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Abstract

There is surprisingly little consensus on the precise role of the generator g in group-based assumptions
such as DDH. Some works consider g to be a fixed part of the group description, while others take it to
be random. We study this subtle distinction from a number of angles.

• In the generic group model, we demonstrate the plausibility of groups in which random-generator
DDH (resp. CDH) is hard but fixed-generator DDH (resp. CDH) is easy. We observe that such
groups have interesting cryptographic applications.

• We find that seemingly tight generic lower bounds for the Discrete-Log and CDH problems with
preprocessing (Corrigan-Gibbs and Kogan, Eurocrypt 2018) are not tight in the sub-constant success
probability regime if the generator is random. We resolve this by proving tight lower bounds for
the random generator variants; our results formalize the intuition that using a random generator
will reduce the effectiveness of preprocessing attacks.

• We observe that DDH-like assumptions in which exponents are drawn from low-entropy distributions
are particularly sensitive to the fixed- vs. random-generator distinction. Most notably, we discover
that the Strong Power DDH assumption of Komargodski and Yogev (Komargodski and Yogev,
Eurocrypt 2018) used for non-malleable point obfuscation is in fact false precisely because it requires
a fixed generator. In response, we formulate an alternative fixed-generator assumption that suffices
for a new construction of non-malleable point obfuscation, and we prove the assumption holds in
the generic group model. We also give a generic group proof for the security of fixed-generator,
low-entropy DDH (Canetti, Crypto 1997).

1 Introduction

Starting with the seminal work of Diffie and Hellman [DH76], the Computational Diffie-Hellman (CDH)
assumption in certain cyclic groups has become a core pillar of modern cryptography. For a finite cyclic
group G and generator g, the assumption holds if it is hard to compute gab given (g, ga, gb) for random
a, b. The corresponding Decisional Diffie-Hellman (DDH) assumption, introduced by Brands [Bra94], is
that given (g, ga, gb) for random a, b, it is hard to distinguish gab from gc for random c.

A somewhat subtle issue is the precise role of g in these assumptions: is it fixed in the group description,
or is it randomly chosen along with a and b? For CDH in groups where the totient of the order is known,
a folklore equivalence between the fixed and random generator variants exists (e.g. see Chapter 21 of
Galbraith’s textbook [Gal12]). For DDH, Shoup [Sho99] observed that the fixed generator assumption
appears to be a stronger assumption than the random generator version, though a formal separation between
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the two is unknown. Despite this apparent distinction, the cryptographic literature commonly refers to both
the fixed and random generator variants simply as “DDH”.1

A likely explanation for this practice is that in most applications of cryptographic groups, it is straight-
forward to switch between fixed and random generators. For example, in ElGamal encryption [ElG84], users
who want the additional security of random-generator DDH can easily specify a random generator in their
public key.

Sadeghi and Steiner [SS01] observed that this justification does not apply in settings where the choice
of group generator is left to a potentially untrusted party.2 They give the example of a bank that offers
its customers an anonymous payment system, claiming provable security under group-based assumptions.
If the bank is free to choose parameters such as the group generator, then for security it is crucial that
any underlying assumptions hold in their (stronger) fixed generator form. While Sadeghi and Steiner did
not point to specific assumptions that can be broken simply by fixing the group generator, they stressed
that continuing to conflate these distinct assumptions could lead to serious ambiguities and mistakes in the
future.

In the nearly two decades since Sadeghi and Steiner [SS01] first called attention to the above issue,
dozens of new and increasingly sophisticated group-based assumptions have been introduced. Accordingly,
researchers have devoted significant effort to evaluating the plausibility of these assumptions (e.g. [BFF+14,
DHZ14]), frequently in idealized models such as the generic group model [Nec94, Sho97, Mau05]. We
observe that these generic group justifications generally ignore the question of whether the generator is
fixed or random, but that in most cases this distinction does not seem to affect real world security of these
assumptions.

In this work, however, we will see that this is not always the case.

1.1 Our Results

We first examine how the fixed vs. random generator distinction affects the classical Discrete-Log, CDH,
and DDH problems in a variety of different settings, obtaining the following results:

• Generic Separations for CDH and DDH. We prove that fixed- and random-generator DDH are
inequivalent assumptions in the generic group model [Nec94, Sho97, Mau05]. We show that for groups
of unknown order, fixed- and random-generator CDH are also inequivalent assumptions in the generic
group model. In addition, we give evidence (relying on a new assumption about arithmetic circuits)
that they are inequivalent even if the group order is known but its factorization is not.3

• Split-CDH and Split-DDH Groups. We define Split-CDH (resp. Split-DDH) groups for which
the fixed-generator variant of CDH (resp. DDH) is easy but the random-generator variant is hard, and
we observe that such groups imply interesting cryptographic applications. A split-CDH group can be
turned into a self-bilinear map [YYHK14] where the random-generator variant of the Multilinear CDH
assumption holds. This implies powerful primitives such as multiparty non-interactive key agreement
(with trusted setup).4 A split-DDH group can be used to instantiate a variant of the Boneh-Franklin
identity-based encryption [BF01] scheme. We stress here that giving candidate constructions of these
groups is outside of the scope of this work. On the negative side, we prove that a natural class
of non-interactive key exchange protocols (without trusted setup) are insecure in certain split-CDH
groups.

1For example, the Katz-Lindell textbook [KL] defines DDH with a fixed generator, while Cramer-Shoup [CS98] defines DDH
with a random generator.

2Sadeghi and Steiner [SS01] actually consider the more general possibility of the untrusted party choosing the group itself
maliciously. This question is beyond the scope of our work, but in many cases it is an equally important consideration.

3This inequivalence was also suggested by Saxena and Soh [SS06].
4A similar observation was also made in [SS06].

2



• Asymptotic Bounds for Discrete-Log and CDH with Preprocessing. We revisit the recent
work of Corrigan-Gibbs and Kogan [CK18], which seemingly resolves the generic hardness of Discrete-
Log and CDH with preprocessing. We observe that while their lower bounds are tight for the fixed-
generator variants, they leave a gap in the random-generator setting for algorithms with sub-constant
success probability. We close these gaps by proving tight lower bounds for the random-generator
variants. Our bounds suggest that using a random generator can reduce the impact of preprocessing
attacks, and in turn group parameters can be set more aggressively than previously thought in situations
where random-generator Discrete-Log or CDH are sufficient.

Next, we turn our attention to the class of Diffie-Hellman-like assumptions involving non-uniform random
exponents. An example of such an assumption is Canetti’s “DDH-II” assumption [Can97], which states that
DDH remains hard even if the exponent a in (g, ga, gb, gab) is drawn from a well-spread distribution (so
that a has super-logarithmic min-entropy). While these assumptions are somewhat undesirable due to their
non-standard nature [GK16], Wee [Wee05] showed that these assumptions (ones that require hardness given
only super-logarithmic entropy) are necessary for applications such as point-function obfuscation.

Before we rely on such assumptions, it is important to rule out idealized adversaries that attack the
underlying structure of the assumption. The most common technique for achieving this is to prove the
assumption holds in the generic group model [Nec94, Sho97, Mau05]. Such proofs certainly do not imply
the validity of the assumption; instead, these proofs are generally viewed as a minimal level of guarantee we
need to gain confidence in an assumption [BFF+14].

Our central focus is on the recently proposed “Strong Power DDH” assumption of Komargodski and
Yogev [KY18a]. The assumption states that for x sampled from any arbitrary well-spread distribution D,

that gx, gx
2

, . . . , gx
k

is indistinguishable from k uniformly random group elements. Our results are the
following:

• Strong Power DDH is False for a Fixed Generator. We demonstrate the “Strong Power DDH”
assumption underlying Komargodski and Yogev’s non-malleable point obfuscator [KY18a] as well as
Fenteany and Fuller’s non-malleable digital locker [FF18] is false in the fixed-generator setting. This
results from a subtle issue in the order of quantifiers; if g is fixed, an arbitrary well-spread distri-
bution could depend on g. For example, x can come from the distribution that conditions on the
bit-representation of gx beginning with 0. Unfortunately, these constructions can only be instantiated
with a fixed generator, so the original security proofs in [KY18a] and [FF18] must rely on a false
assumption.5,6

In response to private communication from the authors of this work, Komargodski and Yogev have
offered a simple fix [KY18b] for their original construction through a new “Entropic Power DDH”
assumption.7 This new assumption suffices for non-malleable point obfuscation and is formulated
precisely to address the vulnerability described above.

• Fixing Non-Malleable Point Obfuscation and Justifying Assumptions in the Generic
Group Model. In this work, we offer an alternative resolution. We construct a new non-malleable
point obfuscator that is qualitatively different from the one in [KY18a]. Security of our construction
relies on a newly formulated fixed-generator entropic assumption that we prove holds in the generic
group model. Note that neither the Strong Power DDH Assumption [KY18a] nor the revised Entropic
Power DDH Assumption [KY18b] come with generic group proofs of security.

5Relying on a random generator would require a common random string, which is not the model considered in [KY18a] or
in the version of [FF18] dated Jan 30, 2019 at eprint.iacr.org/2018/957/20190130:190441.

6This issue appears in the Eurocrypt 2018 version of [KY18a], in an older ePrint version of [KY18b] dated May
1, 2018 at eprint.iacr.org/2018/149/20180211:142746, and in the ePrint version of [FF18] dated Jan 30, 2019 at
eprint.iacr.org/2018/957/20190130:190441.

7This refers to the newer ePrint version of [KY18b] dated Feb 21, 2019 available at
https://eprint.iacr.org/2018/149/20190221:133556.
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Along the way, we develop general techniques (based heavily on [CDG18]) for proving generic security
of non-standard, entropic assumptions. As a final contribution, we demonstrate the applicability
of these techniques by showing that the fixed- and random-generator versions of Canetti’s DDH-II
assumption [Can97] hold in the generic group model.8 This assumption has been used in both its
fixed-generator form (e.g. [KLRZ08, CD08, DHZ14]) and random-generator form (e.g. [Can97, BC10]).

1.2 Reader’s Guide

Our contributions (and the following technical overview) are divided into 4 parts.

• Part 1 is collection of generic-group-based results that explore the fixed- or random-generator distinc-
tion for Discrete-Log, CDH, and DDH. We also describe our new split-CDH and split-DDH groups.
These results are contained in Section 3.

• Part 2 is a discussion on the negative implications of the fixed- or random-generator distinction, with
a focus on trusted set-up in Diffie-Hellman Key Exchange. The key technical result in this section
is a black-box separation between random-generator CDH and a natural class of non-interactive key
exchange protocols. This part is in Section 4.

• Part 3 considers the problem of generic algorithms with preprocessing in the random-generator setting.
Our lower bound for random-generator Discrete-Log and CDH is in Section 5.

• Part 4 studies the problem of non-malleable point obfuscation. We give our construction and prove
security under a new assumption in Section 6. We justify our new assumption with a generic group
model proof in Section 7. Our generic group model proof for DDH-II can be found in Section 7.3.

We encourage any readers interested in non-malleable point obfuscation or generic group proof techniques
to first read Part 4 in the following technical overview before visiting the proofs in Section 6, Section 7, and
Section 7.3.

1.3 Technical Overview

1.3.1 Part 1: Generic Separations and Split Groups.

Formalizing the Distinction. We will assume some process for generating a group description G of
order N . This group description is assumed to include a generator g. The fixed-generator DDH assumption,
or f-DDH, states that the tuples (gx, gy, gxy) and (gx, gy, gz) are computationally indistinguishable, given
the description of G. Here, x, y, z are chosen randomly in ZN . On the other hand, the random-generator
DDH assumption, or r-DDH, states that the tuples (h, hx, hy, hxy) and (h, hx, hy, hz) are computationally
indistinguishable. Here, x, y, z are chosen randomly in ZN , and h is a random generator of G (chosen,
say, by setting h = gr for a random r in Z∗N ). We can also define fixed- and random-generator variants
of Computational Diffie-Hellman (CDH) and Discrete-Log (DLog). For example, f-CDH states that given
(gx, gy) for random x, y, it is computationally infeasible to find gxy.

We consider the following three settings of groups: known prime group order, known composite group
order of unknown factorization, and unknown group order. For each of the three assumptions and three
settings (for 9 instances in total) we explore the relationship between the fixed- and random-generator
variants. Trivially, the f- variants of the assumptions are at least as strong as the r- variants. In the other
direction, some instances have known or folklore reductions showing equivalence [Gal12]. For each of the
cases that do not have a proof of equivalence, we provide a separation. This is formalized by augmenting
the generic group model [Sho97] with an oracle for the f- variant, and showing (potentially under reasonable
computational assumptions) that the r- variant still holds. Table 1 summarizes our findings.

8Previously, such proofs had been obtained by Bitanksy and Canetti [BC10] and Damg̊ard, Hazay, and Zottarel [DHZ14],
who considered the random- and fixed-generator versions, respectively. We observe that both of these proofs treat the well-
spread distribution as independent of the generic group labeling. Our proof handles distributions with arbitrary dependence on
the labels; for more discussion refer to Part 4 of Section 1.3.
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DLog CDH DDH
Known Order X X ×

(FL/Lemma 5) (FL) (Theorem 2)
Unknown Factorization X ×? ×

(FL/Lemma 5) (Theorem 4) (Theorem 2)
Unknown order X × ×

(FL/Lemma 5) (Theorem 3) (Theorem 2)

Table 1: Generic equivalences and separations. FL denotes a folklore result. X means that the fixed and
random generator versions are equivalent. × means that the random generator version is harder than the
fixed generator version (in the generic model). ×? means the result holds under a plausible conjecture.

Applications of Split Groups. Looking at Table 1, we see that in the case of DDH, there is the potential
for a group where f-DDH is easy but r-DDH is hard. We will call such groups split-DDH groups. Similarly,
if the group order is unknown, potentially f-CDH is easy but r-CDH is hard; we call such groups split-
CDH groups. In this section, we will see that such split Diffie-Hellman groups have useful cryptographic
applications.

First, we observe that a split-CDH group is very close to a self-bilinear map [YYHK14]. A self-bilinear
map is a group G together with a pairing e : G2 → G such that e(gx, gy) = e(g, g)xy. Let g1 = g and
gn = e(g, gn−1). A typical computational assumption on self-bilinear maps would be the multilinear CDH

assumption [BS02]: for any n > 1, given gx0 , . . . , gxn , it is hard to compute g
∏n
i=0 xi

n . Notice that by applying

the mapping e(·, ·), it is only possible to compute g
∏n
i=0 xi

n+1 .
An f-CDH oracle gives such an oracle where e(g, g) = g. Therefore, a split-CDH group gives all the

functionality of a self-bilinear map. But notice that since e(g, g) = g, gn = g for any n. Therefore, the
multilinear CDH assumption is false. However, we observe that if we choose a random element h, then
e(h, h) = hr where h = gr. As such, the f-CDH oracle would also give a self-bilinear map with respect to the
random generator h. We then show that multilinear CDH is actually hard relative to h, assuming r-CDH is
hard. Thus, we obtain a self-bilinear map from any split-CDH group. As a consequence, following [YYHK14]
we would immediately obtain multiparty non-interactive key agreement, broadcast encryption satisfying a
distributed setup notion [BZ14], and attribute-based encryption for circuits.

In Section 3.2 we show that Split-DDH groups allow for a simple identity-based encryption (IBE) scheme
based on the Boneh-Franklin [BF01] construction.

Our results above demonstrate that finding groups where f- and r- assumptions are separated yields
interesting applications. In the next part, we discuss the negative implications of differing hardness between
f- and r- assumptions.

1.3.2 Part 2: Trusted Setup Assumptions

The previous sections demonstrated that the f- and r-DDH assumptions are distinct assumptions that may
not both be true. But then which DDH assumption should be used? In practice, g is typically part of a
standards library chosen by a trusted third party (e.g. NIST). As such, users have essentially three choices:

1. Believe that the trusted third party chose g at random, and use the r-DDH assumption.

2. Do not trust the third party, but instead assume that there are no bad g. In other words, rely on the
f-DDH assumption for g.

3. Do not trust the third party, but instead have one of the users generate a random g and distribute it
to everyone else. Then rely on r-DDH.

Option 1 means that users need to trust that no one could have subverted g and chosen a bad generator
for which DDH is actually easy; history has shown such trust could very well be misplaced. Only Options 2
and 3 remove the need to trust a third party.
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Remark 1. Note that to remove trusted setup assumptions entirely, we would need to ensure that G itself is
guaranteed to satisfy f-DDH. One option is to assume that both G and g were generated by a deterministic
process, so that all parties can calculate G, g for themselves without any setup. For groups based on finite
fields, this requires deterministically generating large primes; while no polynomial-time provable algorithms
are known, there are very simple heuristic algorithms. For elliptic curve-based groups, other options are
available (e.g. using a field with small characteristic). For one approach to deterministic curve generation,
see [BCLN16].

In most cases, it is straightforward to switch between Options 2 and 3. A scheme designed for f-DDH can
often be converted into a scheme that relies only on r-DDH by having one of the parties choose a random
generator. On the other hand, a scheme designed for r-DDH can often be converted into an f-DDH scheme
by fixing a group element and not including it with the user’s messages, saving slightly on transmission costs.

The above means slightly different parameter sizes for the two assumptions. For example, for public key
schemes, the extra group element would naturally go in the public key. The result is that schemes secure
under r-DDH naturally require one additional group element in the public key relative to the f-DDH analog.
As authors often compare parameter sizes in terms of group elements (e.g. [Fuj16]), it is important that they
clearly identify which assumption is used.

In some cases, however, switching between f-DDH and r-DDH will have a more profound impact. For
example, in a protocol between mutually distrusting parties, which party will be entrusted to come up with
the generator? While we are not aware of any instances of protocols in the literature that cannot be made to
work with a random generator, it is straightforward to devise protocols where no single party can be trusted
to choose the generator. As such, care must be taken when using the r-DDH assumption in these settings.

Diffie-Hellman Key Exchange. For the remainder of this section, we will focus on a concrete setting
where it is not possible to trivially switch between f-DDH and r-DDH: Diffie-Hellman key exchange. In
the protocol, Alice chooses a random a ← ZN and computes A = ga, and Bob chooses a random b ← ZN
and computes B = gb. Then the two parties exchange A,B. In most treatments, Diffie-Hellman is a non-
interactive key exchange (NIKE), which means that A and B are sent simultaneously. Alice then computes
the secret key K = gab = Ba and Bob computes K = gab = Ab. By the DDH assumption, an eavesdropper
who learns A,B can learn nothing about K.

The key issue here is that Alice and Bob need to know g in order to generate their first message. So if we
want one of them, say Alice, to come up with the generator, the result is an interactive protocol with Alice
sending the first message, and only then can Bob send his. Therefore, in addition to requiring slightly more
communication, Option 3 actually changes the nature of the protocol. What we see is that Diffie-Hellman
can only remain a setupless NIKE under the f-DDH assumption.

Now, it is possible to alter Diffie-Hellman to work with CDH by extracting hardcore bits from the
unpredictable key. By the equivalence of f-CDH and r-CDH in known prime-order groups, we can obtain
a setupless NIKE protocol from r-CDH (and hence also r-DDH). In groups of unknown order, however,
this does not apply. As our main technical result from this section, we give evidence that in groups where
the totient of the order is unknown, r-CDH alone is insufficient for constructing setupless NIKE. This is
formalized by assuming that f-CDH is easy and demonstrating an attack on a wide class of key agreement
protocols that generalize the classical Diffie-Hellman protocol.

1.3.3 Part 3: Random-Generator Discrete-Log and CDH with Preprocessing.

A recent line of works [Mih, LCH11, BL13, CK18, CDG18] have explored non-uniform attacks on various
problems in cryptographic groups. Here, a computationally expensive offline pre-processing stage generates
an advice string, which in a later online stage can be used to speed up computation in the group. We are
interested in the relationship between the length S of the advice string, the running time T of the online
stage, the group order N , and the success probability ε.
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Very recently, Corrigan-Gibbs and Kogan [CK18] seemingly resolve the non-uniform hardness of the

discrete logarithm problem. Namely, they show in the generic group model that ε = Õ(ST 2/N), where the

Õ hides logarithmic factors. This matches known upper bounds (attacks) up to logarithmic factors.
However, all the works in this line (both lower bounds and attacks) only consider the fixed generator

version of discrete log. Corrigan-Gibbs and Kogan briefly mention this, concluding that “using a fixed
generator is essentially without loss of generality” since a discrete log with respect to one generator can be
solved by solving two discrete logs with respect to a different generator.

When considering just polynomial reductions between problems, the above is certainly true. However,
when it comes to precisely quantifying hardness, the problem no longer remains identical for different gener-
ators. In particular, suppose we have an algorithm that solves discrete log with respect to generator g with
probability ε and we want to solve a discrete log instance with respect to generator h = gr. To do so, on
input hx, we apply the algorithm twice to find the discrete logs of h and hx with respect to g. This gives r
and rx, allowing us to solve for x. But since we needed to solve both instances correctly, our overall success
probability is only ε2. Of course if ε is a constant so is ε2, but in the low success probability regime, squaring
the advantage significantly changes the hardness of the problem.

We resolve the question of the hardness of random-generator discrete log in the pre-processing setting,

showing that ε = Θ̃
(
T 2

N + S2T 4

N2

)
. The attack side is simple: there are two natural ways to attack a

random-generator discrete log instance h, hx. One is to ignore the pre-processing, and apply the Baby-step

Giant-step algorithm, with success Ω(T
2

N ). The other is to use the pre-processing to solve two discrete log

instances relative to some fixed generator g, in the manner described above. This gives success Ω((ST
2

N )2),
as shown in [CK18]. By choosing which algorithm to use based on the parameters S, T,N , one obtains

ε = Ω
(
T 2

N + S2T 4

N2

)
.

On the other hand, to prove the lower bound we need to show, essentially, that the two algorithms above
are the only possible algorithms. This does not follow from the analysis of [CK18]. Instead, we use the tools
developed in subsequent works [CDGS18, CDG18] (based on the earlier pre-sampling techniques developed
by Unruh [Unr07] for the Random Oracle model) to switch to a “bit-fixing” model, where we then show
the optimality of the algorithms. In addition, we show that the same relationship holds as well for r-CDH.
Generically, auxiliary input r-CDH is as hard as either using the auxiliary information to solve two discrete
logarithms, or ignoring the input and solving one discrete logarithm.

1.4 Part 4: Low-Entropy Fixed-Generator Assumptions

Background: Point Obfuscation from Low-Entropy Assumptions. Our discussion thus far has
focused on Discrete Log/Diffie-Hellman-type assumptions where ga, gb are uniformly random group elements.
However, the security of many important cryptographic applications often relies on a stronger version of these
assumptions in which a and/or b might not be drawn uniformly at random.

Canetti’s construction of point function obfuscation is perhaps the most well-known example.9 A point
function fx(·) is a boolean function that accepts on x and rejects on all other inputs. Roughly speaking, an
obfuscated point function O(fx(·)) implements the same input/output functionality as fx(·), but leaks no
information about x beyond what can be learned through black-box oracle queries to fx(·). In other words,
the obfuscated program acts as a virtual black box for evaluating the function.10 Canetti’s point function
obfuscator is simple: to obfuscate fx(·), draw a random group element gb and output (gb, gxb). Evaluation
on input y is done by computing (gb)y and accepting if it matches gxb.

The security of this construction follows from an assumption Canetti refers to as DHI-II (in subsequent
works it has been renamed to “DDH-II”; we will adopt this name), which states that (g, ga, gb, gab) ≈C
(g, ga, gb, gc) where g is a random generator, b, c are chosen uniformly at random, and a has super-logarithmic

9Canetti’s results [Can97] were originally described in the language of “oracle hashing”; the equivalence to point function
obfuscation was later pointed out by Wee [Wee05]. We describe Canetti’s results in Wee’s terminology.

10We defer a more detailed discussion on virtual-black-box obfuscation to [BGI+01] (see [Wee05] for specifics on point function
obfuscation).
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min-entropy, i.e. it is sampled from a well-spread distribution D. We stress that DDH-II is technically an
infinite family of assumptions, since it requires indistinguishability if D is any well-spread distribution (even
ones that are not efficiently sampleable).

Under DDH-II, the obfuscated program (gb, gxb) hides all information about the point x as long as x is
drawn from a well-spread distribution, since gxb is indistinguishable from gc. This immediately implies a
notion of average-case virtual-black-box (VBB) security. Canetti proves that if a point function obfuscator
is average-case VBB for any well-spread distribution, this implies full (worst-case) VBB security. It was
later shown by Wee ([Wee05], Section 4.2) that Canetti’s approach is essentially inherent: VBB-secure point
function obfuscation requires strong assumptions that are hard for any well-spread distribution.

Background: Non-Malleable Point Obfuscation. Canetti’s original motivation for studying point ob-
fuscation was to realize useful properties of random oracles [BR93] in the standard model. If H(·) is a random
oracle, observe that H(x) is a secure point obfuscation of fx(·), where evaluation is a single random oracle
call followed by a comparison. Komargodski and Yogev [KY18a] observe that the random oracle obfuscator
H(x) satisfies a strong non-malleability property, in the sense that given H(x) it is impossible to compute
H(f(x)) for any (meaningfully) related point f(x), without first recovering x. This property is missing from
Canetti’s point obfuscator [Can97], e.g. since given (gb, gxb), one can easily compute (gb, g(x+1)b), which is
an obfuscation of the related point f(x) = x+ 1.

Komargodski and Yogev [KY18a] propose the following modification to Canetti’s point obfuscator. To

obfuscate the point x, sample a random b and output (gb, (gb)g
x4+x3+x2+x

). Note that for this expression to

make sense, gx
4+x3+x2+x must be mapped back into the exponent space under some fixed public mapping.

Evaluation on input y is done by computing gy
4+y3+y2+y, mapping this element back to the exponent space

and raising gb to that power, and finally comparing to (gb)g
x4+x3+x2+x

.
Komargodski and Yogev [KY18a] argue their obfuscation resists bounded-degree polynomial mauling

attacks, in which an adversary given an obfuscation of x attempts to produce an obfuscation of P (x) for some
bounded-degree polynomial P (·). Roughly, the intuition is that the adversary cannot replace gb with any

other gb
′
, since generating (gb

′
)g
P (x)

does not appear possible given only (gb)g
x4+x3+x2+x

. But if the adversary
cannot change gb, the argument is that the linear constraints imposed by the form of x4 + x3 + x2 + x make
it impossible to replace x with P (x).

Formally, security in [KY18a] is proved under the newly introduced “Strong Power DDH” assumption,

which states it is hard to distinguish gx, gx
2

, . . . , gx
`

from ` random group elements, if x is drawn from any
well-spread distribution.

Fixed-Generator Strong Power DDH is False. In stating the assumption, Komargodski and Yo-
gev [KY18a] do not specify how g is chosen or the relationship between g and the distribution over x. We
observe that if g is a fixed generator, then their assumption is false. For a uniformly random group element,
there must be some bit in its description with noticeable entropy. If it is bit i, we let D be the distribution
over all points x such that the ith bit of the description of gx is 0. Then D has high min-entropy, and
moreover gx for x← D is distinguishable from a random group element by inspecting the ith bit.

If the assumption is taken in its random-generator formulation, the security proof in [KY18a] breaks
down, since an adversary can potentially replace g with a different generator g′. A natural idea to fix the
construction would be to generate g using a public source of randomness.11 However, this would move the
construction into the CRS model, where strong non-malleability results were previously known [CV09].

Fixing Non-Malleable Point Obfuscation. We remedy this situation by giving an alternative low-
entropy fixed-generator assumption, and proving that this assumption is sufficient to achieve their notion of

11As noted in Section 1.1, Komargodski and Yogev have offered a fix through a new Entropic Power DDH Assumption
in a revised ePrint posting [KY18b], which does not come with a generic group proof. The goal of this section is to build
non-malleable point obfuscation from an assumption that holds against generic adversaries.
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non-malleable point obfuscation. We formulate our assumption in a way that allows us to prove it holds in
the generic group model. Our assumption is the following:

Let p ∈ [2λ−1, 2λ] and let n be at most poly(λ). Fix a group G of order p along with a generator
g, and draw k2, . . . , kn uniformly at random from Zp. For any well-spread distribution D over Zp,
no efficient adversary can distinguish {gkix+xi}i∈{2,...,n} for x← D from n− 1 uniformly random
group elements, even given k2, . . . , kn.12

The intuition for the design of this assumption is the following. We want to modify the group elements
gx, gx

2

, . . . in Strong Power DDH to block distributions D which “condition” on the fixed g, as we have
already seen how such distributions falsify the assumption. However, we are restricted to modifications that
preserve our ability to perform a security reduction for the proof of non-malleability, as in [KY18a].

Without delving into the non-malleability security proof itself, the key requirement is that the reduction
must be able to construct specific polynomials (in x) in the exponent. We tweak the construction so that
the reduction can construct a polynomial of the form ax + x2 + x3 + x4 + x5, where a is an arbitrary
but known scalar.13 Then by using terms of the form gkix+xi , we enable the reduction to construct this
polynomial by simply multiplying the i = 2, . . . , 5 terms; it will know a since the ki’s are given in the clear.
Intuitively, the ki scalars contribute enough randomness to prevent distributions D which make the gkix+xi

terms distinguishable from random.
Our resulting construction of non-malleable point obfuscation is (essentially) a, gax+x2+x3+x4+x5

. We
note that our construction does not require the “double exponentiation” of [KY18a]. The full construction
comes with two additional scalars and group elements that ensure that x is the only accepting input.

Discussion: Low-Entropy Fixed Generator Assumptions in the Generic Group Model. In
order to gain confidence in our assumption, we prove it secure in the generic group model. As discussed
in Section 1.1, this is usually viewed as a minimum requirement in order to gain confidence in a new group-
based assumption. Recall that in the generic group model, group elements gx are replaced with random
“labels” σ(x), where σ is a uniformly random injection from the space of exponents to some space of labels.
An oracle stores the entire description of σ, and allows the generic adversary oracle access to honest group
operations. For example, an adversary with labels σ(x), σ(y) can request the label for σ(x+ y).

We find that in the setting of fixed generator lower entropy assumptions, the standard intuition for
designing generic group model proofs falls short. Our goal is to prove no generic adversary can distinguish
between {ki, σ(kix+xi)}i∈{2,...,n} and {ki, σ(ri)}i∈{2,...,n} for uniformly random ki, ri, and x← D. Since the
group and generator are fixed in this assumption, we must consider distributions which depend on the group
description itself. So in the generic model, any distribution D should be viewed as the output distribution
of a potentially inefficient sampling algorithm S that is free to scan the entire labeling function σ.14 The
only requirement we enforce is that given σ, the point x← S(σ) has super-logarithmic entropy.

To illustrate the difference in this setting, suppose for a moment that the sampler S had to output x
without seeing σ (as is the case when x is drawn uniformly at random from Zp). The standard generic group
argument for indistinguishability would use the following structure:

Imagine treating x as a formal variable instead of as a randomly drawn value. This replaces
the group exponent space Zp with formal polynomials Zp[x], so the oracle now returns labels
by sampling a uniformly random label from the image of σ each time it encounters a distinct
formal polynomial. Observe that there are no (non-trivial) linear combinations of the {kix+xi}i

12We remark that the assumption we actually use is slightly different: instead of stating indistinguishability from uniform,

we require indistinguishability from {gkiy+yi}i∈{2,...,n} for the same {ki}i but uniformly random y. We can prove both forms
of this assumption hold in the GGM, but this second form yields a simpler proof of VBB security. For the purposes of this
technical overview this distinction can be ignored.

13In the full proof of non-malleability, the reduction must be able to construct other higher degree polynomials, which is why
we need the assumption to hold for n = poly(λ).

14In order to leverage Canetti’s proof that average-case VBB implies worst-case VBB for point functions, average-case security
must hold even for inefficiently sampleable well-spread distributions.
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polynomials (taken as formal polynomials in x) that evaluate to identically zero polynomials over
x. This implies that the adversary will never encounter non-trivial collisions in the labels it sees,
and we can use the Schwartz-Zippel Lemma to argue that the adversary’s view is identical in the
world where x is random instead of a formal variable.

This type of argument breaks down if S can choose x after seeing the labeling function σ. Now S can try
to pick x so that σ(kix+ xi) conveys non-trivial distinguishing information to the adversary. In particular,
it is no longer accurate to argue that we can produce an identical view for the adversary by replacing x with
a formal variable.

We could intuitively hope that S is powerless to pick x that can bias the distribution of σ(kix + xi)
away from uniform, as it does not know the random ki. However, this intuition proves tricky to formalize,
especially since S is given unlimited computational power and access to the entire function σ.

Connection to Preprocessing Attacks. To solve this problem, we apply the “bit-fixing” technique from
Coretti, Dodis, and Guo [CDG18]. They consider generic algorithms which are given an additional advice
string, computed beforehand using a computationally unbounded algorithm with access to σ. Conditioned
on the advice string, it is no longer accurate to argue σ is a random labeling function. However, they show
(roughly) that if we obtain at most P bits of advice about σ, this only leaks useful information about σ on
O(P ) points. So for generic security proofs, this allows us to switch to a setting in which σ is a random
labeling function on all but O(P ) inputs.

We apply these techniques to our setting by re-casting the sampler S outputting x as a computationally
unbounded algorithm outputting x as “advice”. However in our setting, the challenger is the one receiving
the advice instead of the adversary. It turns out that the [CDG18] techniques still apply here, allowing us
to argue that σ can be re-sampled on all but polynomially many points. Once we perform this re-sampling,
we show that the adversary will not be able to apply group operations to its set of initial group elements
and produce a point that was not re-sampled, except with negligible probability. Once this is established,
standard generic group techniques suffice to complete the proof.

Generic Hardness of DDH-II. As a final contribution, we also prove the generic hardness of Canetti’s
DDH-II assumption. We remark that previous proofs of DDH-II [BC10, DHZ14] operate in a highly idealized
model that assumes the sampler is independent of the labeling function σ. Preventing the sampler from
seeing the labels implicitly relies on the group itself being drawn at random, which in particular leads to
counterexamples when dealing with fixed generator assumptions. For example, the Strong Power DDH
assumption with fixed generator can be proven in this model even though it is false in the real world.

In the case of DDH-II, one of the elements the adversary receives is σ(a) for low entropy a. We must
show at a minimum that this does not allow the adversary to recover a (i.e. compute the discrete log), as
distinguishing would then be trivial. Such a claim might not be immediately obvious, especially considering
that we can distinguish σ(a) from σ(r) for uniform r for certain distributions on a. We observe that any
adversary which succeeds in solving discrete log of σ(a) with noticeable advantage for a well-spread distribu-
tion is also an adversary that solves discrete log (with much smaller advantage) for the uniform distribution.
However, the resulting advantage exceeds the known generic bounds for discrete log algorithms [Sho97]. The
remainder of our proof makes use of bit-fixing techniques to reduce the problem of distinguishing the DDH-II
instance to the problem of recovering a given just σ(a).

2 Preliminaries

For n ∈ N, let [n] denote the set {1, . . . , n}. We specify formal variables by bold letters x. For a function f ,
let im(f) denote the image of f .

Throughout, we let λ ∈ N be the security parameter. We use the usual Landau notations. A function
f(λ) is said to be negligible if it is λ−ω(1) and we denote it by f(λ) := negl(λ). A function f(λ) is said to
have polynomial growth rate if it is λO(1) and we denote it by f(λ) := poly(λ). A probability p(λ) is said to
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be overwhelming if it is 1− λ−ω(1). We refer to A as PPT if it is a probabilistic polynomial time algorithm.
If A has access to an oracle O, we write AO.

The statistical distance between two distributions D1 and D2 over a countable support S is defined to
be ∆(D1, D2) := 1

2

∑
x∈S |D1(x)−D2(x)|. Let γ > 0. We say that two distributions D1 and D2 are γ-close

if ∆(D1, D2) ≤ γ. We let x← D denote drawing x from the distribution D. When X is a set, then x← X
denotes drawing x uniformly at random from the set X. The following definition regarding infinite families
of distributions will be used throughout.

Definition 1 (Well-Spread Distribution Ensemble). An ensemble of distributions {Dλ}λ over domains
{Xλ}λ is well-spread if for all large enough λ ∈ N,

H∞(Dλ) = − min
x∈Xλ

log2 Pr[x← Dλ] = ω(log(λ)).

2.1 Generic Group Model

Definition 2 (Generic Group Model (GGM) [Nec94, Sho97]). An application in the generic group model is
defined as an interaction between a T -attacker A and a challenger C. For a cyclic group of order N with
fixed generator g, a random injective function σ : [N ]→ [M ] is sampled, mapping group exponents in ZN to
a set of labels L. Label σ(x) for x ∈ ZN corresponds to the group element gx.
C initializes A with some set of labels {σ(xi)}i. It then implements the group operation oracle OG(·, ·),

which on inputs σ1, σ2 ∈ [M ] does the following:

• If either of σ1 or σ2 is not in L, return ⊥.

• Otherwise, set x = σ−1(σ1) and y = σ−1(σ2), compute x+ y ∈ ZN , and return σ(x+ y).

A is allowed at most T queries to the oracle, after which C outputs a bit indicating whether A was successful.
We refer to the probability that this bit is 1 as SuccC(A).

Remark 2. It will often be convenient to represent each query to OG as a linear polynomial over the initial
set of elements {xi}i given to A.

For an indistinguishability application, we define the advantage of attackerA as AdvC(A) = 2|SuccC(A)−1/2|.
For an unpredictability application, the advantage is defined as AdvC(A) = SuccC(A). An application with
associated challenger C is (T, ε)-secure in the GGM is for every T -attacker A, AdvC(A) ≤ ε.

Definition 3 (Auxiliary-Input Generic Group Model (AI-GGM)). We now consider (S, T )-attackers A =
(A1,A2). First σ : [N ]→ [M ] is sampled. A1 receives σ as input and outputs an S-bit string aux. Then the
challenger C operates as before, modeling interaction between A2 and OG(·, ·). Now A2 receives aux as input
and is allowed T queries to the oracle. Success, advantage, and security are defined analogously.

Definition 4 (Bit-Fixing Generic Group Model (BF-GGM)). We now consider (S, T, P )-attackers A =
(A1,A2). First σ : [N ] → [M ] is sampled. A1 receives σ as input and outputs an S-bit string aux along
with a set P ⊆ ZN of size P . Then σ is uniformly re-sampled on all but the points P (conditioned on
maintaining the same image), producing the injection σ′. We let im(P) refer to the images under σ and σ′

of the points in P. Then the challenger C operates as before, modeling interaction between A2 and OG(·, ·),
where OG(·, ·) uses σ′ to answer queries. A2 receives aux as input and is allowed T queries to the oracle.
Success, advantage, and security are defined analogously.

Theorem 1 ([CDG18]). Let N,M,P ∈ N, N ≥ 16, and γ > 0. If an unpredictability application with
challenger C that initializes A with T ′ group elements is ((S, T, P ), ε′)-secure in the BF-GGM for

P ≥ 18(S + log(γ−1))(T + T ′),

then it is ((S, T, P ), ε)-secure in the AI-GGM for ε ≤ 2ε′ + γ.

11



3 Generic Separations Between Fixed and Random Generator As-
sumptions

In this section, we explore the relationship between fixed generator and random generator assumptions, in
particular looking at settings and assumptions where the fixed generator and random generator versions
are plausibly inequivalent. As we then show, groups where f-DDH is easy but r-DDH is hard (split-DDH
groups), or groups where f-CDH is easy but r-CDH is hard (split-CDH groups), can be used to build powerful
cryptographic applications. On the other hand, we also show that a large class of setupless NIKE protocols
are not secure in split-CDH groups.

We now formalize the six problems that we consider in this section. We assume a group generation
algorithm (Gλ, g,N)← GroupGen(1λ) where λ is the security parameter and Gλ is the description of a cyclic
group with generator g and order N . All the assumptions below are relative to a fixed 15 output of the group
generation algorithm on input the security parameter λ.

• r-DLog: Given (gr, grx) compute x, where r ← Z∗N , x← ZN

• f-DLog: Given (gx) compute x, where x← ZN

• r-CDH: Given (gr, grx, gry) compute grxy, where r ← Z∗N , x, y ← ZN

• f-CDH: Given (gx, gy) compute gxy, where x, y ← ZN

• r-DDH: Given (gr, grx, gry, gbrxy+(1−b)z) determine b, where r ← Z∗N , x, y, z ← ZN , b← {0, 1}

• f-DDH: Given (gx, gy, gbxy+(1−b)z) determine b, where x, y, z ← ZN , b← {0, 1}

We use the generic group model to explore the relationships among the above problems, and operate in
three different settings. First is the usual setting, described in the preliminaries, where we implicitly assume
the order of the group and its factorization is known. Then we model the setting where the order of the
group is known but the factorization is not explicitly given. We call this the Unknown Factorization Generic
Group Model (UF-GGM). Note that in this setting, an advantage bound AdvC(A) is only meaningful for
PPT adversaries A since otherwise we can assume A factors the group order and we are back in the usual
setting. Contrast this with the usual generic group setting where the computational complexity of A is
arbitrary and we only have a bound on the number of group operation queries to the oracle.

Finally, we model a third setting where the order of the group itself is unknown, called the Unknown
Order Generic Group Model (UO-GGM). We want to model the fact that an adversary cannot guess the
order of the group. Since we are mostly concerned with whether adversaries have some 1/poly(λ) advantage
or negl(λ) advantage, we model the order of the group N as being drawn from a distribution with ω(poly(λ))
min-entropy, where the support of the distribution is contained in [2λ−1, 2λ]. We augment this model with
an explicit group inverse oracle that on input σ(x) returns σ(−x). Note that when the group order is known,
this operation can be done with logarithmic queries to the group operation oracle, so this is usually not
explicitly given in that setting.

We will also consider augmenting these generic group models with additional oracles beyond the group
operation/inverse oracles. More specifically, we consider an f-DDH oracle OfDDH(·, ·, ·) that on input
σ(x), σ(y), σ(z) returns 1 if xy = z and 0 otherwise, and an f-CDH oracle OfCDH(·, ·) that on input σ(x), σ(y)
returns σ(xy). Now when we give an adversary T oracle queries, we mean combined queries between all
oracles it has access to.

In the following proofs, we always assume that for group order N ∈ [2λ−1, 2λ], the smallest prime
dividing N has bit length ω(log(λ)). This is required to prevent trivial attacks, and is useful when arguing
that polynomials modulo N will vanish with low probability over random inputs. We cannot apply Schwartz-
Zippel right away since ZN is not necessarily a field, and instead apply the following lemma.

15Random generator assumptions can be formulated with respect to a randomized generator h output by GroupGen. Here we
assume a fixed generator g and randomize it as part of the game itself, letting h = gr.
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Lemma 1. Let N ∈ [2λ−1, 2λ] be such that the bit length of its largest prime divisor is ω(log(λ)). Let
Q(x1, . . . , xm) be a polynomial of total degree n = poly(λ). Then Pr[Q(r1, . . . , rm) = 0 mod N ] = negl(λ),
where each ri is drawn uniformly and independently from either ZN or Z∗N .

Proof. Let p be a prime and k an integer such that pk | N but pk+1 - N . By assumption, we know that
p = ω(poly(λ)) and k = poly(λ). Any ri drawn uniformly from ZN when taken mod pk is uniform from Zpk ,
and by the Chinese Remainder Theorem, any ri drawn uniformly from Z∗N when taken mod pk is uniform
from Zpk \ pZ. Both of these domains have size ω(poly(λ)), thus we can apply Schwartz-Zippel to show that
Pr[Q(r1, . . . , rn) = 0 mod pk] = negl(λ). This immediately gives the result.

3.1 DDH Separations

The following theorem establishes the inequivalence of the f-DDH and r-DDH problems in all three settings
we consider. In particular, it gives heuristic evidence that a group might exist where f-DDH is easy (in fact,
can be solved with probability 1) but r-DDH is hard.

Theorem 2. r-DDH is (T, ε)-secure in the GGM (or UF-GGM or UO-GGM) augmented with an f-DDH
oracle, for group order N ∈ [2λ−1, 2λ], T = poly(λ), and ε = negl(λ).

Proof. It suffices to give the proof in the regular GGM, since applications can only become harder in the
UF-GGM and UO-GGM. In the r-DDH game, the challenger C is initialized with a labeling σ where
L := im(σ) and chooses r ← Z∗N , x, y, z ← ZN , and b ← {0, 1}. The adversary A is initialized with
(σ(1), σ(r), σ(rx), σ(ry), σ((1 − b)rxy + bz)). It interacts with the generic group oracle OG and the f-DDH
oracle OfDDH , outputs a bit b′, and wins if b′ = b.

Let T ′ be the number of OG queries made by A and T ′′ the number of OfDDH queries. We represent
the set of queries made to OG as the set of linear polynomials

{a(t)
1 r + a

(t)
2 rx+ a

(t)
3 ry + a

(t)
4 ((1− b)rxy + bz) + a

(t)
5 }t∈[T ′],

and the set of queries made to OfDDH as

{b(t)1 r + b
(t)
2 rx+ b

(t)
3 ry + b

(t)
4 ((1− b)rxy + bz) + b

(t)
5 ,

c
(t)
1 r + c

(t)
2 rx+ c

(t)
3 ry + c

(t)
4 ((1− b)rxy + bz) + c

(t)
5 ,

d
(t)
1 r + d

(t)
2 rx+ d

(t)
3 ry + d

(t)
4 ((1− b)rxy + bz) + d

(t)
5 }t∈[T ′′].

First we switch to a hybrid game where r, x, y, z are left as formal variables by the challenger. The challenger
maintains a table mapping polynomials in ZN [r,x,y, z] to labels in L, picking a new uniformly random label
among those unused so far each time A queries OG with a new polynomial. When A queries OfDDH with
three linear polynomials `b, `c, `d, it responds with 0 if and only if `b`c − `d is identically zero over r,x,y, z.
At the end of the game, the challenger draws the values of r, x, y and z from the appropriate distributions.

Now there are two ways in which A can distinguish this from the original game. First, it could query
OG on two separate polynomials that are not the same in ZN [r,x,y, z], but evaluate to the same element
once r, x, y, z are plugged in. Second, it could query OfDDH on `b, `c, `d where `b`c − `d is not identically
zero, but evaluates to zero when r, x, y, z are plugged in. All of these events can be represented by some
non-constant polynomial of total degree at most 6 evaluating to zero over the randomness of r, x, y, z. By
Lemma 1, the probability that any one of them evaluates to zero is negl(λ). Then a union bound over the
O(T 2) polynomials shows that A can notice this change with negl(λ) probability.

Now we argue that any adversary A has advantage 0 in this hybrid game. Regardless of the value of b,
the four initial handles received by A are distinct monomials of the formal variables r,x,y, z. Thus any set
of distinct linear combinations of them will be distinct polynomials over ZN [r,x,y, z], and the answers from
OG will be identically distributed. Thus if A distinguishes, it must do so via a OfDDH query. If b = 0, then
any query to OfDDH returns 0 if and only if
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(b1r + b2rx + b3ry + b4rxy + b5)(c1r + c2rx + c3ry + c4rxy + c5)

−(d1r + d2rx + d3ry + d4rxy + d5) ≡ 0 mod N.

If b = 1, then any query to OfDDH returns 0 if and only if

(b1r + b2rx + b3ry + b4z + b5)(c1r + c2rx + c3ry + c4z + c5)

−(d1r + d2rx + d3ry + d4z + d5) ≡ 0 mod N.

It is clear that if the b = 1 equation is identically zero, then the b = 0 equation is also. Therefore, A can
only distinguish if it finds a query such that the b = 0 equation is identically zero but the b = 1 equation is
not. By expanding the left hand side of each, we see that the only difference lies in the following monomials
(all others being distinct monomials over r,x,y,z with the same coefficient regardless of b):

b = 0 : (b1c4 + b4c1 + b2c3 + b3c2)r2xy

b = 1 : (b1c4 + b4c1)rz + (b2c3 + b3c2)r2xy.

Thus we need a setting of coefficients such that the b = 0 equation is identically zero but

b1c4 + b4c1 6≡ 0 mod N or b2c3 + b3c2 6≡ 0 mod N.

First, since the b = 0 equation is identically zero, we know that

b1c4 + b4c1 ≡ −(b2c3 + b3c2) mod N. (1)

Next, since b1c4 + b4c1 6≡ 0 mod N , let p be a prime such that p | N but p - b1c4 + b4c1. Then either
p - b1c4 or p - b4c1 so assume the former (the other case is symmetric). Thus p - b1. Also, since the b = 0
equation is identically zero, we must have that the coefficients on r2, r2x, and r2y are 0 mod N , so

b1c1 ≡ 0 mod N,

b1c2 + b2c1 ≡ 0 mod N,

b1c3 + b3c1 ≡ 0 mod N.

Since p | N and p is prime, the first equation above shows that p | c1. Combining with the second equation
shows that p | c2 and combining with the third equation shows that p | c3. Thus, p divides the RHS of
Equation 1 which is a contradiction since we started with the assumption that p does not divide the LHS.

3.2 Split-DDH Groups

The previous section demonstrates the feasibility of split-DDH groups. Now we show that such groups can
be used to build identity based encryption. Let G be a split-DDH group with fixed generator g and order N .
Let ID be a space of IDs and let H be a random oracle mapping IDs to group exponents in ZN . We assume
the existence of an f-DDH oracle O(·, ·, ·) that is correct on any fixed instance with overwhelming probability.
This follows from the the fact the f-DDH is easy in split-DDH groups and folklore random self-reduction and
self-correction algorithms for DDH. See [BF01] for definitions of IBE and related security notions.

• KeyGen : Choose s← Z∗N and let msk = s and mpk = gs.

• Extract : On input id ∈ {0, 1}∗, let tid = H(id), skid = gtids, and pkid = gtid .

• Encrypt : On inputm, id ∈ {0, 1}∗, choose ri, ui ← ZN for i ∈ [|m|] and output {mpkri , pk
r−1
i mi+ui(1−mi)

id }i∈[|m|].
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• Decrypt : On input an encryption {ci, di}i and id, output {O(ci, di, skid)}i.

For correctness, note that if mi = 0, we can write the ith input to O as (gsri , gtidu, gtids) where s, u, ri are
uniformly random and independent. This is a valid f-DDH instance with negligibly probability. However,

when b = 1, we can write the inputs as (gsri , gtidr
−1
i , gtids) which is a valid f-DDH instance. Now we argue

security.

Lemma 2. If H is a random oracle, the above scheme is semantically secure under adaptive identity attacks.

Proof. We prove security in the case where A’s challenge messages are one bit long. In other words, A
doesn’t pick two messages, rather, the challenger encrypts a uniformly random bit b. This easily extends to
longer messages via a standard hybrid argument.

Assume the existence of a PPT adversary A that makes n = poly(λ) random oracle queries and wins
the adaptive identity attack game with ε = 1/poly(λ) probability. Following the proof of Boneh-Franklin
security, we show a reduction B that solves r-DDH in G with 1/poly(λ) probability. We reformulate the

r-DDH game to be, given gx, gy, gz, gbx
−1yz+(1−b)u, determine b. First, B chooses an i ← [n]. We condition

on A’s challenge identity id∗ corresponding to its i’th random oracle query, which occurs with probability
1/n. We implicitly set the msk s equal to z and H(id∗) = tid∗ = y. B initializes A with gz. On A’s jth
identity query idj for j 6= i, B will choose a uniformly random tidj ← ZN , return gtidj , and store the mapping
(idj , tidj ). On A’s ith identity query id∗, B returns gy.

Now A’s challenge can be answered as follows. Implicitly setting sr = x, B returns (gx, gbx
−1yz+(1−b)u).

Note that gx
−1yz = gs

−1r−1tid∗s = pkr
−1

id∗ , so this is a valid encryption of the bit b chosen by the r-DDH
challenger. Thus B’s advantage in determining this bit is exactly A’s advantage in determining the bit
encrypted. So overall, we have that B succeeds in the r-DDH game with probability ε/n = 1/poly(λ), a
contradiction.

3.3 CDH Separations

Next, we study the relationship between f-CDH and r-CDH. In the usual setting where the totient of the
group order is known, we refer to [Gal12] Chapter 21, which contains a proof of the polynomial equivalence of
these two assumptions. However, as observed previously (for example in [SS06]), the reduction from r-CDH
to f-CDH seems to require the ability to compute multiplicative inverses of unknown exponents. In a group
where the totient of the group order N is known, this is easy to do by raising to the power of φ(N) − 1.
Otherwise, it seems that the reduction cannot go through. We give heuristic evidence that this is indeed the
case, by showing a separation between the two assumptions in the UO-GGM as well as a separation in the
UF-GGM under a new but plausible computational assumption.

We assume throughout this section that adversaries in the UF-GGM and UO-GGM can generate uni-
formly random elements mod the group order. This is not exactly true, but since the group order N is
known to be bounded above by 2λ, the adversary can pick an integer k such that k mod N is 1/2λ-close to
uniform by picking k uniformly from Z23λ .

We first confirm that r-CDH is random self-reducible in a group of unknown order. This requires showing
a reduction that does not require taking multiplicative inverses mod the group order.

Lemma 3. Consider a group G of order N ∈ [2λ−1, 2λ]. An adversary A that does not know N and solves a
uniformly random r-CDH instance in G with probability ε = 1/poly(λ) implies the existence of an adversary
B that does not know N and solves any fixed r-CDH instance in G with probability ε.

Proof. First observe that the r-CDH problem described above is equivalent to the following: given (gx, gy, gz),

compute gx
−1yz where x← Z∗N , y, z ← ZN , and inverses in the exponent are taken in Z∗N .

Now let (gx, gy, gz) be the fixed r-CDH instance for which we want to compute gx
−1yz. Choose uniform

t, s, u mod the group order and compute

(gxu, g(y+xt)u, gz+xs).
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Note that gxu, gxt and gxs are uniformly random and independent group elements, so this is a uniformly
random r-CDH triple. Solving, we get

g(xu)−1(y+xt)u(z+xs) = gx
−1(xy+xys+xzt+x2st) = gx

−1yz+ys+zt+xst.

Now, gys, gzt, and gxst can all be calculated from the the original three elements. Then we can take the
group inverse of each and divide to recover gx

−1yz.

Theorem 3. r-CDH is (T, ε)-secure in the UO-GGM augmented with an f-CDH oracle, for group order
N ∈ [2λ−1, 2λ], T = poly(λ), and ε = negl(λ).

Proof. Consider the following game. Let f : Z→ [2λ] be a uniformly random function with unknown period
N where 2λ−1 < N < 2λ and N is sampled from a distribution with ω(log(λ)) min-entropy. Further assume
that f is injective within its period. Then consider an adversary with black box access to f and T = poly(λ).
The adversary’s goal is to output a multiple of the period N .

However, with only black box access to f , an adversary can only determine a multiple of the period if
it queries on two inputs that return the same value. For any pair of queries, the probability they differ
by a multiple of the period and thus return the same value is 1/ω(poly(λ)). Then by a union bound, any
adversary with T = poly(λ)) black-box queries wins with probability T 2/ω(poly(λ)) = negl(λ).

Now we assume the existence of a generic adversary A that solves r-CDH with an f-CDH oracle in the UO-
GGM with probability 1/poly(λ). By Lemma 3, we can assume that A succeeds with 1/poly(λ) probability
on any fixed instance. We describe the following reduction B that plays the above game and interacts with f .
Since f is injective within its period, f can be used as a generic group labeling function. B will choose a large
integer x at random, noting that x mod N will be in Z∗N with overwhelming probability, since we are still
assuming the largest prime dividing N has bit length ω(log(λ)). Now B runs A on input (f(x), f(1), f(1)).
B can easily implement group operations (additions) and f-CDH operations (multiplications) over (x, 1, 1)
via black-box queries to f , and during interaction with A will maintain a table mapping integers (arising
from polynomials over x) to labels. Now if A succeeds, it has returned the label of x−1 mod N , which B can
map to an element y such that y ≡ x−1 mod N . Then B simply computes xy − 1 to recover a multiple of
N . Note that B makes the same number of queries to f that A makes to its group operation oracle and B
succeeds with the same probability 1/poly(λ), a contradiction.

We were unable to obtain an unconditional generic separation between f-CDH and r-CDH in the setting
where the factorization of the group order is unknown (i.e. in the UF-GGM model).16 However, we can
obtain the separation if we are willing to make the following knowledge assumption:

Assumption 1. Let A be a PPT that on input an integer N of Θ(λ) bits, outputs an arithmetic circuit
C. Say that with probability ε(λ) over the randomness of A and N , C implements a univariate polynomial
f(·) whose coefficients are not all zero modulo N , but satisfies f(x) ≡ 0 mod N for all x ∈ ZN . Then there
exists an “extractor” A which, given the same inputs as A, can factor N with the same probability ε(λ).

Remarks on Assumption 1. Let N = pq. By elementary number theory and the Chinese Remainder
Theorem, we can show that all polynomials f(x) satisfying the conditions in Assumption 1 take the form
f(x) ≡ (xp − x)r(x) + (xq − x)s(x) mod N for arbitrary (but not both zero) polynomials r(x) and s(x).
Intuitively, it seems that the only way A can output an arithmetic circuit C is to “know” at least one of p
and q, but we were unable to prove this.

We stress that this is a new and ad-hoc assumption, but that its statement is completely independent of
cryptographic groups. In other words, we can show that the problem of separating f-CDH from r-CDH in
the UO-GGM reduces to validating a knowledge assumption concerning arithmetic circuits and factoring.

Unfortunately we were unable to meaningfully relate the strength of Assumption 1 to other cryptographic
assumptions or even to complexity-theoretic statements. In particular, it might be possible to give an
unconditional proof that Assumption 1 holds.

16We note that the existence of such a separation was essentially conjectured by Saxena and Soh [SS06], but that they do
not give any evidence to support the conjecture.
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Thus our purpose in stating this assumption is to mark partial progress towards proving this separation
in the hopes of affirmatively resolving this problem. In the words of Goldwasser and Kalai, this assumption
should be taken as an open invitation to refute or simplify [GK16].

Theorem 4. Under Assumption 1, r-CDH is (T, ε)-secure in the UF-GGM augmented with an f-CDH oracle,
for group order N ∈ [2λ−1, 2λ], T = poly(λ), and ε = negl(λ).

Proof. We refer to [Gal12][21.3] for a proof that r-CDH is random self-correctable, meaning an algorithm
that has 1/poly(λ) success probability on a random r-CDH instance can be boosted to one with 1− negl(λ)
success probability on a random instance. We note this self-correction algorithm works even if the group
order is unknown, as it does not require inverses in the exponent.

Then Lemma 3 and the result from [Gal12] can be combined to show that a generic adversary A with non-
negligible advantage in the r-CDH game, given an f-CDH oracle, can be boosted to one that has overwhelming
success probability on any fixed r-CDH instance. Thus we can assume that any A contradicting the theorem
statement actually succeeds on an overwhelming fraction of inputs (σ(x), σ(1), σ(1)). Now we describe a
reduction B that contradicts Assumption 1. On input N , B will let x be a formal variable, and simulate
the generic group and f-CDH oracles over ZN [x], drawing the labeling function σ on the fly. It initializes A
with (σ(x), σ(1), σ(1)) and maintains a table mapping polynomials in ZN [x] to labels. When A returns a
label, B finds which polynomial P over x it corresponds to (represented as a polynomial size circuit). We
are guaranteed that P (x) = x−1 mod N with overwhelming probability over the choice of x. So Q(x) :=
xP (x) − 1 is zero on an overwhelming fraction 1 − ε(λ) of inputs x ∈ ZN . B will choose λ elements ri
uniformly at random from ZN and form the polynomial Q′(x) = Q(x+r1) . . . Q(x+rλ). For any fixed x, the
probability that Q′(x) 6= 0 is at most ε(λ)λ. So by a union bound, the probability that Q′ is not identically
zero is at most Nε(λ)λ ≤ (2ε(λ))λ = negl(λ).

3.4 Split-CDH Groups

The previous section demonstrates the feasibility of split-CDH groups. Observe that split-CDH groups are
very similar to self-bilinear maps [YYHK14] (i.e. symmetric bilinear maps where the target group is the
same as the source group) which in turn are sufficient for instantiating multilinear maps [BS02], since they
allow for taking repeated products in the exponent. Consider the following random generator version of the
Multilinear Computational Diffie Hellman problem:

Definition 5 (r-MCDH). Fix a group description G with generator g and order N . Given (gr, grx0 , . . . , grxn)
compute gr

n∏n
i=0 xi , where r, xi ← ZN

This assumption is quite powerful; for example it has been shown to imply multiparty non-interactive
key exchange with trusted setup [BS02] and distributed broadcast encryption [YYHK14]. We now show that
the r-MCDH problem is hard in any split-CDH group.

Lemma 4. No PPT adversary A can solve r-MCDH with 1/poly(λ) probability in a split-CDH group with
order N of bit length Θ(λ).

Proof. Say there exists an adversary A such that given (gr, grx0 , . . . , grx0) and an f-CDH oracle, computes
gr
n∏n

i=0 xi with 1/poly(λ) probability. Define the reduction B attacking r-CDH, which receives ga, gb, gc as
input. It picks z2, . . . , zn uniformly at random, letting s :=

∏n
i=2 zi. Give (gas, gb, gc, gz2 , . . . , gzn) as input

to A. We are implicitly setting r = as, x0 = a−1s−1b, x1 = a−1s−1c, x2 = a−1s−1z2, . . . , xn = a−1s−1zn.
Then rn

∏n
i=0 xi = ansna−(n+1)s−(n+1)bcs = a−1bc, so if A is successful in breaking r-MCDH, it returns the

solution to B’s r-CDH instance.

3.5 Discrete Log

To conclude, we observe that unlike DDH and CDH, the fixed and random generator versions of discrete
log are polynomially equivalent in the three settings we consider. The random generator variant is clearly
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at least as hard as the fixed generator variant, so we just give the following reduction, which we believe is
likely folklore.

Lemma 5. If r-Dlog is (T = poly(λ), ε = negl(λ))-secure in the GGM (or UF-GGM or UO-GGM) with
group order N ∈ [2λ−1, 2λ], then f-Dlog is
(poly(λ), negl(λ))-secure.

Proof. Assume the existence of an adversary A with T = poly(λ) queries that solves f-Dlog with 1/poly(λ)
probability. We first show that in the UO-GGM, there exists a reduction B with poly(λ) queries which uses
A to determine the group order. B will repeatedly pick random integers t such that t mod N is negligibly
close to uniformly random, and query A on each t. If A is successful, it returns t′ ≡ t mod N . In this case
N | t− t′, and this can be tested by querying the generic group oracle on two integers t− t′ apart and seeing
if the same handle is returned. By repeating a poly(λ) number of times, eventually A will be successful and
B will recover a random multiple of N . This can be repeated to obtain many multiples of N and B finishes
by taking the GCD.

Thus we can assume to be in the UF-GGM or regular GGM. Now we describe a reduction C which uses
A to solve r-Dlog. On input σ(x), σ(xy), C will query A on both. A is successful on both with 1/poly(λ)
and in this case C recovers x and xy in the clear. Now since N is known, C can calculate x−1 mod N via the
Extended Euclidean algorithm and multiply the result with xy to recover y.

4 A Black Box Separation Between Random-Generator CDH and
NIKE

We show a limit to the power of split-CDH groups. As discussed in the introduction, the r-CDH assumption
can suffice for setupless Diffie-Hellman key exchange in groups where the factorization of the order is known
(when r-CDH and f-CDH are equivalent).

4.1 Our Techniques

In the classic Diffie-Hellman scheme, Alice draws a random a and sends ga, Bob draws a random b and sends
gb, and the two agree on gab. We show that in certain split-CDH groups, a large class of protocols that general-
ize this idea cannot be secure. In particular, we will allow Alice to draw a vector of n = poly(λ) random values

~x = (x1, . . . , xn), compute m different multivariate polynomials ~R(~x) = (R1(x1, . . . , xn), . . . , Rm(x1, . . . , xn))

over these values, and send g
~R(~x) as her message (interpreted as the m group elements obtained by raising

g to each component of ~R(~x)). Bob does the same, sending the message g
~R(~y).

To agree on a group element, Alice and Bob compute gP (~R(~x),~y) = gP (~R(~y),~x) for some polynomial P .
Ideally, security is argued the same way as in standard Diffie-Hellman. We want to show that there exists
a polynomial P so that Alice and Bob can agree on a group element, and that this group element looks

random to an adversary who only sees g
~R(~x) and g

~R(~y).
To prove the insufficiency of r-CDH alone, we first prove Lemma 6. This is a purely mathematical claim

that whenever P and ~R satisfy P (~R(~x), ~y) = P (~R(~y), ~x), there in fact exists another polynomial Q such that

Q(~R(~x), ~R(~y)) = P (~R(~x), ~y) = P (~R(~y), ~x). If an adversary can break f-CDH with overwhelming advantage17,
an adversary can break security by simply computing Q in the exponent.

This of course requires Q to be efficiently computable, which places a number of restrictions on the
parameters this separation applies to. We also remark that the following separation only holds in split-CDH
groups in which the adversary can calculate multiplicative inverses of constants mod the group order. This
is not a generic feature of split-CDH groups, but holds for example in split-CDH groups of known order but
unknown factorization. The reason for this restriction is that we must represent the coefficients of the Ri, P ,
and Q polynomials below as rational numbers.

17This can be achieved by applying self-correction to an algorithm breaking f-CDH with any non-negligible advantage, see
e.g. [Gal12] Section 21.3
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4.2 Separating r-CDH and setupless NIKE

We first define the generalized Diffie-Hellman protocols we consider, which we call “polynomial-based” non-
interactive key exchange.

Definition 6. Polynomial-based non-interactive key exchange (NIKE) with parameters (n,m, d) is a non-
interactive key exchange protocol taking the following form:

• Fix a group G with order p and associated generator g, a vector of n-variate polynomials ~R =
(R1, . . . , Rm) and an m+ n-variate polynomial P such that

P (~R(~x), ~y) ≡ P (~R(~y), ~x) mod N

where ~x and ~y are each vectors of n formal variables and the total degree of P over ~x and ~y is d.

• Alice chooses x1, . . . , xn ← Zp and publishes g
~R(x1,...,xn).

• Bob chooses y1, . . . , yn ← Zp and publishes g
~R(y1,...,yn).

• Alice uses the f-CDH oracle to compute k = P (~R(y1, . . . , yn), x1, . . . , xn) in the exponent and Bob uses
the f-CDH oracle to compute
k = P (~R(x1, . . . , xn), y1, . . . , yn) in the exponent, and gk is the shared secret.

This class of NIKE schemes includes basic Diffie-Hellman, as well as natural extensions that would take
advantage of the extra functionality given by an f-CDH oracle.

Theorem 5. In a split-CDH group of known order, there does not exist secure polynomial-based NIKE with
(n = poly(λ),m = poly(λ), d = O(1)) or (n = poly(λ),m = O(1), d = poly(λ)).

Notation. We will use the notation deg~x(P (~x, ~y)) to denote the total degree of a polynomial P over only
the x1, . . . ,xn formal variables (i.e. treating the y1, . . . ,yn formal variables as part of the “coefficients”),
and define deg~y(P (~x, ~y)) analogously. For polynomials over only the ~x variables, we drop the subscript and
let deg(P (~x)) denote the total degree. Similarly, we let coeffs~x(P (~x, ~y)) denote the vector of all coefficients
of P (~x, ~y) when only the x1, . . . ,xn are treated as formal variables (i.e. the coefficients are themselves
polynomials over y1, . . . ,yn), and we define coeffs~y(P (~x, ~y)) analogously; as before, we drop the subscript
when only one set ~x or ~y of formal variables are used. We define the maximum number of monomials in an
n-variate polynomial of total degree d to be kn,d :=

∑d
i=0

(
i+n−1
n−1

)
.

Proof. Lemma 6 below, applied with P1 = P2, shows that for any such scheme, there exists a fixed polynomial
Q over the exponents of the public group elements that evaluates to the exponent of the shared secret key.
Furthermore, the number of monomials in Q will be at most k2m,d = poly(λ), so can be efficiently computed
with an f-CDH oracle.

Lemma 6. Let ~x = (x1, . . . ,xn) and ~y = (y1, . . . ,yn) each denote length n vectors of formal variables.

Let ~R denote a length m vector of n-variate polynomials (R1(·), . . . , Rm(·)), let ~R(~x) denote the result of
evaluating (R1(~x), . . . , Rm(~x)).

Suppose there exists two (m+ n)-variate polynomials P1, P2 such that

P1(~R(~x), ~y) ≡ P2(~R(~y), ~x)

as polynomials over formal variables x1, . . . ,xn,y1, . . . ,yn. Let

d = max{deg~x(P1(~R(~x), ~y)), deg~x(P2(~R(~y), ~x))

deg~y(P1(~R(~x), ~y)), deg~y(P2(~R(~x), ~y))}.
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Then there exists a 2m-variate polynomial Q of total degree at most 2d such that

Q(~R(~x), ~R(~y)) ≡ P1(~R(~x), ~y)

as polynomials over the same formal variables.

Proof. We consider the set of polynomials J(x) that can be represented as A(~R(~x)) for some m-variate

polynomial where deg(A(~R(~x))) ≤ d. Observe that the set of such J(x) form a linear subspace of the set of

all n-variate polynomials over ~x with degree at most d. Let ~v = coeffs(A(~R(~x))) denote the kn,d-dimensional

vector of coefficients of A(~R(~x)) (writing the coefficients according to some fixed ordering on the monomials),
where kn,d defined above is the number of monomials over n variables of total degree at most d. Then there

exists some kn,d×kn,d dimensional matrix C(~R) such that C(~R) ·~v = 0 if and only if the polynomial satisfying

coeffs(p(~x)) = ~v is of the form p(~x) = A(~R(~x)) for some m-variate polynomial A(·). In other words, the

set of polynomials A(~R(~x)) form a linear subspace; in particular the subspace is spanned by the coefficient
vectors corresponding to

∏m
i=1Ri(~x)ai for each choice of {ai} where

∑
i airi ≤ d, ai ≥ 0 where ri denotes

the degree of Ri.
We can extend this characterization to describe the set of polynomials J(~x, ~y) which can be written as

A(~R(~x), ~y) for some (m+ n)-variate polynomial A(·) where max{deg~x(A(~R(~x), ~y)),deg~y(A(~R(~x), ~y))} ≤ d.
This follows from viewing J as a polynomial over only the x1, . . . ,xn formal variables, so that the coefficients
are now themselves polynomials over the y1, . . . ,yn formal variables. In other words, if coeffs~x(J(~x, ~y))
denotes the coefficients of J(~x, ~y) when viewed as a polynomial over the x1, . . . ,xn formal variables, then

J(~x, ~y) can be written in the form A(~R(~x), ~y) if and only if C(~R) · ~v(~y) = 0.
Observe that ~v(~y) can be written in the form V ·powers(~y, d) where V is a kn,d×kn,d dimensional matrix

consisting of the coefficients of J(~x, ~y) (taking the coefficients to be field elements, not polynomials) whose
rows are indexed by monomials on the ~x variables and columns are indexed by monomials on the ~y variables,
and powers(~y, d) denotes the kn,d-dimensional vector of all monomials of degree at most d over the y1, . . . ,yn
formal variables.

Then the following three statements are equivalent:

• J(~x, ~y) can be written as A(~R(~x, ~y)) for some (m+ n)-variate polynomial A.

• C(~R) · ~v(~y) ≡ 0kn,d .

• C(~R) · V = 0kn,d×kn,d .

The equivalence between the last two statements follows immediately from the fact that C(~R) · ~v(~y) ≡ 0kn,d

holds if and only if this vector of kn,d formal polynomials is a vector of kn,d identically zero polynomials,
which holds if and only if all the coefficients of these formal polynomial equal 0; the coefficients of the

polynomial in the ith entry of C(~R) · ~v(~y) are precisely the ith row of V .
We can apply a symmetric argument to say that the same polynomial J(~x, ~y) can also be written in

the form A′(~R(~y), ~x) for some m-variate A′(·) if and only if C(~R) · V > = 0kn,d×kn,d . This means that if a

polynomial J(~x, ~y) can be written as both A(~R(~x), ~y)) for some A(·) as well as A′(~R(~y), ~x), for some A′(·),
then its coefficient matrix V satisfies

C(~R) · V = C(~R) · V > = 0kn,d×kn,d .

The possible matrices V satisfying the above are spanned by rank 1 matrices ~wi·~w>i where C(~R)·~wi = 0kn,d .
For any ~wi · ~w>i satisfying

C(~R) · ~wi · ~w>i = C(~R) · ~wi · ~w>i = 0kn,d×kn,d ,
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we note that the corresponding polynomial Wi(~x, ~y) satisfying ~wi · ~w>i =
coeffs(Wi(~x, ~y)) factors as Wi(~x, ~y) = W ′i (~x) ·W ′i (~y) where ~wi = coeffs(W ′i (~x)) = coeffs(W ′i (~y)), and fur-

thermore that W ′i (~x) has the form Ai(~R(~x)) for some m-variate polynomial Ai. We can therefore write

Wi(~x, ~y) = Ai(~R(~x)) ·Ai(~R(~y)).

Since any valid J(~x, ~y) is a linear combination of such Wi(~x, ~y), it follows that J(~x, ~y) = Q(~R(~x), ~R(~y))
for some polynomial Q. Note that the total degree of each Wi is at most d, so the total degree of the resulting
Q is at most 2d.

5 Lower Bounds for Random Generator Discrete Log and CDH

We proceed to give tight lower bounds (up to logarithmic factors) for r-DLog and r-CDH in the AI-GGM,
making use of the following special case of a lemma due to Yun [Yun15].

Lemma 7 (Search-by-Hyperplane-Queries [Yun15] (SHQ)). Consider drawing z1, z2 uniformly at random
from ZN , and allowing an adversary A hyperplane queries of the form (a1, a2, b) where 1 is returned if
a1z1 + a2z2 = b and 0 otherwise. Then the probability that A outputs (z1, z2) after q hyperplane queries is
at most q2/N2.

Theorem 6. The r-Dlog problem is ((S, T ), ε)-secure in the AI-GGM for any prime N ≥ 16 and

ε = Õ

(
T 2

N
+

(
ST 2

N

)2
)
.

Proof. In the r-Dlog game, the challenger C draws x← Z∗N , y ← ZN and initializesA with (σ(1), σ(x), σ(xy)).
A is successful if it outputs y after at most T generic group queries. We show that r-Dlog is(

(S, T ), O
(
T 2

N + T 2P 2+T 3P
N2

))
-secure in the BF-GGM. Then we can apply Theorem 1 with γ = 1/N to get

the result, noting that T ′ = 3 and log(1/γ) = log(N), so P = Õ(ST ).

A := A2 takes as input the advice string aux generated by A1, makes T adaptive queries {c(t)1 σ(x) +

c
(t)
2 σ(xy)+ c

(t)
3 σ(1)}t∈[T ] to the generic group oracle and receives {σ(c

(t)
1 x+ c

(t)
2 xy+ c

(t)
3 )}t∈[T ] in return. Let

E be the event that there exists an a ∈ P and t ∈ [T ] such that c
(t)
1 x+ c

(t)
2 xy + c

(t)
3 = a and c

(j)
3 6= a. Then

Pr
σ,x,y

[y ← AOG(aux)] ≤ Pr
σ,x,y

[y ← AOG(aux) | E] + Pr
σ,x,y

[y ← AOG(aux) | ¬E].

We begin by analyzing the first probability in the sum. Condition on a particular image L of σ and a
particular set of fixed points P. The following holds for any such choice. We set up a reduction B which
plays the SHQ game defined above and perfectly simulates the generic group game for A. B has access to
L,P, im(P), and hyperplane query access to uniform values z1, z2 in ZN which we implicitly set to be x, xy.
We assume that z1 6= 0, which happens except with probability 1/N . B operates as follows.

• Maintain a table mapping linear polynomials in ZN [z1, z2] to L. For each a ∈ P, record the pair
(a, σ(a)).

• Query the SHQ oracle on hyperplane (1, 0, a) for each a ∈ P. If any query returns 1, record the pair
(z1, σ(a)), otherwise choose a uniform value r from all unused values in L \ im(P) and record (z1, r).
Do the same for z2. Next, store 1 along with its image. If 1 ∈ P this is already done. If not, query
(1, 0, 1) to determine if z1 = 1 and if so store 1 along with the image of z1. Do the same for z2.
Otherwise, draw a uniform value r from all unused values in L \ im(P) and record (1, r). Initialize A
with the images of 1, z1, and z2.
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• When A submits a query c1z1 + c2z2 + c3, subtract each previously stored polynomial Q(z1, z2),
resulting in some polynomial k1z1 +k2z2 +k3. Query the SHQ oracle on (k1, k2,−k3). If 1 is returned,
let s be the element stored along with Q(z1, z2), record (c1z1 + c2z2 + c3, s), and return s to A.
Otherwise, choose a uniform value r from all unused values in L \ im(P), record (c1z1 + c2z2 + c3, r)
and return r.

• If E occurs, B will see a 1 returned by the SHQ oracle on a hyperplane query (k1, k2, k3) for k3 6= 0,
meaning at least one of k1, k2 6= 0. Record this tuple. At the end of the interaction, A will return a
y ∈ ZN . Now B outputs (k3(k1 + k2y)−1, y).

Setting z1 = x and z2 = xy, it is clear that B perfectly simulates the r-Dlog game for A. If E occurs,
we know that k3 = k1x + k2xy = x(k1 + k2y), and k3 6= 0, so k1 + k2y 6= 0. Thus if A is successful and
returns y, B successfully computes x = k3(k1 + k2y)−1. Applying Lemma 7, and noting that B makes less
than 2(P + 1) + T (P + T ) = O(TP + T 2) queries, we get that

Pr
σ,x,y

[y ← AOG(aux) | E] = O

(
T 2P 2 + T 3P + T 4

N2

)
.

To analyze the second probability, we move to a hybrid game in the BF-GGM where x and y are set
to be formal variables x and y at the beginning of the game. The challenger implements group operations
over ZN [x,y], initializing its table with the points in (a, σ(a)) for all a ∈ P. Every time A queries for a new
polynomial, C chooses a uniform element in L \ im(P) among those unused so far. When A outputs a guess
for y at the end of the game, the true value is chosen uniformly at random, so A wins with probability 1/N .
Given that E does not occur, A’s probability of distinguishing these two games is bounded by the probability
that in the original game, two of its T queries are different polynomials over x and y but evaluate to the

same element, or there exists some query c
(j)
1 x + c

(j)
2 xy + c

(j)
3 such that c

(j)
1 x+ c

(j)
2 xy = 0 and at least one

of c
(j)
1 , c

(j)
2 6= 0. So there are O(T 2) possible equations that could be satisfied and by Schwartz-Zippel, each

occurs with probability O(1/N) over the random choice of x and y. Thus by a union bound, A’s probability
of distinguishing is O(T 2/N).

Combining, we have that A’s probability of success is

O

(
T 2P 2 + T 3P + T 4

N2

)
+O

(
T 2

N

)
+O

(
1

N

)
= O

(
T 2

N
+
T 2P 2 + T 3P

N2

)
.

.

Theorem 7. The r-CDH problem is ((S, T ), ε)-secure in the AI-GGM for any prime N ≥ 16 and

ε = Õ

(
T 2

N
+

(
ST 2

N

)2
)
.

Proof. In the r-CDH game, the challenger C draws uniformly random a ← Z∗N , x, y ← ZN and initializes
A with σ(1), σ(a), σ(ax), σ(ay). A is successful if it outputs σ(axy) after at most T generic group queries.

We show that r-CDH is
(

(S, T ), O
(
T 2

N + T 2P 2+T 3P
N2

))
-secure in the BF-GGM and apply Theorem 1 with

γ = 1/N to get the result, noting that T ′ = 4 and log(1/γ) = log(N), so P = Õ(ST ).

A := A2 takes as input the advice string aux generated by A1, makes T adaptive queries {c(t)1 σ(ax) +

c
(t)
2 σ(ay)+c

(t)
3 σ(a)+c

(t)
4 σ(1)}t∈[T ] to the generic group oracle, and receives {σ(c

(t)
1 ax+c

(t)
2 ay+c

(t)
3 a+c

(t)
4 )}t∈[T ]

in return. We define a number of events:

• E1: there exists a t ∈ [T ] and i ∈ {1, 2, 3, 4} such that c
(t)
i ∈ {x, y}.

• E2: there exists a t ∈ [T ], p ∈ P such that c
(t)
1 ax+ c

(t)
2 ay + c

(t)
3 a+ c

(t)
4 = p with c

(t)
1 6= 0 or c

(t)
2 6= 0.
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• E3: there exists a t ∈ [T ], p ∈ P such that c
(t)
1 ax+ c

(t)
2 ay + c

(t)
3 a+ c

(t)
4 = p with c

(t)
1 , c

(t)
2 = 0, c

(t)
3 6= 0.

Now we can write

Pr
σ,a,x,y

[σ(axy)← AOG(aux)] ≤ Pr
σ,a,x,y

[E1]

+ Pr
σ,a,x,y

[σ(axy)← AOG(aux) | ¬E1 ∧ E2]

+ Pr
σ,a,x,y

[σ(axy)← AOG(aux) | ¬(E1 ∨ E2) ∧ E3]

+ Pr
σ,a,x,y

[σ(axy)← AOG(aux) | ¬(E1 ∨ E2 ∨ E3)].

To analyze the first probability in the sum, we set up a simple reduction to r-Dlog in the BF-GGM. Assume

that c
(t)
i = x in E1, the other case being symmetric. Then B will take as input σ(a), σ(ax), draw y uniformly

at random, and simulate A’s view of the generic group oracle with input σ(1), σ(a), σ(ax), σ(ay). This is
possible since all of A’s queries will be linear in a and ax. Whenever A makes a query c1ax+c2ay+c3a+c4,
B will query its own oracle on ciσ(a) for each i ∈ {1, 2, 3, 4}. If any queries result in the same handle as
σ(ax), B has determined x and will return it. Since E1 occurs, this will eventually happen. The number of
queries B makes to its oracle is 5 times that of A, meaning we can appeal to the proof of Theorem 6 to say
that

Pr
σ,a,x,y

[E1] = O

(
T 2

N
+
T 2P 2 + T 3P

N2

)
.

To analyze the second probability in the sum, we follow the proof of Theorem 6, setting up a reduction
B which plays the SHQ game. We only describe the differences. B’s goal will still be to output (z1, z2),
except now we let B draw uniform a ← Z∗N at the beginning of the game and implicitly set z1 = ax and
z2 = ay. We assume that z1, z2 6= 0 (so also that x, y 6= 0), with a O(1/N) loss in success probability. If A
is successful, B has the following equations at the end of the game (where the second equation comes from
mapping σ(axy) back to the polynomial associated with it):

• c(t)1 ax+ c
(t)
2 ay + c

(t)
3 a+ c

(t)
4 = p, with c

(t)
1 6= 0 or c

(t)
2 6= 0.

• k1ax+ k2ay + k3a+ k4 = axy.

There are 3 cases. First let both c
(t)
1 , c

(t)
2 6= 0. Write x = (p − c(t)4 − c

(t)
3 a − c(t)2 ay)(c

(t)
1 )−1a−1 from the

first equation and plug into the second equation. This results in a quadratic equation over y with non-zero

coefficient −c(t)2 a(c
(t)
1 )−1 on y2. Solve for y and plug in to the first equation to recover x and thus z1 = ax

and z2 = ay.

Now say that c
(t)
1 6= 0 but c

(t)
2 = 0. Then solve for x = (p−c(t)4 −c

(t)
3 a)(c

(t)
1 )−1a−1 which can be recovered

in the clear since there is no term involving y and B knows a. Then plug in a and x to the second equation,
resulting in a linear polynomial over y with coefficient on y equal to a(k2 − x). Since E1 does not occur (so

k2 6= x), we know this coefficient is non-zero, so B can successfully solve for y. The case where c
(t)
1 = 0 but

c
(t)
2 6= 0 is symmetric. Thus by Lemma 7,

Pr
σ,a,x,y

[σ(axy)← AOG(aux) | ¬E1 ∧ E2] = O

(
T 2P 2 + T 3P + T 4

N2

)
.

To analyze the third probability in the sum, we again set up a reduction B which plays the SHQ game.

This time we implicitly set z1 = a and z2 = ax. Since we have a query such that c
(t)
3 a+c

(t)
4 = p, B determines

the value of a. Then B learns k1as + k2ay + k3a + k4 = axy. The coefficient of ax is k1 − y, and since we
know k1 6= y, this allows B to solve for ax. So again we have

Pr
σ,a,x,y

[σ(axy)← AOG(aux) | ¬(E1 ∨ E2) ∧ E3] = O

(
T 2P 2 + T 3P + T 4

N2

)
.
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Finally, to determine the fourth probability, we can repeat exactly the same analysis from Theorem 6,
moving to a hybrid where a, x, and y are formal variables. We again obtain a distinguishing advantage of
O(T 2/N). Combining all probabilities, we get that A’s probability of success is

O

(
T 2

N
+
T 2P 2 + T 3P

N2

)
.

6 Non-Malleable Point Obfuscation

In this section, we construct a non-malleable point obfuscator secure against polynomial mauling attacks,
which were first considered by Komargodski and Yogev [KY18a]. We first briefly review relevant definitions.

6.1 Definitions

Denote by Ix the function that returns 1 on input x and 0 otherwise.

Definition 7. (Point Obfuscation) A point obfuscator for a domain {Xλ}λ of inputs is a PPT Obf that
takes as input a point x ∈ Xλ and outputs a circuit such that the following hold.

• Functionality Preservation: For all λ ∈ N, there exists a negligible function µ such that for all
x ∈ Xλ,

Pr[Obf(x) ≡ Ix] = 1− µ(λ).

• Virtual Black Box (VBB) Security: For all PPT A and any polynomial function p, there exists
a PPT S such that for all x ∈ Xλ and any predicate P : Xλ → {0, 1}, and all large enough λ,∣∣Pr[A(Obf(x)) = P (x)]− Pr[SIx(Obf(x)) = P (x))]

∣∣ ≤ 1

p(λ)
.

We give another property of point obfuscators first considered in [Can97] and re-defined in [BC14].

Definition 8 (Distributional Indistinguishability). Let {Xλ}λ be a family of domains. Then a point obfus-
cator Obf for {Xλ}λ satisfies Distributional Indistinguishability if for all PPT A and well-spread ensembles
of distributions {Dλ}λ over {Xλ}λ, there exists a negligble function µ(λ) such that

|Pr[A(Obf(x)) = 1]− Pr[A(Obf(u)) = 1]| = µ(λ),

where x← Dλ and u is drawn from the uniform distribution over Xλ.

[Can97, BC14] show that Distributional Indistiguishability is equivalent to VBB security for point ob-
fuscators. Now we give the [KY18a] definition of non-malleability. This definition involves the notion of a
Verifier algorithm, which simply checks that the potentially mauled obfuscation is valid.

Definition 9. (Verifier) A PPT V for a point obfuscator Obf for an ensemble of domains {Xλ}λ is called a
Verifier if for all λ ∈ N and x ∈ Xλ, it holds that Pr[V(Obf(x)) = 1] = 1, where the probability is taken over
the randomness of V and Obf.

Definition 10. (Non-malleable Point Function Obfuscation) Let Obf be a point function obfuscator for an
ensemble of domains {Xλ}λ with an associated verifier V. Let {Fλ}λ = {f : Xλ → Xλ}λ be an ensemble of
families of functions, and let {Dλ}λ be an ensemble of distributions over Xλ. Then Obf is a non-malleable
point obfuscator for F and D if for any PPT A, there exists a negligible function µ such that for any λ ∈ N,

Pr[V(C) = 1, f ∈ Fλ, C ≡ If(x) | x← Dλ, (C, f)← A(Obf(x))] ≤ µ(λ).
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In the following, we rely on the existence of a pseudo-deterministic GroupGen algorithm that may use
randomness, but on input the security parameter 1λ outputs a unique description of a group Gλ with a
unique generator g and prime order p(λ) ∈ [2λ−1, 2λ]. As discussed in the introduction, this would involve
psuedo-deterministic generation of large primes. This is not provably efficient, but we can rely for example on
Cramer’s conjecture to argue efficiency. See [GG11] for further discussion on psuedo-deterministic algorithms,
including group generator generation.

6.2 Assumptions

Assumption 2. Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let {Dλ} be a family of
well-spread distributions where the domain of Dλ is Zp(λ). Then for any n = poly(λ), for any PPT A,∣∣∣Pr[A({ki, gkix+xi}i∈[2,...,n]) = 1]− Pr[A({ki, gkir+r

i

}i∈[2,...,n]) = 1]
∣∣∣ = negl(λ),

where x← Dλ, r ← Zp(λ), and ki ← Zp(λ).

Assumption 3. Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let {Dλ} be a family of
well-spread distributions where the domain of Dλ is Zp(λ). Then for any n = poly(λ), for any PPT A,

Pr[gx ← A({ki, gkix+xi}i∈[2,...,n])] = negl(λ),

where x← Dλ and ki ← Zp(λ).

.

Lemma 8. Assumption 2 implies Assumption 3.

Proof. We first give the following intermediate assumption. For binary strings s1, s2, let 〈s1, s2〉 denote their
inner product mod 2.

Assumption 4. Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let σ : Gλ → {0, 1}`(λ) be an
arbitrary embedding of group elements into binary strings. Let {Dλ} be a family of well-spread distributions
where the domain of Dλ is Zp(λ). Then for any n = poly(λ), for any PPT A,∣∣∣Pr[A(s, 〈s, σ(gx)〉, {ki, gkix+xi}i∈[2,...,n]) = 1]

− Pr[A(s, 〈s, σ(gx)〉, {ki, gkir+r
i

}i∈[2,...,n]) = 1]
∣∣∣ = negl(λ),

where x← Dλ, r ← Zp(λ), ki ← Zp(λ), and s← {0, 1}`(λ).

First we argue that Assumption 2 implies Assumption 4. Say there exists an adversary A and well-
spread distribution ensemble {Dλ} such that A breaks Assumption 4. Then for infinitely many λ, there

exists a fixed string s∗λ for which A distinguishes with 1/poly(λ) advantage. Let D(0)
λ be the distribution

Dλ restricted to x such that 〈s∗λ, σ(gx)〉 = 0 and define D(1)
λ analogously. Now there are two cases. If

Pr[〈s∗λ, σ(gx)〉 = b | x← Dλ] = negl(λ) for some bit b, then A must break Assumption 2 when x← D(1−b)
λ ,

sinceD(1−b)
λ is negligibly close toDλ, and since (s, 〈s, σ(gx)〉) can be fixed to be constant parameters (s∗λ, 1−b).

Otherwise, both D(0)
λ and D(1)

λ have ω(log(λ)) min-entropy. Obverse that there must be a fixed bit b for
which A distinguishes with 1/poly(λ) advantage when s = s∗λ and 〈s∗λ, σ(gx)〉 = b. But this is exactly the

Assumption 2 distinguishing game with well-spread distribution D(b)
λ . Thus there exists a distribution for

which A breaks Assumption 2 for infinitely many settings of λ.
Next we argue that Assumption 4 implies Assumption 3. Assume the existence of an adversary A that

succeeds in the Assumption 3 game with non-negligible probability ε(λ). Consider the following reduction

B that takes as input s, b := 〈s, σ(gx)〉 and either {ki, gkix+xi}i∈[2,...,n] or {ki, gkir+r
i}i∈[2,...,n]. It forwards
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its set of n− 1 group elements to A, which returns some group element h. B outputs 1 if 〈s, σ(h)〉 = b. If B
received {ki, gkir+ri}i∈[2,...,n], then the view of A is independent of s and gx. Thus we can imagine drawing
s and x after A has returned the group element h. We condition on h 6= gx, which occurs with overwhelming
probability due the min-entropy requirement on x. Then the probability B outputs 1 is the probability that
〈s, (σ(gx) − σ(h))〉 = 0, which is exactly 1/2 since σ(gx) − σ(h) 6= 0`(λ). So overall, the probability that B
outputs 1 is at most 1/2 + negl(λ). Now if B received {ki, gkix+xi}i∈[2,...,n], then with probability ε(λ), A
returns h = gx and with probability 1 − ε(λ), A returns h = gy for some y 6= x. Since s is independent
of A’s view, we can use the same argument to show that in this latter case, B outputs 1 with probability
exactly 1/2. In the former case, B outputs 1 with probability 1. Then overall, B outputs 1 with probability

ε(λ) + 1
2 (1− ε(λ)) = 1

2 + ε(λ)
2 , which is non-negligibly greater 1

2 + negl(λ), thus breaking Assumption 4.

6.3 The Obfuscator

Our obfuscation consists of three scalars and three group elements. We remark that the first group element
is sufficient for our proof on non-malleability, but that we include the next two to obtain functionality
preservation.

• Obf(1λ, x): Compute GroupGen(1λ) = (Gλ, g, p(λ)). Draw a, b, c← Zp(λ) and output

a, b, c, gax+x2+x3+x4+x5

, gbx+x6

, gcx+x7

.

• Eval(1λ, (a, b, c, ha, hb, hc), x): Compute GroupGen(1λ) = (Gλ, g, p(λ)). Accept if and only if

ha = gax+x2+x3+x4+x5

, hb = gbx+x6

, hc = gcx+x7

.

Theorem 8. The above point obfuscator satisfies functionality preservation.

Proof. Fix a point x ∈ Zp(λ). We show the probability that there exists a y 6= x such that Eval(1λ,Obf(1λ, x), y)
accepts is at most 4/p(λ)2. Union bounding over all x completes the proof.

The randomness in Obf consists of the elements a, b, c. Fix just a for now and let t = ax+x2+x3+x4+x5.
Then any y which causes Eval to accept satisfies ay+y2+y3+y4+y5 = t. This leaves four possible y 6= x. For
each such y, we write P (b) = (x6−y6)+(x−y)b and Q(c) = (x7−y7)+(x−y)c which are linear polynomials
over b and c respectively with non-zero linear coefficient. Then y only causes Eval to accept if P (b) = 0 and
P (c) = 0. But these occur simultaneously with probability 1/p(λ)2 over the uniform randomness of b, c. So
by a union bound, there exists a y 6= x such that Eval(1λ,Obf(1λ, x), y) accepts with probability at most
4/p(λ)2.

Theorem 9. Under Assumption 2, the above point obfuscator satisfies Virtual Black Box Security.

Proof. The obfuscator satisfies distributional indistinguishability, which follows directly from Assumption 2
with n = 7. A reduction simply receives {ki, hi}i∈[2,...,7] and forms the obfuscation (

∑5
i=2 ki, k6, k7,

∏5
i=2 hi, h6, h7).

As mentioned earlier, this is equivalent to VBB security.

Theorem 10. Let {Dλ} be a well-spread distribution ensemble with domain {Zp(λ)}λ. Let Fpoly = {fλ :
Zp(λ) → Zp(λ)}λ be the ensemble of functions where fλ is the set of non-constant, non-identity polynomials 18

in Zp(λ)[x] with poly(λ) degree. Then under Assumption 2, the above obfuscator is non-malleable for Fpoly
and distribution ensemble {Dλ}.

18Note that constant and identity polynomials correspond to ‘trivial’ mauling attacks that cannot be prevented. A constant
polynomial corresponds to picking an unrelated y and obfuscating y, while the identity polynomial corresponds to doing nothing.
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Proof. First, we fix the verifier to check that the Eval circuit is using the g output by GroupGen(1λ). Now we
show that any mauling adversary A can be used to break Assumption 3, which as seen above follows from
Assumption 2.

We first handle the case where A outputs an f of degree at least 2. Let m ≥ 2 be the degree of A’s
polynomial. We define the following reduction B.

• Receive {ki, hi}i∈[2,...,7m] := {ki, gkix+xi}i∈[2,...,7m] from the Assumption 3 challenger, where x← Dλ.

• Send (
∑5
i=2 ki, k6, k7,

∏5
i=2 hi, h6, h7) to A, which returns (f, a, b, c, ja, jb, jc) where a, b, c ∈ Zp(λ) and

ja, jb, jc are group elements.

• Compute cf(x) + f(x)7 = `0 + `1x+ · · ·+ `7mx
7m.

• Return (jc/(g
`0
∏7m
i=2(h`ii )))1/(`1−

∑7m
i=2 ki`i).

B perfectly simulates the obfuscation for x← Dλ for A, which is guaranteed to return a valid obfuscation
of f(x) with 1/poly(λ) probability. In this case, fc = g`0+`1x+···+`7mx7m

. Then B successfully computes gx

unless `1−
∑7m
i=2 ki`i = 0. We know that `7m 6= 0 and that k7m is uniformly random and independent of A’s

view, so this occurs with probability at most 1/p(λ) = negl(λ). Thus, B breaks Assumption 3 with 1/poly(λ)
probability.

In the case that f is linear, we set up the same reduction B, except for the last two steps.

• Compute af(x) + f(x)2 + f(x)3 + f(x)4 + f(x)5 = `0 + `1x+ · · ·+ `5x
5.

• Return (ja/(g
`0
∏5
i=2(h`ii )))1/(`1−

∑5
i=2 ki`i).

Like before, it suffices to argue that `1 −
∑5
i=2 ki`i 6= 0 except with negligible probability. In this case,

the adversary receives z := k2 + k3 + k4 + k5. Thus letting k5 = z − k2 − k3 − k4, there are 3 free variables
k2, k3, k4 in A’s view. We can then re-write `1 −

∑5
i=2 ki`i 6= 0 as

`1 − `5z + (`5 − `2)k2 + (`5 − `3)k3 + (`5 − `4)k4.

So in order for this to evaluate to 0 with non-negligible probability, each of the coefficients on k2, k3, k4

must be 0. Let f(x) = rx+ s. Then writing out what the `i are, we see that the following must hold.

r5 = 5r4s+ r4 = 10r3s2 + 4r3s+ r3 = 10r2s3 + 6r2s2 + 3r2s+ r2

It is easily verified that the only solutions to the above system are when r = 0 or (r = 1, s = 0).
These correspond to when f is constant or the identity, so we can conclude that if A succeeds in breaking
non-malleability, B breaks Assumption 3 with 1/poly(λ) probability.

7 Justifying Assumptions in the Generic Group Model

We will need some additional background from [CDG18], plus a couple of new simple lemmas. Note that
while we make use of techniques from [CDG18] that establish theorems relating the AI-GGM and BF-GGM,
we never technically operate in the BF-GGM. We need a more fine-grained approach, starting in the plain
GGM and modifying the labeling function and challenger’s game incrementally.
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7.1 Background

Definition 11 ([CDG18]). An (N,M)-injection source Σ is a random variable that takes on as value function
tables corresponding to injections σ : [N ]→ [M ]. An (N,M)-injection source Σ is called (P,L, 1− δ)-dense
for L ⊆ [M ] if it is fixed on at most P coordinates and if for every subset I of non-fixed coordinates,

H∞(ΣI) ≥ (1− δ) log

(
(N − P )!

(N − P − |I|)!

)
,

where ΣI is the random variable Σ restricted to the coordinates in I. When δ = 0, the source is called
(P,L)-fixed.

Remark 3. We denote by AΣ an algorithm that has oracle access to an injection σ drawn from the source
Σ. This means that A can perform forward queries where on input x the oracle returns σ(x) or backward
queries where on input x the oracle returns σ−1(x).

Lemma 9 ([CDG18]). Let Σ be a uniform (N,M)-injection source and f : [M ][N ] → {0, 1}S a potentially
randomized function. Let Σf,x,L be the random variable corresponding to the distribution of Σ conditioned
on f(Σ) = x and im(Σ) = L. Then for any γ > 0, P ∈ N, there exists a family {Yx,L}x,L, indexed by

values x ∈ {0, 1}S and size-N subsets L of [M ], of convex combinations Yx,L of (P,L, 1− S+log(1/γ)
P log(N/e) )-dense

sources, such that Σf,x,L is γ-close to Yx,L. Furthermore, replacing each Yx,L with its corresponding convex
combination Zx,L of (P,L)-fixed sources, we have that for any distinguisher D taking an S-bit input and
making at most T queries to its injection oracle,

|Pr[DΣ(f(Σ)) = 1]− Pr[DZf(Σ),im(Σ)(f(Σ)) = 1]| ≤ 2(S + log 1/γ) · T
P

+ γ.

The above is actually slightly modified from the statement in [CDG18], with the only difference being that
we allow f to be randomized. The only place in their proof that makes use of f being deterministic is Claim
19, essentially that (where everything is conditioned on some range L), Ex[H∞(Σ|f(Σ) = x)] ≥ log(N !)−S.
Their proof of this claim can easily be adapted to allow randomized f . Say that f uses k uniformly random
bits. Then define the deterministic function f ′ : {0, 1}k × [N ][N ] → {0, 1}S that runs f using its first input
as the randomness. Let K be the random variable corresponding to drawing a uniformly random string in
{0, 1}k. Now by averaging, we have that for any x, H∞(Σ|X = x) ≥ H∞((K,Σ)|X = x)−k. Then, following
the proof in [CDG18],

Ex[H∞(Σ|f(Σ) = x)] ≥ Ex[H∞((K,Σ)|f ′(K,Σ) = x)]− k
= Ex[H((K,Σ)|f ′(K,Σ) = x)]− k ≥ log(N !) + k − S − k = log(N !)− S,

where H is Shannon entropy, and the equality is due to the fact that conditioned on x, (K,Σ) is uniform
over all values (r, σ) such that f ′(r, σ) = x.

Lemma 10 ([CDG18]). For any (P,N, 1−δ)-dense (N,N)-injection (bijection) source Y and its correspond-
ing (P,N)-fixed source Z, it holds that for any (adaptive) distinguisher D that makes at most T queries to
its oracle,

|Pr[DY = 1]− Pr[DZ = 1]| ≤ Tδ logN.

Now we give two additional lemmas, useful for proving Theorem 11.

Lemma 11. Let Σ be a uniform (N,N)-injection (bijection) source with log(N) = Θ(λ) and f : [N ][N ] →
{0, 1}S a potentially randomized function. Let Σ′ be the random variable on σ′ that results from drawing σ ←
Σ, x ← f(σ), and then σ′ ← Σf,x,[N ] defined in Lemma 9. Say that for all σ, H∞(X|Σ = σ) = ω(log(λ)).
Then

EΣ′ [max
x
{Pr[X = x|Σ′ = σ]}] = negl(λ).
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Proof. With two applications of Bayes’ Theorem, we see that for any x ∈ {0, 1}S

Pr[X = x|Σ′ = σ] =
Pr[Σ′ = σ|X = x] Pr[X = x]

Pr[Σ′ = σ]
=

Pr[Σ = σ|X = x] Pr[X = x]

Pr[Σ′ = σ]

=

(
Pr[X=x|Σ=σ] Pr[Σ=σ]

Pr[X=x]

)
Pr[X = x]

Pr[Σ′ = σ]
= Pr[X = x|Σ = σ]

(
Pr[Σ = σ]

Pr[Σ′ = σ]

)
.

So plugging in,

EΣ′ [max
x
{Pr[X = x|Σ′ = σ]}] =

∑
σ

max
x
{Pr[X = x|Σ′ = σ]}Pr[Σ′ = σ]

=
∑
σ

max
x
{Pr[X = x|Σ = σ] Pr[Σ = σ]} ≤ max

x,σ
{Pr[X = x|Σ = σ]} = negl(λ).

Lemma 12. Consider n events X1, . . . , Xn such that each event occurs with probability at least α, where

α > 2/n. Then for a uniformly random i, j ← [n], Pr[Xi ∧Xj ] ≥ α2

4 .

Proof. Let m = 2/α < n. Picking a uniform pair i, j is equivalent to picking a uniform subset of size m and
then picking i, j from that set. Let Y1, ..., Ym be these m events, where each still occurs with probability at
least α. Then

1 ≥ Pr[Y1 ∨ · · · ∨ Ym] ≥
∑

1≤i≤m

Pr[Yi]−
∑

1≤i<j≤m

Pr[Yi ∧ Yj ]

=
∑

1≤i≤m

Pr[Yi]−m2 Pr[Yi ∧ Yj : i, j ← [m]]

≥ mα−m2 Pr[Yi ∧ Yj : i, j ← [m]].

Solving for Pr[Yi ∧ Yj : i, j ← [m]] gives 1
m (α− 1

m ) = α2

4 .

.

7.2 Proofs

Theorem 11. Assumption 2 (Section 6) holds in the Generic Group Model.

Proof. We define the following hybrid games.

• Hybrid 0. The Assumption 2 distinguishing game for generic adversary A.

Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let p := p(λ). Sample a uniformly random
injection σ : [p]→ [p′] for an arbitrary p′ > p. Let S : [p′][p] → Zp be a possibly inefficient randomized
algorithm such that H∞(S(σ)|σ) = ω(log(λ)). Sample x← S(σ).

The challenger C receives as input (Gλ, g, p, σ, x), chooses b ← {0, 1}, r, ki ← Zp for i ∈ [2, ..., n], and
initializes the adversary A with {ki, σ(b(kix+xi)+(1−b)(kir+ri))}i∈[2,...n]. The challenger C proceeds
to implement the generic group oracle for A, after which A outputs a guess b′ ∈ {0, 1}. A wins if b′ = b.

• Hybrid 1. In this hybrid, we switch to a “bit-fixing” labeling σ′.

Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let p := p(λ). Sample a uniformly random
injection σ : [p]→ [p′] for an arbitrary p′ > p. Let S : [p′][p] → Zp be a possibly inefficient randomized
algorithm such that H∞(S(σ)|σ) = ω(log(λ)). Sample x← S(σ).
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Let Zx,im(σ) be the family defined as in Lemma 9 (parameterized by some P ∈ N and γ := 1/2λ).
Sample σ′ ← Zx,im(σ)

The challenger C receives as input (Gλ, g, p, σ′, x), chooses b ← {0, 1}, r, ki ← Zp for i ∈ [2, ..., n],
and initializes the adversary A with {ki, σ′(b(kix+ xi) + (1− b)(kir + ri))}i∈[2,...n]. The challenger C
proceeds to implement the generic group oracle for A, after which A outputs a guess b′ ∈ {0, 1}. A
wins if b′ = b.

Now we assume the existence of an adversary A that makes T (λ) = poly(λ) queries and attains non-
negligible advantage ε(λ) in Hybrid 0. Let q(λ) = poly(λ) be such that q(λ) > 1/ε(λ) for infinitely many
λ. Let T := T (λ) and q := q(λ). Set P = 30λT 4q = poly(λ).

Claim 1. A attains advantage at least 1/2q in Hybrid 1.

Consider the following distinguisher D(x), which interacts with an oracle injection source mapping [p]→
[p′], and receives as input x ← S(σ). D simulates the interaction between C and A described in Hybrid 0
and outputs a bit indicating whether A was successful or not. If the injection source that D is interacting
with is σ, then the simulation is exactly Hybrid 0. If it is Zx,im(σ), then the simulation is exactly Hybrid
1.

Applying Lemma 9 with the sampler x ← S(σ) as the function f , we have that the success probability
of A in Hybrid 1 must be at least

ε(λ)− 2T (log p+ log(1/γ))

P
− γ ≥ 1

q
− 4λT

30λT 4q
− 1

2λ
≥ 1

2q
.

We show that A obtaining this advantage leads to a contradiction. Condition on im(σ) = L for some
L where A obtains at least advantage 1/2q. Here Σ is defined as in Lemma 9, except [M ] is fixed to be
L, resulting in a bijection source. We drop subscripts from the associated distributions, so Yx := Yx,L,

Zx := Zx,L, and Σx := ΣS,x,L. The distribution Zx is a convex combination of bit-fixing distributions B(j)
x

with associated fixed points P(j)
x . Let this convex combination be Jx. So to draw σ′ from Zx, we draw

j ← Jx, then σ′ ← B(j)
x .

Now we analyze the adversary’s generic group oracle queries. Any query A makes can be viewed as a
linear polynomial over its challenge elements

`1 +

n∑
i=2

`i(b(kix+ xi) + (1− b)(kir + ri)),

specified by coefficients [`1, ..., `n]. We split these queries into two parts based on whether the linear poly-
nomial is constant or non-constant over the challenge elements (whether there is some i ∈ [2, ..., n] such
that `i 6= 0). We will consider each initial handle that A receives as a non-constant query where `i = 1 for
some i and `j = 0 for j 6= i. Assume without loss of generality that all of A’s queries are distinct linear
combinations.

Note that constant queries are identically distributed in the b = 0 and b = 1 cases. Let Tc denote the
set of constants that are queried by A throughout its interaction. Then observe that if, for both settings of

b, all of A’s non-constant queries result in distinct group elements that each lie outside of the set P(j)
x ∪ Tc,

the oracle responses are identically distributed in both cases. Now, for any T -query adversary that at some
point queries two distinct non-constant linear polynomials that evaluate to the same point, we can define
a T 2-query adversary that at some point queries a non-constant linear polynomial that evaluates to zero.
Redefine A to be this latter adversary. Thus if A distinguishes, it must at some point form a non-constant

query that evaluates to a value in P(j)
x ∪ Tc ∪ {0}.

For a given query t, let T (t)
c denote the set of constants among the first t queries made by A. There must

exist some query t such that both of the following hold with probability 1/(2qT 2).
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• t is non-constant and evaluates to an element in P(j)
x ∪T (t)

c ∪{0} OR t is a constant c and there exists
an earlier non-constant query t′ such that query t′ evaluates to c

• all previous non-constant queries (except perhaps t′) evaluate to an element outside of P(j)
x ∪T (t)

c ∪{0}

Otherwise, by a union bound, A could not obtain distinguishing success 1/(2q). Note that every non-

constant query prior to t except perhaps t′ is answered with a uniformly random value in L\ im(P(j)
x ∪T (t)

c ∪
{0}). Since |P(j)

x ∪ T (t)
c ∪ {0}| = poly(λ), we can imagine instead drawing each response uniformly from L,

which by a union bound will change A’s view with negligible probability. Then A can simulate these answers
itself with uniform randomness, with a negligible difference in success probability.

Now we are left with an adversary A that takes as input {ki} := {ki}i∈[2,...,n], makes at most T 2 queries
to σ′, and outputs a set of coefficients [`1, ..., `n] (representing the non-constant query t or t′). Define

P ′(j)x := P(j)
x ∪ T (t)

c ∪ {0}.
Now we break up the analysis into whether b = 0 or b = 1. If b = 0, we are guaranteed that with

probability 1/(2qT 2)−negl(λ) = 1/poly(λ) over all randomness in the game setup, {ki}, and A, the following
holds.

`1 +

n∑
i=2

`i(kir + ri) ∈ P ′(j)x

But note that r is drawn uniformly at random from a set of size p, independently of A’s view. Thus by
Schwartz-Zippel and a union bound, the above holds with probability at most (T 2 + P + 1)n/p = negl(λ).

Now let b = 1. We are guaranteed that with probability 1/(2qT 2) − negl(λ) over all randomness in the
game setup, {ki}, and A, the following holds:

`1 +

n∑
i=2

`i(kix+ xi) ∈ P ′(j)x .

Redefine A to output the above polynomial Q(x) ∈ Zp[x] on input {ki}. Now accounting for all random-
ness during the course of the game, we have that

Pr
σ←Σ,x←S(σ),j←Jx,
σ′←B(j)

x ,{ki}←Zn−1
p ,A

[Q(x) ∈ P ′(j)x : Q← Aσ
′
({ki})] =

1

2qT 2
− negl(λ).

Now we switch the distribution on σ′ from Z = {Zx}x to Y = {Yx}x. We can still represent Yx in the

same way as Zx except the B(j)
x ’s are replaced by (P, 1 − δ)-dense sources D(j)

x . Referring to the Lemma 9
statement, we have that

δ ≤ 2λ+ log 1/γ

P log(p/e)
≤ 1

10T 4q log(p/e)
.

Now assume towards contradiction that this switch in distribution causes the adversary’s success to
become at most 1/(4qT 2). Then there must exist some fixed choice of σ, x and j such that A’s difference in
success over σ′ and its input is at least 1/(4qT 2)− negl(λ). So we have

Pr
σ′←B(j)

x ,{ki}←Zn−1
p ,A

[Q(x) ∈ P ′(j)x : Q← Aσ
′
({ki})]−

Pr
σ′←D(j)

x ,{ki}←Zn−1
p ,A

[Q(x) ∈ P ′(j)x : Q← Aσ
′
({ki})] ≥

1

4qT 2
− negl(λ).

But now we can define a distinguisher that contradicts Lemma 10. The distinguisher knows the fixed x

and the set of fixed points P(j)
x , and interacts with either B(j)

x or D(j)
x , simulating A making T 2 queries. It

can tell whether A succeeds by plugging x into the polynomial produced and comparing the result to the
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set of fixed points and the set of queries made by A. Yet it can only distinguish with probability at most
T 2δ log p ≤ 1/(5qT 2) which is a contradiction.

Now we imagine picking c uniformly at random from P ′(j)x . Since 1/(4qT 2) = 1/poly(λ) and |P ′(j)x | ≤
T 2 + P + 1 = poly(λ), we can say that

Pr
σ←Σ,x←S(σ),j←Jx,σ′←D(j)

x ,

c←P′(j)x ,{ki}←Zn−1
p ,A

[Q(x) = c : Q← Aσ
′
({ki})] =

1

poly(λ)
.

Now there must exist a 1/poly(λ) fraction of {ki} such that the above holds with probability 1/poly(λ)
on each of those inputs. Denote this set K, where Ki denotes the ith element of the set. We also now give
σ′ as an input to A rather than just giving it oracle access. So we have

Pr
σ←Σ,x←S(σ),j←Jx,
σ′←D(j)

x ,c←P′(j)x ,A

[Q(x) = c : Q← A(σ′,Ki)] =
1

poly(λ)
∀i ∈ [|K|].

Then by Lemma 12, noting that |K| = ω(poly(λ)),

Pr
σ←Σ,x←S(σ),j←Jx,σ′←D(j)

x ,

c←P′(j)x ,A,i1,i2←[|K|]

[
Q1(x) = c = Q2(x) :

Q1 ← A(σ′,Ki1)
Q2 ← A(σ′,Ki2)

]
=

1

poly(λ)
.

Thus we can get rid of c, and are guaranteed that

Pr
σ←Σ,x←S(σ),j←J ,x
σ′←D(j)

x ,A,i1,i2←[|K|]

[
Q1(x)−Q2(x) = 0 :

Q1 ← A(σ′,Ki1)
Q2 ← A(σ′,Ki2)

]
=

1

poly(λ)
.

Now since K is a 1/poly(λ) fraction of the entire domain of {ki}, we can instead pick these sets from the
entire domain, and with 1/poly(λ) probability they will both lie in K. This gives

Pr
σ←Σ,x←S(σ),j←Jx,σ′←D(j)

x ,

A,{k(1)
i },{k

(2)
i }←Z

n−1
p

[
Q1(x)−Q2(x) = 0 :

Q1 ← A(σ′, {k(1)
i })

Q2 ← A(σ′, {k(2)
i })

]
=

1

poly(λ)
.

Now we look at the probability that Q1 and Q2 are distinct polynomials. For any fixed Q, there are at
most a 1/p fraction of sets {ki} such that A({ki}) could possibly output Q. This follows since given some
{ki}, the coefficients on x2, ..., xn in Q determine the `2, ..., `n in A’s linear combination. Then there remains
a 1/p chance that the {`i} and {ki} dot product to the correct linear coefficient in Q. So for uniformly

random choice of the {k(1)
i } and {k(2)

i } sets, there is a negl(λ) chance that the resulting Q1 and Q2 output
by A could possibly be equal.

Let E1 be the event that Q1(x) − Q2(x) = 0 and E2 be the event that Q1 6= Q2. We want to say that
Pr[E1 ∧ E2] = 1/poly(λ). This follows from a simple union bound: Pr[E1 ∧ E2] = 1 − Pr[¬E1 ∨ ¬E2] ≥
1− Pr[¬E1]− Pr[¬E2] = 1− (1− 1/poly(λ))− negl(λ) = 1/poly(λ).

So we redefine A to generate two random sets {k(1)
i } and {k(2)

i } for itself, determine the polynomials
Q1 and Q2, solve for the roots of Q1 − Q2, and output a uniformly random root. Note that the degree of
Q1 −Q2 will be at most n = poly(λ). Thus the following holds:

Pr
σ←Σ,x←S(σ),σ′←Yx,A

[x← A(σ′)] =
1

poly(λ)
.

Now we can switch Yx to Σx, and claim that

Pr
σ←Σ,x←S(σ),σ′←Σx,A

[x← A(σ′)] =
1

poly(λ)
.
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If instead A’s success was negligible after this switch, then there exists a fixed x for which the difference
in success is 1/poly(λ). But Yx and Σx are γ-close with γ = 1/2λ = negl(λ) so this is impossible. Then, we
can write

Pr
σ′←Σ′,A

[x← A(σ′)] =
1

poly(λ)
,

where Σ′ is defined as in Lemma 11. This contradicts Lemma 11.

7.3 Generic Hardness of DDH-II

Assumption 5. (f-DDH-II) Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let {Dλ}λ be a
family of well-spread distributions where the domain of Dλ is Zp(λ). Then for any PPT A,

|Pr[A(gx, gr, gxr) = 1]− Pr[A(gx, gr, gs) = 1]| = negl(λ),

where x← Dλ, and r, s← Zp(λ).

Theorem 12. Assumption 5 holds in the Generic Group Model.

Note that this trivially implies generic security of r-DDH-II.

Proof. We define the following sequence of hybrid games.

• Hybrid 0. The Assumption 5 distinguishing game for generic adversary A.

Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let p := p(λ). Sample a uniformly random
injection σ : [p]→ [p′] for an arbitrary p′ > p. Let S : [p′][p] → Zp be a possibly inefficient randomized
algorithm such that H∞(S(σ)|σ) = ω(log(λ)). Sample x← S(σ).

The challenger C receives as input (Gλ, g, p, σ, x), picks a random challenge bit b← {0, 1}, and samples
uniformly random r, s ← Zp. It initializes the adversary A with (σ(1), σ(x), σ(r), σ(bxr + (1 − b)s)).
The challenger C proceeds to implement the generic group oracle for A, after which A outputs a guess
b′ ∈ {0, 1}. A wins if b′ = b.

• Hybrid 1. In this hybrid, we switch to a bit-fixed labeling σ′

Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let p := p(λ). Sample a uniformly random
injection σ : [p]→ [p′] for an arbitrary p′ > p. Let S : [p′][p] → Zp be a possibly inefficient randomized
algorithm such that H∞(S(σ)|σ) = ω(log(λ)). Sample x← S(σ).

Let Zx,im(σ) be the family defined as in Lemma 9 (parameterized by some P ∈ N and γ := 1/2λ).
Sample σ′ ← Zx,im(σ), letting P denote the fixed points between σ and σ′.

The challenger C receives as input (Gλ, g, p, σ′, x), picks a random challenge bit b← {0, 1}, and samples
uniformly random r, s← Zp. It initializes the adversary A with (σ′(1), σ′(x), σ′(r), σ′(bxr+ (1− b)s)).
The challenger C proceeds to implement the generic group oracle for A, after which A outputs a guess
b′ ∈ {0, 1}. A wins if b′ = b.

• Hybrid 2. In this hybrid, we switch s, r from uniformly random values to formal variables s, r.

Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let p := p(λ). Sample a uniformly random
injection σ : [p]→ [p′] for an arbitrary p′ > p. Let S : [p′][p] → Zp be a possibly inefficient randomized
algorithm such that H∞(S(σ)|σ) = ω(log(λ)). Sample x← S(σ).

Let Zx,im(σ) be the family defined as in Lemma 9 (parameterized by some P ∈ N and γ := 1/2λ).
Sample σ′ ← Zx,im(σ), letting P denote the fixed points between σ and σ′.

The challenger C receives as input (Gλ, g, p, σ′,P, x), and picks a random challenge bit b← {0, 1}. Fix
formal variables r, s. The challenger C interprets the intial elements given to A and A’s oracle queries
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as formal polynomials over Zp[r, s], and responds differently based on the resulting formal polynomial.
If the polynomial is a constant value k with no dependence on r or s, C answers with σ′(k) as in Hybrid
1. Otherwise, C samples a uniformly random value from im(σ′)\ im(P) and responds with this (unless
the formal polynomial has been queried before, in which case C responds with the label it returned on
the earlier query). A outputs a guess b′ ∈ {0, 1}, and A wins if b′ = b.

• Hybrid 3. In this hybrid, we change the game. We don’t consider formal variables r, s, or have the
challenger pick b. Instead, we only give A the handle σ′(x) and require that it return the value x to
be considered successful.

Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let p := p(λ). Sample a uniformly random
injection σ : [p]→ [p′] for an arbitrary p′ > p. Let S : [p′][p] → Zp be a possibly inefficient randomized
algorithm such that H∞(S(σ)|σ) = ω(log(λ)). Sample x← S(σ).

Let Zx,im(σ) be the family defined as in Lemma 9 (parameterized by some P ∈ N and γ := 1/2λ).
Sample σ′ ← Zx,im(σ), letting P denote the fixed points between σ and σ′.

The challenger C receives as input (Gλ, g, p, σ′, x). It initializes the adversary A with (σ′(1), σ′(x)) and
proceeds to implement the generic group oracle with σ′. A then outputs a guess x′ for x and wins if
x′ = x.

• Hybrid 4. In this hybrid, we move back to the original σ.

Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let p := p(λ). Sample a uniformly random
injection σ : [p]→ [p′] for an arbitrary p′ > p. Let S : [p′][p] → Zp be a possibly inefficient randomized
algorithm such that H∞(S(σ)|σ) = ω(log(λ)). Sample x← S(σ).

The challenger C receives as input (Gλ, g, p, σ, x). It initializes the adversary A with (σ(1), σ(x)) and
proceeds to implement the generic group oracle with σ. A then outputs a guess x′ for x and wins if
x′ = x.

Assume towards contradiction the existence of an adversary A making T (λ) = poly(λ) queries which
attains non-negligible advantage ε(λ) in Hybrid 0. Let q(λ) = poly(λ) be such that q(λ) > 1/ε(λ) for
infinitely many λ. Let T := T (λ) and q := q(λ). Set P = 24λTq = poly(λ).

Claim 2. A attains advantage at least 1/2q in Hybrid 1.

Consider the following distinguisher D(x), which interacts with an oracle injection source mapping [p]→
[p′], and receives as input x ← S(σ). D simulates the interaction between C and A described in Hybrid 0
and outputs a bit indicating whether A was successful or not. If the injection source that D is interacting
with is σ, then the simulation is exactly Hybrid 0. If it is Zx,im(σ), then the simulation is exactly Hybrid
1.

Applying Lemma 9 with the sampler x ← S(σ) as the function f , we have that the success probability
of A in Hybrid 1 must be at least

ε(λ)− 2T (log p+ λ)

P
− 1

2λ
≥ 1

q
− 4λT

24λTq
− 1

2λ
≥ 1

2q
.

Claim 3. A attains advantage at least 1/2q − negl(λ) in Hybrid 2.

Let {c(t)1 σ′(x) + c
(t)
2 σ′(r) + c

(t)
3 σ′(bxr + (1− b)s) + c

(t)
4 σ′(1)}t∈[T ] be the set of A’s queries. We consider

separately whether b = 0 or 1.

If b = 0, then in Hybrid 2 we have that each query is of the form c
(t)
3 s + c

(t)
2 r + (c

(t)
1 x + c

(t)
4 ). Let T ′

be the set of queries for which c
(t)
3 , c

(t)
2 = 0. We define the set S to be the set of points that result from

queries in T ′, combined with the set of fixed points P. Then if all queries outside of T ′ evaluate to distinct
points not in S, then A sees exactly the same distribution in Hybrid 1 as in Hybrid 2. This event can
be seen as a collection of linear polynomials over s and r, where at least one evaluates to 0. The number of
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such polynomials is at most (T − |T ′|)(P + |T ′|) + (T − |T ′|)2 ≤ TP + 2T 2 = poly(λ). But over the uniform
randomness of r, s, each individually goes to zero with probability 1/p = negl(λ). Thus the probability that
A can distinguish is negl(λ).

Now if b = 1, each query in Hybrid 2 is of the form (c
(t)
3 x + c

(t)
2 )r + (c

(t)
1 x + c

(t)
4 ). We have the same

argument as in the b = 0 case, defining the set T ′ to consist of queries for which c
(t)
3 x + c

(t)
2 = 0. The rest

of the argument is identical, and we get that A can distinguish with negl(λ) probability.

Claim 4. There exists an A′ that makes at most 2T queries and attains advantage at least 1/2q − negl(λ)
in Hybrid 3.

First we slightly alter Hybrid 2 to Hybrid 2a, where the challenger responds to non-constant polyno-
mials over r and s with random values from im(σ′) rather than from im(σ′) \ im(P). By a union bound,
the probability that this changes A’s view is at most TP/p = negl(λ).

Now we determine what events could cause A to distinguish between b = 0 and b = 1 in Hybrid 2a.
First, it could form a query that is constant in one case but non-constant in the other. It is clear that if a
query is constant when b = 0, then it is constant when b = 1. On the other hand, if a query (c1, c2, c3, c4) is
constant when b = 1 and non-constant when b = 0, we must have that c3x+ c2 = 0 where either c2, c3 6= 0.
This implies c3 6= 0. Second, it could form two non-constant queries that evaluate to the same element in one
case but not the other. Again, it is clear that if two queries evaluate to the same element when b = 0, then
they do so when b = 1. On the other hand, if two queries (c1, c2, c3, c4) and (c′1, c

′
2, c
′
3, c
′
4) evaluate to the

same element when b = 1 but not when b = 0, we must have that c3x+ c2 = c′3x+ c′2 and c1x+ c4 = c′1x+ c′4
but either c3 6= c′3, c2 6= c′2, or c1x+ c4 6= c′1x+ c′4. This implies c3x+ c2 = c′3x+ c′2 where c3 6= c′3.

So we set up a reduction B that interacts with the Hybrid 3 game. B will simulate A’s view of Hybrid
2a by considering formal variables s and r, choosing b ∈ {0, 1} and responding to queries that are constant
over s and r via the Hybrid 3 challenger, and picking uniformly among im(σ′) otherwise. Additionally,
on each of A’s queries such that c3 6= 0, it queries its oracle on c3σ

′(x) + c2 and stores the responses. If A
succeeds in Hybrid 2a, then eventually B will see the response σ′(0) or see same response twice on different
queries. Either way, this gives B a non-zero linear equation over x, which it can solve. We let A′ be the
combination of B and A, noting that A′ makes at most 2 times as many generic group queries as A.

Claim 5. A′ attains 1/poly(λ) advantage in Hybrid 4.

Consider the following distinguisher D(x), which interacts with an oracle injection source mapping [p]→
[p′], and receives as input x ← S(σ). D simulates the interaction between C and A′ described in Hybrid
3 and outputs a bit indicating whether A′ was successful or not (whether it correctly predicted x). If the
injection source that D is interacting with is σ′, then the simulation is exactly Hybrid 3. If the injection
source that D is interacting with is Zx,im(σ), then the simulation is exactly Hybrid 4.

Applying Lemma 9 with the sampler x ← S(σ) as the function f , we have that the success probability
of A′ in Hybrid 4 must be at least

1

2q
− negl(λ)− 4T (log p+ λ)

P
− 1

2λ
=

1

2q
− 8λT

24λTq
− negl(λ) =

1

poly(λ)
.

Claim 6. Every adversary A′ with T = poly(λ) queries has negl(λ) advantage in Hybrid 4.

If A′(σ(1), σ(x)) outputs x with probability 1/poly(λ) when x is sampled from any Dλ with ω(log(λ))
min-entropy, there must exist some ω(poly(λ))-size set S ⊂ Zp such that for all x ∈ S, A′(σ(x)) outputs x
with probability 1/poly(λ). Then for a uniformly random x ← Zp, it must be the case that A′(σ(1), σ(x))
outputs x with probability at least (ω(poly(λ))/p) · (1/poly(λ)) = ω(poly(λ))/p, contradicting the generic
discrete log lower bound of O(T 2/p) [Sho97].
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