
Towards Lightweight Side-Channel Security
and the Leakage-Resilience of the Duplex Sponge

Chun Guo, Olivier Pereira, Thomas Peters, François-Xavier Standaert.

UCL Crypto Group, Université catholique de Louvain, Louvain-la-Neuve, Belgium.

Abstract. Authenticated Encryption (AE) has become the de facto
standard for encryption in modern protocols, and the ubiquitous de-
ployment of small connected devices naturally calls for the availability
of lightweight AE schemes, as reflected by a new standardisation process
initiated by the NIST. Small devices do not only have a limited compu-
tational power: they are also targets of choice for side-channel attacks,
and the ease of protecting against these attacks is therefore an important
aspect of the selection criteria in this standardisation process.
In this paper, we address this challenge by presenting a new AE mode,
TETSponge, which carefully combines a tweakable block cipher with
strong protections against side-channel attacks that only needs to be
called twice per encryption and decryption, and a sponge-style permuta-
tion that only needs weak side-channel protections and is used to frugally
process the message and associated data.
TETSponge offers many desirable features: (i) it supports single-pass en-
cryption and decryption, and is compatible with limited memory require-
ments, (ii) it offers black-box security as an AE mode, with good bounds,
including in the multi-user setting, (iii) it offers strong resistance against
side-channel attacks during both encryption and decryption, and guar-
antees nonce misuse-resilience. As such, we conclude that TETSponge
offers an appealing option for the implementation of lightweight AE in
settings where side-channel attacks are an actual concern.
Along our way, we propose the first rigorous methodology that can be
used to analyze the leakage-resilience of sponge-based constructions.

Keywords: Authenticated Encryption, Duplex Construction, Leakage-Resilience,
Leveled Implementations, Multi-User / Beyond Birthday Security.

1 Introduction

Problem statement. In 2013, the NIST initiated a lightweight cryptography
project to understand the need for dedicated lightweight Authenticated Encryp-
tion (AE) schemes, which has led to the launching of a standardization process
in 2019.1 In this context, resistance to side-channel attacks is identified as one of
the desirable features that is missing from existing solutions. From an applica-
tion viewpoint, it is easily motivated by the observation that lightweight devices

1 See https://csrc.nist.gov/projects/lightweight-cryptography.

https://csrc.nist.gov/projects/lightweight-cryptography

may be deployed in environments where they can be under physical control of an
adversary, yet be responsible of sensitive tasks (e.g., automotive, drone-related).
Maybe more worryingly, a lack of embedded security can also be the root of
serious distributed attacks starting from seemingly non-critical connected ob-
jects (see for example [37]). However, from a cryptographic viewpoint, NIST’s
lightweight physical security goal challenges the current understanding of side-
channel countermeasures, which are known to imply significant overheads. To
take one example, the cycle counts of the (optimized) masked implementations
of block ciphers by Goudarzi and Rivain presented at Eurocrypt 2017 [23] blows
up by factors ranging from tenths to hundreds for number of shares ranging from
2 or 3 to more than 4, compared to a non-protected implementation.

This state of affairs raises the question of the design of AE modes allow-
ing both efficient and lightweight implementations (e.g., supporting streaming)
and embedding side-channel resistance features, so that the secure implemen-
tation of the mode can circumvent, at least in part, the high costs associated
to the uniform protection of its underlying primitives. Besides, and if aiming at
standardization, it is also desirable that such modes maintain as much of other
standard security features as possible. For example, good multi-user security
appears important in front of mass-surveillance and distributed adversaries [5],
beyond-birthday security is useful to increase the lifetime of keys [24] (which is
relevant in a lightweight scenario), and some kind of resistance (or resilience)
against nonce misuse is in general a welcome option [36,2].

State-of-the-art. Taken separately, the design of lightweight symmetric primi-
tives & modes and the design of leakage-resilient primitives & modes have been
topics of quite intense research over the last years. For lightweight designs, we
refer to the recent survey of Biryukov and Perrin [13], and to the CAESAR
competition.2 For leakage-resilient primitives, we refer to the line of works initi-
ated by Dziembowski and Pietrzak’s leakage-resilient stream cipher [19], which
has then been the seed for the design of PRGs, PRFs and PRPs [40,20,18],
with contrasted practical impact [4]. For leakage-resilient authentication, en-
cryption and AE modes, we refer to the CCS 2015 work of Pereira et al. [34]
and follow-ups [7,8,3]. None of these published proposals considers NIST’s com-
bined requirements as part of their design goals. We further justify this claim
by describing two concrete proposals that get slightly closer to these goals.

First, ISAP was proposed at FSE 2017 by Dobraunig et al. as a potential so-
lution for side-channel secure AE [17]. ISAP makes an important step in putting
forward the good properties of sponge-based constructions for side-channel secu-
rity — a conclusion that was reached independently by the Keccak team in the
design of Keyak.3 In short, the main observation exploited by these designs is
that some kind of leakage can be heuristically captured by reducing the capacity
of the sponges. Yet, besides the lack of a systematic leakage-resilience analysis
which (to the best of our knowledge) is common to all sponge-based construc-

2 See https://competitions.cr.yp.to/caesar.html.
3 See https://keccak.team/files/Keyakv2-doc2.2.pdf.

2

https://competitions.cr.yp.to/caesar.html
https://keccak.team/files/Keyakv2-doc2.2.pdf

tions, ISAP is a two-pass mode of operation, which is hardly compatible with
lightweight encryption that mandates very limited memory requirements.

Second, TEDT is a recent AE mode of operation by Berti et al. [6], aimed at
high physical security. TEDT provides strong security guarantees against leak-
ages, that correspond to the top of the hierarchy of confidentiality and integrity
definitions established in [25]. Namely, TEDT ensures Ciphertext Integrity with
Misuse and Leakage in encryption and decryption (CIML2) in a liberal model
where all the intermediate computations are leaked to the adversary but a long-
term key. TEDT also ensures security against Chosen Ciphertext Adversaries
with misuse-resilience4 and leakage in encryption and decryption (CCAmL2),
in two different leakage models. From an implementation viewpoint, it encour-
ages leveled implementations, where (expensive) protections against side-channel
attacks are used in a limited way, while the bulk of the computation can be
executed by cheap and weakly protected designs. It is shown in [6] that such im-
plementations can bring significant performance gains compared to implementa-
tions where side-channel protections are uniformly used during encryption. Yet,
TEDT is also a two-pass design and requires four calls to a Tweakable Block
Cipher (TBC) for each message block, which can be expected to be much more
expensive than the sponge-based approach adopted in ISAP.

Contribution. Based on this state-of-the-art, we can re-state problem as:

Can we design and analyze a single-pass AE mode based on a sponge
construction and providing security against side-channel leakages?

We answer this question positively by proposing a new AEAD mode, de-
noted as TETSponge, based on a keyed duplex [12]. The abbreviation TETSponge
stands for Tweakable (due to the use of TBC), (simultaneously) Encrypt & Tag
(the natural feature of Duplex) Sponge. It enhances the duplex with an efficient
TBC-based key derivation function (KDF) and tag generation function (TGF),
in a appealingly simple design suitable for efficient implementations on various
platforms. We show that in addition to black box CCA security, such a single-
pass duplex variant already satisfies some nice leakage confidentiality notions,
namely CCAmL1 which corresponds to CCA security with misuse-resilience, in
the presence of encryption leakages. In addition, the invertibility of the TBC-
based TGF endows the strong CIML2 authenticity notion. Furthermore, by using
only additional public key material, TETSponge achieves high security bounds
in the multi-user setting. As main price to pay, TETSponge does not achieve
CCAmL2 security (see appendix A for an attack), which appears to require two
passes. To address this limitation and for completeness, we propose and analyze
TEDTSponge which is a more direct sponge variant of TEDT that additionally
brings CCAmL2 guarantees in two passes. For comparison, we also show why
ISAP, the mode that is closest to those introduced in this paper, does not pro-
vide either CIML2 or CCAmL2 security.

4 Following the definition of misuse-resilience in [2]. As discussed in [25], misuse-
resistance in the sense of [36] is believed to be impossible in many leakage settings.

3

For brevity, we next refer to TETSponge and TEDTSponge as S1P and S2P,
standing for Sponge with 1/2 Pass(es). The guarantees we achieve for these two
modes are summarized in Table 1.

Table 1. Summary of our leakage-resilient sponges, using capacity c and an n-bit TBC.
Multi-user security (referred to as mu in the acronyms) is ensured up to ≈ 2np users.

key size (bits) stretch #passes muCIML2 & muCCAm$ mu LR-CCA

S1P n priv., np pub. n bits 1 min{2c/2, 2n/n2} 2n/2 muCCAmL1

S2P n priv., np pub. n bits 2 min{2c/2, 2n/n2} 2n/2 muCCAmL2

As a contribution of independent interest, and in order to investigate the se-
curity of our proposals in the presence of leakages, we propose a methodology for
the leakage security analysis of keyed duplex/sponge constructions. Since work-
ing in the ideal permutation model is somewhat unavoidable with sponges [10],
our leakage security analyzes are also made in the ideal permutation model,
which is then naturally combined with the oracle-free leakage functions intro-
duced in [40]. As a compensation for this idealized analysis, all results are ob-
tained under the weakest and easiest to validate leakage assumption, namely
non-invertibility [21]. Building upon these, we prove security bounds that are
expressive and easy-to-understand. We believe that our methodology is general
and could be re-used to analyze other keyed duplex/sponge constructions.

2 Preliminaries

Given a bit-string x ∈ {0, 1}∗, |x| denotes its length. For any value x, we denote
by lsa(x)/msa(x) the least/most significant a bits of x. [num]a is the binary
encoding of the integer num using a representation of a bits.

We denote by a (q1, . . . , qω, t)-bounded adversary a probabilistic algorithm
that has access to ω oracles, O1, . . . , Oω, can make at most qi queries to its i-th
oracle Oi, and can perform computation bounded by running time t. Security
notions define the oracles O1, . . . , Oω available to the adversary in a security
experiment. In a proof in the ideal model, the adversary is also granted access
to ideal objects (see later) that we do not always make explicit in the notation.

A leaking version of an algorithm Algo is denoted LAlgo. It runs both Algo
and a leakage function LAlgo which captures the additional information given
by an implementation of Algo during its execution. LAlgo simply returns the
outputs of both Algo and LAlgo which all take the same input.

2.1 Primitives

A random key-less permutation π, as used in sponge designs, refers to a permu-
tation of {0, 1}` drawn uniformly at random among the set of all permutations
of {0, 1}`. The permutation π is then seen as an ideal object.

A Tweakable Block Cipher (TBC) with key space {0, 1}κ, tweak space {0, 1}t,
and domain {0, 1}n, also denoted (κ, t, n)-TBC, is a mapping Ẽ : {0, 1}κ ×

4

{0, 1}t×{0, 1}n → {0, 1}n such that for any key K ∈ {0, 1}κ and any tweak T ∈
{0, 1}t, X 7→ Ẽ(K,T,X) is a permutation of {0, 1}n. We only focus on (n, n, n)-

TBC in this paper. An ideal TBC ĨC : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}n is a
TBC sampled uniformly at random from all (n, n, n)-TBCs: the spirit is the same

as ideal (block) ciphers. In this case, ĨCTK is a random independent permutation
of {0, 1}n for each (K,T) ∈ {0, 1}n × {0, 1}n even if the key K is public.

Definition 1 (Nonce-based AEAD). A nonce-based authenticated encryp-
tion scheme with associated data is a tuple AEAD = (Enc,Dec) such that:

– Enc : K×N ×AD×M→ C maps a key k ∈ K, a nonce N ∈ N , some blocks
of associated data A ∈ AD, and a message M ∈M to a ciphertext C ∈ C.

– Dec : K × N × AD × C → M ∪ {⊥} maps k ∈ K, N ∈ N , A ∈ AD, and
C ∈ C to a message M ∈ M that is the decryption of that ciphertext, or to
a special symbol ⊥ if integrity checking fails.

The message size `m uniquely determines the ciphertext size `c = `m+oh, where
the constant oh is the stretch. C`m denotes the set of all the ciphertexts encrypt-
ing `m-size messages. Given a key k ← K, Enck(N,A,M) := Enc(k,N,A,M)
and Deck(N,A,C) := Dec(k,N,A,C) are deterministic functions whose imple-
mentations may be probabilistic.

Since we only focus on nonce-based authenticated encryption with associated
data in this paper, we will often simply refer to it as authenticated encryption.

2.2 Security definitions in the multi-user setting

We borrow the security model of [6], which captures attacks in the multi-user
setting. First, we recall the notion of multi-user misuse-resilience.

Misuse-resilience. Ashur et al. [2] proposed a strong indistinguishability no-
tion for authenticated encryption which divides adversarial encryption queries
into challenge and non-challenge ones, and only requires the adversary to be
nonce-respecting among the former type of queries. The nonce-misuse in non-
challenge queries should not affect the pseudorandomness of the responses to the
challenge queries, i.e., of the challenge ciphertexts. To avoid confusion with (the
initials of) misuse-resistance [36], we will refer to misuse-resilience as CCAm$
(with a small m), which is a “real-or-random” indistinguishability game between
the real world (Enck,Enck,Deck) and the random (or ideal) world (Enck, $,⊥),
hence the $, where the second oracle is the challenge oracle.

Definition 2 (muCCAm$ advantage). Given a nonce-based authenticated en-
cryption AEAD = (Enc,Dec), the multi-user chosen ciphertext misuse resilience
advantage of an adversary A against AEAD with u users is

AdvmuCCAm$
A,AEAD,u :=

∣∣∣Pr
[
AEncK,EncK,DecK,π,ĨC ⇒ 1

]
− Pr

[
AEncK,$,⊥,π,ĨC ⇒ 1

]∣∣∣,
where the probability is taken over the u user keys K = (K1, . . . ,Ku), where

Ki ← K, over A’s random tape and the ideal oracles π and ĨC and where:

5

– EncK(i,N,A,M): if 1 ≤ i ≤ u, outputs EncKi(N,A,M);

– $(i,N,A,M) outputs and associates a fresh random ciphertext C
$← C|M | to

fresh input, and the already associated C otherwise;
– Dec(i,N,A,C) outputs DecKi(N,A,C) if (i,N,A,C) is not an oracle answer

to an encryption query (i,N,A,M) for some M , and ⊥ otherwise;
– ⊥(i,N,A,C) outputs ⊥;
– for each user i: (i) nonce N cannot be used both in query to O1(i,N, ∗, ∗)

and O2(i,N, ∗, ∗); (ii) O2(i, ∗, ∗, ∗) is nonce-respecting; (iii) if C is returned
by O1(i,N,A,M) or O2(i,N,A,M) query O3(i,N,A,C) is forbidden; (iv)
a nonce used twice with O1 cannot be used for an O3 query.

The extended muCCAm$ advantage muCCAm$
∗

is defined as the muCCAm$
advantage where the last limitation, restriction (iv), is waived from the definition.

Leakage-resilience. In front of a leakage adversary, separate definitions for
integrity and confidentiality potentially offer more gradual degradations. This
results from the important general feature of physically observable cryptography
that unpredictability is much easier to ensure than indistinguishability [32], which
naturally splits the level of confidence we might expect to achieve both notions.
Here, we will focus on misuse-resilient AEAD with misuse-resistant integrity
and misuse-resilient confidentiality. To formalize the leakage depending on an
implementation, AEAD is associated to both an encryption leakage function LEnc

and a decryption leakage function LDec.
Berti et al. defined the leakage integrity notion of Ciphertext Integrity with

Misuse-resistance and (encryption & decryption) Leakage in [7,8], which is de-
noted CIML2. In some sense, the definition is obtained by enhancing the tradi-
tional INT-CTXT security game with encryption and decryption leakages. Below,
we recall the multi-user extension of this definition from [6].

Definition 3 (muCIML2 advantage). Given a nonce-based authenticated en-
cryption AEAD = (Enc,Dec) with leakage function pair L = (LEnc, LDec), the
multi-user ciphertext integrity advantage with misuse-resistance and leakage of
an adversary A against AEAD with u users is

AdvmuCIML2
A,AEAD,L,u :=

∣∣∣Pr
[
AL,LEncK,LDecK,π,ĨC ⇒ 1

]
− Pr

[
AL,LEncK,LDec⊥K,π,ĨC ⇒ 1

]∣∣∣ ,
where the probability is taken over the u user keys K = (K1, . . . ,Ku), with

Ki ← K, over A’s random tape and the ideal oracles π and ĨC and where:

– L gives access to LEnc and LDec for any K, N , A, M or C provided by A,
modeling access to a device under full adversarial control but not containing
any user’s secret key.

– LEncK(i,N,A,M): if 1 ≤ i ≤ u, outputs the cipher EncKi(N,A,M) and the
leakage trace LEnc(Ki, N,A,M);

– LDecK(i,N,A,C): if 1 ≤ i ≤ u, outputs
(
DecKi(N,A,C), LDec(Ki, N,A,C)

)
;

6

– LDec⊥K(i,N,A,C): for 1 ≤ i ≤ u, computes leakd ← LDec(Ki, N,A,C) and
if C is an output of some leaking encryption query (i,N,A,M) for some M
outputs (M, leakd), else outputs (⊥, leakd).

The muCIML1 variant of this definition is obtained by removing the leakages
from the decryption oracles or, formally, by setting LDec = ⊥.

Regarding confidentiality, we rely on the notions of security against multi-
user Chosen-Ciphertext Attacks with misuse-resilience and Leakage, with leak-
ages happening either during encryption only – muCCAmL1, or during both
encryption and decryption – muCCAmL2 [6].

Definition 4 (muCCAmL2 & muCCAmL1 advantages). Given a nonce-based
authenticated encryption AEAD = (Enc,Dec) with leakage function pair L =
(LEnc, LDec), the multi-user chosen-ciphertext advantage with misuse-resilience
and leakage of an adversary A against AEAD with u users is

AdvmuCCAmL2
A,AEAD,L,u :=

∣∣∣Pr
[
PrivKmuCCAmL2,0

A,AEAD,L ⇒ 1
]
− Pr

[
PrivKmuCCAmL2,1

A,AEAD,L ⇒ 1
]∣∣∣ ,

AdvmuCCAmL1
A,AEAD,L,u :=

∣∣∣Pr
[
PrivKmuCCAmL1,0

A,AEAD,L ⇒ 1
]
− Pr

[
PrivKmuCCAmL1,1

A,AEAD,L ⇒ 1
]∣∣∣ ,

where the security game PrivKmuCCAmL2,b
A,AEAD,L is defined in Figure 1 and where the

security game PrivKmuCCAmL1,b
A,AEAD,L removes all the decryption leakage traces leakd

and leakbd from Figure 1.

PrivKmuCCAmL2,b
A,AEAD,L,u is the output of the following experiment:

Initialization: generates u secret keys K1, . . . ,Ku ← K and sets Ech, E1, . . . , Eu ← ∅.
Leaking encryption queries: AL gets adaptive access to LEnc(·, ·, ·, ·),

LEnc(i,N,A,M) outputs⊥ if (i,N, ∗, ∗) ∈ Ech, else computes C ← EncKi(N,A,M)
and leake ← LEnc(Ki, N,A,M), updates Ei ← Ei∪{N} and finally returns (C, leake).

Leaking decryption queries: AL gets adaptive access to LDec(·, ·, ·, ·),
LDec(i,N,A,C) outputs ⊥ if (i,N,A,C) ∈ Ech, else computes the plaintext M ←
DecKi(N,A,C) and leakd ← LDec(Ki, N,A,C) and returns (M, leakd);

Challenge queries: on possibly many occasions AL submits (i,Nch, Ach,M
0,M1),

If |M0| 6= |M1| or Nch ∈ Ei or (i,Nch, ∗, ∗) ∈ Ech, returns ⊥; Else computes
Cb ← EncKi(Nch, Ach,M

b) and leakbe ← LEnc(Ki, Nch, Ach,M
b), updates Ech ←

Ech ∪ {(i,Nch, Ach, Cb)} and finally returns (Cb, leakbe);

Decryption challenge leakage queries: AL gets adaptive access to LDecch(·, ·, ·, ·),
LDecch(i,Nch, Ach, C

b) computes and outputs leakbd ← LDec(k,Nch, Ach, C
b) if

(i,Nch, Ach, C
b) ∈ Ech; Else it outputs ⊥;

Finalization: AL outputs a guess bit b′ which is defined as the output of the game.

Fig. 1: The PrivKmuCCAmL2,b
A,AEAD,L,u game.

The muCCAmL1 and muCCAmL2 notions are roughly the traditional CCA
notion in the multi-user setting enhanced with encryption and decryption leak-
ages. The presence of LDecch, which provides decryption leakages to challenge

7

queries, is intended to capture the informativeness of valid decryption leakages,
and its motivation stems from the harmfulness of decryption leakages where the
plaintext is supposed to remain a secret locked inside the decrypting device, a
proprerty that is relevant in some applications such as secure bootloading [33].

We note that CCA security with leakage is not defined in a “real-or-random”
form, as it is done in other places. The reason is that such definitions raise
challenges when leakages need to happen on the “random” side, which has no
physical existence.

In the following discussions, and when the multi-user setting is irrelevant,
we will omit the mu from our notations and talk about CIML1, CIML2, CCAmL1
and CCAmL2, which refer to the definitions above when u = 1.

3 Single-pass design: TETSponge/S1P

3.1 Background and design considerations

Inner keyed duplex schemes are in general attractive for efficient AE: they can
achieve this functionality in a single pass, are highly flexible and ensure nice se-
curity bounds in the multi-user setting [12,16]. Most importantly in our context,
it is believed that they offer some level of leakage-resilience by design [9,17], even
though it has not yet been formalized.

The starting point of our constructions is the (new) observation that the full
leakage of internal states in inner keyed duplex may not fully ruin integrity. In
fact, once the internal state has been recovered, the construction collapses to a
Hash-then-MAC authentication scheme (with the duplex being the keyless hash
function and the last permutation call being the fixed input length MAC). Thus,
if the last permutation call is carefully protected, the inner keyed duplex could
offer CIML1 security (i.e., ciphertext integrity with nonce-misuse and encryption
leakages, defined in Section 2.2).

In this respect, the main limitation of this duplex construction in terms
of leakage security lies in the verification of the tag. Decryption requires to
perform the entire computation to recover the valid tag to compare it with the
one included in the ciphertext. In the presence of decryption leakage, this valid
tag may leak from a decryption attempt on an invalid ciphertext, leading to a
CIML2 attack. For an n-bit tag, an approach to cope with this decryption leakage
is to rely on an n-bit invertible primitive like a (tweakable) block cipher [8], so
that the verification only compares (and leaks) pre-images of tags without ever
computing the valid tag, which then remains unpredictable. Inversion may be
challenging though, as the n-bit tag size is typically much smaller than the size of
the sponge permutation ` and, due to the presence of leakages, it is hard to build
such an n-bit invertible primitive from the ` bit permutation π. (Feistel-based
solution requires super-logarithmic number of rounds [18]).

With these considerations in mind, we leverage a TBC for this part of our
modes. That is, we derive a 2n-bit (hash) digest from the duplex function, and
we then use an (n, n, n)-TBC to absorb this digest and generate the (n-bit) tag.

8

As such, when internal states are leaked, the keyed duplex collapses to a simple
Hash-then-TBC scheme, which still naturally achieves CIML2. The motivation
for employing 2n-bit digests is to boost the complexity of hash collision-based
forgery attacks to 2n, which is inherited from [6].

For the rest, the use of nonce-based key-derivation for state-refreshing per
message is a common design strategy for SCA secure AEs [7,17,8]. As will be
detailed next, as long as the internal state is not fully exposed by SCAs, it enables
the inner keyed duplex to maintain some level of privacy and integrity. The use
of “public keys” in order to offer multi-user security beyond n/2 is also inherited
from [6]. In detail, the presence of possibly public additional randomness PK
immediately reduces the collision probability between user keys. Moreover, using
these public keys as the tweak inputs creates a strong independence between
different users and prevents the effectiveness of offline computation brought in
by the multiple user keys. Besides, as these public keys do not need any physical
protection for confidentiality, they can be freely used in weakly protected parts
of our mode of operation. We refer to [6] for more information.

3.2 Specification

The TETSponge/S1P scheme is a one-pass sponge-based mode for AEAD.

BN‖0∗

C = C[1]‖C[2]‖Z

Ẽ

K

N‖PK‖0∗

π
n

r

M [1] C[1]

c π

r

A[1]

c π

r

A[2]‖10∗

c π

PK‖0∗

M [2] C[2]‖10∗

c π U

n− 1
V

n
R

ZẼ

K

1

1‖0c−2 2‖0c−2 1‖0c−2

Fig. 2: S1P[π, Ẽ]K,PK AEAD with ν = 2 r-bit block of associated data and ` = 2 r-bit
blocks of message. Dark squares indicate the (n, n, n)-TBC where, the triangle denotes
the key input and the small black rectangle denotes the tweak input. The value 1‖0c−2

is inserted only if |A[ν]| < r, resp. |M [`]| < r.

Parameters. Ẽ is an (n, n, n)-TBC and π is an ` = r+c bit keyless permutation.
The key of S1P is K‖PK , where |K| = n and |PK | = np. We stress that only
K has to be kept secret, but PK can be public. The secret key K is picked
uniformly at random in {0, 1}n. The public key PK only needs to be distinct for
each session. For simplicity, in this paper we focus on uniform PK ∈ {0, 1}np .
Let nN = |N | be the fixed length of the nonces. We require that np ≤ r,
nN +np +n ≤ r+ c, and 2n ≤ r+ c+ 1. Yet, we recommend np ≈ n and c ≈ 2n
and we actually choose np = n− 1 and c = 2n as this leads to a security up to
2n/n2 complexity. There is no recommendation for nN , but when n = 128 one
could take nN = 96 which is a standard choice.

The encryption. Upon encrypting (N,A,M), the mode first derives an n-bit

initial seed B from N , using a strongly protected TBC-call to Ẽ
PK‖0∗
K (N‖0∗).

9

The initial seed B is then used as the key of the inner keyed duplex to process
A and M = M [1]‖ . . . ‖M [`] and produce c = C[1]‖ . . . ‖C[`]. Note that 2 bits
are used for domain separation, in order to distinguish M from A and mark if
the last blocks of A and M are of full r bits or not.

Let U‖V be the least significant 2n − 1 bits of the final state with |U | = n.
As discussed, this truncated state is not immediately used as the tag. Instead,
another strongly protected TBC-call is made, which generates the n-bit tag

Z = Ẽ
V ‖1
K (U). The final ciphertext is C[1]‖ . . . ‖C[`]‖Z.

The Decryption. Upon decrypting (N,A,C), C = C[1]‖ . . . ‖C[`]‖Z, the mode

first derives the initial seed B via B = Ẽ
PK‖0∗
K (N‖0∗), and then runs the inner

keyed duplex on A and C[1]‖ . . . ‖C[`] to derive M and the 2n− 1 bit truncated

state U‖V . Finally, it makes an inverse TBC call U∗ = (Ẽ
V ‖1
K)−1(Z), and outputs

M if and only if there is a match U = U∗. In such a way, invalid decryption
only leaks meaningless random values U∗ (instead of the correct tag) which is
instrumental to achieve CIML2.

The encryption and decryption are formally described below. Note that when
c is empty while A passes the integrity checking, S1P.Dec explicitly returns a
special value true, so that it can be used for authenticating A.

algorithm S1P[π, Ẽ].EncK,PK (N,A,M)

1. `← d|M |/re, ν ← d|A|/re
2. parse M as M [1]‖ . . . ‖M [`], with
|M [1]| = . . . = |M [`− 1]| = r and
1 ≤ |M [`]| ≤ r

3. parse A as A[1]‖ . . . ‖A[ν], with
|A[1]| = . . . = |A[ν − 1]| = r and
1 ≤ |A[ν]| ≤ r

4. B ← Ẽ
PK‖0n−nP
K (N‖0n−nN)

5. ivsize← r + c− n
6. IV ← N‖PK‖0ivsize−nN−nP
7. S0 ← IV ‖B, S1 ← π(S0)
8. if ν ≥ 1 then
9. for i = 1 to ν − 1 do

10. Si ← Si ⊕ (A[i]‖0c)
11. Si+1 ← π(Si)
12. if |A[ν]| < r then
13. A[ν]← A[ν]‖10r−|A[ν]|−1

14. Sν ← Sν ⊕ (0r‖[1]2‖0c−2)
15. Sν ← Sν ⊕ (A[ν]‖0c)
16. Sν+1 ← π(Sν)
17. if ` ≥ 1 then
18. Sν+1 ← Sν+1 ⊕ (0r‖[2]2‖0c−2)
19. for i = 1 to `− 1 do
20. j ← i+ ν
21. C[i]← msr(Sj)⊕M [i]

22. Sj ← C[i]‖lsc(Sj)
23. Sj+1 ← π(Sj)
24. C[`]← ms|M [`]|(Sν+`)⊕M [`]
25. if |C[`]| < r then
26. Sν+` ← Sν+` ⊕ (0r‖[1]2‖0c−2)
27. Sν+` ← C[`]‖10r−|C[`]|−1‖lsc(Sν+`)
28. else Sν+` ← C[`]‖lsc(Sν+`)
29. Sν+`+1 ← π(Sν+`)
30. U‖V ← lsb2n−1(Sν+`+1)

31. Z ← Ẽ
V ‖1
K (U)

32. c← C[1]‖ . . . ‖C[`], C ← c‖Z
33. return C

algorithm S1P[π, Ẽ].DecK,PK (N,A,C)
1. `← d |C|−n

r
e, ν ← d|A|/re

2. parse C as C[1]‖ . . . ‖C[`]‖Z, with
|C[1]| = . . . = |C[` − 1]| = r, 1 ≤
|C[`]| ≤ r, and |Z| = n

3. parse A as A[1]‖ . . . ‖A[ν], with
|A[1]| = . . . = |A[ν − 1]| = r and
1 ≤ |A[ν]| ≤ r

4. B ← Ẽ
PK‖0n−nP
K (N‖0n−nN)

5. ivsize← r + c− n
6. IV ← N‖PK‖0ivsize−nN−nP
7. S0 ← IV ‖B, S1 ← π(S0)
8. if ν ≥ 1 then
9. for i = 1 to ν − 1 do

10. Si ← Si ⊕ (A[i]‖0c)
11. Si+1 ← π(Si)
12. if |A[ν]| < r then

10

13. A[ν]← A[ν]‖10r−|A[ν]|−1

14. Sν ← Sν ⊕ (0r‖[1]2‖0c−2)
15. Sν ← Sν ⊕ (A[ν]‖0c)
16. Sν+1 ← π(Sν)
17. if ` ≥ 1 then
18. Sν+1 ← Sν+1 ⊕ (0r‖[2]2‖0c−2)
19. for i = 1 to `− 1 do
20. j ← i+ ν
21. M [i]← msr(Sj)⊕ C[i]
22. Sj ← C[i]‖lsc(Sj)
23. Sj+1 ← π(Sj)
24. M [`]← ms|C[`]|(Sν+`)⊕ C[`]

25. if |C[`]| < r then

26. Sν+` ← Sν+` ⊕ (0r‖[1]2‖0c−2)

27. Sν+` ← C[`]‖10r−|C[`]|−1‖lsc(Sν+`)

28. else Sν+` ← C[`]‖lsc(Sν+`)

29. Sν+`+1 ← π(Sν+`)

30. U‖V ← lsb2n−1(Sν+`+1)

31. U∗ ← (Ẽ
V ‖1
K)−1(Z)

32. if U 6= U∗ then return ⊥
33. else if ` > 0 then return

M [1]‖ . . . ‖M [`]

34. else return true

3.3 Black box security of S1P

We focus on the black-box muCCAm$ security of S1P and defer the leakage
security analyzes to Sections 5 and 6. Let −→q = (qm, qe, qd, qĨC, qπ) and denote by
(−→q , σ)-adversaries the adversaries that make qm, qe, qd, qĨC, and qπ queries to the
non-challenge encryption oracle, the challenge encryption oracle, the LDec oracle,
ĨC, and π, and have at most σ blocks (of r bits) in all their queried plaintexts
(both non-challenge and challenge) and ciphertexts, including associated data.

Theorem 1. Assume u ≤ 2np , np ≤ n, n ≥ 5, and q∗ = σ + qe + qd + qm +
qπ ≤ min{2n/4, 2r+c/2}. Then in the ideal TBC and permutation model, for any
(−→q , σ)-adversary A it holds

AdvmuCCAm$
A,S1P,u ≤

5u

2np
+

56(q∗)2

2c
+

23nq∗ + 5n2qĨC

2n
. (1)

The proof is available in appendix F.5 Here qπ, qĨC = t represents the time
complexity. If n = 128, and with our chosen parameters np = n− 1 and c = 2n,

the bound simplifies to 5u
2127 + 214t+27σ

2128 , implying security up to 2124 users, 2114

computations, and roughly 2120 message blocks. For comparison, we informally
remark that from the analysis in Appendix F, it can be seen the security bound
increases up to 2n/n in the single user setting.

While it is possible to establish bounds beyond 2c/2 [29,14], we will see that
the term 2c/2 constitutes the CIML2 security limit and cannot be improved.
Thus, better muCCAm$ bounds cannot result in a smaller choice of c when
CIML2 security is a concern.

3.4 Other remarks

One could instantiate key-derivation and tag-generation with the permutation π
to get a purely permutation-based AEAD close to Daemen et al.’s keyed duplex

5 For simplicity, the proof leverages some technical ingredients introduced in the next
sections, so it is better read after the introduction of Appendices C to E.

11

with built-in multi-user support [16]. We illustrate it in Appendix B, Figure 5.
But this variant suffers anew from the re-computation of the valid tag Z to verify
the validity of ciphertexts, which might ruin decryption leakage security. So over-
all, although purely permutation-based designs may be preferable for lightweight
cryptography without leakage, we believe their vulnerability to decryption leak-
ages limits their interest (even in lightweight scenarios), in case physical attacks
are in the application spectrum envisioned.

We also note that since we expect the sponge to act as a keyless hash when
the internal state has been leaked, we cannot follow the more efficient designs
approaches that encroach the capacity part of the sponge — including full-state
duplex [31,16] and concurrent absorption [38].

4 Two-pass design: TEDTSponge/S2P

As mentioned in introduction, the main limitation of TETSponge/S1P is that
it does not achieve CCAmL2 security (which seems to be the price to pay to
obtain a one-pass design). With two passes, an Encrypt-then-MAC composition,
the de facto standard choice for leakage-resilient AEs [3,17,8] becomes possible.
Concretely, we use the TBC-based key-derivation to start a keyed duplex for
encrypting, and then use a hash-then-TBC MAC function to generate the tag
from the nonce, the associated data, the ciphertext, and the public key. The
keyless hash function is, of course, built upon the sponge function. The ideas
of using hash-then-TBC for beyond n/2 security and hashing PK for beyond

n/2 multi-user security are again inherited from [6]. In summary, S2P[π, Ẽ] can
be seen as a (more efficient) sponge-based variant of the TEDT TBC-mode [6],
or an ISAP variant using a TBC to improve leakage-resilience (i.e., CIML2 and
CCAmL2) security.

Formally, with the same conventions np ≤ r, nN + np + n ≤ r + c, and
2n ≤ r+ c+ 1 as in Section 3.2, the mode is given in Figure 3, and described as
follows. We recommend the parameters np = n− 1 and c = 2n.

algorithm S2P[π, Ẽ].EncK,PK (N,A,M)

1. `← d|M |/re
2. parse M as M [1]‖ . . . ‖M [`], with
|M [1]| = . . . = |M [` − 1]| = r and
1 ≤ |M [`]| ≤ r

3. if ` > 0 then
4. B ← Ẽ

PK‖0n−nP
K (N‖0n−nN)

5. ivsize← r + c− n
6. IV ← N‖PK‖0ivsize−nN−nP
7. S0 ← IV ‖B
8. for i = 1 to ` do
9. Si ← π(Si−1)

10. C[i]← ms|M [i]|(Si)⊕M [i]
11. Si ← C[i]‖lsc(Si)

12. c← C[1]‖ . . . ‖C[`]
13. else c← ⊥
14. U‖V ← H[π](A, c, N,PK)

15. Z ← Ẽ
V ‖1
K (U), C ← c‖Z

16. return C

algorithm S2P[π, Ẽ].DecK,PK (N,A,C)

1. `← d |C|−n
r
e

2. parse C as c‖Z, with c =
C[1]‖ . . . ‖C[`], |C[1]| = . . . = |C[` −
1]| = r, and 1 ≤ |C[`]| ≤ r

3. U‖V ← H[π](A, c, N,PK)

4. U∗ ← (Ẽ
V ‖1
K)−1(Z)

5. if U 6= U∗ then return ⊥
6. else if ` = 0 then return true

12

7. else // ` > 0

8. B ← Ẽ
PK‖0n−nP
K (N‖0n−nN)

9. ivsize← r + c− n
10. IV ← N‖PK‖0ivsize−nN−nP
11. S0 ← IV ‖B
12. for i = 1 to ` do
13. Si ← π(Si−1)
14. M [i]← ms|C[i]|(Si)⊕ C[i]
15. Si ← C[i]‖lsc(Si)
16. return M [1]‖ . . . ‖M [`]

algorithm H[π](A, c, N,PK)

1. `← d|M |/re, ν ← d|A|/re, ω ← ν + `
2. parse M as M [1]‖ . . . ‖M [`], with
|M [1]| = . . . = |M [` − 1]| = r and
1 ≤ |M [`]| ≤ r

3. parse A as A[1]‖ . . . ‖A[ν], with
|A[1]| = . . . = |A[ν − 1]| = r and
1 ≤ |A[ν]| ≤ r

4. S0 ← 0r+c

5. if ν ≥ 1 then
6. for i = 1 to ν − 1 do
7. Si ← π(A[i]‖lsc(Si−1))
8. if |A[ν]| < r then
9. A[ν]← A[ν]‖10r−|A[ν]|−1

10. Sν−1 ← Sν−1 ⊕ (0r‖[1]2‖0c−2)
11. Sν ← π(A[ν]‖lsc(Sν−1))
12. if ` ≥ 1 then
13. Sν ← Sν ⊕ (0r‖[2]2‖0c−2)
14. for i = 1 to `− 1 do
15. Si+ν ← π(C[i]‖lsc(Si+ν−1))
16. if |C[`]| < r then
17. Sω−1 ← Sω−1 ⊕ (0r‖[1]2‖0c−2)
18. Sω−1 ← C[`]‖10r−|C[`]|−1‖lsc(Sω−1)
19. else Sω−1 ← C[`]‖lsc(Sω−1)
20. Sω ← π(Sω−1)
21. Sω+1 ← π

(
N‖0r−nN ‖lsc(Sω)

)
22. Sω+2 ← π

(
PK‖0r−np‖lsc(Sω+1)

)
23. U‖V ← lsb2n−1(Sω+2)
24. return U‖V

Note that it may be tempting to decrease the capacity of the first (keyed)
sponge pass in order to improve efficiency. However, such an optimization is
unlikely to be easily exploitable in practice. The tricky issue is that this would
induce a significant difference between the throughput of the two passes (so that
the second pass would remain the bottleneck anyway). As a result, we prefer
using the same c twice. a consistent c parameter.

BN‖0∗ Ẽ

K

N‖PK‖0∗

n

PK‖0∗

ππ

A[2]‖10∗

0c

A[1]

r

M [1] C[1]

c ππ

r

M [2] C[2]

c

U

n− 1
V

n
R

ZẼ

K

π

r

M [3] C[3]

c

C = C[1]‖C[2]‖C[3]‖Z

1

π

C[1]

π

C[2]

π

C[3]‖10∗

π

N

π

r

PK‖0∗

c

r

c

r

c

r

c

r

c

r

c

1‖0c−2 2‖0c−2 1‖0c−2

Fig. 3: S2P[π, Ẽ]K,PK AEAD (with the same notation as before).

13

As in section 3.3, we present the muCCAm$ security results below (with
similar bounds as Theorem 1), and defer leakage analyzes to Sections 5 and 6.

Theorem 2. Assume u ≤ 2np , np ≤ n, n ≥ 5, and q∗ = 2σ+ 2(qe + qd + qm) +
qπ ≤ min

{
2n/4, 2r+c/2

}
. Then in the ideal TBC and permutation model, for

any (−→q , σ)-adversary A, −→q = (qm, qe, qd, qĨC, qπ), it holds that:

AdvmuCCAm$
A,S2P,u ≤

4u

2np
+

53(q∗)2

2c
+

8nq∗ + 2n2qĨC

2n
. (2)

The proof is offered in Appendix G.6

5 Leakage integrity analyzes: muCIML2

For integrity, we combine a very conservative model of “unbounded leakage” for
the sponge part of our designs, in which the input/output of each call to the
π permutation is leaked in full, with strongly protected implementations of the
TBC calls, following [7,8]. More precisely, the protected TBC calls are assumed
to be secure against key recovery attacks (e.g., DPAs exploiting multiple queries
to the TBCs). Informally, these assumptions are instrumental in providing the
separation of duties that enables leveled implementations. As a result, our AE
modes are closer to keyless sponge-based hash functions than the usual keyed
sponges. Hence, the integrity guarantees rely on the physical protection of the
TBC-calls & the ideal permutation assumption (which is a common assumption
for analyzing sponges). Formally, we define L∗ = (L∗Enc, L

∗
Dec), where:

– L∗Enc consists of the following information appearing during the encryption:
• {Sin, Sout} for each internal call to π(Sin)→ Sout, and

• {T,X, Y } for each internal call to ẼTK(X)→ Y or (ẼTK)−1(Y)→ X (i.e.,
all values are completely leaked except for the key K), and

• {a, b} for each internal XOR action a⊕ b.
– L∗Dec consists of the above that are generated during the decryption.

We further write −→q = (qe, qd, qĨC, qπ), and denote by (−→q , σ)-adversaries the ad-

versaries that make qe, qd, qĨC, and qπ queries to LEncK, LDecK, ĨC, and π, and
have at most σ blocks (of r bits) in all their queried plaintext and ciphertext in-
cluding associated data. In the unbounded leakage model, queries to the training
oracle L∗ are useless since everything is leaked in full anyway, and we therefore
omit them. With these, we first present the results on S1P.

Theorem 3. Assume u ≤ 2np , np ≤ n, n ≥ 5, q∗ = σ + qe + qd + qπ ≤
min

{
2n/4, 2r+c/2

}
, and leakage L∗ is “unbounded” as above. Then in the ideal

TBC and permutation model, for any (−→q , σ)-adversary A it holds

AdvmuCIML2
A,S1P,L∗,u ≤

3u

2np
+

32(q∗)2

2c
+

7nq∗ + n2qĨC

2n
. (3)

6 Again, the proof leverages some technical ingredients introduced in the next sections,
so it is better read after the introduction of Appendices C to E.

14

We then present the results on S2P. The bounds are comparable to Theorem 1.

Theorem 4. Assume u ≤ 2np , np ≤ n, n ≥ 5, q∗ = 2σ + 2(qe + qd) + qπ ≤
min

{
2n/4, 2r+c/2

}
, and leakage L∗ is “unbounded” as above. Then in the ideal

TBC and permutation model, for any (−→q , σ)-adversary A it holds that

AdvmuCIML2
A,S2P,L∗,u ≤

2u

2np
+

32(q∗)2

2c
+

3q∗ + 2nqd + n2qĨC

2n
. (4)

See appendices C and D for their proofs.

6 Leakage privacy analyzes: muCCAmL1 & muCCAmL2

The CCAmL1 and CCAmL2 notions from Definition 4 mainly capture the privacy
of challenge encryption messages. As mentioned in Section 2.2, this privacy is
in general harder to achieve (and analyze) than integrity and, regarding the
challenge leakages, some type of “bounded” assumptions are clearly necessary:
cleartext messages would be leaked in full otherwise.

This section starts with an introuction to the general leakage model that
we will consider in our analyzes (Section 6.1) and the non-invertible leakage
assumption that we use as an alternative to the unbounded leakages of the pre-
vious integrity analyzes (Section 6.2). We then discuss the (unavoidable) leakage
(in)security of a single-round XOR (to which we therefore reduce security) in
Section 6.3. Based on these tools, we establish the leakage eavesdropper secu-
rity of generic keyed duplex in Section 6.4, which allows concluding about the
muCCAmL1 and muCCAmL2 security of our new modes in Section 6.5.

To the best of our knowldege, this is the first example of a rigourous model
and analysis of a sponge-based mode in the presence of leakages.

6.1 Modeling leakage functions

Most analyzes of sponge-based constructions rely on the ideal (permutation)
model.7 We follow that practice, which has the advantage of offering an easy
compatibility with extremely permissive assumptions: we will assume that the
leakages resulting from each call to the permuation π is non-invertible, an as-
sumption that is quite minimal and was used before by Yu et al. [40] for model-
ing leakages around a random oracle. In order to reach a consistent analysis, we
stick to the same approach for the Ẽ block. This approach also comes with the
important benefit that it can be easily measured/challenged by cryptanalytic
practice (as will be detailed in the next sections), and therefore might lead to a
better understanding of how to implement and design modes from a real-world
perspective.

Formally, we model leakage traces of F ∈ {π, Ẽ,⊕} as the outputs of an
efficient probabilistic function LF on the same inputs. Each computation of F
comes with leakage traces from LF. For Ẽ and π, we further split the leakage
traces into an input and an output part:

7 In Section 7 we discuss the complications raised by other possibilities.

15

– For sponge, the leakage trace due to the evaluation of π(Sin) → Sout or of
π−1(Sout)→ Sin is written (Linπ (Sin), Loutπ (Sout));

– For a TBC, the leakage trace due to the evaluation of ẼTK(X) → Y or of

(ẼTK)−1(Y)→ X is written (Lin
Ẽ

(K,T ;X), Lout
Ẽ

(K,T ;Y)) with semicolon.

This distinction between LinF and LoutF allows to independently quantify the se-
crecy of the input and the output which better reflects the designers implemen-
tation goals for each functions/calls. This also allows interpreting the security
bounds based on cryptanalytic experiments (see section 6.2).

We insist again on the probabilistic nature of the leakage functions, even
for LinF and LoutF and any F. It corresponds to the practical observation that
measuring p times the leakage from the same computation does generally not
result in completely identical traces, due to thermal noise in devices and to
measurement noise for instance. Therefore, we will write [LF]p for a vector of p
leakage traces of F.

Oracle-free leakage function. We stress that leakage functions LF must be
(probabilistic) functions, and have no access to oracles like Ẽ or π. This guaran-
tees that LF only leaks information about the computation that is happening in
the device, and not about computation that could happen in other calls of Ẽ or π.
Granting access to such oracles to the leakage function would not only be against
the locality of leakages (a device cannot leak about values that never appeared

in any Ẽ or π query before), it would also lead to consider artificial attacks. For
instance, while it is artificial that Lπ (say, related to π(S0)→ S1) outputs infor-
mation related to another or a “future” call to π (say, S2 = π(C[1]‖lsc(S1))), such
leakages might prevent the proof to later show a necessary transition related to
a call that already leaked before it has been computed (like the unpredictability
of the key stream msr(S2) in the next block) [19,35].

Such artificial “attacks” are made impossible by preventing LF from making
any oracle call, an approach that was previously adopted in [40]. Formally, we say
that the leakage function associated to the function F is oracle-free, if τ(LinF) =

τ(LoutF) = ∅, where τ(L∗F) is the transcript of queries made by L∗F to π and Ẽ
when L∗F is evaluated on its inputs.

6.2 Non-invertible leakage assumption

As explained above, we assume that leakage functions are essentially non-invertible,
and on some parts of them in particular.

In the context of a permutation π, and in line with the intuition informally
proposed for ISAP [17], we require that, given a sequence of p leakages about an
execution of π, in which the adversary may be able to pick r (or c) bits of the
input and/or outputs of π, the remaining c = `−r bits (or r = `−c bits) remain
unpredictable, even if A can make a certain number of guessing attempts.

Internal states’ leakages. More formally, we define

Advuplsc[p](A) := Pr
[
sch

$← {0, 1}c, Guesses← Aπ(leak) : sch ∈ Guesses
]
, (5)

16

where Guesses is a finite set of guesses, and A’s input leak is a list of leakages
depending on two r-bit values Y in and Y pre specified by A, i.e.,

leak =
(

ms2(sch),
[
Loutπ (Y pre‖sch), Linπ (Y in‖sch)

]p)
. (6)

The presence of the 2 bits leakage ms2(sch) is due to assuming that the insertion
of the 2-bit domain separation constants completely leaks. We further define

Advuplsc[p](qπ, t, qg) := max
(qπ,t,qg)-A

{
Advuplsc[p](A)

}
, (7)

with the maximal taken over all adversaries that makes qπ queries to π, runs in
time t, and makes qg guesses (i.e., resulting in |Guesses| = qg).

Initial state leakage. In addition to Equation (5), we define

Advuplsn[p](A) := Pr
[
B

$← {0, 1}n, Guesses ← Aπ(leak) : B ∈ Guesses
]
, (8)

where leak depends on A specified values K,T of n bits and IV of c+ r−n bits:

leak =
([

Lout
Ẽ

(K,T ;B), Linπ (IV ‖B)
]p)

.

For simplicity, we also define

Advuplsn[p](qπ, t, qg) := max
(qπ,t,qg)-A

{
Advuplsn[p](A)

}
. (9)

Final state leakage. The last assumption is made on the secrecy of the final
state Sν+`+1 in S1P (see line 19 in S1P[π, Ẽ].Enc):

Advupfi[p](A) := Pr
[
S

$← {0, 1}r+c, Guesses← Aπ(leak) : S ∈ Guesses
]
,

where R = msr+c+1−2n(S) and leak = (ls2n−1(S), [Loutπ (S)]p). We also define

Advupfi[p](qπ, t, qg) := max
(qπ,t,qg)-A

{
Advupfi[p](A)

}
. (10)

In the notations, the suffix [p] indicates the number of repeated measurements.

Understanding the up[p] assumptions. The above three assumptions char-
acterize leakage properties of a single call to the sponge permutation π, as
summarized in Figure 4 (right). We take Equation (5) as the main example.
Concretely, it captures that the value of sch, which is supposed to be secret
in the black-box setting, cannot be recovered from the involved leakages. On
the one hand, sch appears in the leakage of the subsequent permutation-call
π(Y in‖sch)→ ·, which justifies the presence of Linπ (Y in‖sch). On the other hand,
sch itself is the output of the previous permutation-call, which in turn justifies the
presence of Loutπ (Y pre‖sch). By authorizing p measurements, we capture the re-
peated measurements that can happen when repeatedly asking for the decryption
of a single ciphertext, something that is possible when playing the muCCAmL2

17

security game. It should be noted that, while this repetition may reduce the
measurement noise, it does not contradict the informal separation between SPA
and DPA attacks (put forward in [39] and more formally exploited in [7,8,6]).
Namely, in practice, it is expected that the (SPA) advantage of Equation (5)
is still much smaller than that of a DPA against a block protected with simi-
lar countermeasures. The additional leakages [Lout

Ẽ
(K,T1;B)]p in Equation (8)

capture the generation of the initial seed B.

c
π

s

ych
Spre

m

π π
sch

Y in

Sout
Y pre

Spre

(M [i])

π

r

c

r

c

Fig. 4: (Left) The uplsc[p] assumption where sch in red is the secret. Other values are
defined as in Eq. (5) except Spre and Sout which appear in the subsequent security
tester. (Middle) The “basic” message processing where ych in red is the secret. (Right)
Summary: all the values in red need to keep some secrecy (i.e., the lsc bits of the input,
and the entire output, as stressed by the red bold lines).

Testers: Measuring advantages in practice. The concrete values of the
advantages Advuplsc[p], Advupfi[p] and Advuplsn[p] can be measured for a specific
implementation on a specific device by running the following tester against the
best known challenging SCA adversary A. This along with Theorems 6 and 7
(later in section 6.5) allows us to determine how many plaintext blocks can be
processed before key updating. We also serve Theorem 5 (in Section 6.4) as
a general result on keyed duplex constructions, that may be useful for future
works. For brevity, we only describe the tester for Advuplsc[p].

1: Tester for UP Advuplsc[p](qπ, t, qg)
2: Let the challenging adversary A serve r bit values Y pre and Y in

3: Pick the secret: sch
$← {0, 1}c

4: Repeating Spre ← π−1(Y pre‖sch) and Sout ← π−1(Y in‖sch) for p times
5: Serve A with the 2 bits ms2(sch) and the leakage traces resulted from step 4. This

gives A the leakages [Loutπ (Y pre‖sch)]p and [Linπ (Y in‖sch)]p.
6: Let the challenging adversary A output qg guesses s1, . . . , sqg , A wins as long as
sch ∈ {s1, . . . , sqg}

6.3 Capturing the (in)security of the XOR

As a final step towards characterizing the leakage privacy of keyed duplex imple-
mentations, we have to measure the leakage resulting from XORing blocks of key
stream with message blocks. We stress that, as observed in [34] and follow-up
works, the leakage privacy of any such XOR-based design has to rely, in a way
or another, on a leakage protection of the XOR. To this end, we follow [34,6]

18

and define

AdvLORL[p](A) :=

∣∣∣∣Prπ

[
ych

$← {0, 1}r, c0 ← ych ⊕m0 : Aπ(c0, leak0)⇒ 1
]

− Prπ

[
ych

$← {0, 1}r, c1 ← ych ⊕m1 : Aπ(c1, leak1)⇒ 1
]∣∣∣∣ , (11)

where leakb again depends on a c-bit value s specified by A:

leakb =
([

Loutπ (ych‖s)
]p
, L⊕(ych,m

b),
[
L⊕(ych, c

b)
]p−1)

. (12)

In the abbreviation LORL[p], the suffix L stands for leaking, and the suffix [p] is
similar as before. We also define

AdvLORL[p](qπ, t) := max
A

{
AdvLORL[p](A)

}
. (13)

The assumptions with p > 1 capture the case of giving (more than one) challenge
decryption leakages (from LDecch). This means the muCCAmL1 security (with no

challenge decryption leakage) can be reduced to Advuplsc[1], . . . ,AdvLORL[1].

Understanding LORL[p] advantage. Equation (11) defines the information an
adversary might extract from the “basic” message manipulation made in a keyed
duplex, which involves XORing: see Figure 4 (middle). Concretely, the sensitive
point is the key stream block ych. This block is the output of a permutation-
call, hence the presence of Loutπ (ych‖s). Then, the block ych is used to mask the
message block, and thus L⊕(ych,m

b) comes. As discussed earlier, the vectors of
p leakages are relevant when repeated leaking decryption happen, and therefore
are used for proving the muCCAmL2 security of modes. We can stick to p = 1
when proving muCCAmL1 security.

As discussed in [27,34], if a single XOR of the message leaks a single bit, then
no muCCAmL1/muCCAmL2 security would spring up. Thus, it is legitimate to fo-
cus on protecting this part of the implementations. Concretely, and while it may
not be possible to guarantee that AdvLORL[p](qπ, t) is negligible, we can claim
the following: first, this quantity can again be measured by a tester (given in Ap-
pendix E.1); second, it allows us to faithfully reduce the muCCAmL1/muCCAmL2
security to very simplified one-time components, possibly with many leaking rep-
etitions but for a single computation from a fixed random string, which further
makes it easier to study and to protect as isolated components. Our security
proofs then show how the advantage degrades to the apparent best possible secu-
rity, at an inevitable rate during the encryption (or challenge decryption).

6.4 Leakage eavesdropper security of duplex stream ciphers

The argument will proceed in two steps.

19

The ideal stream cipher with leakages. Consider our target construction,
i.e., the duplex stream cipher. Its ideal reference can be obtained by replacing
all the internal states in the duplex by uniformly sampled r+c bit values. Below
we formally describe these two processes from pseudocode.

Description of Realt[π]:

– Gen picks B
$← {0, 1}n

– RealtB [π](IV,A,M) proceeds in five steps:
(1) Initializes an empty list leak for the leakage;
(2) Computes S0 ← IV ‖B, S1 ← π(S0), and adds the leakages [Linπ (S0)]p and

[Loutπ (S1)]p to leak;
(3) For i = 1, . . . , ν = d|A|/re, computes Si+1 ← π((A[i]‖0c) ⊕ Si), and adds the

leakage [Linπ ((A[i]‖0c)⊕Si), Loutπ (Si+1), L⊕(msr(Si), A[i])]p and ms2(lsc(Si)) to
leak;

(4) For i = 1, . . . , ` = d|M |/re, computes j ← i+ν, C[i]← msr(Sj)⊕M [i], Sj+1 ←
π(C[i]‖lsc(Sj)), and adds the leakages L⊕(msr(Sj),M [i]), [L⊕(msr(Sj), C[i])]p−1,
[Linπ ((M [i]‖0c)⊕ Sj), Loutπ (Sj+1)]p, and ms2(lsc(Si)) to leak;

(5) If the tag t = 1 then defines c = C[1]‖ . . . ‖C[`]‖ls2n−1(Loutπ (Sν+`+1)), else
defines c = C[1]‖ . . . ‖C[`].

RealtB [π](IV,A,M) eventually returns c. For the list leak standing at the end of
the above process, we define LRealtB [π](IV,A,M) = (RealtB [π](IV,A,M), leak).

The process of Idealt(IV,A,M) is the same as RealtB [π](IV,A,M), except that the inter-
nal states S1, . . . , Sν+`+2 are all uniformly sampled from {0, 1}r+c. Its complete descrip-
tion is deferred to appendix E.2. We define LIdealt(IV,A,M) = (Idealt(IV,A,M), leak)
for the list leak standing at the end of the above process.

Note that the above stream cipher roughly captures the underlying structures
of S1P and S2P: for the former, we omit the domain separation constants for
simplicity, but since we assumed inserting these constants completely leaks (the
2 bits ms2(lsc(Si))), our simplification does not affect the result.

We show that the real and ideal stream ciphers (with leakages) are indis-
tinguishable (upon encrypting a single message). This step mainly requires us
to bound certain “bad events” in the ideal world, for which the non-invertible
leakage assumption is helpful.

Lemma 1. For every adversary-chosen pair (A,M) with ` blocks in total, every
T,N , and every (qπ, t)-bounded distinguisher Dπ, it holds∣∣Pr[Dπ(RealtB [π](IV,A,M))⇒ 1]− Pr[Dπ(IdealtB(IV,A,M))⇒ 1]

∣∣
≤ (`+ 2)2

2c+1
+ Advuplsn[p](qπ, O(t+ p`tl), qπ) + ` ·Advuplsc[p](qπ, O(t+ p`tl), 2qπ)

+ t ·Advupfi[p](qπ, O(t+ p`tl), qπ), (14)

where tl is the total time needed for evaluating Linπ , Loutπ , L⊕, and the xor of two
r-bit values.

Proof. Wlog we consider the case of |A| = 0 and ` = |M |
r for simplicity.

20

Preparations. Denote G1(D,RealtB [π], π) and G2(D, Idealt, π) the games captur-

ing the interactions between D and the real (RealtB [π], π) and the ideal (Idealt, π)
resp.; and simplified as G1 and G2. We’ll prove the indistinguishability of G1 and
G2. To make it rigorous, we use the H-coefficients technique. A deviation from
common applications of this technique is that, instead of considering the mere
adversarial transcripts, we focus on an extended notion of transcripts, which
summarize the whole interactions. This is because during the games in ques-
tion, there are various other randomness sources such as the random coins of the
leakage functions, and these could only be captured by the extended transcripts.8

Concretely, note that the real adversarial transcripts could be summarized
as two lists τle and τπ: the former includes the ciphertext as well as the leakages
(its concrete representation won’t be needed in this proof), while the latter

τπ =
(
(Sin1 , S

out
1), . . . , (Sinqπ , S

out
qπ)

)
(15)

includes the adversarial permutation queries and responses, and indicates the
i-th query is either forward π(Sini) → Souti or backward π−1(Souti) → Sini .
Besides, at the end of the interaction, we reveal the involved internal state S =
(S0, S1, . . .) to D, and append this to its transcript. Clearly, this doesn’t reduce
its advantage.

Moreover, note that the interactions with the (real or ideal) encryption pro-
cess additionally rely on r, the random coins of the distinguisherD & the involved
leakage functions. Yet, it can be seen that during two games G1(D,RealtB [π1], π1)
and G2(D, Idealt, π2), if the following conditions are fulfilled, then the queries and
responses of D are the same, and thus D outputs the same:

– π1 ` τπ, and π2 ` τπ;
– the internal state values produced in the two games are the same S;
– the random coins r used in G1 and G2 are the same.

The reason is that, all the internal actions in G1(D,RealtB [π1], π1) and G2(D, Idealt, π2)
give rise to the same results. With the above considerations, we summarize all
the randomness in what we call extended transcripts, i.e., τ = (τπ,S, r). Note
that τle disappears in τ , as it can be recovered from r and S.

With respect to some fixed distinguisher D, an extended transcript τ =
(τπ,S, r) is said attainable if there exists randomness (r, π) such that using r,
the ideal execution of G2(D, Idealt, π) yields (τπ,S). We denote T the set of at-
tainable transcripts. In all the following, we denote Tre, resp. Tid, the probability
distribution of the transcript τ induced by the real world, resp. the ideal world
(note that these two probability distributions depend on the distinguisher). By
extension, we use the same notation to denote a random variable distributed
according to each distribution.

Given a set τπ and a random permutation π, we say that π extends τπ,
denoted π ` τπ, if π(Sin) = Sout for all (Sin, Sout) ∈ τπ. It is easy to see that

8 The idea of focusing on the whole internal randomness rather than the mere adver-
sarial transcripts has appeared in indifferentiability proofs [28].

21

for any attainable transcript τ = (τπ,S, r), the event Tid = τ happens if and
only if π ` τπ, S is generated in the execution, and the randomness r is used (by
D and L), while the event Tre = τ happens if and only if π ` τπ, π(S0) = S1,
π
(
C[1]‖lsc(Si)

)
= Si+1 for every Si in S, and the randomness r is used.

With the above, the H-coefficients main lemma [15] is as follows.

Lemma 2. Fix a distinguisher D. Let T = Tgood ∪ Tbad be a partition of the
set of attainable transcripts T . Assume that there exists ε1 such that for any
τ ∈ Tgood, one has

Pr[Tre = τ]

Pr[Tid = τ]
≥ 1− ε1,

and that there exists ε2 such that Pr[Tid ∈ Tbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

Bad Extended Transcripts. An attainable transcript τ = (τπ,S, r) is bad, if ei-
ther of the following two conditions is fulfilled:

– (B-1) contradiction: there exists two distinct indices i, j ∈ [0, . . . , `+ 1] such
that lsc(Si) = lsc(Sj)∧lsc(Si+1) 6= lsc(Sj+1), or lsc(Si) 6= lsc(Sj)∧lsc(Si+1) =
lsc(Sj+1);

– (B-2) exposure of secret state: if any of the following is fulfilled:

• (S0, ?) ∈ τπ; or
• there exits i ∈ [1, . . . , `+ 1] (when t = 1) such that (?, Si) ∈ τπ; or
• there exits i ∈ [1, . . . , `] such that (C[i]‖lsc(Si), ?) ∈ τπ.

For clearness, below we mainly focus on the case t = 1, as the possibilities of
leakages are more than the case t = 0. The condition (B-1) is easy to bound:

Pr[(B-1)] ≤ Pr[∃i, j : Si = Sj] ≤
(`+ 2)2

2c+1
. (16)

To bound Pr[(B-2)], we need the up leakage assumption. Consider an execu-
tion of G2 with the inputs (IV,M). We divide (C-2) into three subevents:

(1) BadInner: that occurs when there exists an index i ∈ [1, . . . , `] such that(
?, Si

)
∈ τπ or

(
C[i]‖lsc(Si), ?

)
∈ τπ;

(2) BadInit: that occurs when (S0, ?) ∈ τπ;
(3) BadFinal: that occurs when t = 1 and (?, S`+1) ∈ τπ.

Consider BadInner first. We follow Yu et al.’s argument for an event Querya
with somewhat similar meaning [40, Appendix A]: given an adversary Dπ, we
construct an adversary Aπ such that

Advuplsc[p](A) ≤ Prr,S,π[BadInner in Dπ(Idealt(IV,M))]. (17)

To this end, Aπ runs an instance of D, and keeps τπ, i.e., the set of D’s queries
to π. Aπ simulates the following process against D:

22

(1) Aπ guesses an index i
$← [1, `], samples an initial seed B

$← {0, 1}n, sets
S0 ← IV ‖B, and initializes a list leak with the leakage traces [Linπ (S0)]p;

(2) For j = 1, . . . , i − 1, Aπ samples the new state Sj
$← {0, 1}r+c, computes

C[j]← msr(Sj)⊕M [j], and adds the leakages
[
Loutπ (Sj), L

in
π (C[j]‖lsc(Sj))

]p
,

L⊕(msr(Sj),M [j]), [L⊕(msr(Sj), C[j])]p−1, and ms2(lsc(Sj)) to leak;

(3) Aπ samples Y
$← {0, 1}r and computes C[i] ← Y ⊕M [i]. Aπ then submits

Y and C[i] to its uplsc[p] challenger and obtains the leakages

leakch =
(

ms2(sch),
[
Loutπ (Y ‖sch), Linπ (C[i]‖sch)

]p)
for the challenge secret sch ∈ {0, 1}c. Aπ then adds the leakages L⊕(Y,M [i]),
[L⊕(Y,C[i])]p−1, and leakch to leak. This means Y ‖sch is taken as Si—though
Aπ doesn’t know its value.

(4) Aπ then performs the remaining evaluations: for j = i + 1, . . . , `, Aπ sam-

ples Sj
$← {0, 1}r+c, computes C[j]← msr(Sj)⊕M [j], and adds the leakages[

Loutπ (Sj), L
in
π (C[j]‖lsc(Sj))

]p
, L⊕(msr(Sj),M [j]), [L⊕(msr(Sj), C[j])]p−1, and

ms2(lsc(Sj)) to leak.

(5) Finally, Aπ samples S`+1
$← {0, 1}r+c, adds [Loutπ (S`+1)]p to leak, returns

(C[1]‖ . . . ‖C[`]‖ls2n−1(S`+1), leak) to D, and outputs {lsc(Sin), lsc(S
out) :

(Sin, Sout) ∈ τπ} as the set Guesses.

The strategy ofAπ is to make a uniform guess on the position of the first inner
secret value that appears in τπ, as this value is the “first”, its being queried was
necessarily due to the corresponding leakages (rather than the compromising of
the other inner states). This guess will be correct with probability 1/`. Then, Aπ
simulates Ideal1(IV,M) and provides the leakages to D, except for the i index, for
which the leakages are replaced by those obtained from an uplsc challenger. Now
if the guess on the index i is correct, then all the inputs sent to D are distributed
exactly as those in a normal execution of G2. Therefore, when D halts, if D made
a query on sch, then outputting the aforementioned set Guesses (based on τπ)
would break the uplsc game. So we have

Pr[sch ∈ Guesses | BadInner in G2(D, Ideal, π)] ≥ 1

`
.

Now, we observe that

Pr[sch ∈ Guesses | BadInner in G2(D, Ideal, π)] ≤ Pr[sch ∈ Guesses]
Pr[BadInner in G2(D, Ideal, π)]

.

And it can be seen A is (qπ, t
∗, 2qπ)-bounded, with t∗ = O(t+ p`tl). By this,

Pr[BadInner in G2(D, Ideal, π)] ≤ ` · Pr[sch ∈ Guesses]

≤ ` ·Advuplsc[p](A) (Eq. 5)

≤ ` ·Advuplsc[p](qπ, t
∗, 2qπ). (Eq. 7)

23

These finish the analysis of BadInner. For the events BadInit and BadFinal,
using Eqs. (9) and (10), similar arguments could establish9

Pr[BadInit in G2(D, Ideal, π)] ≤ Advuplsn[p](qπ, t
∗, qπ),

Pr[BadFinal in G2(D, Ideal, π)] ≤ Advupfi[p](qπ, t
∗, qπ).

The three terms plus Eq. (16) yield

Pr[Tid ∈ Tbad] ≤
(`+ 2)2

2c+1
+ ` ·Advuplsc[p](qπ, t

∗, 2qπ)

+ Advuplsn[p](qπ, t
∗, qπ) + Advupfi[p](qπ, t

∗, qπ). (18)

Summarizing. When t = 1, for any good transcript τ = (τπ,S, r) we have

Pr[Tid = τ] = Pr[π ` τπ] · Pr[r] · Pr[S]

= Pr[π ` τπ] · Pr[r] · 1

2n
· 1

2c(`+1)
,

As Pr[S0] = Pr[B] = 1
2n , while Pr[Si] = 1

2r+c for i = 1, . . . , `+ 1. Whereas

Pr[Tre = τ] = Pr[π ` τπ] · Pr[r] · 1

2n
· Pr[∀i ∈ [0, `] : π(Si) = Si+1 | π ` τπ].

Conditioned on ¬(B-1) and ¬(B-2), it can be seen Pr[∀i ∈ [0, `] : π(Si) = Si+1 |
π ` τπ | ∀j < i : π(Sj) = Sj+1] ≥ 1

2c(`+1) . Therefore,

Pr[Tre = τ]

Pr[Tid = τ]
≥ 1,

and thus Pr[Tid ∈ Tbad] constitutes the final bound, i.e.,∣∣Pr[Dπ(Real1B [π](IV,M))⇒ 1]− Pr[Dπ(Ideal1(IV,M))⇒ 1]
∣∣

≤ (`+ 2)2

2c+1
+ ` ·Advuplsc[p](qπ, t

∗, 2qπ) + Advuplsn[p](qπ, t
∗, qπ) + Advupfi[p](qπ, t

∗, qπ).

When t = 0, The event BadFinal relies on the assumption uplsc[p] instead of

upfi[p]. Thus we could drop the term Advupfi[p](qπ, t
∗, qπ) and obtain

Pr[Tid ∈ Tbad] ≤
(`+ 2)2

2c+1
+ ` ·Advuplsc[p](qπ, t

∗, 2qπ) + Advuplsn[p](qπ, t
∗, qπ).

The remaining is roughly the same, yielding Pr[Tre = τ] ≥ Pr[Tid = τ], and thus∣∣Pr[Dπ(Real0B [π](IV,M))⇒ 1]− Pr[Dπ(Ideal0(IV,M))⇒ 1]
∣∣

≤ (`+ 2)2

2c+1
+ ` ·Advuplsc[p](qπ, t

∗, 2qπ) + Advuplsn[p](qπ, t
∗, qπ).

Gathering the two cases yields Eq. (14). ut
9 For BadInit, the constructed A only outputs qπ guesses lsn(Sin) for (Sin, Sout) ∈ τπ;

for BadFinal, A only outputs qπ guesses msr+c+1−2n(Sout) for (Sin, Sout) ∈ τπ.

24

Summarizing: Leakage Eavesdropper security of Real. In the black-box
setting, real/ideal indistinguishability suffices for the security. But with (mes-
sage) leakages, the definition of “ideal” leakages is elusive, which is why we focus
on the leakage (left-or-right) eavesdropper security setting,10 and derive the fol-
lowing bound on Real[π]. It appears like the bound in Lemma 1 plus the term

`AdvLORL[p], which is due to masking the ` message blocks with ` independent
random key stream blocks.

Theorem 5. For every pair of messages M0 and M1 of equal-length, every

(IV,A) such that d |A|r e + d |M
0|
r e ≤ `, and every (qπ, t)-bounded adversary Aπ,

the corresponding leakage eavesdropper advantage, denoted Adv
eavl[p]
Realt (qπ, t, `), is∣∣Pr[Aπ(RealtB [π](IV,A,M0))⇒ 1]− Pr[Aπ(RealtB [π](IV,A,M1))⇒ 1]

∣∣
≤ (`+ 2)2

2c
+ ` ·AdvLORL[p](qπ, O(t+ p`tl)) + 2Advuplsn[p](qπ, O(t+ p`tl), qπ)

+ 2` ·Advuplsc[p](qπ, O(t+ p`tl), 2qπ) + 2t ·Advupfi[p](qπ, O(t+ p`tl), qπ),

where tl is as defined in Lemma 1. See appendix E.4 for its proof.

6.5 mu CCAmL security of S1P and S2P

From Theorem 5 we can establish the multi-user CCAmL advantages for S1P
and S2P. We naturally define the leakage function L = (LEnc, LDec) of the AEAD’s
as follows:

– LEnc consists of the leakages that are generated during the encryption:

• the leakages Linπ (Sin) and Loutπ (Sout) generated by all the internal calls
to π(Sin)→ Sout, and

• the leakages Lin
Ẽ

(K,T ;X) and Lout
Ẽ

(K,T ;Y) generated by all the internal

calls to ẼTK(X)→ Y or (ẼTK)−1(Y)→ X, and

• the leakages L⊕(a, b) generated by all the internal actions a⊕ b, and

• all the intermediate values involved in the computations of the hash H[π]
in S2P (i.e., keyless functions are non-protected, and leak everything).

– LDec consists of the above that are generated during the decryption when
AEAD = S2P, while LDec = ∅ when AEAD = S1P.

For −→q = (qm, qe, qd, qĨC, qπ), we denote by (−→q , t, σ)-adversaries those make
qm, qe, qd, qĨC, and qπ queries to the non-challenge LEnc, the challenge LEnc, Dec

(for muCCAmL1) or LDec (for muCCAmL2), ĨC, and π resp., run in time t, and
have σ blocks in all its (challenge & non-challenge) queries including associated
data.

10 Note that this setting is weaker than CPA with leakages, as the distinguisher doesn’t
have additional plaintext-ciphertext pairs.

25

Theorem 6. Assume u ≤ 2np , np ≤ n, n ≥ 5, σ + qe + qd + qm + qπ ≤
min

{
2n/4, 2r+c/2

}
, and S1P leakage L = (LEnc, LDec) is defined as above. Then

in the ideal TBC and permutation model, for any (−→q , t, σ)-adversary A, it holds

AdvmuCCAmL1
A,S1P,L,u ≤

5u

2np
+

49(q∗)2

2c
+

6(n+ 1)q∗ + 2nqd + 2n2qĨC

2n
+ σAdvLORL[1](q∗, t∗)

+ 2qeAdvuplsn[1](q∗, t∗, q∗) + 2σAdvuplsc[1](q∗, t∗, 2q∗)

+ 2qeAdvupfi[1](q∗, t∗, q∗), (19)

where AdvLORL[1], Advuplsn[1], Advuplsc[1], and Advupfi[1] are defined in Eqs.
(13), (9), (7), and (10) resp, q∗ = σ + qe + qd + qm + qπ, t∗ = O(t + σtl), and
tl is the total time for evaluating Lin and Lout.

Theorem 7. Assume u ≤ 2np , np ≤ n, n ≥ 5, 2σ + 2(qe + qd + qm) + qπ ≤
min

{
2n/4, 2r+c/2

}
, and S2P leakage L = (LEnc, LDec) is defined as above. Then

in the ideal model, for any (−→q , p− 1, t, σ)-adversary A that makes p− 1 queries
to the challenge decryption leakage oracle LDecch besides the −→q queries, it holds

AdvmuCCAmL2
A,S2P,L,u ≤

4u

2np
+

49(q∗)2

2c
+

5q∗ + 2nqd + 2n2qĨC

2n
+ σAdvLORL[p](q∗, t∗)

+ 2qeAdvuplsn[p](q∗, t∗, q∗) + 2σAdvuplsc[p](q∗, t∗, 2q∗), (20)

where q∗ = 2σ + 2(qe + qd + qm) + qπ, t∗ = O(t+ pσtl), and tl is the total time
for evaluating Lin and Lout.

The proofs of the two theorems are very similar, and follow a standard hybrid
argument of [34,25]. They rely on the feature that, for each challenge encryption
query, since the nonce is used only once during its lifetime, the inner keyed
duplex is seeded with an ephemeral key B that is somewhat independent from
any other ephemeral key of the other encryption queries. See appendices E.5 and
E.6 for the formal presentations.

Looking at the Bounds. We focus on the “non-obvious” terms since they
are expected to limit the security. The term σAdvLORL[p](q∗, t∗) corresponds
to the reduction to the “minimal” message manipulation, and the factor σ re-
flects a somewhat unavoidable leakage security loss (as discussed). The terms

2qeAdvuplsn[p](q∗, t∗, q∗) + 2σ · Advuplsc[p](q∗, t∗, 2q∗) + 2qeAdvupfi[p](q∗, t∗, q∗)
capture the hardness of side-channel secret recovery, and they are roughly of
some birthday type

O
(
qe ·

qπ + σ + t

µn · 2n
)

+O
(
σ · qπ + σ + t

µc · 2c−2
)

+O
(
qe ·

qπ + σ + t

µf · 2r+c+1−2n

)
for some parameters µn, µc, and µf that depend on the concrete conditions. Yet,
it is nowadays a common assumption that with such a small data complexity (2
leakage traces) µn, µc, and µf would be very small [35]. It is worth noting that:

– The birthday-type bounds are essentially tight w.r.t. our assumptions: a
collision between the (internal) secret c-bit state values or between two n-bit

26

initial seed values allows the adversary to obtain more than 2 leakage traces
about a single secret value, which is beyond our assumption (security with
2 traces). In all, our assumption Eq. (6), though a bit conservative, tightly
results in a birthday-type bound.

– The influence of u the number of users on the security remains quite negli-
gible: once u ≤ 2np/5, the sponges are secure up to the birthday complexity.

– Theorem 7 relies on the side-channel security assumptions against measuring
leakages repeatedly, while Theorem 6 only relies on assumptions against a
single measure. Yet, this doesn’t mean S1P is more leakage secure than S2P,
as the latter is (clearly) much more resistance to decryption leakages.

7 Discussion & related work

On reducing to PRP assumptions. An alternative solution to study the
security of keyed sponge/duplex constructions is to reduce them to the PRP
security of a “Partial-Key” Even-Mansour (PKEM) cipher [1]. As a result, it is
natural to ask whether muCCAmL2 could also be reduced to the PRP security
of PKEM with leakages. While this direction is in general an interesting open
problem, we put forward two initial difficulties. First, the PKEM-based repre-
sentations in [1] (see Figure 6 in Appendix B) contain a plenty of “imaginary”
XORs that do not actually occur in reality. How to model the leakage of these
XORs is not directly obvious (and we cannot simply assume that there is no
leakage at all when making an hybrid to PKEM). Second, the PKEM cipher is
not re-keyed, which further complicates the understanding of its leakage security.

Forward security issue. Keyed sponges are not forward secure [11,22], in the
sense that the complete exposure of an r + c bit state allows recovering the
previous iterations. Consequently, the final permutation call must hide its output
state to some extent. In S2P, this means the least significant c bits of S` (see

e.g., line 9. in S2P[π, Ẽ].Enc) should not leak in full, which is in accordance with
the uplsc assumption. In S1P this means that the final state Sν+`+1 should not
leak. This is why we make a conservative assumption: we assume that U‖V =

ls2n−1(Sν+`+1) is fully exposed from Ẽ (see that RealtB [π] returns U‖V to the
adversary), and the secrecy only relies on the remaining r+ c+ 1− 2n bits —as
captured by upfi.

Comparison with Mennink’s key predication security. Recently, Mennink
key predication security in keyed sponges as [30] formalized

Advkeypre(A) := Pr
[
Guesses← Aπ,K $← {0, 1}k : K ∈ Guesses

]
. (21)

Equation (21) shares some similarities with our Equation (5): it also takes K ∈
Guesses as the winning condition of A. But the target secret K is picked after
A stops in Equation (21), for which A does not receive any related information.
This is clearly in sharp contrast with our definitions, in which A receives leakages
about the target secret. As a result, it seems difficult to rely on Equation (21) in

27

a leakage setting, since leakages are not independent of the adversary’s view. In
order to capture side-channel attacks, our definitions therefore include leakages
and allow measuring concrete adversary’s advantage.

Related works. As mentioned in introduction, ISAP is a sponge-based AE
mode of operation with (informal) SCA security arguments. In short, ISAP is an
Encrypt-then-MAC composition of a sponge-based stream cipher and a sponge-
based Hash-then-MAC. The “leak-free” re-keying functions in ISAP are instanti-
ated with a rate-1 duplex, which makes it purely sponge-based. Compared with
(the more comparable) S2P, ISAP does not achieve CIML2 security, which means
there may be more possibilities of DPAs on ISAP in practice (see Appendix H for
an extra discussion). The same holds in comparison with the 1-pass S1P, which
is CIML2 and has the additional benefit of lightweightness.

In a series of papers [7,8,25], Berti et al. and Guo et al. formalized leakage
security notions with challenge leakages, and eventually proposed a practical
TBC-mode TEDT [6]. Roughly, TEDT is an Encrypt-then-MAC composition of
a fresh-rekeying TBC-based stream cipher and a hash-then-TBC instance men-
tioned in Section 4. Its structure constitutes a starting point for TEDTSponge,
and both designs achieve very close security guarantees. Yet, it is commonly
believed that permutation-based designs are more efficient than modes based
on (tweakable) block ciphers: their circuit sizes are comparable, but the former
avoids the cost of frequent key scheduling.11

Finally, with respect to the black-box analysis of sponge-based designs, Dae-
men et al. showed that with a nonce-based KDF, the security bound of a keyed
duplex is largely independent of the number of users u [16]. Yet, their duplex
still suffers from the mu security degradation terms u2/2k + ut/2k when user
keys are sampled with replacement (sampling without replacement reduces it to
ut/2k, but this seems only possible within multiple sessions of a single entity).
While we could not get rid of these terms without increasing the key size, we did
succeed by merely utilizing public randomness (which is likely less costly than
secret key bits).

References

1. Andreeva, E., Daemen, J., Mennink, B., Assche, G.V.: Security of Keyed Sponge
Constructions Using a Modular Proof Approach. In: FSE 2015. pp. 364–384 (2015)

2. Ashur, T., Dunkelman, O., Luykx, A.: Boosting Authenticated Encryption Robust-
ness with Minimal Modifications. In: CRYPTO 2017, Part III. pp. 3–33 (2017)

3. Barwell, G., Martin, D.P., Oswald, E., Stam, M.: Authenticated Encryption in the
Face of Protocol and Side Channel Leakage. In: ASIACRYPT 2017, Part I. pp.
693–723 (2017)

11 Assuming that the circuit size is primarily depending on the domain of the primitives
(see [26] for a discussion), we find the same 3n for both an (n, n, n)-TBC (when used
in a re-keying setting) and a permutation with r = n and c = 2n. As such, we expect
TEDTSponge to be more efficient than TEDT.

28

4. Beläıd, S., Grosso, V., Standaert, F.: Masking and leakage-resilient primitives: One,
the other(s) or both? Cryptography and Communications 7(1), 163–184 (2015),
https://doi.org/10.1007/s12095-014-0113-6

5. Bellare, M., Tackmann, B.: The Multi-user Security of Authenticated Encryption:
AES-GCM in TLS 1.3. In: CRYPTO 2016, Part I. pp. 247–276 (2016)

6. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.X.: TEDT, a leakage-
resilient AEAD mode for high (physical) security applications. Cryptology ePrint
Archive, Report 2019/137 (2019), https://eprint.iacr.org/2019/137

7. Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.: Ciphertext Integrity
with Misuse and Leakage: Definition and Efficient Constructions with Symmetric
Primitives. In: AsiaCCS 2018. pp. 37–50 (2018)

8. Berti, F., Pereira, O., Peters, T., Standaert, F.: On Leakage-Resilient Authen-
ticated Encryption with Decryption Leakages. IACR Trans. Symmetric Cryptol.
2017(3), 271–293 (2017)

9. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: CAE-
SAR Submission: Keyak v2 (2015), https://keccak.team/obsolete/Keyak-2.0.
pdf

10. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the Indifferentiability of
the Sponge Construction. In: EUROCRYPT 2008. pp. 181–197 (2008)

11. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge-Based Pseudo-Random
Number Generators. In: CHES 2010. pp. 33–47 (2010)

12. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing the Sponge: Single-
Pass Authenticated Encryption and Other Applications. In: SAC 2011. pp. 320–337
(2011)

13. Biryukov, A., Perrin, L.: State of the art in lightweight symmetric cryptography.
Cryptology ePrint Archive, Report 2017/511 (2017), https://eprint.iacr.org/
2017/511

14. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle Family of Lightweight
and Secure Authenticated Encryption Ciphers. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2018(2), 218–241 (2018)

15. Chen, S., Steinberger, J.P.: Tight Security Bounds for Key-Alternating Ciphers.
In: EUROCRYPT 2014. pp. 327–350 (2014)

16. Daemen, J., Mennink, B., Assche, G.V.: Full-State Keyed Duplex with Built-In
Multi-user Support. In: ASIACRYPT 2017, Part II. pp. 606–637 (2017)

17. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP -
Towards Side-Channel Secure Authenticated Encryption. IACR Trans. Symmetric
Cryptol. 2017(1), 80–105 (2017)

18. Dodis, Y., Pietrzak, K.: Leakage-Resilient Pseudorandom Functions and Side-
Channel Attacks on Feistel Networks. In: CRYPTO 2010. pp. 21–40 (2010)

19. Dziembowski, S., Pietrzak, K.: Leakage-Resilient Cryptography. In: FOCS 2008.
pp. 293–302 (2008)

20. Faust, S., Pietrzak, K., Schipper, J.: Practical Leakage-Resilient Symmetric Cryp-
tography. In: CHES 2012. pp. 213–232 (2012)

21. Fuller, B., Hamlin, A.: Unifying Leakage Classes: Simulatable Leakage and Pseu-
doentropy. In: ICITS. pp. 69–86 (2015)

22. Gazi, P., Tessaro, S.: Provably Robust Sponge-Based PRNGs and KDFs. In: EU-
ROCRYPT 2016, Part I. pp. 87–116 (2016)

23. Goudarzi, D., Rivain, M.: How Fast Can Higher-Order Masking Be in Software?
In: EUROCRYPT 2017, Part I. pp. 567–597 (2017)

24. Gueron, S., Lindell, Y.: Better Bounds for Block Cipher Modes of Operation via
Nonce-Based Key Derivation. In: CCS 2017. pp. 1019–1036 (2017)

29

https://doi.org/10.1007/s12095-014-0113-6
https://eprint.iacr.org/2019/137
https://keccak.team/obsolete/Keyak-2.0.pdf
https://keccak.team/obsolete/Keyak-2.0.pdf
https://eprint.iacr.org/2017/511
https://eprint.iacr.org/2017/511

25. Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Leakage-Resilient Authenticated
Encryption with Misuse in the Leveled Leakage Setting: Definitions, Separation
Results, and Constructions. Cryptology ePrint Archive, Report 2018/484 (2018)

26. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: CRYPTO 2011. pp. 222–239 (2011)

27. Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-Resilient Cryptography
from Minimal Assumptions. J. Cryptology 29(3), 514–551 (2016)

28. Holenstein, T., Künzler, R., Tessaro, S.: The Equivalence of the Random Oracle
Model and the Ideal Cipher Model, Revisited. In: STOC ’11. pp. 89–98 (2011)

29. Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2c/2 Security in Sponge-Based
Authenticated Encryption Modes. In: ASIACRYPT 2014, Part I. pp. 85–104 (2014)

30. Mennink, B.: Key Prediction Security of Keyed Sponges. IACR Transactions on
Symmetric Cryptology 2018(4), 128–149 (Dec 2018)

31. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of Full-State Keyed Sponge
and Duplex: Applications to Authenticated Encryption. pp. 465–489 (2015)

32. Micali, S., Reyzin, L.: Physically Observable Cryptography (Extended Abstract).
In: TCC 2004. pp. 278–296 (2004)

33. O’Flynn, C., Chen, Z.D.: Side channel power analysis of an AES-256 bootloader.
In: CCECE. pp. 750–755. IEEE (2015)

34. Pereira, O., Standaert, F., Vivek, S.: Leakage-Resilient Authentication and En-
cryption from Symmetric Cryptographic Primitives. In: CCS 2015. pp. 96–108
(2015)

35. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: EUROCRYPT 2009. pp.
462–482 (2009)

36. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap
Problem. In: EUROCRYPT 2006. pp. 373–390 (2006)

37. Ronen, E., Shamir, A., Weingarten, A., O’Flynn, C.: Iot goes nuclear: Creating a
zigbee chain reaction. IEEE Security & Privacy 16(1), 54–62 (2017)

38. Sasaki, Y., Yasuda, K.: How to Incorporate Associated Data in Sponge-Based
Authenticated Encryption. In: CT-RSA 2015. pp. 353–370 (2015)

39. Unterluggauer, T., Werner, M., Mangard, S.: Meas: memory encryption and au-
thentication secure against side-channel attacks. Journal of Cryptographic Engi-
neering (Jan 2018), https://doi.org/10.1007/s13389-018-0180-2

40. Yu, Y., Standaert, F., Pereira, O., Yung, M.: Practical Leakage-Resilient Pseudo-
random Generators. In: CCS 2010. pp. 141–151 (2010)

Supplementary Material

A TETSponge is not CCAmL2 secure

Following the notational convention of section 3, we could break the CCAmL2 security
of TETSponge via the following steps.

(i) First, we fix a nonce N and λ distinct 1-block ciphertexts c1, . . . , cλ. The parameter
λ depends on the relative strength of the implementation.

(ii) Second, we make λ decryption queries LDec(N,A, c1‖T), . . . , LDec(N,A, cλ‖T) for
A = ⊥ and T arbitrary. This results in the state S1 = π(N‖PK‖0∗‖B), B =

Ẽ
PK‖0∗
K (N‖0∗), being derived λ times and the occurrence of the λXORing msr(S1)⊕
c1, . . . ,msr(S1)⊕ cλ. Now a standard DPA allows recovering msr(S1).

30

https://doi.org/10.1007/s13389-018-0180-2

(iii) Then any challenge tuple (N,M0,M1) with M0[1] = M1[1] is easily distinguished.

The crucial feature of TETSponge that allows this attack is that processing invalid
decryption queries requires to run with secrets; as secrets are easier to be fixed during
decryption, this allows DPAs. Note that all the decryption-leakage resilient designs
including TEDTSponge tried to process invalid decryption queries with keyless/non-
secret primitives.

B Additional Figures

Z

K r

c
PK

N

r

A[1]

c

r

A[2]

c

...

...

K

r + c− |K|
πππ π

C[`]‖10∗

Fig. 5: Key-derivation and tag-generation from calls to π.

0n

N‖PK‖0∗

π
n

B BB

c− n

r

A[1]

PKEM

π

B B

c− n

r

A[2]

π

B B

c− n

r

A[3]

...

Fig. 6: The PKEM-based representation of a keyed sponge with n-bit key/initial seed.
Inside the red dashed rectangles are the “partial-key” Even-Mansour cipher. It’s easy
to see after the internal actions of XORing B cancel, the construction turns basically
the same as the keyed sponge.

C Proof of Theorem 3 (muCIML2 of S1P)

The proof proceeds in two steps:

(i) Below in appendix C.1, we transit the scheme S1P[π, ĨC]K,PK to its idealized ver-

sion, via replacing the internal ideal TBC ĨC by another “secret” ideal TBC S̃IC
that isn’t accessible to the adversary A. In appendix C.2, we show the real and
idealized schemes are indistinguishable. The goal of this step is to argue that A
cannot compromise the KDF- and TGF- calls.

(ii) Then in appendix C.3, we prove unforgability for the idealized scheme to complete
the muCIML2 proof.

31

C.1 Idealizing S1P

Note that we can’t simply replace the KDF- and TGF-calls of the u users by u inde-

pendent tweakable random permutations, as otherwise the birthday term u2

2n
emerges.

Formally, we are to derive an upper bound on

AdvmuCIML2
D,S1P[π,ĨC]K,PK,L

∗,u −AdvmuCIML2

D,S1P[π,S̃IC]K,PK,L
∗,u

for any −→q -bounded D. For this, we rely on the H-coefficients technique [15]. We sum-
marize the adversarial queries to the random permutation π in a list τπ as defined in
Eq. (15). Note that by our assumption, all the π queries made by S1P are completely
leaked to D. These queries also result in records of the form (Sin, Sout). To make a
distinction, we denote by τ∗π the union of these leakage records and the adversarial
query transcript τπ. It isn’t hard to see:

– upon an encryption query EncKi,PKi(N,A,M), S1P makes at most d |A|
r
e+d |M|

r
e+1

queries to π;
– upon a decryption query DecKi,PKi(N,A,C), the number of internal π calls is

(similarly) at most d |A|
r
e+ d |c|

r
e+ 1, with C = c‖Z.

Therefore, when interacting with the idealized scheme S1P[π, S̃IC]K,PK, the number of
internal π calls is at most σ + qe + qd, and thus

q∗π :=
∣∣τ∗π ∣∣ ≤ σ + qe + qd + qπ. (22)

Recall that the adversarial goal is to distinguish ĨCK1 , . . . , ĨCKu from S̃ICK1 , . . . , S̃ICKu .

In this respect, at the end of the interaction, we reveal all the internal calls to ĨC (in

the real world) and S̃IC (in the ideal world) to D. We summarize these calls in a list

τS̃IC =
(
(K1, T1, X1, Y1), (K2, T2, X2, Y2), . . .

)
.

In this set, the j-th tuple (Kj , Tj , Xj , Yj) indicates that:

– interacting with the real scheme S1P[π, ĨC]K,PK, the j th query is either ĨC
Tj
Kj

(Xj)→
Yj or (ĨC

Tj
Kj

)−1(Xj)→ Yj ; and,

– interacting with the idealized scheme S1P[π, S̃IC]K,PK, the j th query is either

S̃IC
Tj
Kj

(Xj)→ Yj or (S̃IC
Tj
Kj

)−1(Xj)→ Yj .

Note that:

– these calls and their responses are secret in the black-box setting, but are leaked
in our unbound leakage setting.

– yet, since we assume leak-freeness of KDF and TGF-calls, the secret user keys cannot
be seen by the distinguisher, and don’t appear in the true adversarial transcripts.
The transcript τS̃IC, in some sense, is a merge of the finally revealed secret keys
and the information really leaked to D.

Recall that in the unbounded leakage setting, we actually view the duplex as a
sponge-based hash function. In this respect, we keep a list τ∗h for the inputs and outputs
of this “imaginary” hash function. Concretely, we denote by ((N,PK,B,A, c), U‖V)
an input-output pair of the hash, and further

τ∗h =
(
((N1, PK1, B1, A1, c1), U1‖V1), ((N2, PK2, B2, A2, c2), U2‖V2), . . .

)
32

for the hash transcript. As we assumed all the internal π queries have been leaked and
included in τ∗π , this list is redundant, in the sense that it can be fully recovered from
τ∗π . But its presence eases the proof language.

In addition to the above, the “public-keys” PK = (PK1, . . . , PKu) are also in-
cluded in the transcript. Moreover, to simplify the definition of bad transcripts, we
reveal to the distinguisher the user keys K = (K1, . . . ,Ku) at the end of the inter-
action. This is wlog since D is free to ignore this additional information to compute
its output bit. Formally, we append both PK and K to the tuple (τ∗h , τ

∗
π , τĨC, τS̃IC) and

obtain what we call the transcript

τ = (τ∗h , τ
∗
π , τĨC, τS̃IC,PK,K).

C.2 Gap between Real and Ideal

We start by defining bad transcripts. For a transcript τ , we define µPK and µV , the
maximum multiplicity of PK and V , as

µPK := max
pk∈{0,1}np

∣∣{i ∈ {1, . . . , u} : PKi = pk}
∣∣,

µV := max
v∈{0,1}n−1

∣∣∣{((N,PK,B,A, c), U‖V) ∈ τ∗h : V = v
}∣∣∣. (23)

Then it’s defined as follows.

Definition 5 (Bad Transcripts for Idealizing S1P, muCIML2). An attainable tran-
script τ is bad, if one of the following conditions is fulfilled:

– (B-1) µPK ≥ n+ 1, µV ≥ n+ 1.

– (B-2) there exists a query (K,T,X, Y) ∈ τS̃IC such that (K,T, ?, ?) ∈ τĨC.

Otherwise τ is good. Denote by Tbad the set of bad transcripts.

We remark that this step concerns with the secrecy of the user secret keys. As such,
the condition (B-2) captures the intuition that a contradiction appears between τĨC

and τS̃IC. On the other hand, though crucial in the analyzes, τ∗π doesn’t appear in the
conditions.

As PK1, . . . , PKu are uniformly distributed, it’s easy to see

Pr[µPK ≥ n+ 1] ≤

(
u

n+ 1

)
· 1

(2np)n
≤
(u

2np

)n+1

· 2np

(n+ 1)!
≤
(u

2np

)n+1

,

where the last inequality comes from (n+ 1)! ≥
(
n+1
e

)n+1 ≥ 2n+1 ≥ 2np since n+ 1 ≥
6 > 2e. Furthermore, when u ≤ 2np and np ≤ n, we have

Pr[µPK ≥ n+ 1] ≤
(u

2np

)n+1

≤ u

2np
. (24)

To reason about µV , we analyze the multi-semicollision property of the sponge-
based hash. In detail, we consider the game G2 capturing the interaction of D with the
ideal world (S1P[π, S̃IC]K,PK, π, ĨC). We define several simple bad events during this
interaction:

33

– (B-11) Right after a forward π query π(Sin) → Sout happens, there exists an-

other π query (Sin
′
, Sout

′
) such that lsc−2(Sout) = lsc−2(Sin

′
) or lsc−2(Sout) =

lsc−2(Sout
′
).

– (B-12) Right after a backward π query π−1(Sout)→ Sin happens,

• there exists another π query (Sin
′
, Sout

′
) such that lsc−2(Sin) = lsc−2(Sout

′
);

or

• there exists an S̃IC query/a KDF query (K,PKi‖0, N‖0∗, B) ∈ τS̃IC such that
Sin = N‖PKi‖0∗‖B.

– (B-13) At any time, there exists n+1 forward π queries (Sin1 , Sout1), . . . , (Sinn+1, S
out
n+1)

such that lsn−1(Sout1) = . . . = lsn−1(Soutn+1).

– (B-14) Right after a (necessarily forward) S̃IC/KDF query S̃IC
PK‖0∗
K (N‖0∗) → B

happens, there exists a π query (Sin, Sout) such that Sin = N‖PK‖0∗‖B.

Denote by q1 the number of forward π queries, and by q2 that of backward π queries.
Clearly, q1 ≤ q∗π, q2 ≤ qπ (as S1P doesn’t make backward π queries), and q1 + q2 ≤ q∗π.
With these, consider a forward query π(Sin) → Sout. Its response Sout is uniformly

distributed in a set of size at least 2r+c − q∗π. Consider any “target” (Sin
′
, Sout

′
). To

reach lsc−2(Sout) = lsc−2(Sin
′
), Sout shall be in a set of size at most 2r+2. Therefore,

when q∗π ≤ 2r+c/2, we have

Pr[lsc−2(Sout) = lsc−2(Sin
′
)] ≤ 2r+2

2r+c − q∗π
≤ 2r+3

2r+c
=

8

2c
.

This probability trick will be frequently used in the remaining analysis (without ex-

plicitly mentioned). Similarly, Pr[lsc−2(Sout) = lsc−2(Sout
′
)] ≤ 8

2c
. As the number of

“targets” is at most q∗π, we have

Pr[(B-11)] ≤ q1 · q∗π ·
(8

2c
+

8

2c

)
≤ 16q1q

∗
π

2c
.

In a similar vein, it’s easy to see (as argued, (n+ 1)! ≥ 2n+1)

Pr[(B-12)] ≤ q2 · q∗π ·
8

2c
+ q2 · (qe + qd) ·

2

2r+c
≤ 10q2q

∗
π

2c
, and

Pr[(B-13)] ≤

(
q1

n+ 1

)
·
(2

2n−1

)n
≤
(8q∗π

2n

)n+1

· 1

8(n+ 1)!
≤
(4q∗π

2n

)n+1

· 1

8
≤ q∗π

2n
.

The last bound relies on 4q∗π ≤ 2n.

For (B-14), we define a set

τ∗π
[
N,PK

]
:=
{
B ∈ {0, 1}n : (N‖PK‖0∗‖B, ?) ∈ τ∗π

}
. (25)

Then for a certain S̃IC query S̃IC
PK‖0∗
K (N‖0∗)→ B, we have

Pr
[
B ∈ τ∗π [N,PK]

]
≤
∣∣τ∗π [N,PKi]

∣∣
2n − 2qe − 2qd

≤
2
∣∣τ∗π [N,PKi]

∣∣
2n

.

34

Summing over all the S̃IC queries, we reach

Pr[(B-14)] ≤
∑

(K,PK‖0∗,N‖0∗,B)∈τ
S̃IC

2
∣∣τ∗π[N,PK]∣∣

2n

≤
u∑
i=1

(2
∑
N∈{0,1}nN :(Ki,PKi‖0∗,N‖0∗,?)∈τS̃IC

∣∣τ∗π[N,PKi

]∣∣
2n

)

≤µPK ·
∑

N∈{0,1}nN ,PK∈{0,1}np

2
∣∣τ∗π[N,PK]∣∣

2n
≤ 2nq∗π

2n
,

since
∑
N∈{0,1}nN ,PK∈{0,1}np

∣∣τ∗π[N,PK]∣∣ = |τ∗π | ≤ q∗π.

Define Bad1 := (B-11) ∨ (B-12) ∨ (B-13) ∨ (B-14). We now show that µV ≤ n
conditioned on ¬Bad1, so that (recall that q1 + q2 ≤ q∗π)

Pr[µV ≥ n+ 1] ≤ Pr[Bad1] ≤16q1q
∗
π

2c
+

10q2q
∗
π

2c
+
q∗π
2n

+
2nq∗π
2n

≤16(q∗π)2

2c
+

(2n+ 1)q∗π
2n

.

For this, we define a notion of “S1P hash chain” corresponding to a tuple (N,PK,A, c).
Formally, this is a sequence of π queries (Sin0 , Sout0), (Sin1 , Sout1),..., (Sinω , S

out
ω) such that:

– Sin0 = N‖PK‖0∗‖B, and
– With ν = d|A|/re and ` = d|M |/re, it holds ω = ν + `, and
• For i = 1, . . . , ν − 1, lsc(S

in
i) = lsc(S

out
i−1), msr(S

in
i)⊕msr(S

out
i−1) = A[i];

• When |A[ν]| < r, lsc(S
in
ν) = lsc(S

out
ν−1)⊕(0r‖[1]2‖0c−2), msr(S

in
ν)⊕msr(S

out
ν−1) =

A[ν]‖10∗; when |A[ν]| = r, lsc(S
in
ν) = lsc(S

out
ν−1), and msr(S

in
ν)⊕msr(S

out
ν−1) =

A[ν];
• If ` > 1:
∗ lsc(S

in
ν+1) = lsc(S

out
ν)⊕ (0r‖[2]2‖0c−2), and msr(S

in
ν+1) = C[1];

∗ For i = ν + 2, . . . , ω − 1, lsc(S
in
i) = lsc(S

out
i−1), msr(S

in
i) = C[i− ν];

∗ When |C[`]| < r, lsc(S
in
ω) = lsc(S

out
ω−1)⊕(0r‖[1]2‖0c−2), msr(S

in
ω) = C[`]‖10∗;

when |C[`]| = r, lsc(S
in
ω) = lsc(S

out
ω−1), and msr(S

in
ω) = C[`].

• If ` = 1:
∗ When |C[`]| < r, lsc(S

in
ω) = lsc(S

out
ω−1)⊕(0r‖[3]2‖0c−2), msr(S

in
ω) = C[`]‖10∗;

when |C[`]| = r, lsc(S
in
ω) = lsc(S

out
ω−1) ⊕ (0r‖[2]2‖0c−2), and msr(S

in
ω) =

C[`].

Note that conditioned on ¬(B-12) and ¬(B-14), the first record (Sin0 , Sout0) was neces-
sarily resulted from a forward π query. Then, by iteratively applying ¬(B-12), it can
be seen all the queries in such chains are forward.

Then, we show that, conditioned on ¬Bad1, distinct tuples (N,PK,A, c) and
(N ′, PK′, A′, c′) necessarily induce distinct S1P hash chains (Sin0 , Sout0),..., (Sinω , S

out
ω)

and (Sin
′

0 , Sout
′

0),..., (Sin
′

ω , Sout
′

ω), which further result in distinct “last calls”, i.e.,

Sinω 6= Sin
′

ω . Assume that d|A|/re = ν, d|M |/re = `, d|A′|/re = ν′, and d|M ′|/re = `′.
As argued, all these queries were due to forward π queries. We then consider several
cases as follows.

Case 1: (N,PK) 6= (N ′, PK′). Then Sin0 6= Sin
′

0 , i.e., the two chains are distinct

from the first π queries. By ¬(B-11), we have Sin1 6= Sin
′

1 ; similarly, iteratively applying

¬(B-11) eventually results in the desired result Sinω 6= Sin
′

ω′ .

35

Case 2: (N,PK) = (N ′, PK′). This means (A, c) 6= (A′, c′). We define X as:

– X = X when |X| is a multiple of r, and
– X = X‖10∗ otherwise.

Then we have to further consider several subcases.

Subcase 2.1: A‖c 6= A′‖c′. Then it’s clear that there exists an index i such that

Sini 6= Sin
′

i . By ¬(B-11), Sinj 6= Sin
′

j for any j > i, and thus Sinω 6= Sin
′

ω .

Subcase 2.2: A‖c = A′‖c′, and ν = ν′. Since (A, c) 6= (A′, c′), it has to be |A[ν]| < r

or |C[`]| < r or |A′[ν′]| < r or |C′[`′]| < r. Now,

– If |A[ν]| < r ∧ |A′[ν]| = r or |A[ν]| = r ∧ |A′[ν]| < r, then Sin
′

ν 6= Sinν due to the

separation constant [1]2‖0c−2. Thus by ¬(B-11), Sinj 6= Sin
′

j for any j > ν and

further Sinω 6= Sin
′

ω .
– Else, then either |c[`]| < r∧|c′[`]| = r or |c[`]| = r∧|c′[`]| < r since (A, c) 6= (A′, c′).

Then Sin
′

ω 6= Sinω due to the separation constant [2]2‖0c−2.

Subcase 2.3: A‖c = A′‖c′, and ν 6= ν′. Wlog assume ν > ν′: then it has to be `′ ≥ 1.
Now,

– If |A[ν′]| < r, then Sin
′

ν′ 6= Sinν′ since the separation constant [1]2‖0c−2 is only

XORed into Sout
′

ν′−1, and thus all the subsequent calls are distinct.

– Else, if `′ = 1, then Sin
′

ν′+1 6= Sinν′+1 since Sin
′

ν′+1 is obtained by XORing [3]2‖0c−2

with Sout
′

ν′ while Sinν′+1 is obtained by XORing either [1]2‖0c−2 or 0c (depending
on whether |A[ν′ + 1]| < r).

– Else, i.e., `′ > 1, then Sin
′

ν′+1 6= Sinν′+1 since Sin
′

ν′+1 is obtained by XORing [2]2‖0c−2

with Sout
′

ν′ while Sinν′+1 is obtained by XORing either [1]2‖0c−2 or 0c.

By the above, the |τ∗h | hash records have |τ∗h | distinct forward π queries as their
final π queries. Conditioned on ¬(B-13), the number of semi-collisions on V within
these final π queries is at most n. Therefore, the claim µV ≤ n follows.

Now, conditioned on ¬(B-1), we analyze (B-2). Note that in the ideal world, for
any (K,T,X, Y) ∈ τS̃IC, the key K is from the dummy key-tuple K, and is uniformly
distributed. Then, using an auxiliary set

τĨC[T] :=
{
K ∈ {0, 1}n : (K,T, ?, ?) ∈ τĨC

}
,

it’s easy to see

Pr[(B-2)] ≤
∑

(K,T,?,?)∈τ
S̃IC

Pr
[
K ∈ τĨC[T]

]
≤

∑
t∈{0,1}n−1:(K,t‖0,?,?)∈τ

S̃IC

∣∣τĨC[t‖0]
∣∣

2n︸ ︷︷ ︸
C1

+
∑

V ∈{0,1}n−1:(K,V ‖1,?,?)∈τ
S̃IC

∣∣τĨC[V ‖1]
∣∣

2n︸ ︷︷ ︸
C2

.

36

By the construction, the S̃IC queries (K, t‖0, ?, ?) are necessarily KDF queries, for which
K = Ki and t‖0 = PKi‖0∗ for some user index i. Since µPK ≤ n, we have

C1 =

u∑
i=1

∣∣τĨC[PKi‖0∗]
∣∣

2n
≤ µPK ·

∑
PK∈{0,1}np

∣∣τĨC[PK‖0∗]
∣∣

2n
≤ n·

∑
PK∈{0,1}np

∣∣τĨC[PK‖0∗]
∣∣

2n
.

On the other hand, for any S̃IC query (Ki, V ‖1, ?, ?), i.e., TGF query, there necessarily
exists at least one hash record ((N,PK,B,A, c), U‖V) ∈ τ∗h such that PK = PKi. By
this,

C2 =

u∑
i=1

∑
V :((?,PKi,?,?,?),?‖V)∈τ∗

h

∣∣τĨC[V ‖1]
∣∣

2n

≤µPK ·
∑

PK∈{0,1}np

∑
V :((?,PK,?,?,?),?‖V)∈τ∗

h

∣∣τĨC[V ‖1]
∣∣

2n

≤µPK · µV ·
∑

V ∈{0,1}n−1

∣∣τĨC[V ‖1]
∣∣

2n
≤ n2 ·

∑
V ∈{0,1}n−1

∣∣τĨC[V ‖1]
∣∣

2n
.

Therefore,

Pr[(B-2) | ¬(B-1)] ≤n ·
∑

PK∈{0,1}np

∣∣τĨC[PK‖0∗]
∣∣

2n
+ n2 ·

∑
V ∈{0,1}n−1

∣∣τĨC[V ‖1]
∣∣

2n

≤n2 ·
∑

t∈{0,1}n

∣∣τĨC[t]
∣∣

2n
≤
n2qĨC

2n
,

which allows us to conclude

Pr[Tid ∈ Tbad] ≤Pr[(B-1)] + Pr[(B-2) | ¬(B-1)]

≤ u

2np
+

16(q∗π)2

2c
+

(2n+ 1)q∗π + n2qĨC

2n
.

Now consider a good transcript τ = (τ∗h , τ
∗
π , τĨC, τS̃IC,PK,K). Define

τS̃IC[K,T] :=
{

(X,Y) ∈ ({0, 1}n)2 : (K,T,X, Y) ∈ τS̃IC

}
.

With this notation, it’s clear that

Pr[Tid = τ] = Pr[K,PK] · Pr[π ` τ∗π] · Pr[ĨC ` τĨC] ·
∏

(K,T)

1

(2n)|τ
S̃IC

[K,T]|
.

On the other hand,

Pr[Tre = τ] = Pr[K,PK] · Pr[π ` τ∗π] · Pr[ĨC ` τS̃IC | ĨC ` τĨC] · Pr[ĨC ` τĨC]

= Pr[K,PK] · Pr[π ` τ∗π]

· Pr[ĨCTK(X) = Y for all (K,T,X, Y) ∈ τS̃IC | ĨC ` τĨC] · Pr[ĨC ` τĨC],

37

Since τ is good,

Pr[ĨCTK(X) = Y for all (K,T,X, Y) ∈ τS̃IC | ĨC ` τĨC]

= Pr[ĨCTK(X) = Y for all (K,T,X, Y) ∈ τS̃IC] =
∏

(K,T)

1

(2n)|τ
S̃IC

[K,T]|
.

Therefore, for any good transcript τ we have Pr[Tre = τ] = Pr[Tid = τ], and thus

AdvmuCIML2
D,S1P[π,ĨC]K,PK,L

∗,u −AdvmuCIML2

D,S1P[π,S̃IC]K,PK,L
∗,u

≤ u

2np
+

16(q∗π)2

2c
+

(2n+ 1)q∗π + n2qĨC

2n
. (26)

C.3 Unforgability of the Idealized S1P

The remaining devotes to analyze S1P[π, S̃IC]K,PK. Consider the muCIML2 game G2

with S1P[π, S̃IC]K,PK. We define an event CHAIN: at any time, for the i th user there

exists a hash record ((N,PKi, B,A, c), U‖V) and a S̃IC query (Ki, V
∗‖1, U∗, Z) (i.e., a

TGF relation) such that U‖V = U∗‖V ∗, while there didn’t exist any encryption query
of the form LEnc(i,N,A, ?) → c‖Z. It’s easy to see that, it isn’t possible to forge as
long as CHAIN doesn’t happen.

To ease the analysis, we “break” CHAIN into several simple bad events, then show
that CHAIN isn’t possible as long as these events didn’t occur. Concretely,

– (C-1) There exists two user indexes j, ` such that Kj‖PKj = K`‖PK`, or µPK ≥
n+ 1.

– (C-2) Right after a forward π query π(Sin)→ Sout happens, if:

• (C-21) there exists another π query (Sin
′
, Sout

′
) such that lsc−2(Sout) =

lsc−2(Sin
′
), lsc−2(Sout) = lsc−2(Sout

′
), or ls2n−1(Sout) = ls2n−1(Sout

′
); or

• (C-22) there exists a S̃IC query (K,V ‖1, U, Z) such that ls2n−1(Sout) = U‖V ;
or

– (C-3) At any time, there exists n+1 forward π queries (Sin1 , Sout1), . . . , (Sinn+1, S
out
n+1)

such that lsn−1(Sout1) = . . . = lsn−1(Soutn+1).

– (C-4) Right after a backward π query π−1(Sout)→ Sin happens, if:

• (C-41) there exists another π query (Sin
′
, Sout

′
) such that lsc−2(Sin) = lsc−2(Sout

′
),

or

• (C-42) there exists a S̃IC query/a KDF relation (K,PK‖0∗, N‖0∗, B) such that
Sin = N‖PK‖0∗‖B.

– (C-5) Right after a (necessarily forward) KDF query S̃IC
PK‖0∗
K (N‖0∗) → B hap-

pens, there exists a π query (Sin, Sout) such that Sin = N‖PK‖0∗‖B.

– (C-6) Right after an inverse TGF query (S̃IC
V ‖1
K)−1(Z)→ U , there exists a π query

(Sin, Sout) such that ls2n−1(Sout) = U‖V .

Some of the conditions have been analyzed before. First, using u ≤ 2np ≤ 2n we have

Pr[(C-1)] ≤ u2

2n+np
+

u

2np
≤ 2u

2np
.

38

Second, (C-21) is the previous (B-11) enhanced with ls2n−1(Sout) = ls2n−1(Sout
′
), thus

Pr[(C-21)] ≤ 16q1q
∗
π

2c
+

2(q∗π)2

22n−1 (q1 being the number of forward π queries). And it’s easy

to see Pr[(C-22)] ≤ 2(qe+qd)q∗π
22n−1 . Thus (using qe + qd ≤ q∗π)

Pr[(C-2)] ≤ 16q1q
∗
π

2c
+

4(q∗π)2 + 4(qe + qd)q
∗
π

22n
≤ 16q1q

∗
π

2c
+
q∗π + qe + qd

2n
≤ 16q1q

∗
π

2c
+

2q∗π
2n

.

The last inequality stems from q∗π ≤ 2n/4.

The condition (C-3) is the same as the previous (B-13), thus Pr[(C-3)] ≤ q∗π
2n

. The

condition (C-4) is the previous (B-12), thus Pr[(C-4)] ≤ 10q2q
∗
π

2c
. (C-5) is the previous

(B-14), thus

Pr[(C-5) | ¬(C-1)] ≤ 2nq∗π
2n

. (27)

For (C-6), by ¬(C-2) and ¬(C-3) and an analysis similar to the previous for µV , the
number of distinct records ((N1, PK1, B1, A1, c1), U1‖V), ((N2, PK2, B2, A2, c2), U2‖V), . . .

(with the same V) in τ∗h is at most n. Therefore, for each inverse query (S̃IC
V ‖1
K)−1(Z)→

U , there are ≤ n “target” U values, and thus

Pr[(C-6)] ≤ nqd
2n − qĨC

≤ 2nqd
2n

. (28)

Define Bad := (C-1) ∨ (C-2) ∨ . . . ∨ (C-6), then we have

Pr[Bad] ≤ 2u

2np
+

16(q∗π)2

2c
+

(2n+ 3)q∗π + 2nqd
2n

.

Below we show Pr[CHAIN | ¬Bad] = 0. Assume otherwise, then consider the last
adversarial action before CHAIN happens:

Case 1: A makes a π query. If this query is forward, then it contradicts ¬(C-2); if
this query is backward, then it contradicts ¬(C-4).

Case 2: A makes an encryption query LEncK,PK(i,N,A,M). Note that KDF

calls/S̃IC queries of the form (Ki, PKi‖0∗, X, Y) ∈ τS̃IC have nothing to do with the
CHAIN event. Therefore, we further distinguish two subcases:

– Subcase 2.1: a subsequent (forward) π query causes CHAIN event. This again con-
tradicts ¬(C-2).

– Subcase 2.2: the subsequent (new) TGF query S̃IC
V ‖1
Ki

(U) → Z causes CHAIN
event. Assume that the involved hash record is ((N,PKi, B,A, c), U‖V) which
corresponds to the i-th user. The assumption means there exists another hash
record of the j-th user is ((N ′, PKj , B

′, A′, c′), U ′‖V ′) such that U‖V = U ′‖V ′.
To reach a contradiction, we distinguish two cases:
• Subcase 2.3.1: (N,A, c) 6= (N ′, A′, c′). Then as argued before, conditioned on
¬(C-21), the two involved hash chains are different, and thus U‖V = U ′‖V ′
would contradict ¬(C-21);

• Subcase 2.3.2: (N,A, c) = (N ′, A′, c′). Then it has to be i 6= j. Now, if Ki 6=
Kj , then the new S̃IC query S̃IC

V ‖1
Ki

(U) → Z has nothing to do with the j-th
user. Otherwise, it holds PKi 6= PKj by ¬(C-1), which means the two involved
hash chains are different, and thus U‖V = U ′‖V ′ would contradict ¬(C-21).

39

Case 3: A makes a decryption query. We further distinguish two subcases:

– Subcase 3.1: a subsequent (forward) π query causes CHAIN event. Then it again
contradicts ¬(C-2).

– Subcase 3.2: the subsequent (new) TGF query (S̃IC
V ‖1
Ki

)−1(Z) → U causes CHAIN
event. This contradicts ¬(C-6).

By the above, we have

AdvmuCIML2
D,S1P[π,TRPFamily]PK,L

∗,u ≤ Pr[Bad] ≤ 2u

2np
+

16(q∗π)2

2c
+

(2n+ 3)q∗π + 2nqd
2n

. (29)

This plus Eq. (26) yield Eq. (3) (note that 4 < 5 ≤ n):

u

2np
+

16(q∗π)2

2c
+

(2n+ 1)q∗π + n2qĨC

2n
+

2u

2np
+

16(q∗π)2

2c
+

(2n+ 3)q∗π + 2nqd
2n

≤ 3u

2np
+

32(q∗π)2

2c
+

5nq∗π + 2nqd + n2qĨC

2n
. (30)

D Proof of Theorem 4 (muCIML2 of S2P)

The two-step proof resembles appendix C.

D.1 Idealizing S2P

We also idealize the scheme S2P first, via replacing the internal calls to ĨC by calls to
S̃IC. Denote by S2P[π, S̃IC]K,PK the resulted scheme. We then bound

AdvmuCIML2
D,S2P[π,ĨC]K,PK,L

∗,u −AdvmuCIML2

D,S2P[π,S̃IC]K,PK,L
∗,u

for any −→q -bounded D, using H-coefficients. The transcripts τπ, τĨC, τS̃IC, and the exten-
sion τ∗π are very similar to those defined in appendix C.1. It’s easy to see that, when
interacting with the idealized scheme S2P[π, S̃IC]K,PK, the number of internal π calls
is at most 2σ + 2(qe + qd), which means

q∗π :=
∣∣τ∗π ∣∣ ≤ 2σ + 2(qe + qd) + qπ. (31)

Besides the above, we also keep a (redundant) list for the hash records of H[π], i.e.,

τ∗h =
(
((A1, c1, N1, PK1), U1‖V1), ((A2, c2, N2, PK2), U2‖V2), . . .

)
.

We also include the public-keys PK and reveal the secret keys K. These yield

τ = (τ∗h , τ
∗
π , τĨC, τS̃IC,PK,K).

For a transcript τ , we define the maximum multiplicity of V as

µV := max
v∈{0,1}n−1

∣∣∣{((A, c, N, PK), U‖V) ∈ τ∗h : V = v
}∣∣∣, (32)

and µPK as before. Then bad transcripts are defined as follows.

40

Definition 6 (Bad Transcripts for Idealizing S2P, muCIML2). An attainable tran-
script τ is bad, if one of the following conditions is fulfilled:

– (B-1) µPK ≥ n+ 1, µV ≥ n+ 1.
– (B-2) there exists a query (K,T,X, Y) ∈ τS̃IC such that (K,T, ?, ?) ∈ τĨC.

They’ve been analyzed in appendix C.2 except for µV ≥ n+1. The reasoning about
µV also relies on the semicollision properties gained before. In detail, we define several
bad events during the game G2 capturing the interaction of D with the ideal world:

– (B-11) Right after a forward π query π(Sin) → Sout happens, there exists an-

other π query (Sin
′
, Sout

′
) such that lsc−2(Sout) = lsc−2(Sin

′
) or lsc−2(Sout) =

lsc−2(Sout
′
);

– (B-12) Right after a backward query π−1(Sout)→ Sin happens, it holds lsc(S
in) =

0c, or there exists another π query (Sin
′
, Sout

′
) such that lsc−2(Sin) = lsc−2(Sout

′
).

– (B-13) At any time, there exists n+1 forward π queries (Sin1 , Sout1), . . . , (Sinn+1, S
out
n+1)

such that lsn−1(Sout1) = . . . = lsn−1(Soutn+1).

Note that they are very similar as (more precisely, simpler than) (B-11)-(B-13) in

appendix C.2, except that Pr[(B-12)] ≤ 2q2
2c

+
8q2q

∗
π

2c
≤ 10q2q

∗
π

2c
. Thus we could adapt the

previous Pr[µV ≥ n+ 1]. As before, define Bad1 := (B-11) ∨ (B-12) ∨ (B-13). We show
that µV ≤ n conditioned on ¬Bad1, so that

Pr[µV ≥ n] ≤ Pr[Bad1] ≤ 16q1q
∗
π

2c
+

10q2q
∗
π

2c
+
q∗π
2n
≤ 16(q∗π)2

2c
+
q∗π
2n
.

This roots at the following observations. First note that conditioned on ¬Bad1, the
permutation queries in hash chains are necessarily all forward, and such chains neces-
sarily result in distinct last block queries. By these, via an analysis similar to appendix
C.2, distinct hash inputs (A, c, N, PK) necessarily result in distinct hash chains of
H[π]. Therefore, conditioned on ¬Bad1, there doesn’t exist n + 1 distinct hash in-
puts (A1, c1, N1, PK1), . . ., (An+1, cn+1, Nn+1, PKn+1) that result in the same output
V1 = . . . = Vn+1, i.e., it holds µV ≤ n.

As proved in appendix C.2, Pr[µPK ≥ n+1] ≤ u
2np

, and Pr[(B-2) | ¬(B-1)] ≤ n2q
ĨC

2n
.

Thus

Pr[Tid ∈ Tbad] ≤
u

2np
+

16(q∗π)2

2c
+
q∗π
2n

+
n2qĨC

2n
.

For any good transcript τ , we similarly have Pr[Tre = τ] = Pr[Tid = τ], and thus

AdvmuCIML2
D,S2P[π,ĨC]K,PK,L

∗,u −AdvmuCIML2

D,S2P[π,S̃IC]K,PK,L
∗,u

≤ u

2np
+

16(q∗π)2

2c
+
q∗π
2n

+
n2qĨC

2n
. (33)

D.2 Unforgability of the Idealized S2P

Consider the muCIML2 game G2 with S2P[π, S̃IC]K,PK. We define the CHAIN event: at

any time, for the i th user there exists a hash record ((A, c, N, PKi), U‖V) and a S̃IC
query (Ki, V

∗‖1, U∗, Z∗) (i.e., a TGF query) such that U = U∗ and V = V ∗, yet there
didn’t exist any encryption query of the form LEnc(i,N,A,M) → c‖Z∗. We “break”
CHAIN into several simple bad events as follows.

41

– (C-1) There exists two user indices j, ` such that Kj‖PKj = K`‖PK`.

– (C-2) Right after a forward π query π(Sin)→ Sout happens, if:

• (C-21) there exists another π query (Sin
′
, Sout

′
) such that lsc−2(Sout) =

lsc−2(Sin
′
), or lsc−2(Sout) = lsc−2(Sout

′
), or ls2n−1(Sout) = ls2n−1(Sout

′
); or

• (C-22) there exists a TGF query (Ki, V ‖1, U, Z) such that ls2n−1(Sout) = U‖V .

– (C-3) At any time, there exists n+1 forward π queries (Sin1 , Sout1), . . . , (Sinn+1, S
out
n+1)

such that lsn−1(Sout1) = . . . = lsn−1(Soutn+1).

– (C-4) Right after a backward π query π−1(Sout)→ Sin happens, if:

• (C-41) there exists another (Sin
′
, Sout

′
) such that lsc−2(Sin) = lsc−2(Sout

′
),

or

• (C-42) lsc(S
in) = 0c.

– (C-5) Right after an inverse TGF query (S̃IC
V ‖1
Ki

)−1(Z) → U∗, there exists a hash
record ((A, c, N, PKi), U‖V) ∈ τ∗h such that U = U∗.

With q1 and q2 denoting the number of forward and backward π queries, it’s easy to
see

Pr[(C-1)] ≤ u

2np
, Pr[(C-2)] ≤ 16q1q

∗
π

2c
+

4(q∗π)2

22n
,

Pr[(C-3)] ≤ q∗π
2n
, Pr[(C-4)] ≤ 8q2q

∗
π

2c
+

2q2
2c
≤ 10q2q

∗
π

2c
.

For (C-5), as argued before, conditioned on ¬(C-2), ¬(C-3), and ¬(C-4), the number
of distinct hash records ((A1, c1, N1, PKi), U1‖V), ((A2, c2, N2, PKi), U2‖V), . . . is at
most n. These supply at most n “target values” U1, . . . , Un to each backward TGF
query (S̃IC

V ‖1
Ki

)−1(Z)→ U∗. By this,

Pr[(C-5)] ≤ 2nqd
2n

.

Define Bad := (C-1) ∨ (C-2) ∨ (C-3) ∨ (C-4) ∨ (C-5), using
4(q∗π)2

22n ≤ q∗π
2n

we have

Pr[Bad] ≤ u

2np
+

16(q∗π)2

2c
+

2q∗π + 2nqd
2n

.

Below we show Pr[CHAIN | ¬Bad] = 0. Assume otherwise, then consider the last
adversarial action before CHAIN happens:

Case 1: A makes a π query. If this query is forward, then it contradicts ¬(C-2); if
this query is backward, then it contradicts ¬(C-3).

Case 2: A makes an encryption query LEncPK(i,N,A,M) → c‖Z. We further
distinguish two subcases:

– Subcase 2.1: a subsequent (forward) π query causes CHAIN event. This again con-
tradicts ¬(C-2).

– Subcase 2.2: the subsequent (new) TGF query S̃IC
V ‖1
Ki

(U) → Z causes CHAIN
event. This means right before this query happens, there exists a hash record(
(A′, c′, N ′, PKj), U

′‖V ′
)
∈ τ∗h such that (A′, c′, N ′, PKj) 6= (A, c, N, PKi), yet

U ′‖V ′ = U‖V . To reach a contradiction, we distinguish two cases:

42

• Subcase 2.3.1: i 6= j. Then if PKi 6= PKj , the two “hash chains” always
have a different input blocks at the end, and thus U‖V = U ′‖V ′ contradicts
¬(C-11). If PKi = PKj , then Ki 6= Kj by ¬(C-1), and thus the new TGF

query S̃IC
V ‖1
Ki

(U)→ Z has nothing to do with the j-th user.
• Subcase 2.3.2: i = j, yet (N,A, c) 6= (N ′, A′, c′). Then as argued, the two

hash chains necessarily have a different input blocks “in the middle”, and thus
U‖V = U ′‖V ′ contradicts ¬(C-11).

Case 3: A makes a decryption query. We distinguish two subcases:

– Subcase 3.1: a subsequent (forward) π query causes CHAIN event. Then it again
contradicts ¬(C-2).

– Subcase 3.2: the subsequent (new) TGF query (S̃IC
V ‖1
Ki

)−1(Z) → U causes CHAIN
event. This contradicts ¬(C-5).

By the above, we have

AdvmuCIML2

D,S2P[π,S̃IC]K,PK,L
∗,u ≤

u

2np
+

16(q∗π)2

2c
+

2q∗π + 2nqd
2n

. (34)

This plus Eq. (33) yield Eq. (4):

u

2np
+

16(q∗π)2

2c
+
q∗π
2n

+
n2qĨC

2n
+

u

2np
+

16(q∗π)2

2c
+

2q∗π + 2nqd
2n

≤ 2u

2np
+

32(q∗π)2

2c
+

3q∗π + 2nqd + n2qĨC

2n
.

E Proofs for Leakage Privacy Lemmas

E.1 Tester for LORL Advantage

As stressed many times, depending on the context, the concrete value of AdvLORL[p]

may not be negligible.

1: Tester for LORL AdvLORL[p]

2: Let the challenging adversary A serve s and (m0,m1)

3: Pick the secret: ych
$← {0, 1}r, b $← {0, 1}

4: c← ych ⊕mb, and repeat ych ⊕ c for p− 1 times
5: Generate the permutation leakages: repeating Spre ← π−1(ych‖s) for p times
6: Serve A with c and the leakage traces resulted from steps 4 and 5. This gives A

the tuple (c, [Loutπ (ych‖s)]p, L⊕(ych,m
b), [L⊕(ych, c)]

p−1)
7: Let the challenging adversary A output the guess b′, A wins as long as b′ = b

E.2 Complete Description of Idealt

Description of Idealt:

– Idealt(IV,A,M) proceeds in five steps:

(1) Samples B
$← {0, 1}n and initializes an empty list leak for the leakage;

(2) Computes S0 ← IV ‖B and samples S1
$← {0, 1}r+c, and adds the leakage

traces [Linπ (S0), Loutπ (S1)]p to leak;

43

(3) For i = 1, . . . , ν = d|A|/re, samples Si+1
$← {0, 1}r+c, and adds the leakage

traces [L⊕(msr(Si), A[i]), Linπ ((A[i]‖0c)⊕ Si), Loutπ (Si+1)]p to leak;

(4) For i = 1, . . . , ` = d|M |/re, j = i+ ν, samples Sj+1
$← {0, 1}r+c, computes the

ciphertext C[i] ← msr(Sj) ⊕M [i], and adds the leakages L⊕(msr(Sj),M [i]),
[L⊕(msr(Sj), C[i])]p−1, [Linπ ((M [i]‖0c)⊕ Sj), Loutπ (Sj+1)]p to leak;

(5) If the tag t = 1 then defines c = C[1]‖ . . . ‖C[`]‖ls2n−1(Sj+1), else defines
c = C[1]‖ . . . ‖C[`].

Idealt(IV,A,M) eventually returns c.

E.3 A Useful Lemma: Leakage Eavesdropper Security of the Ideal
Stream Cipher

The proof of Theorem 5 will rely on the leakage eavesdropper security of the ideal
stream cipher (Ideal, LIdeal), which is related to the term AdvLORL[p] in Eq. (11). For-
mally,

Lemma 3. For every pair of `-block messages M0 and M1 and (qπ, t)-bounded adver-
sary Aπ, it holds∣∣Pr[Aπ(IdealtB(IV,A,M0))⇒ 1]− Pr[Aπ(IdealtB(IV,A,M1))⇒ 1]

∣∣
≤` ·AdvLORL[p](qπ, O(t+ p`tl)),

where tl is as defined in Lemma 1. See appendix E.3 for its proof.

Proof. Again we assume |A| = 0 for simplicity. Let M0 = M0[1]‖ . . . ‖M0[`] and M1 =
M1[1]‖ . . . ‖M1[`]. We start by building a sequence of ` + 1 messages Mh,0, . . . ,Mh,`

starting from M0 and modifying its blocks one by one till obtaining M1. That is,
Mh,i := M1[1]‖ . . . ‖M1[i]‖M0[i+ 1]‖ . . . ‖M0[`]. For any i, assuming a (qπ, t)-bounded
adversary Aπ against Idealt(IV,Mh,i−1) and Idealt(IV,Mh,i), we build a (qπ, O(t +
`ptl))-bounded adversary Aπ2 against the distribution defined in Eq. (11). In detail, Aπ2
proceeds in four steps:

(1) Aπ2 samples B
$← {0, 1}n, initializes an empty list leak, and sets S0 ← IV ‖B;

(2) for j = 1, . . . , i−1, Aπ2 samples Sj
$← {0, 1}r+c, computes C[j]← msr(Sj)⊕M1[j],

and adds [Linπ (Sj−1), Loutπ (Sj)]
p, L⊕(msr(Sj),M

1[j]), and [L⊕(msr(Sj), C[j])]p−1 to
leak;

(3) Aπ2 samples C
$← {0, 1}c and submits C to the LORL[p] challenger. Assume that

the outputs are (cb, leakb) with

leakb =
([

Loutπ (ych‖C)
]p
, L⊕(ych,m

b),
[
L⊕(ych, c

b)
]p−1

)
.

Aπ2 then adds the traces [Linπ ((M1[i − 1]‖0c) ⊕ Si−1), Loutπ (ych‖C)]p, L⊕(ych,m
b),

and [L⊕(ych, c
b)]p−1 to leak;

(4) Aπ2 starts from cb‖C to emulate the remaining actions of Idealt encrypting the
tail M0[i + 1]‖ . . . ‖M0[`] to obtain C[i + 1]‖ . . . ‖C[`]. Eventually, Aπ2 serves the
ciphertext C[1]‖ . . . ‖C[i − 1]‖cb‖C[i + 1]‖ . . . ‖C[`] (and lsc(Sν+`+1), when t = 1)
as well as all the generated simulated leakages to Aπ, and outputs whatever Aπ
outputs.

44

It can be seen depending on whether the input tuple received by Aπ2 captures the
LORL[p] challenger encryptingM0[i] orM1[i], the inputs toAπ capture Ideal encrypting
Mh,i−1 or Mh,i. Moreover, Aπ2 is (qπ, O(t + `ptl))-bounded if Aπ is (qπ, t)-bounded.
Therefore, ∣∣Pr[Aπ(Idealt(IV,Mh,i−1))⇒ 1]− Pr[Aπ(Idealt(IV,Mh,i))⇒ 1]

∣∣
≤AdvLORL[p](qπ, O(t+ `ptl))

by Eq. (13). This along with a simple summation implies the main claim. ut

E.4 Proof of Theorem 5 (Leakage Eavesdropper Security of Duplex)

∣∣Pr[AL(RealtB [π](IV,A,M0))⇒ 1]− Pr[AL(RealtB [π](IV,A,M1))⇒ 1]
∣∣

≤
∣∣Pr[AL(IdealtB(IV,A,M0))⇒ 1]− Pr[AL(IdealtB(IV,A,M1))⇒ 1]

∣∣︸ ︷︷ ︸
≤`·AdvLORL[p](qπ,O(t+`ptl)) (by Lemma 3)

+
∑
b=0,1

∣∣Pr[AL(RealtB [π](IV,A,Mb))⇒ 1]− Pr[AL(IdealtB(IV,A,Mb))⇒ 1]
∣∣.

For each b, Lemma 1 indicates∣∣Pr[AL(RealtB [π](IV,A,Mb))⇒ 1]− Pr[AL(IdealtB(IV,A,Mb))⇒ 1]
∣∣

≤Advuplsn[p](qπ, O(t+ p`tl), qπ) + ` ·Advuplsc[p](qπ, O(t+ p`tl), 2qπ) +
(`+ 2)2

2c+1

+ t ·Advupfi[p](qπ, O(t+ p`tl), qπ).

Therefore,∣∣Pr[AL(RealtB [π](IV,A,M0))⇒ 1]− Pr[AL(RealtB [π](IV,A,M1))⇒ 1]
∣∣

≤ (`+ 2)2

2c
+ ` ·AdvLORL[p](qπ, O(t+ `ptl)) + 2Advuplsn[p](qπ, O(t+ p`tl), qπ)

+ 2` ·Advuplsc[p](qπ, O(t+ p`tl), 2qπ) + 2t ·Advupfi[p](qπ, O(t+ p`tl), qπ).

E.5 Proof of Theorem 6 (muCCAmL1 of S1P)

As mentioned, the proof is built upon Theorem 5. We start by defining G0 as the
game PrivKmuCCAmL1,0

A,S1P,L , and G∗0 as the game PrivKmuCCAmL1,1
A,S1P,L . We say a decryption query

DecK,PK(i,N,A,C) is trivial if the action EncK,PK(i,N,A, ?)→ C happens before.
We then define two games G1 and G∗1: G1, resp. G∗1, is obtained from G0, resp. G∗0,

via replacing the internal ĨC-calls by S̃IC-calls. By Eq. (26), we have

∣∣Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]
∣∣ ≤ u

2np
+

16(q∗π)2

2c
+

(2n+ 1)q∗π + n2qĨC

2n
, (35)

and (similarly)

∣∣Pr[G∗1 ⇒ 1]− Pr[G∗0 ⇒ 1]
∣∣ ≤ u

2np
+

16(q∗π)2

2c
+

(2n+ 1)q∗π + n2qĨC

2n
, (36)

where q∗π = σ + qe + qd + qm + qπ.

45

We then prove∣∣Pr[G1 ⇒ 1]− Pr[G∗1 ⇒ 1]
∣∣

≤ 3u

2np
+

16(q∗π)2

2c
+

(2n+ 4)q∗π + 2nqd
2n

+
∑qe
i=1 Adv

eavl[1]

Real1
(q∗π, t

∗, `i), (37)

where `i is the number of blocks in the ith challenge message, and t∗ = O(t+ σtl) for
tl defined in Lemma 1. By Theorem 5, the last term is bounded as∑qe

i=1 Adv
eavl[1]

Real1
(q∗π, t

∗, `i) ≤σAdvLORL[1](q∗π, t
∗) + 2σAdvuplsc[1](q∗π, t

∗, 2q∗π)

+ 2qeAdvuplsn[1](q∗π, t
∗, q∗π) +

∑qe
i=1

(`i+2)2

2c︸ ︷︷ ︸
≤

(∑qe
i=1(`i + 2)

)2
2c

≤ (q∗π)2

2c

+ 2qeAdvupfi[1](q∗π, t
∗, q∗π).

The above plus the gaps in Eq. (35) and Eq. (36) yield the claim. To this end, we
denote the qe challenge tuples by

(i1, N1, A1,M
0
1 ,M

1
1), . . . , (iqe , Nqe , Aqe ,M

0
qe ,M

1
qe).

Then, we use qe hops to replace M0
1 , . . . ,M

0
qe by M1

1 , . . . ,M
1
qe in turn, to show that G1

can be transited to G∗1. For convenience, we define G2,0 = G1, and define a sequence of
games

G2,1,G2,2, . . . ,G2,qe ,

such that in the j-th system G2,j , the first j messages processed by the challenge
encryption oracle are M0

1 , . . . ,M
0
j , while the remaining qe−j messages being processed

are M1
j+1, . . . ,M

1
qe . In this vein, we have G2,qe = G∗1.

We then show that for j = 1, . . . , qe, G2,j−1 and G2,j are indistinguishable in the

view of Aπ,ĨC. For this, from Aπ,ĨC we build an adversary Aπ,ĨC2 , such that |Pr[G2,i−1 ⇒
1]− Pr[G2,i ⇒ 1]| is related to Adv

eavl[1]

Real1
(Aπ,ĨC2).

In detail, initially, Aπ,ĨC2 samples two key vectors K = (K1, . . . ,Ku) and PK =
(PK1, . . . , PKu) for the secret and public keys, and keeps a table SICTable to simulate

the secret ideal TBC S̃IC via lazy sampling. At this stage, we define a bad event
BadUserKey, which occurs if there exits two user indices `1, `2 such that K`1‖PK`1 =
K`2‖PK`2 .

Assume that entries in the tables are of the form SICTable(K,T,X) = Y and

SICTable−1(K,T, Y) = X. Aπ,ĨC2 runs A: upon each query from A, it reacts as follows.

Upon a query to ĨC or π, Aπ,ĨC2 simply relays the query to its corresponding
oracle and relays the response.

Upon a (non-challenge) encryption query (i∗, N∗, A∗,M∗), Aπ,ĨC2 distin-
guishes two cases:

– If (Ki∗ , PKi∗‖0∗, N∗‖0∗) /∈ SICTable, Aπ,ĨC2 samples an initial key B∗ such that
(Ki∗ , PKi∗‖0∗, B∗) /∈ SICTable−1, defines SICTable(Ki∗ , PKi∗‖0∗, N∗‖0∗) ←

46

B∗ and SICTable−1(Ki∗ , PKi∗‖0∗, B∗) ← N∗‖0∗, and then runs the encryp-
tion Real1B∗ [π](N∗‖PKi∗‖0∗, A∗,M∗) to get the ciphertext c∗‖U∗‖V ∗ and leak-

ages. Aπ,ĨC2 then computes Z∗ ← SICTable(Ki∗ , V
∗‖1, U∗) (Aπ,ĨC2 defines the en-

try SICTable(Ki∗ , V
∗‖1, U∗) to a newly sampled value Z∗ if (Ki∗ , V

∗‖1, U∗) /∈
SICTable). For this entire process Aπ,ĨC2 has to make `∗i + 1 queries to π and cost

O(`itl) time. Finally, Aπ,ĨC2 returns the outputs c∗‖Z∗ and the leakages to Aπ,ĨC;

– If (Ki∗ , PKi∗‖0∗, N∗‖0∗) ∈ SICTable, Aπ,ĨC2 simply runs the encryption process
Real1B∗ [π](N∗‖PKi∗‖0∗, A∗,M∗) withB∗ = SICTable(Ki∗ , PKi∗‖0∗, N∗‖0∗), com-
putes Z∗ ← SICTable(Ki∗ , V

∗‖1, U∗) on the obtained U∗ and V ∗, and returns

c∗‖Z∗ and the leakages to Aπ,ĨC. The cost is similar to the above case.

Upon a non-trivial decryption query (i,N,A,C), Aπ,ĨC2 simply simulates

the evaluation of DecK,PK(i,N,A,C) and returns the result to A. This requires Aπ,ĨC2

to make `∗i + 1 queries to π. And if DecK,PK(i,N,A,C) 6= ⊥, then we say another bad
event BadCheck occurs.

Upon the `-th challenge tuple (ij, Nj, Aj,M
0
j ,M

1
j), it can be seen that,

since BadUserKey didn’t happen, it necessarily be (Kij , PKij‖0∗, Nj‖0∗) /∈ SICTable

by the challenge nonce-respecting restriction on Aπ,ĨC on a single user. Therefore, de-

pending on `, Aπ,ĨC2 reacts as follows:

– When ` < j, it encrypts M0
` and returns. In detail,Aπ,ĨC2 samples B`, defines the en-

tries SICTable(Ki` , PKi`‖0
∗, N`‖0∗)← B` and SICTable−1(Ki` , PKi`‖0

∗, B`)←
N`‖0∗, and then runs Real1B` [π](M0

`)→ c`‖U`‖V`, generates the tag Z` accordingly

and returns c`‖Z` and the leakages toAπ,ĨC. The cost is similar to the non-challenge
encryption queries.

– When ` = j, it relays M0
` and M1

` to the eavesdropper eavl[1] challenger of Real1 to
obtain cb`‖U`‖V` and leakages leakenc, then generates the tag Z` accordingly and

returns cb`‖Z` toAπ,ĨC. This means the relation SICTable(Ki` , PKi`‖0
∗, N`‖0∗) =

Bch is implicitly fixed, where Bch is the secret n-bit initial seed picked inside
the eavesdropper challenger. In this respect, we define an additional bad event
BadInitKey, which happens if the entry SICTable−1(Ki` , PKi`‖0

∗, Bch) is defined

before Aπ,ĨC2 terminates (i.e., a contradiction in the table SICTable occurs due to
a collision within the initial keys).

– When ` > j, it simply encrypts M1
` and returns. The details are similar to the

described case ` < j.

Define Bad := BadUserKey∨BadInitKey∨BadCheck. It can be seen that as long as
Bad never occurs, the whole process is the same as either G2,j−1 or G2,j depending on

whether b = 0 or 1. Clearly, Pr[BadUserKey] ≤ u2

2n+np
≤ u

2np
, while Pr[BadInitKey] ≤

qe+qd+qm
2n

≤ q∗π
2n

as Bch
$← {0, 1}n inside the challenger. For BadCheck we appeal to the

intermediate results established in appendix C.3: in detail, Eq. (29) implies

Pr[BadCheck] ≤ 2u

2np
+

16(q∗π)2

2c
+

(2n+ 3)q∗π + 2nqd
2n

,

where q∗π = σ + qe + qd + qm + qπ.

47

By the remarks before, besides running Aπ,ĨC, Aπ,ĨC2 internally processes qm + qe +
qd − 1 queries (except for the query encrypted by its challenger). Therefore, for G2,j

and G2,j−1, Aπ,ĨC2 makes at most σ + qm + qe + qd + qπ = q∗π queries to π and spends
t∗ = O(t + σtl) running time (the additional time is mainly spent on evaluating the
leakage functions). By all the above, we have

Pr[G2,j ⇒ 1]− Pr[G2,j−1 ⇒ 1]

≤Pr[G2,j ⇒ 1 ∧ Bad in G2,j]− Pr[G2,j−1 ⇒ 1 ∧ Bad in G2,j−1] + Adv
eavl[1]

Real1
(q∗π, t

∗, `i).

Finally, wlog assume that when the event Bad happens during the interaction, Aπ,ĨC
could be aware and outputs 1; moreover, Pr[G2,qe ⇒ 1] ≥ Pr[G2,0 ⇒ 1]. Then,∣∣Pr[G∗1 ⇒ 1]− Pr[G1 ⇒ 1]

∣∣ ≤ Pr[G2,qe ⇒ 1]− Pr[G2,0 ⇒ 1]

≤Pr[G2,qe ⇒ 1 ∧ Bad in G2,qe]− Pr[G2,0 ⇒ 1 ∧ Bad in G2,0]︸ ︷︷ ︸
≤Pr[G2,qe⇒1∧Bad in G2,qe]

+
∑qe
i=1 Adv

eavl[1]

Real1
(q∗π, t

∗, `i)

≤ 3u

2np
+
q∗π
2n

+
16(q∗π)2

2c
+

(2n+ 3)q∗π + 2nqd
2n

+
∑qe
i=1 Adv

eavl[1]

Real1
(q∗π, t

∗, `i)

≤ 3u

2np
+

16(q∗π)2

2c
+

(2n+ 4)q∗π + 2nqd
2n

+
∑qe
i=1 Adv

eavl[1]

Real1
(q∗π, t

∗, `i),

which is the claim in Eq. (37).

E.6 Proof of Theorem 7 (muCCAmL2 of S2P)

It resembles appendix E.5: the main modification is to add treatments for decryption
leakage (as here we consider muCCAmL2 rather than muCCAmL1). Recall that a de-
cryption query DecK(i,N,A,C) is trivial if the action EncK(i,N,A,M)→ C happens
before. Although such trivial decryption queries are typically useless in the non-leaking
setting, they may serve new information here, and thus require explicit considerations.

Concretely, we start by defining G0 as the game PrivKmuCCAmL2,0
A,S2P,L and G∗0 as the game

PrivKmuCCAmL2,1
A,S2P,L .

We then replace the internal ĨC-calls by S̃IC-calls: this modifies G0 to G1 and G∗0 to

G∗1. By Eq. (33), we have |Pr[G1 ⇒ 1]−Pr[G0 ⇒ 1]| ≤ u
2np

+
16(q∗π)2

2c
+

q∗π
2n

+
n2q

ĨC
2n

and

|Pr[G∗1 ⇒ 1]− Pr[G∗0 ⇒ 1]| ≤ u
2np

+
16(q∗π)2

2c
+

q∗π
2n

+
n2q

ĨC
2n

, where q∗π = 2σ + 2(qe + qd +
qm) + qπ. We then prove∣∣Pr[G1 ⇒ 1]− Pr[G∗1 ⇒ 1]

∣∣
≤ 2u

2np
+

16(q∗π)2

2c
+

3q∗π + 2nqd
2n

+
∑qe
i=1 Adv

eavl[p]

Real0
(q∗π, t

∗, `i), (38)

where `i is the number of blocks in the ith challenge message, and t∗ = O(t+ pσtl) for
tl defined in Lemma 1. By Theorem 5, the last term is bounded as∑qe

i=1 Adv
eavl[p]

Real0
(q∗π, t

∗, `i) ≤σ ·AdvLORL[p](q∗π, t
∗) + 2qeAdvuplsn[p](q∗π, t

∗, q∗π)

+ 2σ ·Advuplsc[p](q∗π, t
∗, 2q∗π) +

∑qe
i=1

(`i+2)2

2c︸ ︷︷ ︸
≤ (q∗π)2

2c

.

48

The above plus the gaps between G0, G1, G∗0, and G∗1 yield the claim. The hybrid
argument basically follows the same line as appendix E.5: we denote the qe challenge
tuples by (i1, N1, A1,M

0
1 ,M

1
1), . . . , (iqe , Nqe , Aqe ,M

0
qe ,M

1
qe), and use qe hops to replace

M0
1 , . . . ,M

0
qe by M1

1 , . . . ,M
1
qe in turn. Consider the game G2,j involved in the j-th hop:

the first j messages processed by the challenge encryption oracle are M0
1 , . . . ,M

0
j , while

the remaining qe − j messages being processed are M1
j+1, . . . ,M

1
qe . To bound the gap

between G2,j−1 and G2,j in the view of Aπ,ĨC, we build an adversary Aπ,ĨC2 such that

|Pr[G2,i−1 ⇒ 1]− Pr[G2,i ⇒ 1]| is related to Adv
eavl[p]

Real0
(Aπ,ĨC2).

Concretely, Aπ,ĨC2 also samples K = (K1, . . . ,Ku) and PK = (PK1, . . . , PKu) for

commence, and internally simulate S̃IC. Here the event BadUserKey occurs if there exits

Kl1‖PKl1 = Kl2‖PKl2 . Aπ,ĨC2 then runs A and reacts as follows:

– Upon a query to ĨC or π: simply relays.

– Upon a (non-challenge) encryption query (i∗, N∗, A∗,M∗) from A, Aπ,ĨC2 simulates

the process of S2P[ĨC, S̃IC].LEncKi∗ ,PKi∗ (N∗, A∗,M∗) (which is similar to appendix
E.5), and returns the resulted ciphertext and leakage to A. For this entire process

Aπ,ĨC2 makes 2`i+2 queries to π and spends O(p`itl) time on evaluating the leakage
functions.

– Upon a trivial decryption query (i∗, N∗, A∗, C∗) from Aπ,ĨC, Aπ,ĨC2 parses C∗ =

c∗‖Z∗ and simply emulates S2P[π, S̃IC].LDecKi∗ ,PKi∗ (N∗, A∗, C∗), and relays the
outputs as well as the leakages to A. The cost is similar to the encryption case.

– Upon a non-trivial decryption query (i∗, N∗, A∗, C∗) from Aπ,ĨC, Aπ,ĨC2 parses C∗ =
c∗‖Z∗, and computes U∗‖V ∗ ← H[π](A∗, c∗, N∗, PKi∗). Then,

• if (Ki∗ , V
∗‖1, Z∗) /∈ SICTable−1,Aπ,ĨC2 samples V ∗∗ such that (Ki∗ , V

∗‖1, V ∗∗) /∈
SICTable, and defines the two entries SICTable(Ki∗ , V

∗‖1, V ∗∗)← Z∗ and
SICTable−1(Ki∗ , V

∗‖1, Z∗)← V ∗∗;

• if (Ki∗ , V
∗‖1, Z∗) ∈ SICTable−1,Aπ,ĨC2 sets V ∗∗ ← SICTable−1(Ki∗ , V

∗‖1, Z∗).
Now Aπ,ĨC2 returns (⊥, V ∗∗) to A. The bad event BadCheck occurs if V ∗∗ = V ∗.

– Upon A submitting the `-th challenge tuple (i`, N`, A`,M
0
` ,M

1
`), Aπ,ĨC2 simulates

the process of S2P[π, S̃IC].LEncKi` ,PKi` (N`, A`,M
0
`) when ` < j, and the process

of S2P[π, S̃IC].LEncKi` ,PKi` (N`, A`,M
1
`) when ` > j, and:

• When ` = j, it relays M0
` and M1

` to the eavesdropper eavl[p] challenger
of Real0 to obtain cb` and leakages leakenc and [leakdec]

p−1, and then gener-

ate the tag Z` accordingly and returns cb`‖Z` to Aπ,ĨC. Note that here Aπ,ĨC2

acquires [leakdec]
p−1 the decryption leakages. Also, we define the event Ba-

dInitKey, which happens if the entry SICTable−1(Ki` , PKi`‖0
∗, Bch) is de-

fined for the initial key Bch sampled inside the eavesdropper challenger.
– Upon A making the λ-th query to LDecch(`) (1 ≤ λ ≤ p− 1),

• When ` 6= j, Aπ,ĨC2 performs the corresponding decryption and returns the

obtained leakages to Aπ,ĨC;

• When ` = j, Aπ,ĨC2 simply returns the λ-th trace in the aforementioned vector
[leakdec]

p−1 as the answer.

The remaining analyzes are similar to appendix E.5: first,

Pr[BadUserKey] ≤ u2

2n+np
≤ u

2np
, Pr[BadInitKey] ≤ qe + qd + qm

2n
≤ q∗π

2n
, and

Pr[BadCheck] ≤ u

2np
+

16(q∗π)2

2c
+

2q∗π + 2nqd
2n

,

49

where the last bound comes from Eq. (34) in appendix D, and q∗π = 2σ + 2(qe + qd +

qm) + qπ. Define Bad := BadUserKey ∨ BadInitKey ∨ BadCheck. Besides running Aπ,ĨC,

Aπ,ĨC2 internally processes qm + qe + qd − 1 queries, and thus makes at most q∗π queries
to π and spends t∗ = O(t+ pσtl) running time. Therefore,∣∣Pr[G∗1 ⇒ 1]− Pr[G1 ⇒ 1]

∣∣ ≤ Pr[Bad in G2,qe] +
∑qe
i=1 Adv

eavl[p]

Real0
(q∗π, t

∗, `i)

≤ 2u

2np
+

16(q∗π)2

2c
+

3q∗π + 2nqd
2n

+
∑qe
i=1 Adv

eavl[p]

Real0
(q∗π, t

∗, `i),

which is the claim in Eq. (38).

F Proof of Theorem 1 (muCCAm$ of S1P)

Note that in the misuse resilience setting, schemes which achieve both CPA confiden-
tiality and authenticity also achieve CCA confidentiality [2]:

AdvmuCCAm$
A,AEAD,u =

∣∣∣Pr
[
AEncK,PK,EncK,PK,DecK,PK,π,ĨC ⇒ 1

]
− Pr

[
AEncK,PK,$,⊥,π,ĨC ⇒ 1

]∣∣∣
≤
∣∣∣Pr
[
AEncK,PK,EncK,PK,DecK,PK,π,ĨC ⇒ 1

]
− Pr

[
AEncK,PK,EncK,PK,⊥,π,ĨC ⇒ 1

]∣∣∣︸ ︷︷ ︸
Advmu-INT-CTXT

A,AEAD,u
: mu INT-CTXT advantage of A on AEAD

+
∣∣∣Pr
[
AEncK,PK,EncK,PK,⊥,π,ĨC ⇒ 1

]
− Pr

[
AEncK,PK,$,⊥,π,ĨC ⇒ 1

]∣∣∣︸ ︷︷ ︸
defined as AdvmuCPAm$

A,AEAD,u

.

Clearly, Advmu-INT-CTXT
A,S1P,u ≤ AdvmuCIML2

A,S1P,u . Therefore, we focus on the CPA advantage

AdvmuCPAm$
A,S1P,u . Again we employ the H-coefficients technique, and present the two steps

in two subsequent subsections.

F.1 Transcripts

We summarize to the queries to the challenge (second) encryption oracle in a set

τe =
(

(i1, N1, A1,M1, C1), . . . , (iqe , Nqe , Aqe ,Mqe , Cqe)
)
,

where Cj = cj‖Zj for each (ij , Nj , Aj ,Mj , Cj).
Besides, we reveal all the π queries underlying the non-challenge encryption queries

(i.e., queries to the first encryption oracle). We merge all these additional π queries
with the adversarial queries to obtain a set τ∗π . It can be seen that

q∗π :=
∣∣τ∗π ∣∣ ≤ σ1 + qm + qπ,

where σ1 is the total number of blocks in the non-challenge encryption queries. At
the end of the interaction, we also reveal the KDF- and TGF-calls underlying these
non-challenge encryption queries, and organize them in a list τS̃IC.

We also have the TBC query transcript τĨC. Similarly to appendix C, we organize
τ∗h from τ∗π . Note that the queries underlying the challenge encryption queries are
not revealed (unlike appendix C). As such, τ∗h only contains the S1P hash records
corresponding to the non-challenge encryption queries.

50

Recall that we’ve switched to the CPA setting, so these are “enough”: transcripts
are defined as

τ = (τe, τ
∗
h , τ
∗
π , τĨC, τS̃IC,PK,K).

For an encryption query (ij , Nj , Aj ,Mj , Cj) ∈ τe, we denote

Mj = Mj [1]‖ . . . ‖Mj [`j], Aj = Aj [1]‖ . . . ‖Aj [νj], and Cj = Cj [1]‖ . . . ‖Cj [`j]‖Zj .

With these, the number of blocks in challenge encryption queries is σ2 =
∑qe
j=1(`j+νj).

We write σc =
∑qe
j=1 `j . We further assume that |Mj [`j]| = r for any j: it can be seen

this is wlog. Then it’s easy to see

Pr[Tid = τ] = Pr[K,PK] · Pr[ĨC ` τĨC] · Pr[S̃IC ` τS̃IC] · Pr[π ` τ∗π] ·
(

1

2r

)σc
·
(

1

2n

)qe
.

(39)

Below we write
q∗∗π = σ2 + qe + q∗π = σ + qm + qe + qd + qπ,

which will be the total number of permutation-calls during the interaction.

F.2 Bad Transcripts

We then define bad transcripts as follows.

Definition 7 (Bad Transcripts for S1P, muCPAm$). An attainable transcript τ is
bad, if one of the following conditions is fulfilled:

– (B-1) there exists two users j, ` such that Kj‖PKj = K`‖PK`.
– (B-2) µPK ≥ n+ 1, µV ≥ n+ 1.
– (B-3) There exists a query (K,T,X, Y) ∈ τS̃IC such that (K,T, ?, ?) ∈ τĨC.
– (B-4) There exists (ij , Nj , Aj ,Mj , Cj) ∈ τe such that (Kij , PKij‖0∗, ?, ?) ∈ τĨC.
– (B-5) Too many collisions within the qe tags of the challenge encryption queries,

i.e.,
∣∣{(j, `) : Zj = Z`}

∣∣ ≥ qe.
– (B-6)

∣∣{((i,N,A,M, c‖Z), (K,V ‖1, X, Y)
)
∈ τe × (τĨC ∪ τS̃IC) : Z = Y }

∣∣ ≥ qe.
Otherwise τ is good. Denote by Tbad the set of bad transcripts.

First, Pr[(B-1)] ≤ u2

2n+np
≤ u

2np
. Then, the conditions (B-2) and (B-3) ∨ (B-4) are

essentially the same as Definition 5, and thus we recycle the corresponding results and
obtain:

Pr[(B-1) ∨ (B-2) ∨ (B-3) ∨ (B-4)] ≤ 2u

2np
+

16(q∗π)2

2c
+

(2n+ 1)q∗π + n2qĨC

2n
.

For (B-5), using Markov’s inequality yields

Pr[(B-5)] ≤ q2
e

2n

/
qe ≤

qe
2n
.

Similarly,

Pr[(B-6)] ≤
qe(qĨC + qm)

2n

/
qe ≤

qĨC + qm

2n
.

In all,

Pr[Tid ∈ Tbad] ≤
2u

2np
+

16(q∗π)2

2c
+

(2n+ 1)q∗π + qe + qĨC + qm + n2qĨC

2n

≤ 2u

2np
+

16(q∗π)2

2c
+

4nq∗π + 2n2qĨC

2n
. (40)

51

F.3 Ratio of Probabilities of Good Transcripts

For a good transcript τ , by ¬(B-3), for any (ij , Nj , Aj ,Mj , Cj) ∈ τe the initial key

Bj = ĨC
PKij ‖0

∗

Kij
(Nj‖0∗) is uniform. We define a predicate BadKD(ĨC) to formalize the

“badness” of this key, which is fulfilled if either of the following conditions is fulfilled:

– (C-1) there exists (ij , Nj , Aj ,Mj , Cj) ∈ τe such that Bj = ĨC
PKij ‖0

∗

Kij
(Nj‖0∗) sat-

isfies (Nj‖PKij‖0∗‖Bj , ?) ∈ τ∗π .
– (C-2) there exists two queries (ij , Nj , Aj ,Mj , Cj) and (i`, N`, A`,M`, C`) in τe such

that Nj = N`, PKij = PKi` , and Bj = B`.

Conditioned on ĨC ` τĨC and ĨC ` τS̃IC, Bj remains random due to ¬(B-3) and ¬(B-4)
(recall that the nonce values of non-challenge and challenge encryption queries have
no overlap). Furthermore, even given B1, . . . , Bj−1, Bj remains random: because for
any index ` < j, if i` 6= ij then Ki`‖PKi` 6= Kij‖PKij due to ¬(B-1), and Bj is thus
independent from B`; otherwise, we must have N` 6= Nj due to the nonce-respecting
restriction, and thus Bj remains uniform in at least 2n− qe− qm possibilities given B`,

ĨC ` τĨC, and ĨC ` τS̃IC. Therefore, when qe + qm ≤ 2n/2, we have (the set τ∗π [Nj‖PKj]
is from Eq. (25))

Pr[(C-1)] ≤
qe∑
j=1

Pr
[
Bj ∈ τ∗π [Nj‖PKj]

]
≤

qe∑
j=1

∣∣τ∗π [Nj‖PKj]
∣∣

2n − qe − qm

≤µPK ·
∑

N‖PK∈{0,1}nN+np

2
∣∣τ∗π [Nj‖PKj]

∣∣
2n

≤ 2nq∗π
2n

.

For (C-2), since nonce is never repeated in a specific user, it has to be ij 6= i`. Thus by
the condition PKij = PKi` and ¬(B-2), the number of choices for such two queries is
at most nqe. For each of them, it holds Pr[Bj = B`] ≤ 1

2n−qe−qm ≤
2

2n
, thus

Pr[(C-2)] ≤ 2nqe
2n

.

In all,

PrĨC

[
BadKD(ĨC) | ĨC ` τĨC

]
≤ 2nq∗π + 2nqe

2n
. (41)

Then, given a random permutation π such that π ` τ∗π , we define a bad predicate
Bad(π). To this end, for any j ∈ [1, . . . , qe], we define a sequence of values as follows:

Sinj,0 = N‖PKij‖0
∗‖Bj , Soutj,0 = π(Sinj,0), Sinj,1 = Soutj,0 ⊕Aj [1]‖0c, Soutj,1 = π(Sinj,1), . . . ,

Sinj,νj = Soutj,νj−1⊕(Aj [νj]‖1‖0∗)⊕(0r‖[1]2‖0c−2) when |Aj [νj]| < r, and Sinj,νj = Soutj,νj−1⊕
(Aj [νj]‖0c) when |Aj [νj]| = r, and

Soutj,νj = π(Sinj,νj), S
in
j,νj+1 = Cj [1]‖lsc

(
Soutj,νj ⊕ (0r‖[2]2‖0c−2)

)
,

Soutj,νj+1 = π(Sinj,νj+1), Sinj,νj+2 = Cj [2]‖lsc(Soutj,νj+1), Soutj,νj+2 = π(Sinj,νj+2), . . . ,

Sinj,νj+`j = Cj [`j]‖lsc
(
Soutj,νj+`j−1 ⊕ (0r‖[1]2‖0c−2)

)
when |Cj [`j]| < r, and Sinj,νj+`j =

Cj [`j]‖lsc(Soutj,νj+`j−1) when |Cj [`j]| = r, and finally Soutj,νj+`j
= π(Sinj,νj+`j) and Uj‖Vj =

ls2n−1(Soutj,νj+`j
). With the above, the predicate Bad(π) is fulfilled if:

52

– (C-3) there exists two indices j ∈ [1, . . . , qe] and ` ∈ [1, . . . , νj + `j] such that(
? ‖lsc−2(Sinj,`), ?

)
∈ τ∗π .

– (C-4) there exists four indices j1, j2 ∈ [1, . . . , qe] and `1 ∈ [1, . . . , νj1 + `j1], `2 ∈
[1, . . . , νj2 + `j2] such that (j1, `1) 6= (j2, `2), and lsc−2(Sinj1,`1) = lsc−2(Sinj2,`2).

– (C-5) there exists an index j ∈ [1, . . . , qe] such that any of the following is fulfilled:

• (Kij , Vj‖1, Uj , ?) ∈ (τĨC ∪ τS̃IC) or (Kij , Vj‖1, ?, Zj) ∈ (τĨC ∪ τS̃IC), or
• there exists another index ` ∈ [1, . . . , qe] such that Vj‖Uj = V`‖U` or Vj‖Zj =
V`‖Z`.

For (C-3), we first consider the case j = 1, ` = 1. Conditioned on π ` τ∗π , the new
capacity value lsc−2(Sinj,1) is uniform due to ¬(C-1). Therefore,

Pr
[
(?‖lsc−2(Sinj,1), ?) ∈ τ∗π

]
≤ 2|τ∗π |

2c−2
≤ 8q∗π

2c
.

Conditioned on
(
? ‖lsc−2(Sinj,1)

)
, ?
)
/∈ τ∗π , lsc−2(Sinj,2), i.e., the “next” capacity value, is

uniform. Therefore,

Pr
[
(?‖lsc−2(Sinj,2), ?) ∈ τ∗π

]
≤ 8q∗π

2c
.

Therefore, via an iterative-style analysis, it can be seen all internal capacity values are
uniform, and thus

Pr[(C-3)] ≤
qe∑
j=1

(
νj + `j

)
· 8q∗π

2c
≤ 8σ2q

∗
π

2c
.

For (C-4), when j1 = j2, then `1 6= `2. By the above, both lsc−2(Sinj1,`1) and lsc−2(Sinj1,`2)
are uniform, thus

Pr
[
lsc−2(Sinj1,`1) = lsc−2(Sinj1,`2)

]
≤ 8

2c
.

When j1 6= j2, by the above analysis, both lsc−2(Sinj1,`1) and lsc−2(Sinj2,`2) are uni-
form. Moreover, we have Sinj1,0 6= Sinj2,0 by ¬(C-2), which means lsc−2(Sinj1,`1) remains
uniform given the value of lsc−2(Sinj2,`2). Therefore,

Pr
[
lsc−2(Sinj1,`1) = lsc−2(Sinj2,`2)

]
≤ 8

2c
.

By these, and as the number of choices for (j1, `1) and (j2, `2) is at most σ2
2 , we

reach

Pr[(C-4)] ≤ 8σ2
2

2c
.

Finally, for (C-5), we have: (a) Pr[∃j : (Kij , Vj‖1, Uj , ?) ∈ (τĨC ∪ τS̃IC)] ≤ qe(qĨC + qm) ·
2

22n−1 and Pr[∃j, ` : Vj‖Uj = V`‖U`] ≤ q2
e · 2

22n−1 as Uj‖Vj is uniform for any j, and (b)

Pr[∃j : (Kij , Vj‖1, ?, Zj) ∈ (τĨC ∪ τS̃IC)] ≤ 2qe
2n−1 , and (c) by ¬(B-5), Pr[∃j, ` : Vj‖Zj =

V`‖Z`] ≤ qe · 2
2n−1 . Therefore,

Pr[(C-5)] ≤
4qe(qĨC + qm)

22n
+

4q2
e

22n
+

4qe
2n

+
4qe
2n
≤

4qe(qĨC + qm + qe)

22n
+

8qe
2n
≤

2qĨC + 10qe

2n
,

where the last inequality follows from qe ≤ 2n/2 and qm + qe ≤ 2n/2. Summing over
the above, and further using qe + σ2 + q∗π ≤ q∗∗π yield

Pr[Bad(π)] ≤ 8σ2q
∗
π

2c
+

8σ2
2

2c
+

2qĨC + 10qe

2n
≤ 8σq∗∗π

2c
+

2qĨC + 10qe

2n
.

53

Finally, conditioned on that ĨC ` τĨC, ĨC ` τS̃IC, π ` τ∗π , ¬BadKD(ĨC), and ¬Bad(π),
we analyze the probability that each produced key stream block equal ∆j [l] = Mj [l]⊕
Cj [l], i.e., Pr[msr(S

in
j,ν+l) = Mj [l] ⊕ Cj [l]]. This means msr(S

in
j,ν+l) = ∆j [l]‖s /∈ τ∗π for

some s ∈ {0, 1}c. Among the 2c values of s, there are at most |τ∗π | ≤ q∗π “bad” values
s∗ such that ∆j [l]‖s∗ ∈ τ∗π . Therefore,

Pr
[
msr(S

in
j,ν+l) = ∆j [l]‖s /∈ τ∗π

]
≥ 2c − q∗π

2r+c
≥

1− q∗π
2c

2r
.

By this,

Pr[∀j ∈ {1, . . . , qe} : S1P[π, ĨC].EncK,PK(ij , Nj , Aj ,Mj) = cj | π ` τ∗π ∧ ĨC ` τĨC]

≥Pr[¬BadKD(ĨC) ∧ ¬Bad(π) | π ` τ∗π ∧ ĨC ` τĨC ∧ ĨC ` τS̃IC] ·
(

1− q∗π
2c

2r

)σc
. (42)

It remains to analyze the involved tags. The event that the qe tags equal Z1, . . . , Zqe
is equivalent to qe equalities as follows:

ĨC
V1‖1
Ki1

(U1) = Z1, . . . , ĨC
Vqe‖1
Kiqe

(Uqe) = Zqe .

Consider the first equality. The entries ĨC
V1‖1
Ki1

(U1) and (ĨC
V1‖1
Ki1

)−1(Z1) may be rendered

non-random due to the condition S1P[π, ĨC].EncK,PK(ij , Nj , Aj ,Mj) = cj for all j ∈
{1, . . . , qe} or due to ĨC ` τĨC. Yet, the former condition only affects entries with the

tweak PK‖0∗, while the latter won’t affect ĨC
V1‖1
Ki1

(U1) nor (ĨC
V1‖1
Ki1

)−1(Z1) by ¬(C-5).

Therefore, Pr[ĨC
V1‖1
Ki1

(U1) = Z1] = 1
2n

.

In a similar vein, for any j ∈ {1, . . . , qe}, under the conditions that ĨC ` τĨC and

“∀j ∈ {1, . . . , qe} : S1P[π, ĨC].EncK,PK(ij , Nj , Aj ,Mj) = cj”, the ideal TBC entry

ĨC
Vj‖1
Kij

(Uj) remains uniform. We need to additionally consider the condition “ĨC
V`‖1
Ki`

(U`)

for ` = 1, . . . , j−1”. For this, for any ` < j we have Vj‖Zj 6= V`‖Z` and Uj‖Vj 6= U`‖V`
by ¬(C-5). Consequently, Pr[ĨC

Vj‖1
Kij

(Uj) = Zj] ≥ 1
2n

, and thus

Pr[ĨC
Vj‖1
Kij

(Uj) = Zj for j = 1, . . . , qe] ≥
(

1

2n

)qe
. (43)

In summary,

Pr[Tre = τ]

Pr[Tid = τ]
≥

Pr[¬BadKD(ĨC) ∧ ¬Bad(π) | π ` τ∗π ∧ ĨC ` τĨC] ·
(

1− q
∗
π

2c

2r

)σc
·
(

1
2n

)qe
(

1
2r

)σc
·
(

1
2n

)qe
≥Pr[¬BadKD(ĨC) ∧ ¬Bad(π) | π ` τ∗π ∧ ĨC ` τĨC] ·

(
1− q∗π

2c

)σc
≥
(

1− 2nq∗π + 2nqe
2n

− 8σq∗∗π
2c

−
2qĨC + 10qe

2n

)
·
(

1− q∗∗π
2c

)σc
≥1−

2nq∗π + 2nqe + 2qĨC + 10qe

2n
− 8σq∗∗π

2c
.

54

Gathering this and Eq. (40) and further the muCIML2 bound Eq. (30) (with that
q∗π = σ + qe + qd + qπ replaced by q∗∗π = σ + qe + qd + qm + qπ) yield Eq. (1):

3u

2np
+

32(q∗π)2

2c
+

5nq∗π + 2nqd + n2qĨC

2n

+
2u

2np
+

16(q∗π)2

2c
+

4nq∗π + 2n2qĨC

2n
+

2nq∗π + 2nqe + 2qĨC + 10qe

2n
+

8σq∗∗π
2c

≤ 5u

2np
+

56(q∗π)2

2c
+

23nq∗π + 5n2qĨC

2n
(2nqe + 2nqd ≤ 2nq∗∗π).

G Proof of Theorem 2 (muCCAm$ of S2P)

Similarly to appendix F, we mainly bound the CPA advantage AdvmuCPAm$
A,S2P using H-

coefficients. Since S2P and S1P process the messages in a very similar manner, the
muCPAm$ proofs are also similar.

Bad Transcripts We summarize to the queries to the challenge (second) encryption

oracle in τe =
(

(i1, N1, A1,M1, C1), . . . , (iqe , Nqe , Aqe ,Mqe , Cqe)
)

. For each of them

(ij , Nj , Aj ,Mj , Cj) where Cj = cj‖Zj , we assume that the system makes the cor-
responding hash call H[π](Aj , cj , Nj , PKij) during the interaction, and that these π
queries are known to the distinguisher. We also reveal all the π queries underlying
the non-challenge encryption queries (i.e., to the first encryption oracle). We merge all
these additional π queries with the adversarial queries to obtain τ∗π . Here we have

q∗π :=
∣∣τ∗π ∣∣ ≤ qπ + (2qm + 2σ1) + (2qe + σ2) = qπ + 2(qm + qe) + 2σ1 + σ2

and
q∗∗π = 2σ + 2(qe + qd + qm) + qπ.

We also have the ideal TBC query transcript τĨC. Similarly to appendix D, we also
organize the hash record transcript τ∗h from τ∗π , and the transcript τS̃IC for the KDF and
TGF calls underlying non challenge encryption queries. In all, transcripts are defined
as

τ = (τe, τ
∗
h , τ
∗
π , τĨC, τS̃IC,PK,K).

We then define bad transcripts.

Definition 8 (Bad Transcripts for S2P, muCCAm$). An attainable transcript τ is
bad, if one of the following conditions is fulfilled:

– (B-1) There exists two users j, ` such that Kj‖PKj = K`‖PK`.
– (B-2) µPK ≥ n+ 1, µV ≥ n+ 1.
– (B-3) There exists a query (K,T,X, Y) ∈ τS̃IC such that (K,T, ?, ?) ∈ τĨC.
– (B-4) There exists an encryption query (ij , Nj , Aj ,Mj , Cj) such that:
• (Kij , PKij‖0∗, ?, ?) ∈ τĨC, or
• (Kij , Vj‖1, ?, ?) ∈ τĨC for the corresponding hash record ((Aj , cj , Nj , PKij), Uj‖Vj).

– (B-5) There exists a query (i,N,A,M, c‖Z) ∈ τe with corresponding hash record
((A, c, N, PK), U‖V) ∈ τ∗h such that:
• contradiction-I: (Ki, V ‖1, ?, Z) ∈ τS̃IC or (Ki, V ‖1, U, ?) ∈ τS̃IC; or
• hash collision: there exists a hash record ((A′, c′, N ′, PK′), U ′‖V ′) ∈ τ∗h such

that (A, c, N, PK) 6= (A′, c′, N ′, PK′) though U‖V 6= U ′‖V ′; or

55

• contradiction-II: there exists another query (i′, N ′, A′,M ′, c′‖Z′) ∈ τe such
that V ‖Z 6= V ′‖Z′.

(B-1) is obvious. Then, (B-2), (B-3), and (B-4) are essentially the same as Definition
6, and we recycle the bound (which already includes the hash collision event):

Pr[(B-1) ∨ (B-2) ∨ (B-3) ∨ (B-4) ∨ hash collision] ≤ 2u

2np
+

16(q∗π)2

2c
+
q∗π
2n

+
n2qĨC

2n
.

For the remaining subconditions in (B-5), it’s easy to see Pr[contradiction] ≤ 2qe(qe+qm)

22n−1 +
2q2e

22n−1 = 4qe(2qe+qm)

22n ≤ 2qe
2n

(since 2qe + qm ≤ q∗π ≤ 2n/2). In all,

Pr[Tid ∈ Tbad] ≤
2u

2np
+

16(q∗π)2

2c
+
q∗π + n2qĨC + 2qe

2n
. (44)

Ratio of Probabilities. This step could reuse the results in appendix F.3. Con-
cretely, we define BadKD(ĨC) and Bad(π) as those in appendix F.3 without the condition
(C-5). As such, we could recycle Eqs. (42) and (43) in the following manner:

Pr[∀j ∈ {1, . . . , qe} : S2P[π, ĨC].EncK,PK(ij , Nj , Aj ,Mj) = cj | π ` τ∗π ∧ ĨC ` τĨC]

≥
(

1− 2nq∗π + 2nqe
2n

− 8σq∗∗π
2c

)
·
(

1− q∗π
2c

2r

)σc
,

Pr[∀j ∈ {1, . . . , qe} : ĨC
Vj‖1
Kij

(Uj) = Zj] ≥
(

1

2n

)qe
.

Therefore,

Pr[Tre = τ]

Pr[Tid = τ]
≥

(
1− 2nq∗π+2nqe

2n
− 8σq∗∗π

2c

)
·
(

1− q
∗
π

2c

2r

)σc
·
(

1
2n

)qe
(

1
2r

)σc
·
(

1
2n

)qe
≥1− 2nq∗π + 2nqe

2n
− 8σq∗∗π

2c
− σq∗∗π

2c
.

Gathering this and Eq. (44) and further Eq. (4) (with that q∗π = 2σ+2(qe+qd)+qπ
replaced by q∗∗π = 2σ + 2(qe + qd + qm) + qπ) yield Eq. (2):

2u

2np
+

16(q∗π)2

2c
+
q∗π + n2qĨC + 2qe

2n

+
2nq∗π + 2nqe

2n
− 8σq∗∗π

2c
− σq∗∗π

2c
+

2u

2np
+

32(q∗∗π)2

2c
+

3q∗∗π + 2nqd + n2qĨC

2n

≤ 4u

2np
+

53(q∗∗π)2

2c
+

8nq∗∗π + 2n2qĨC

2n
.

H Possibilities of DPAs on ISAP

ISAP is designed to achieve security against decryption leakages [17]. But as mentioned
in the Introduction, ISAP does not achieve CIML2 when all the intermediate compu-
tations are leaked to the adversary but a long-term key. At the first glance this isn’t

56

harmful since such a leakage model is overly strong. Yet, we’ll show that this indeed
brings in more possibilities of DPAs in practice.

We first outline a DPA against the integrity of ISAP. We omit the associated data
A since it doesn’t matter. Concretely,

(1) First, we fix a nonce N , a ciphertext C, and q arbitrary tags T1, . . . , Tq, where q
depends on the relative SCA security of the implementation;

(2) Second, we make q queries to LDec(N,C, T1), . . . , LDec(N,C, Tq). By this, the func-
tion IsapMac(N,C) → T is called q times. While this may not immediately in-
crease the amount of leaked information about the right tag T , the q comparison
operations “if T = Ti”, i = 1, . . . , q, does increase the possibility of recovering T
via DPA. Thus a valid forgery (N,C, T) is derived.

Note that the above attack only queries the leaking decryption oracle. Therefore, it
does not violate the nonce-respecting restriction, and it breaks both plaintext and
ciphertext integrity.

We further show that leakage privacy can also be compromised. Concretely,

(1) First, we fix a nonce N , q ciphertext C1, . . . , Cq of some fixed number of blocks,
and q tags T ∗1 , . . . , T

∗
q in arbitrary, where q depends on the relative SCA security

of the implementation;
(2) Second, using the q tags and the above integrity attack, we recover the q correct

tags T1, . . . , Tq and build q forgeries (N,C1, T1), . . . , (N,Cq, Tq);
(3) Third, we make q queries to LDec(N,C1, T1), . . . , LDec(N,Cq, Tq). Unlike the above

invalid decryption queries, these (valid) queries would induce q internal calls to
IsapDec(N,C1), . . . , IsapDec(N,Cq). All these calls would compute the same
sponge key stream (denoted y1, . . . , y`) since they are with the same nonce N .
As such, the key stream y1, . . . , y` can be recovered by DPA.

(4) Now, with the key stream y1, . . . , y`, any message M ′ encrypted with the nonce
N can be easily recovered (regardless of whether the leakage of encrypting M ′ is
available or not).

Note that the above attack only queries the leaking decryption oracle and is thus nonce-
respecting, but it seems to break any meaningful privacy notion, including Barwell et
al.’s LAE notion (leakage resilient AE) [3] and Guo et al.’s CCAL2 notion (CCA with
decryption leakage) [25].

Finally, we stress that the above only outlines possibilities of DPAs. Evaluation of
the concrete strength of ISAP should be made w.r.t. to the implementations in question.

57

	Towards Lightweight Side-Channel Security and the Leakage-Resilience of the Duplex Sponge
	1 Introduction
	2 Preliminaries
	2.1 Primitives
	2.2 Security definitions in the multi-user setting

	3 Single-pass design: TETSponge/S1P
	3.1 Background and design considerations
	3.2 Specification
	3.3 Black box security of S1P
	3.4 Other remarks

	4 Two-pass design: TEDTSponge/S2P
	5 Leakage integrity analyzes: muCIML2
	6 Leakage privacy analyzes: muCCAmL1 & muCCAmL2
	6.1 Modeling leakage functions
	6.2 Non-invertible leakage assumption
	6.3 Capturing the (in)security of the XOR
	6.4 Leakage eavesdropper security of duplex stream ciphers
	6.5 mu CCAmL security of S1P and S2P

	7 Discussion & related work
	A TETSponge is not CCAmL2 secure
	B Additional Figures
	C Proof of Theorem 3 (muCIML2 of S1P)
	C.1 Idealizing S1P
	C.2 Gap between Real and Ideal
	C.3 Unforgability of the Idealized S1P

	D Proof of Theorem 4 (muCIML2 of S2P)
	D.1 Idealizing S2P
	D.2 Unforgability of the Idealized S2P

	E Proofs for Leakage Privacy Lemmas
	E.1 Tester for LORL Advantage
	E.2 Complete Description of Idealt
	E.3 A Useful Lemma: Leakage Eavesdropper Security of the Ideal Stream Cipher
	E.4 Proof of Theorem 5 (Leakage Eavesdropper Security of Duplex)
	E.5 Proof of Theorem 6 (muCCAmL1 of S1P)
	E.6 Proof of Theorem 7 (muCCAmL2 of S2P)

	F Proof of Theorem 1 (muCCAm$ of S1P)
	F.1 Transcripts
	F.2 Bad Transcripts
	F.3 Ratio of Probabilities of Good Transcripts

	G Proof of Theorem 2 (muCCAm$ of S2P)
	H Possibilities of DPAs on ISAP

