
pages 3–31, Brisbane, Queensland, Australia, December 2–6, 2018. Springer,
Heidelberg, Germany.

[Bih94] Eli Biham. New types of cryptanalytic attacks using related keys. Journal of
Cryptology, 7(4):229–246, December 1994.

32

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016,
Part II, volume 9815 of Lecture Notes in Computer Science, pages 123–153,
Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[BLNW12] Andrey Bogdanov, Gregor Leander, Kaisa Nyberg, and Meiqin Wang. Integral
and multidimensional linear distinguishers with correlation zero. In Xiaoyun
Wang and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012,
volume 7658 of Lecture Notes in Computer Science, pages 244–261, Beijing,
China, December 2–6, 2012. Springer, Heidelberg, Germany.

[BMV11] Asli Bay, Atefeh Mashatan, and Serge Vaudenay. A related-key attack against
multiple encryption based on fixed points. In Mohammad S. Obaidat, José Luis
Sevillano, and Joaquim Filipe, editors, ICETE 2011, volume 314 of Commu-
nications in Computer and Information Science, pages 264–280. Springer,
2011.

[BR14] Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero
and linear cryptanalysis of block ciphers. Designs, Codes and Cryptography,
70(3):369–383, Mar 2014.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.
In Alfred J. Menezes and Scott A. Vanstone, editors, Advances in Cryptology –
CRYPTO’90, volume 537 of Lecture Notes in Computer Science, pages 2–21,
Santa Barbara, CA, USA, August 11–15, 1991. Springer, Heidelberg, Germany.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. http:
//eprint.iacr.org/2013/404.

[BW12] Andrey Bogdanov and Meiqin Wang. Zero correlation linear cryptanalysis with
reduced data complexity. In Anne Canteaut, editor, Fast Software Encryption
– FSE 2012, volume 7549 of Lecture Notes in Computer Science, pages 29–48,
Washington, DC, USA, March 19–21, 2012. Springer, Heidelberg, Germany.

[CAE14] CAESAR committee. CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness, 2014.

[CHP+17] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. A security
analysis of Deoxys and its internal tweakable block ciphers. IACR Transactions
on Symmetric Cryptology, 2017(3):73–107, 2017.

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang
connectivity table: A new cryptanalysis tool. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part II,
volume 10821 of Lecture Notes in Computer Science, pages 683–714, Tel Aviv,
Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[Dae95] Joan Daemen. Cipher and hash function design, strategies based on linear
and differential cryptanalysis, PhD Thesis. K.U.Leuven, 1995. http://jda.
noekeon.org/.

33

http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
http://jda.noekeon.org/
http://jda.noekeon.org/

[DEKM16] Christoph Dobraunig, Maria Eichlseder, Daniel Kales, and Florian Mendel.
Practical key-recovery attack on MANTIS5. IACR Transactions on Symmetric
Cryptology, 2016(2):248–260, 2016. http://tosc.iacr.org/index.php/ToSC/
article/view/573.

[DEM16] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Square attack on
7-round kiasu-BC. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider,
editors, ACNS 16: 14th International Conference on Applied Cryptography and
Network Security, volume 9696 of Lecture Notes in Computer Science, pages
500–517, Guildford, UK, June 19–22, 2016. Springer, Heidelberg, Germany.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher Square.
In Eli Biham, editor, Fast Software Encryption – FSE’97, volume 1267 of
Lecture Notes in Computer Science, pages 149–165, Haifa, Israel, January 20–22,
1997. Springer, Heidelberg, Germany.

[DL17] Christoph Dobraunig and Eik List. Impossible-differential and boomerang
cryptanalysis of round-reduced kiasu-BC. In Helena Handschuh, editor, Topics
in Cryptology – CT-RSA 2017, volume 10159 of Lecture Notes in Computer Sci-
ence, pages 207–222, San Francisco, CA, USA, February 14–17, 2017. Springer,
Heidelberg, Germany.

[EK17] Maria Eichlseder and Daniel Kales. Clustering related-tweak characteristics:
Application to mantis-6. Cryptology ePrint Archive, Report 2017/1136, 2017.
https://eprint.iacr.org/2017/1136.

[EK18] Maria Eichlseder and Daniel Kales. Clustering related-tweak characteristics:
Application to MANTIS-6. IACR Transactions on Symmetric Cryptology,
2018(2):111–132, 2018.

[EKKT19] Zahra Eskandari, Andreas Brasen Kidmose, Stefan Kölbl, and Tyge Tiessen.
Finding integral distinguishers with ease. In Carlos Cid and Michael J. Jacobson
Jr:, editors, SAC 2018: 25th Annual International Workshop on Selected Areas
in Cryptography, volume 11349 of Lecture Notes in Computer Science, pages
115–138, Calgary, AB, Canada, August 15–17, 2019. Springer, Heidelberg,
Germany.

[FKL+01] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David
Wagner, and Doug Whiting. Improved cryptanalysis of Rijndael. In Bruce
Schneier, editor, Fast Software Encryption – FSE 2000, volume 1978 of Lecture
Notes in Computer Science, pages 213–230, New York, NY, USA, April 10–12,
2001. Springer, Heidelberg, Germany.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology – ASIACRYPT 2014, Part II, volume 8874
of Lecture Notes in Computer Science, pages 274–288, Kaoshiung, Taiwan,
R.O.C., December 7–11, 2014. Springer, Heidelberg, Germany.

[JNP15a] Jeremey Jean, Ivica Nikolic, and Thomas Peyrin. Deoxys v1.3. https://
competitions.cr.yp.to/round2/deoxysv13.pdf, 2015.

[JNP15b] Jeremey Jean, Ivica Nikolic, and Thomas Peyrin. Joltik v1.3. https://
competitions.cr.yp.to/round2/joltikv13.pdf, 2015.

[JNP15c] Jeremey Jean, Ivica Nikolic, and Thomas Peyrin. Kiasu v1. https:
//competitions.cr.yp.to/round1/kiasuv1.pdf, 2015.

34

http://tosc.iacr.org/index.php/ToSC/article/view/573
http://tosc.iacr.org/index.php/ToSC/article/view/573
https://eprint.iacr.org/2017/1136
https://competitions.cr.yp.to/round2/deoxysv13.pdf
https://competitions.cr.yp.to/round2/deoxysv13.pdf
https://competitions.cr.yp.to/round2/joltikv13.pdf
https://competitions.cr.yp.to/round2/joltikv13.pdf
https://competitions.cr.yp.to/round1/kiasuv1.pdf
https://competitions.cr.yp.to/round1/kiasuv1.pdf

[KLW17] Thorsten Kranz, Gregor Leander, and Friedrich Wiemer. Linear cryptanalysis:
Key schedules and tweakable block ciphers. IACR Transactions on Symmetric
Cryptology, 2017(1):474–505, 2017.

[KR11] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-
encryption modes. In Antoine Joux, editor, Fast Software Encryption –
FSE 2011, volume 6733 of Lecture Notes in Computer Science, pages 306–
327, Lyngby, Denmark, February 13–16, 2011. Springer, Heidelberg, Germany.

[KW02] Lars R. Knudsen and David Wagner. Integral cryptanalysis. In Joan Daemen
and Vincent Rijmen, editors, Fast Software Encryption – FSE 2002, volume
2365 of Lecture Notes in Computer Science, pages 112–127, Leuven, Belgium,
February 4–6, 2002. Springer, Heidelberg, Germany.

[Lai94] Xuejia Lai. Higher order derivatives and differential cryptanalysis. In Richard E.
Blahut, Daniel J. Costello Jr., Ueli Maurer, and Thomas Mittelholzer, editors,
Communications and Cryptography: Two Sides of One Tapestry, volume 276
of International Series in Engineering and Computer Science, pages 227–233.
Kluwer Academic Publishers, 1994.

[LGS17] Guozhen Liu, Mohona Ghosh, and Ling Song. Security analysis of SKINNY
under related-tweakey settings (long paper). IACR Transactions on Symmetric
Cryptology, 2017(3):37–72, 2017.

[LJ18] Rongjia Li and Chenhui Jin. Meet-in-the-middle attacks on reduced-round
QARMA-64/128. Comput. J., 61(8):1158–1165, 2018.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers.
In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442
of Lecture Notes in Computer Science, pages 31–46, Santa Barbara, CA, USA,
August 18–22, 2002. Springer, Heidelberg, Germany.

[LRW11] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers.
Journal of Cryptology, 24(3):588–613, July 2011.

[LST12] Will Landecker, Thomas Shrimpton, and R. Seth Terashima. Tweakable
blockciphers with beyond birthday-bound security. In Reihaneh Safavi-Naini
and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume
7417 of Lecture Notes in Computer Science, pages 14–30, Santa Barbara, CA,
USA, August 19–23, 2012. Springer, Heidelberg, Germany.

[LTW18] Gregor Leander, Cihangir Tezcan, and Friedrich Wiemer. Searching for sub-
space trails and truncated differentials. IACR Transactions on Symmetric
Cryptology, 2018(1):74–100, 2018.

[Mat94] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth,
editor, Advances in Cryptology – EUROCRYPT’93, volume 765 of Lecture
Notes in Computer Science, pages 386–397, Lofthus, Norway, May 23–27, 1994.
Springer, Heidelberg, Germany.

[Men15] Bart Mennink. Optimally secure tweakable blockciphers. In Gregor Leander,
editor, Fast Software Encryption – FSE 2015, volume 9054 of Lecture Notes
in Computer Science, pages 428–448, Istanbul, Turkey, March 8–11, 2015.
Springer, Heidelberg, Germany.

[MvV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

35

[Nyb95] Kaisa Nyberg. Linear approximation of block ciphers (rump session). In
Alfredo De Santis, editor, Advances in Cryptology – EUROCRYPT’94, volume
950 of Lecture Notes in Computer Science, pages 439–444, Perugia, Italy,
May 9–12, 1995. Springer, Heidelberg, Germany.

[Nyb01] Kaisa Nyberg. Correlation theorems in cryptanalysis. Discrete Applied Mathe-
matics, 111(1-2):177–188, 2001.

[PS16] Thomas Peyrin and Yannick Seurin. Counter-in-tweak: Authenticated encryp-
tion modes for tweakable block ciphers. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology – CRYPTO 2016, Part I, volume 9814
of Lecture Notes in Computer Science, pages 33–63, Santa Barbara, CA, USA,
August 14–18, 2016. Springer, Heidelberg, Germany.

[Qua17] Qualcomm Product Security. Pointer authentication on ARMv8.3 – design and
analysis of the new software security instructions., January 2017. https://www.
qualcomm.com/documents/whitepaper-pointer-authentication-armv83.

[Sas18] Yu Sasaki. Improved related-tweakey boomerang attacks on deoxys-BC.
In Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors,
AFRICACRYPT 18: 10th International Conference on Cryptology in Africa,
volume 10831 of Lecture Notes in Computer Science, pages 87–106, Marrakesh,
Morocco, May 7–9, 2018. Springer, Heidelberg, Germany.

[Sch98] Rich Schroeppel. Hasty pudding cipher, 1998.

[SLR+15] Bing Sun, Zhiqiang Liu, Vincent Rijmen, Ruilin Li, Lei Cheng, Qingju Wang,
Hoda AlKhzaimi, and Chao Li. Links among impossible differential, integral
and zero correlation linear cryptanalysis. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part I, volume
9215 of Lecture Notes in Computer Science, pages 95–115, Santa Barbara, CA,
USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[SMB18] Sadegh Sadeghi, Tahereh Mohammadi, and Nasour Bagheri. Cryptanalysis
of reduced round SKINNY block cipher. IACR Transactions on Symmetric
Cryptology, 2018(3):124–162, 2018.

[ST17] Yu Sasaki and Yosuke Todo. New impossible differential search tool from
design and cryptanalysis aspects - revealing structural properties of several
ciphers. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology – EUROCRYPT 2017, Part III, volume 10212 of Lecture Notes
in Computer Science, pages 185–215, Paris, France, April 30 – May 4, 2017.
Springer, Heidelberg, Germany.

[SW13] Yu Sasaki and Lei Wang. Meet-in-the-middle technique for integral attacks
against Feistel ciphers. In Lars R. Knudsen and Huapeng Wu, editors, SAC
2012: 19th Annual International Workshop on Selected Areas in Cryptography,
volume 7707 of Lecture Notes in Computer Science, pages 234–251, Windsor,
Ontario, Canada, August 15–16, 2013. Springer, Heidelberg, Germany.

[TA14] Yosuke Todo and Kazumaro Aoki. FFT key recovery for integral attack. In
Dimitris Gritzalis, Aggelos Kiayias, and Ioannis G. Askoxylakis, editors, CANS
14: 13th International Conference on Cryptology and Network Security, volume
8813 of Lecture Notes in Computer Science, pages 64–81, Heraklion, Crete,
Greece, October 22–24, 2014. Springer, Heidelberg, Germany.

36

https://www.qualcomm.com/documents/whitepaper-pointer-authentication-armv83
https://www.qualcomm.com/documents/whitepaper-pointer-authentication-armv83

[TAY16] Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. A meet in the
middle attack on reduced round kiasu-bc. IEICE Transactions, 99-A(10):1888–
1890, 2016.

[TAY17] Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. Impossible
differential cryptanalysis of reduced-round SKINNY. In Marc Joye and Ab-
derrahmane Nitaj, editors, AFRICACRYPT 17: 9th International Conference
on Cryptology in Africa, volume 10239 of Lecture Notes in Computer Sci-
ence, pages 117–134, Dakar, Senegal, May 24–26, 2017. Springer, Heidelberg,
Germany.

[TM16] Yosuke Todo and Masakatu Morii. Bit-based division property and applica-
tion to simon family. In Thomas Peyrin, editor, Fast Software Encryption –
FSE 2016, volume 9783 of Lecture Notes in Computer Science, pages 357–377,
Bochum, Germany, March 20–23, 2016. Springer, Heidelberg, Germany.

[Tod15a] Yosuke Todo. Integral cryptanalysis on full MISTY1. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015,
Part I, volume 9215 of Lecture Notes in Computer Science, pages 413–432,
Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[Tod15b] Yosuke Todo. Structural evaluation by generalized integral property. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EURO-
CRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer Science, pages
287–314, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[Tod17] Yosuke Todo. Integral cryptanalysis on full MISTY1. Journal of Cryptology,
30(3):920–959, July 2017.

[WGZ+16] Lei Wang, Jian Guo, Guoyan Zhang, Jingyuan Zhao, and Dawu Gu. How
to build fully secure tweakable blockciphers from classical blockciphers. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology – ASI-
ACRYPT 2016, Part I, volume 10031 of Lecture Notes in Computer Science,
pages 455–483, Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg,
Germany.

[YQC17] Dong Yang, Wen-Feng Qi, and Hua-Jin Chen. Impossible differential attacks on
the SKINNY family of block ciphers. IET Information Security, 11(6):377–385,
2017.

[YQC18] Dong Yang, Wen-Feng Qi, and Hua-Jin Chen. Impossible differential attack on
qarma family of block ciphers. Cryptology ePrint Archive, Report 2018/334,
2018. https://eprint.iacr.org/2018/334.

[ZD16] Rui Zong and Xiaoyang Dong. Meet-in-the-middle attack on QARMA block
cipher. Cryptology ePrint Archive, Report 2016/1160, 2016. http://eprint.
iacr.org/2016/1160.

[ZDW18] Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. Milp-aided related-tweak/key
impossible differential attack and its applications to qarma, joltik-bc. Cryp-
tology ePrint Archive, Report 2018/142, 2018. https://eprint.iacr.org/
2018/142.

[ZR17] Wenying Zhang and Vincent Rijmen. Division cryptanalysis of block ciphers
with a binary diffusion layer. Cryptology ePrint Archive, Report 2017/188,
2017. http://eprint.iacr.org/2017/188.

37

https://eprint.iacr.org/2018/334
http://eprint.iacr.org/2016/1160
http://eprint.iacr.org/2016/1160
https://eprint.iacr.org/2018/142
https://eprint.iacr.org/2018/142
http://eprint.iacr.org/2017/188

A Experimental Verification of Our Distinguishers
For the TK-1, we used the toy cipher described in Example 1, but the size of S-box is
shrunk to 4 bits and the 4-bit S-box of Qarma is used. As depicted in Fig. 11, any linear
mask is applied to cells except for the first diagonal elements. Then, the Γ sequence of the
first nibble of the tweak has 1 active nibble. Therefore, the corresponding related-tweak
integral distinguisher requires 24×4 = 216 chosen plaintexts under 24 related tweaks. Then,
the first nibble in the output is balanced. We implemented and verified the distinguisher.

SB SR MC

SB SR MC

SB SR MC

SB SR MC

SB SR MC

SB

inactive

non-zero active

active

Figure 23: Verification of our distinguisher for TK-2

Similarly to the case of TK-1, we also verified the case of the TK-2 by using the modified
toy cipher. We added additional 1-line tweakey schedule in the toy cipher above, where
the multiplication by 2 over GF (24) is applied to every cell. Figure 23 shows the zero-
correlation linear hull. The Γ sequence of the first nibble of the tweak has at most 2
active nibbles. Therefore, the corresponding related-tweak integral distinguisher requires
24×4 = 216 chosen plaintexts under 28 related tweaks. Then, the last nibble in the output
is balanced, and we implemented and verified the distinguisher too.

B Source code for the distinguishers of the Toy cipher

1 #inc lude <s t d i o . h>
2 #inc lude <iostream>
3 #inc lude <vector >
4 #inc lude <time . h>
5

6 us ing namespace std ;
7

8 i n t gmul2 (i n t in) {
9 i n t out = (in << 1) & 0xF ;

10 out ^= ((in >> 3) ∗ 0x3) ;
11 r e turn out ;
12 }
13

14 i n t gmul3 (i n t in) {
15 r e turn (in ^ gmul2 (in)) ;
16 }
17

18 vector <vector <int >> subByte (vector <vector <int >> in , vector <vector <int >> rk1 ,
vector <vector <int >> rk2) {

38

19 vector <int > sbox = { 10 , 13 , 14 , 6 , 15 , 7 , 3 , 5 , 9 , 8 , 0 , 12 , 11 , 1 , 2 , 4
} ;

20 vector <vector <int >> out = in ;
21 f o r (i n t i = 0 ; i < 4 ; i++) {
22 f o r (i n t j = 0 ; j < 4 ; j++) {
23 out [i] [j] = sbox [in [i] [j] ^ rk1 [i] [j] ^ rk2 [i] [j]] ;
24 }
25 }
26 r e turn out ;
27 }
28

29 vector <vector <int >> subByte (vector <vector <int >> in , vector <vector <int >> rk)
{

30 vector <int > sbox = { 0x1 , 0x0 , 0x5 , 0x3 , 0xe , 0x2 , 0 xf , 0x7 , 0xd , 0xa , 0x9
, 0xb , 0xc , 0x8 , 0x4 , 0x6 } ;

31 vector <vector <int >> out = in ;
32 f o r (i n t i = 0 ; i < 4 ; i++) {
33 f o r (i n t j = 0 ; j < 4 ; j++) {
34 out [i] [j] = sbox [in [i] [j] ^ rk [i] [j]] ;
35 }
36 }
37 r e turn out ;
38 }
39

40 vector <vector <int >> subByte (vector <vector <int >> in) {
41 vector <int > sbox = { 0x1 , 0x0 , 0x5 , 0x3 , 0xe , 0x2 , 0 xf , 0x7 , 0xd , 0xa , 0x9

, 0xb , 0xc , 0x8 , 0x4 , 0x6 } ;
42 vector <vector <int >> out = in ;
43 f o r (i n t i = 0 ; i < 4 ; i++) {
44 f o r (i n t j = 0 ; j < 4 ; j++) {
45 out [i] [j] = sbox [in [i] [j]] ;
46 }
47 }
48 r e turn out ;
49 }
50

51 //AES−ShiftRows
52 vector <vector <int >> shiftRow (vector <vector <int >> in) {
53 vector <vector <int >> out = in ;
54 f o r (i n t i = 0 ; i < 4 ; i++) {
55 f o r (i n t j = 0 ; j < 4 ; j++) {
56 out [i] [j] = in [i] [(i+j) %4];
57 }
58 }
59 r e turn out ;
60 }
61

62 //AES−MixColumns
63 vector <vector <int >> mixColumn (vector <vector <int >> in) {
64 vector <vector <int >> out = in ;
65 f o r (i n t j = 0 ; j < 4 ; j++) {
66 out [0] [j] = gmul2 (in [0] [j]) ^ gmul3 (in [1] [j]) ^ in [2] [j] ^ in [3] [j] ;
67 out [1] [j] = gmul2 (in [1] [j]) ^ gmul3 (in [2] [j]) ^ in [3] [j] ^ in [0] [j] ;
68 out [2] [j] = gmul2 (in [2] [j]) ^ gmul3 (in [3] [j]) ^ in [0] [j] ^ in [1] [j] ;
69 out [3] [j] = gmul2 (in [3] [j]) ^ gmul3 (in [0] [j]) ^ in [1] [j] ^ in [2] [j] ;
70 }
71 r e turn out ;
72 }
73

74 //Tweakey schedu le f o r TK1
75 vector <vector <int >> keySchedule (vector <vector <int >> in) {
76 //SKINNY−permutation
77 vector <int > ks = { 9 , 15 , 8 , 13 , 10 , 14 , 12 , 11 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 } ;
78 vector <vector <int >> out (4 , vector <int >(4 , 0)) ;
79 f o r (i n t i = 0 ; i < 16 ; i++) {
80 out [i / 4] [(i % 4)] = in [ks [i] / 4] [ks [i] % 4] ;

39

81 }
82 r e turn out ;
83 }
84

85 //Tweakey schedu le f o r TK2
86 vector <vector <int >> keySchedule2 (vector <vector <int >> in) {
87 //SKINNY−permutation
88 vector <int > ks = { 9 , 15 , 8 , 13 , 10 , 14 , 12 , 11 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 } ;
89 vector <vector <int >> out (4 , vector <int >(4 , 0)) ;
90 f o r (i n t i = 0 ; i < 16 ; i++) {
91 out [i / 4] [(i % 4)] = gmul2 (in [ks [i] / 4] [ks [i] % 4]) ;
92 }
93 r e turn out ;
94 }
95

96 // Test d i s t i n g u i s h e r f o r tweakable BC with one tweakey l i n e
97 i n t testTK1 (void) {
98 // generate a l l keys at random
99 srand (time (NULL)) ;

100 vector <vector <int >> key (4 , vector <int >(4 , 0)) ;
101 f o r (i n t row = 0 ; row < 4 ; row++) {
102 f o r (i n t c o l = 0 ; c o l < 4 ; c o l++) {
103 key [row] [c o l] = rand () & 0xF ;
104 }
105 }
106

107 i n t evalNumRounds = 5 ;
108 p r i n t f (" Number o f rounds : %d\n " , evalNumRounds) ;
109

110 vector <int > counter (16 , 0) ;
111 f o r (i n t i 1 = 0 ; i 1 < 16 ; i 1++) {
112 f o r (i n t i 2 = 0 ; i 2 < 16 ; i 2++) {
113 f o r (i n t i 3 = 0 ; i 3 < 16 ; i 3++) {
114 f o r (i n t i 4 = 0 ; i 4 < 16 ; i 4++) {
115 f o r (i n t i 5 = 0 ; i 5 < 16 ; i 5++) {
116 vector <vector <int >> in (4 , vector <int >(4 , 0)) ;
117 vector <vector <int >> tk = key ;
118 in [0] [0] = i 1 ;
119 in [1] [1] = i 2 ;
120 in [2] [2] = i 3 ;
121 in [3] [3] = i 4 ;
122 tk [0] [0] = i 5 ;
123

124 // encrypt ion
125 in = subByte (in) ;
126 f o r (i n t r = 0 ; r < (evalNumRounds − 1) ; r++) {
127 in = shiftRow (in) ;
128 in = mixColumn (in) ;
129 in = subByte (in , tk) ;
130 tk = keySchedule (tk) ;
131 }
132 counter [in [0] [0]] + + ;
133 }
134 }
135 }
136 }
137 }
138

139 f o r (i n t i = 0 ; i < 16 ; i++) {
140 p r i n t f (" %X : f requency o f appearance = %5d , mod 2 = %d \n " , i ,

counter [i] , counter [i] % 2) ;
141 }
142 cout << endl ;
143 }
144

145 // Test d i s t i n g u i s h e r f o r tweakable BC with two tweakey l i n e s

40

146 i n t testTK2 (void) {
147 // generate a l l keys at random
148 srand (time (NULL)) ;
149 vector <vector <int >> key1 (4 , vector <int >(4 , 0)) ;
150 vector <vector <int >> key2 (4 , vector <int >(4 , 0)) ;
151 f o r (i n t row = 0 ; row < 4 ; row++) {
152 f o r (i n t c o l = 0 ; c o l < 4 ; c o l++) {
153 key1 [row] [c o l] = rand () & 0xF ; key2 [row] [c o l] = rand () & 0xF ;
154 }
155 }
156

157 i n t evalNumRounds = 6 ;
158 p r i n t f (" Number o f rounds : %d\n " , evalNumRounds) ;
159

160 vector <int > counter (16 , 0) ;
161 f o r (i n t i 1 = 0 ; i 1 < 16 ; i 1++) {
162 f o r (i n t i 2 = 0 ; i 2 < 16 ; i 2++) {
163 f o r (i n t i 3 = 0 ; i 3 < 16 ; i 3++) {
164 f o r (i n t i 4 = 0 ; i 4 < 16 ; i 4++) {
165 f o r (i n t i 5 = 0 ; i 5 < 16 ; i 5++) {
166 f o r (i n t i 6 = 0 ; i 6 < 16 ; i 6++) {
167 vector <vector <int >> in (4 , vector <int >(4 , 0)) ;
168 vector <vector <int >> tk1 = key1 ;
169 vector <vector <int >> tk2 = key2 ;
170 in [0] [0] = i 1 ;
171 in [1] [1] = i 2 ;
172 in [2] [2] = i 3 ;
173 in [3] [3] = i 4 ;
174 tk1 [0] [0] = i 5 ;
175 tk2 [0] [0] = i 6 ;
176

177 // encrypt ion
178 in = subByte (in) ;
179 f o r (i n t r = 0 ; r < (evalNumRounds − 1) ; r++) {
180 in = shiftRow (in) ;
181 in = mixColumn (in) ;
182 in = subByte (in , tk1 , tk2) ;
183 tk1 = keySchedule (tk1) ;
184 tk2 = keySchedule2 (tk2) ;
185 }
186 counter [in [3] [3]] + + ;
187 }
188 }
189 }
190 }
191 }
192 }
193

194 f o r (i n t i = 0 ; i < 16 ; i++) {
195 p r i n t f (" %X : f requency o f appearance = %5d , mod 2 = %d \n " , i ,

counter [i] , counter [i] % 2) ;
196 }
197 cout << endl ;
198 }
199

200 i n t main (void) {
201 p r i n t f (" Experimental v e r i f i c a t i o n o f d i s t i n g u i s h e r on TK1. \ n ") ;
202 testTK1 () ;
203

204 p r i n t f (" Experimental v e r i f i c a t i o n o f d i s t i n g u i s h e r on TK2. \ n ") ;
205 testTK2 () ;
206 r e turn 0 ;
207 }

41

C Figures about Application to MANTIS
C.1 Zero-Correlation Linear Hull on MANTIS4,5

Any

Inactive

Active

S M

S

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2
2 1 10 11

6 5 14 15

3 8 9 0

7 12 13 4

14 5 13 4

2 1 10 11

15 7 12 6

3 8 9 0

M

S

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

M

S

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

M

M̄

S̄

M̄

S̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

14 5 13 4

2 1 10 11

15 7 12 6

3 8 9 0

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

M̄

S̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

M̄

S̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

6 5 14 15

0 1 2 3

7 12 13 4

8 9 10 11

6 5 14 15

0 1 2 3

7 12 13 4

8 9 10 11

S̄

tweak

2 1 10 11

6 5 14 15

3 8 9 0

7 12 13 4

P

P

P

P̄

P̄

P̄

P̄

Any

Inactive

Active

S M

S

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2
2 1 10 11

6 5 14 15

3 8 9 0

7 12 13 4

14 5 13 4

2 1 10 11

15 7 12 6

3 8 9 0

M

S

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

M

S

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

M

M̄

S̄

M̄

S̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

14 5 13 4

2 1 10 11

15 7 12 6

3 8 9 0

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

M̄

S̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

M̄

S̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

6 5 14 15

0 1 2 3

7 12 13 4

8 9 10 11

6 5 14 15

0 1 2 3

7 12 13 4

8 9 10 11

S̄

tweak

2 1 10 11

6 5 14 15

3 8 9 0

7 12 13 4

P

P

P

P̄

P̄

P̄

P̄

Figure 24: Two zero-correlation linear hulls on Mantis4,5.

42

C.2 Key Recovery Attacks on MANTIS4,8

S

TP

C
C

C
C C C

Integral Distinguisher

k1 k0

M(P(k1))

M(P(k1))

C

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

M̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

S̄P̄

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

M̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

S̄P̄

0 11 6 13

10 1 12 7

5 14 3 8

15 4 9 2

M̄

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

S̄P̄

B

B

¯

¯

¯

Figure 25: Key-recovery attack on Mantis4,8.

43

	Introduction
	Preliminaries
	Tweakable Block Cipher and TWEAKEY Framework
	Evaluating the Security of Dedicated Tweakable Block Ciphers
	Differential Cryptanalysis
	Linear Cryptanalysis

	Zero-Correlation Linear on Tweakable Block Ciphers
	Zero-Correlation Linear Hull on STK with TK-1
	Zero-Correlation Linear Hull on TK-p

	Application to QARMA
	Description of QARMA
	Zero-Correlation Linear Hull on QARMA 4,5
	Key-Recovery Attacks on QARMA 4,8

	Application to MANTIS
	Description of MANTIS
	Zero-Correlation Linear Hull on MANTIS 4,5
	Key-Recovery Attacks on MANTIS 4,8

	Application to SKINNY
	Description of SKINNY
	Zero-Correlation Linear Hull on SKINNY-64/128
	Key-Recovery Attacks on SKINNY-64/128
	Zero-Correlation Linear Hull on SKINNY-64/192
	Key-Recovery Attacks on SKINNY-64/192

	Conclusion
	Experimental Verification of Our Distinguishers
	Source code for the distinguishers of the Toy cipher
	Figures about Application to MANTIS
	Zero-Correlation Linear Hull on MANTIS 4,5
	Key Recovery Attacks on MANTIS 4,8

