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Abstract

In this work, we revisit multi-authority attribute based signatures (MA-ABS), and elaborate
on the limitations of the current MA-ABS schemes to provide a hard to achieve (yet very useful)
combination of features, i.e., decentralization, periodic usage limitation, dynamic revocation of
users and attributes, reliable threshold traceability, and authority hiding. In contrast to previous
work, we disallow even the authorities to de-anonymize an ABS, and only allow joint tracing by
threshold-many tracing authorities. Moreover, in our solution, the authorities cannot sign on behalf
of users. In this context, first we define a useful and practical attribute based signature scheme
(versatile ABS or VABS) along with the necessary operations and security games to accomplish
our targeted functionalities. Second, we provide the first VABS scheme in a modular design such
that any application can utilize a subset of the features endowed by our VABS, while omitting
the computation and communication overhead of the features that are not needed. Third, we
prove the security of our VABS scheme based on standard assumptions, i.e., Strong RSA, DDH,
and SDDHI, in the random oracle model. Fourth, we implement our signature generation and
verification algorithms, and show that they are practical (for a VABS with 20 attributes, Sign and
Verify times are below 1.2 seconds, and the generated signature size is below 0.5 MB).

Keywords— attribute based signature, anonymous credentials, threshold cryptography.

1 Introduction
Attribute based signatures (ABS) [1, 2, 3, 4, 5, 6, 7, 8] are developed for non-interactively proving satisfiability
of a Boolean attribute policy as a signer of a message using the attribute tokens that the user has obtained
from an attribute authority. The goal is to disclose only suitability to the given policy while protecting the
privacy of the rest (e.g., identity of the signer, her other attributes, her other generated signatures). An ABS
should also protect against collusion of users to combine their attributes, and defend against forging attempts
of signatures without having the required attribute tokens in the policy. Although the initially considered
application of ABS was attribute based messaging [9, 10], it has emerged to be a useful primitive applicable to
trust negotiation [11], etc. To compare it with similar constructions (e.g., mesh signatures [12] and anonymous
credentials [13]), we refer to [1].

Due to the lack of support for multiple attribute authorities in the initially developed ABS schemes,
multi-authority ABS (MA-ABS) scheme of [2] was proposed. However, this scheme required a central master
authority, so the decentralized ABS scheme of [3], which does not require a master authority and is more
scalable, was developed. As a further contribution, [4] proposed the first decentralized traceable ABS scheme
that allows a tracing authority to detect and “prove” to a judge the signer of an ABS. Unfortunately, [4]
allows each attribute authority that a signer has interacted with to obtain her secret token, and thus forge a
signature traceable to her. [7] elaborates on this issue, and provides “non-frameability” and “tracing soundness”
notions (the latter has been previously defined in the context of group signatures by [14]), as well as a generic
construction satisfying these notions. However, the proposed constructions still allow any malicious tracing
authority to disclose an honest signer, whereas our solution requires threshold-many authorities to be corrupted
to launch such an attack.

In this paper, we confront the shortcomings of existing multi-authority and decentralized ABS schemes
(altogether we refer by MA-ABS schemes), and achieve the following properties:

• Periodic usage limitation. The ability to limit the number of verifying signatures of a user (per verifier)
in a given time period. Note this notion differs from controllable linkability of [5, 8, 15], as the former
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MA- Decentra- Usage Trace- Threshold Reliable Attribute User Authority

ABS lization Limitation ability Traceability Traceability Revocation Revocation Hiding

[2] # # # # # # # #

[3] ! # # # # # # #

[4] ! # ! # # # # #

[7] ! # ! # ! # # #

VABS !* ! ! ! ! ! ! !

Table (1) Comparison of our VABS with the existing MA-ABS schemes. ! and # denote whether
the corresponding scheme has this feature or not, respectively. By !*, we refer to the fact that our
scheme is somewhat decentralized (or scalable multi-authority) by allowing many identity providers
(e.g., master authorities).

merely limits the number of signatures that gets verified by a verifier to a verifier-determined bound,
while the latter provides opportunity for linking between signatures generated by the same user.

• Threshold traceability. The requirement that a predefined number of tracing authorities should collabo-
rate to output the identity of the signer of a signature. This is important to eliminate the possibility of
a corrupted tracing authority de-anonymizing a signer without a rightful purpose.

• Reliable traceability. This includes inability to forge a person’s signature (even by the authorities) and
ability of threshold-many honest tracing authorities to always find the original signer. Inability to forge
a person’s signature also supports our periodic usage limitation goal, since if a malicious party forges a
signer’s signature, it consumes her rights to honestly generate verifying signatures. Note that this notion
also covers “traceability" of [4] and "non-frameability" of [7].

• Dynamic revocation of attributes. A useful property for dynamically revoking the attributes of signers
that no longer deserves them by the attribute issuing authorities (e.g., a student graduates).

• Dynamic revocation of users. A useful property, especially to dynamically detach detected malicious
users or criminals from the ability of generating verifiable ABSs by a specialized authority. Similarly,
this may be employed when a user’s key is stolen.

• Authority hiding. This feature is important for further anonymity of a signer by hiding the authorities
that she has interacted with, in applications where an attribute can be issued by multiple authorities
(e.g., if each school can provide a student attribute, just by learning the authority that provided the
attribute to the user, her privacy is partly invaded).

We named our scheme that satisfies these novel, non-trivial, and seemingly conflicting aspects as versatile ABS,
or shortly VABS. Table 1 compares the features of existing MA-ABS schemes and our VABS.

1.1 Related Work
Anonymous credential schemes. Anonymous credential schemes [16, 17, 18, 19, 20, 21] can be utilized for
proving the conformation to some attribute policy while keeping the anonymity. Schemes providing n-times
unlinkability seem especially suitable [16, 21]. In our solution, we build on top of [16] and improve it on many
aspects to get a VABS that satisfies our requirements. However, we could not use [21] for this purpose, due
to the fact that it allows that the authorities to obtain the secret keys of the users (and hence sign on their
behalf).

Attribute based signature (ABS) schemes. We already mentioned ABS schemes [1, 2, 3, 4, 5, 7, 6, 8,
15], which are non-interactive signature solutions for anonymous attribute policy proving as a signature. The
existing multi-authority and decentralized ABS schemes of [2, 3, 4, 7] lacks our mentioned goals. Although there
exists some standard credential revocation techniques [22, 23] that can possibly be applied to these schemes,
to modify these schemes for the requirements of a VABS is a not trivial task.

Functional credential schemes. The functional credential scheme of [24] can be utilized for anonymously
proving conformity to an attribute policy to the third parties. Unfortunately, the number of authentication
attempts in this scheme cannot be bounded by a fixed value for limited use. Moreover, there seems no effective
way of multi-authority attribute issuing.

Group signatures. Group signature schemes [25, 26, 27, 28, 29, 30, 31, 32] are non-interactive con-
structions for proving that the signer of a message belongs to some group (sharing a particular attribute). In
particular, revocable [31, 32], or distributed traceable [30], or fully dynamic model of [33] may seem useful in
construction of a VABS. On the other hand, again, the use of keys in those schemes cannot easily be bounded
by a fixed value.
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1.2 Our Contributions
In Section 3, we define the VABS scheme along with its authority architecture, operations and security require-
ments (i.e., anonymity, signature unforgeability, soundness, and reliable traceability). Our security definitions
are novel by including the different authority architecture and allowing proposed operations, yet they are inline
with previous definitions in similar paradigms.

In Section 4, we provide the first VABS protocol with modular design. In our construction, the desired
features can be turned on/off to efficiently achieve the requirements of the application.

In Section 5, we prove the security of our VABS based on Strong RSA (via reduction to the security of
CL signature [34]), DDH, and SDDHI (via reduction to the pseudo random function construction of [16])
assumptions in the random oracle model. In Section 6, we implement the basic features of our VABS scheme
(without traceability, revocation, and authority hiding), and show their efficiency (i.e., for a VABS with upto
20 attributes to be proven, Sign and Verify spend below 1.2 second, and the generated signature size is below
0.5 MB).

2 Preliminaries
Notation. Throughout this paper,

• a� B denotes that the value of a is picked from the set B uniformly at random,

• a← B denotes that a is set as the output returned by a probabilistic polynomial time (PPT) B,

• a := b denotes that the value of a is set as the value of b,

• A(a)→ b denotes that a PPT A is takes as input a and its output is called b.

• A{B1(b1), B2(b2)} → (c1), (c2) denotes that A is a protocol executed between parties B1 with input b1
and B2 with input b2. At the end, party B1 obtains output c1 and party B2 obtains output c2.

• a denotes that a is an optional step only for achieving the user/attribute revocation feature.

• a denotes that a is an optional step only for achieving the reliable traceability feature.

• λ denotes a security parameter, n denotes the number of uses allowed in a time period, and QRN denotes
the set of quadratic residues modulo N.

Zero-Knowledge Proofs. In our protocols, we utilize non-interactive zero knowledge proofs of knowledge
(NIZKPoK) obtained via the Fiat-Shamir transformation [35] of zero knowledge proof of knowledge (ZKPoK)
protocols. The Fiat-Shamir transformation of ZKPoK protocols can also be utilized to sign messages, in
which case we call them signatures of knowledge (SoK). For NIZKPoKs and SoKs, we utilize the notation of
Camenisch and Stadler [36]: NIZKPoK{(a, b) : C = gahb} denotes a NIZKPoK of private values a and b that
satisfy C = gahb against public C, g, h, and SoK[m]{(a, b) : C = gahb} denotes SoK of a and b that satisfy
C = gahb on public C, g, h and a public message m.

For OR proofs, we make use of zero-knowledge OR proofs realizable by the generic scheme of [37]. This
scheme provides an efficient method for proving knowledge of solutions for a-out-of-d problems, without re-
vealing the subset of the problems whose solutions are known. The other example ZKPoK schemes that can
be used in the realization of our constructions are [38] (for ZKPoK of factorization of a strong RSA modulus),
[13] (for ZKPoK that some numbers are quadratic residue of a strong RSA modulus), [39] (for ZKPoK that
a committed value is in a given range), [34] (for ZKPoK of a CL signature), [40] (for ZKPoK of a discrete
logarithm and opening values of Pedersen commitments [41]).

Pseudo Random Functions (PRFs). In the PRF security game DistPRF, the adversary is given a
unary security parameter 1λ and oracle access to either Fs(·) or f(·) (chosen fairly at random), where f is a
random function and F is a PRF family. The adversary wins by correctly guessing whether the oracle is Fs(·)
or f(·). We say F is a PRF family, if for all PPT adversaries A, for randomly chosen s, there exists a negligible
function n(·) such that

Pr[A wins DistPRF] ≤ 1

2
+ n(λ)

For simplicity, we call Fs(·) a PRF. Note that [16] shows that the function Fg,s(·) = g1/(s+·) is a PRF (where
g is a random generator of a generic group G of prime order q and s � Z∗q), if SDDHI assumption [16] holds
in G. We refer the reader for the further details to [16].

Periodic n-Times Unlinkable Anonymous Credential Scheme of [16] We now briefly describe the
n-times unlinkable anonymous credential scheme of [16] that we build upon. Let `q ∈ Θ(λ), `x, `time, and `cnt
be system parameters satisfying `q ≥ `x ≥ `time + `cnt + 2 and 2`cnt − 1 > n as in [16]. The attribute issuer
generates a cyclic group 〈g〉 = G of prime order q such that 2`q−1 < q < 2`q . It also generates another generator
h of G and a cyclic group 〈g〉 = 〈h〉 = G of composite order p′q′ where g and h are quadratic residues modulo
N = (2p′ + 1)(2q′ + 1). Moreover, the issuer also generates a CL signature [34] key pair (p, s) within the group
G. It publishes its public key (g, h,g,h,G, p), and the zero-knowledge proof that N is a special RSA modulus
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[38] and that 〈g〉 = 〈h〉 are quadratic residues modulo N [13]. To obtain a credential, a user first interacts with
the issuer, and they together run the following protocol in a mutually authentic channel:

1. The user generates a key pair (s1, p1 := gs1).

2. The user picks s′2 � Zq and computes the Pedersen commitment Cs1+s′2
to s1 + s′2. [41]. She then sends

Cs1+s′2
to the issuer and proves that it is correctly formed via [40].

3. The issuer picks ρ� Zq and sends it to the user. Both parties compute Cs1+s′2+ρ := Cs1+s′2
gρ. The user

sets s2 := s′2 + ρ.

4. The parties run the signature on a committed value protocol proposed in [34] using Cs1+s2 . At the end,
the user obtains a CL signature σ of the issuer on the user secret keys s1 and s2.

The user can then prove the issued credential anonymously to a verifier n-times in a given time period t
via the following protocol.

1. The verifier sends to the user a value R� Z∗q .

2. The user computes and sends to the verifier the serial number S = g1/(s1+t2`cnt+J)) and the double
spending tag E = p1g

R/(s2+2`cnt+`time+t2`cnt+J)) where J is the number of times that the user has
authenticated her credential in the current time period t ≥ 1.

3. The user and the verifier run ZKPoK protocols for s1, s2, σ, and J such that 0 ≤ J < n,
S = g1/(s1+t2`cnt+J)), E = p1g

R/(s2+2`cnt+`time+t2`cnt+J)), and σ verifies on the user secret s with
the issuer public key p.

3 Definition of Versatile ABS

3.1 System Model
In our system, there are users, who can be signers or verifiers, and authorities. We have three type of authorities:
identity providers, attribute authorities, and tracing authorities, as explained below.

The system model and authority architecture of our VABS definition differs from existing multi-authority
and decentralized ABS schemes [2, 3, 4], as we assume each state (or region) has an identity provider that is an
authority with the top role in hierarchy (e.g., civil registry authority providing national identity numbers), and
is responsible for issuing/revoking global ids and ensuring that a user picks her secret key randomly (to prevent
attribute combination between users). In our scheme, if an identity provider issues the same secret key (and
hence the same public key) to multiple users, this will be detected by tracing authorities, who are described
below. When joining the system, each user obtains her global identity from a single identity provider.

There are arbitrary number of attribute authorities, each responsible for issuing various attributes to the
deserving parties. We only trust these authorities for proper conduct of the above-mentioned tasks and for
non-disclosure of the users that have interacted with them. Yet, even with the information resulting from
those interactions, none of the identity providers or attribute authorities can de-anonymize a signer from a
given signature or can sign on behalf of a user. The only malicious actions that those authorities may take are
issuing tokens to the undeserving users and revealing the identity of the users that applied to them for tokens
(which are concerns in any such scheme, and not related to our construction).

Also, there exist φ tracing authorities in our model, θ of which can de-anonymize the signer of a given VABS.
This is provided to ensure lawful de-anonymization purposes, and to resist corruption of tracing authorities, as
long as the adversary corrupts at most θ − 1 of them. Note that we also require φ > 2(θ − 1), so the majority
of the tracing authorities are assumed to be honest. As long as this assumption holds, they can always trace
and output the correct signer of a VABS in lawful cases. Even when all the tracing authorities are corrupt,
they cannot sign on behalf of a user. As an additional duty, tracing authorities can detect malicious behaviour
of corrupt identity providers colluding with users for issuing the same secret key to multiple of them.

3.2 Operations
In what follows, we define the components (GlobalSetup, TraceSetup, IdPJoin,AuthJoin,UserJoin,TraceIssue,AttrIssue, Sign,
Verify,UserRevoke,AttrRevoke,Trace) of a VABS scheme. Note that a basic scheme should
define (GlobalSetup, IdPJoin, AuthJoin,UserJoin,AttrIssue,Sign,Verify), whereas (TraceSetup,
TraceIssue,Trace,UserRevoke,AttrRevoke) are optional components of a VABS.

GlobalSetup(1λ)→ params: This is an operation that takes place once in the setup phase of the scheme. It
takes as input a unary security parameter λ. It outputs global setup parameters params. Note that depending
on the application, this can be run as an algorithm by a trusted party or as a multi-party protocol to avoid
single point of failures.
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TraceSetup(params) → ((tp1, ts1), . . . , (tpφ, tsφ)): This is an operation that takes place once in the setup
phase. It takes as input the global setup parameters params. It outputs the tracing key pair (tpi, tsi) for each
tracing authority i, such that at least θ authorities are needed to trace a signer of a given VABS.

IdPJoin(params) → (iis, iip, irs, irp0, skid, pkid): This is an algorithm that is executed by each identity
provider when it joins to the system. The algorithm takes as input the global setup parameters params. It
outputs an identity provider issuing secret and public key pair (iis, iip), its revocation secret key irs, its initial
revocation public key irp0, and its digital signature key pair (skid, pkid).

AuthJoin(params)→ (ais, aip, ars, arp0): This is an algorithm that is executed by each attribute authority
when it joins to the system. The algorithm takes as input the global setup parameters params. It outputs
an authority issuing secret and public key pair (ais, aip), its revocation secret key ars, and initial revocation
public key arp0.

UserJoin{User(iip, irpi, params), Identity provider(iis, iip, irpi, skid, pkid, params)} →
(s, σid, cert, wid), (irpi+1, gσ̃id): This is a two-party protocol between a user and an identity provider
that takes place when the user joins the system. The identity provider starts by knowing the global setup
parameters params, its issuing secret and public key pair (iis, iip), its current revocation public key, and its
digital signature key pair (skid, pkid), while the user knows iip, irpi and params. The protocol outputs to
the user her secret key s, her global id σid, a certificate cert that includes her personal user identity uid and
some additional information (e.g., validity period), and a witness wid for non-revocation, and to the identity
provider its next revocation public key irpi+1 and a revocation handle σ̃id for σid.

TraceIssue{User(s, cert, tp, w, irp, params),Tracing Authority(ts, tp, pkid, irp, params)} → (σT ), (⊥): This
is the tracing issue protocol that a user should run with each of θ tracing authorities before being able generate
traceable signatures. The tracing authority starts by knowing the global setup parameters params, its tracing
secret and public key pair (ts, tp), the identity provider’s (i.e., the one that the user interacted with) digital
signature public key pkid and current revocation public key irp, while the user knows her secret key s, her
certificate cert, tp, the non-revocation witness wid of her σid, irp, and params. The protocol outputs to the
user her tracing token σT .

AttrIssue{User(s, cert, ω, aip, arpj , wid, irp, params),Attribute Authority(ais, aip, ω, pkid, arpj , irp, params)} →
(σω, w), (arpj+1, σ̃ω): This is the attribute issuing operation executed by an authority and a user for each
attribute token that will be issued to a user. As inputs, the authority starts by knowing the global setup
parameters params, its issuing secret and public key pair (ais, aip), the attribute ω to be given to the user, its
current revocation public key arpj , the identity provider’s (i.e., the one that the user interacted with) digital
signature public key pkid and its current revocation public key irp, while the user knows a user secret key s,
her user certificate cert, ω, aip, arpj , the non-revocation witness wid of her global id σid, irp, and the global
setup parameters params. The protocol outputs to the user an attribute token σω and the non-revocation
witness wω for the attribute, and to the authority its next revocation public key arpj+1 and a revocation
handle σ̃ω for the issued attribute token.

Sign(m, s, β, σid, wid,Σβ ,Wβ ,ΣT , IIP, IRP,AIP,ARP, TPφ, t, J, n, params)→ µ: This is the signing algo-
rithm that is executed by a user. It takes as input a message m, a secret key s, an attribute policy β, a global
id σid, a non-revocation witness wid for σid, an attribute token set Σβ that proves that the owner of s conforms
to the attribute policy β, a setWβ of non-revocation witness of those attributes, a set ΣT of the tracing tokens,
the issuing public key set IIP and the revocation public key set IRP of all identity providers, the issuing
public key set AIP and the revocation public key set ARP of all authorities that can issue the attributes in β,
the tracing public key set TPφ of all tracing authorities, the a time period indicator t, a signature counter J ,
the allowed number n of the legitimate signatures by a user in a time period, and the global setup parameters
params. The output of the algorithm is a VABS µ (including the tracing tag Φ) on m. At the end of each
algorithm run, the user increments the counter J for validness of her next signature.

Verify(m,µ, β, IIP, IRP,AIP,ARP, TPφ, t, SDBj , n, params) → (b, SDBj+1): This is the verification al-
gorithm that is executed by a verifier for a given signature. It takes as input a message m, a VABS µ, a policy
β, the issuing public key set IIP and the revocation public key set IRP of all identity providers, the issuing
public key set AIP and the revocation public key set ARP of all authorities that can issue the attributes in
β, the tracing public key set TPφ of all tracing authorities, a time period indicator t, the current signature
database SDBj , the allowed number n of the legitimate signatures by a user in a time period, and the global
setup parameters params. The output of the algorithm is a bit b. b is defined as 1, if the user’s global id is still
valid (not revoked), the user has executed the TraceIssue operation with θ tracing authorities, signed attributes
in µ conform to β under AIP and has not been revoked in ARP , and there are no more than n− 1 signatures
produced with the same key that is used to sign m in the time period according to the SDBj . Otherwise,
it is defined as 0. If the algorithm output is 1, the signature database is updated by the addition of µ (i.e.,
SDBj+1 := SDBj ||µ). We usually make the database update output implicit.

UserRevoke(irs, irpj , gĩd, params) → irpj+1: This is the user revocation algorithm that is executed by an
identity provider for revoking a user from the system completely by making her global id invalid. It takes as
input the revocation secret key irs and the current revocation public key irpi, the user’s revocation handle
σ̃id, and the global setup parameters params. It outputs the new revocation public key irpj+1.
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AttrRevoke(ars, arpj , σ̃ω, params) → arpj+1: This is the revocation algorithm that is executed by an
authority for revoking an attribute of a user. It takes as input the revocation secret key ars and the current
revocation public key arpj , the user’s revocation handle σ̃ω for the attribute ω, and the global setup parameters
params. It outputs the new revocation public key arpj+1 of the authority.

Trace{for i = 1, . . . , 2θ − 1, Tracing Authorityi(µ, tsi, tpi, TDB, params)} → uid: This is the tracing
protocol that is executed by 2θ− 1 tracing authorities to reveal the signer of a VABS. Each tracing authority i
starts by knowing the global setup parameters params, a VABS µ, its own tracing secret and public key pair
(tsi, tpi), and the shared tracing database TDB. The protocol outputs to each honest tracing authority the
uid of the signer of µ.

3.3 Security Definitions
AVABS scheme Π = (GlobalSetup,TraceSetup, IdPJoin,AuthJoin, UserJoin,TraceIssu,AttrIssue, Sign,Verify,UserRevoke,AttrRevoke,
Trace) must satisfy anonymity, signature unforgeability, signature soundness, and tracing reliability as security
requirements, all of which we define in this section.

In all of the game-based definitions in this section, given a VABS scheme Π, a PPT adversary A, a challenger
C, a unary security parameter 1λ, and a limit n for a time period duration δ, the first 2 steps of the security
games are as follows.

1. C runs GlobalSetup and obtains the global setup parameters params. C then gives 1λ, n, δ, and params
to A. A is allowed to generate θ−1 fully malicious tracing authorities but is required to give their public
keys to C. C generates the rest of the tracing authorities so that φ − θ + 1 of them honestly follow the
protocol. All tracing authorities together run TraceSetup. If C can detect any malicious behaviour by
the tracing authorities under A’s control during this setup phase, the game terminates and the game’s
output is defined as 0. The time period counter t is initialized as t := 1, and is started.

2. In any step,

(a) A can generate polynomially-many identity provider and attribute authority keys, but is required
to give the public keys to C. A can also ask C to generate identity providers or attribute authorities.
Then, C would honestly generate them, and share their public keys with A.

(b) A can generate polynomially-many users under its control or can ask C to generate honest users,
and has the ability to run for those users UserJoin with any identity provider or AttrIssue with any
attribute authority. For all of the users generated, A can request TraceIssue to be run. A can
demand revocation of identity or any attribute belonging to any of the generated users.

(c) A can adaptively request C to sign any message as any user under her control with any attribute
policy that the user satisfies.

(d) A can adaptively request jointly running the Trace protocol with tracing auhorities under the
control of C given any VABS as input.

(e) If A outputs any string to C other than what is explicitly expected from it in the protocol, then C
just ignores it.

Our signature unforgeability and anonymity definitions are as strong as the ones of [4] (i.e., “strong full un-
forgeability” and “anonymity”), and the differences are due to having a different authority architecture and
adding the revocation feature.

Anonymity of a user is defined using, the following anonymity game VABSAnonymA,Π(λ):

3. A gives C an attribute policy β.

4. C generates two secret keys s0 and s1. C runs UserJoin, TraceIssue, and AttrIssue for s0 and s1 with
authorities of A’s choice. Note that C should obtain attribute tokens on s0 and s1 such that both users
conform to β.

5. A is given access to the signature oracles of both users:
Sign(m̃, s0, β̃, σid,0, wid,0, Σ̃β̃,0, W̃β̃,0,ΣT,0, IIP , IRP ,

˜AIP , ˜ARP, TPφ, t, J0, n, params) and
Sign(m̃, s1, β̃, σid,1, wid,1, Σ̃β̃,1, W̃β̃,1, Σ̃T,1, IIP , IRP ,

˜AIP , ˜ARP, TPφ, t, J1, n, params); where (m̃, β̃) is
chosen by A as part of its queries; σid,b, wid,b, and ΣT,b are the global id, its non-revocation witness,
and the tracing tokens for sb; IIP , IRP , and TPφ are issuing and revocation public keys of identity
providers and the public keys of the tracing authorities (respectively); the value t is the current time,
and 0 ≤ J0, J1 < n are the signature counters (incremented with each signing within t and reset between
time periods) for the corresponding signing key. Other values with tilde sign are chosen by C as an
honest signer would do.
Essentially, C sets ˜AIP and ˜ARP as the public keys of the authorities that can issue attributes in β̃, Σ̃β,0
and W̃β,0 as the attribute tokens and non-revocation witnesses that are issued to s0 related to β, ˜AIP
and ˜ARP as issuing and revocation public keys of all authorities known to C that can issue the attributes
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in β̃. Each oracle stops responding to further queries during that time period when its counter, J0 or
J1, reach n− 1.

6. A gives two messages m0 and m1 to C.
7. C picks a random bit b. C signs both messages as sb by running

µ0 ← Sign(m0, sb, β, σid,b, wid,b,Σβ,b,Wβ,b,ΣT,b, IIP , IRP ,AIP ,ARP, TPφ, t, Jb, n, params) and µ1 ←
Sign(m1, sb̄, β, σid,b̄, wid,b̄,Σβ,b̄,Wβ,b̄,ΣT,b̄, IIP , IRP ,AIP ,ARP, TPφ, t, Jb̄, n, params), where AIP and
ARP are issuing and revocation public keys of all authorities known to C that can issue the attributes
in β, and Σβ and Wβ,b are the set of attribute tokens their non-revocation witnesses for sb for proving
β. The other values are set as before. C then gives µ0 and µ1 to A.

8. A eventually returns a bit b′. The output of the game is defined as 1 (i.e., A wins), if b = b′ and A has
not asked any tracing authority under C’s control for participation in Trace of µ0 or µ1. Otherwise, the
output of the game is defined as 0 (i.e., A loses).

Definition 1 (Anonymity). A VABS scheme Π provides anonymity, if ∀n, δ ∈ poly(λ), for each PPT adversary
A, there exists a negligible function n(·) such that

Pr[VABSAnonymA,Π(λ) = 1] ≤ 1

2
+ n(λ)

For our signature unforgeability definition, consider the following signature unforgeability game
VABSForgeA,Π(λ):

3. A is allowed to fully corrupt all φ tracing authorities.
4. A returns an attribute policy an attribute ω to C. ω must not be queried before as AttrIssue to the

authorities under C’s control for users under A’s control.
5. A is restricted in that A’s queries to an authority oracle as AttrIssue with ω for users under A’s control,

the attribute is issued but is immediately revoked1.
6. A eventually generates a message m (not queried for signing to the users under C’s control for the

attribute policy β ∧ ω) and a VABS µ where for any policy β. The output of the game is defined as 1
(i.e., A wins), if Verify(m,µ, β ∧ω, IIP, IRP,AIP,ARP, TPφ, t, SDB, n, params) = 1, where IIP , IRP ,
AIP , ARP , and TPφ are the issuing and revocation public keys of all identity providers, the issuing and
revocation public keys of all attribute authorities that can issue the attributes in β ∧ ω, and the public
keys of all tracing authorities known to C. Otherwise, the output of the game is defined as 0 (i.e., A
loses). Note that this step enforces A to ask to C for generation of at least one authority oracle to check
for ω.

Definition 2 (Signature Unforgeability). A VABS scheme Π provides signature unforgeability, if ∀n, δ ∈
poly(λ), for each PPT adversary A, there exists a negligible function n(·) such that

Pr[VABSForgeA,Π(λ) = 1] ≤ n(λ)

The soundness definition that we provide is similar to the soundness definition of [16], but differs slightly
due to its usage, i.e., ours limits the total number of signatures by a party that gets verified, while the latter
limits credential proofs per attribute. Formally, consider the following soundness game VABSSoundA,Π(λ):

3. A is allowed to fully corrupt all φ tracing authorities.
4. The output of the game is defined as 1 (i.e., A wins), if A generates at least n + 1 message and VABS

pairs within some time period for the same user s such that honest executions of the Verify algorithm on
at least n + 1 of those pairs within the same time period output 1. Otherwise, the output of the game
is defined as 0 (i.e., A loses).

Definition 3 (Soundness). A VABS scheme Π provides soundness, if ∀n, δ ∈ poly(λ), for each PPT adversary
A, there exists a negligible function n(·) such that

Pr[VABSSoundA,Π(λ) = 1] ≤ n(λ)

For our reliable traceability definition, the idea is to ensure that tracing is correctly done as long as the
adversary controls at most θ − 1 tracing authorities. The reliable traceability notion covers “traceability” of
[4] and “non-frameability” of [7], as long as θ − 1 tracing authorities are honest. Our notion implies “tracing
soundness” of [7] by requiring an exactly single original signer per VABS that will be deterministically traced.
We note that this is the first work that provides a compact definition in the context of MA-ABS in the presence
of multiple tracing authorities, although in the context of group signatures “traceability”, “non-frameability”,
and “tracing soundness” definitions have been previously provided for distributed tracing2 by [30]. Consider
the following game VABSTraceA,Π(λ):

1This is required to make sure that a user cannot use her revoked attributes
2Distributed tracing of [30] and our threshold tracing are different in that the former enforces all tracing authorities

to join the Trace operation, while the latter enables a settable threshold-many of them to execute Trace
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if NIZKPoK does not verify 

 abort 

𝑠2      ℤ𝑞
∗ ;  𝖢𝑠1+𝑠2

≔ 𝖢𝑠1
𝐠𝑖
𝑠2 ;  𝜎𝑖𝑑       𝑂 1λ  prime number; 

𝑟      𝑂 1λ ; 𝑣 ≔ (𝖢𝑠1+𝑠2
𝐡𝑖
𝑟 𝐣𝑖)

1

𝜎𝑖𝑑 ;  

𝑐𝑒𝑟𝑡𝑖𝑛𝑓𝑜 ≔ (𝑢𝑖𝑑, 𝖢𝑠1+𝑠2
, … ); 𝐮𝑖,𝑗+1 = 𝐮𝑖,𝑗

𝜎𝑖𝑑  

𝑐𝑒𝑟𝑡 ≔  𝑐𝑒𝑟𝑡𝑖𝑛𝑓𝑜 , 𝜎 ← DSSign𝑠𝑘𝑔𝑖𝑑 (𝑐𝑒𝑟𝑡𝑖𝑛𝑓𝑜 ) ;    

User 

𝑠1 , 𝜌      ℤ𝑞
∗ ; 𝖢𝑠1

≔ 𝐠𝑖
𝑠1𝐡𝑖

𝜌
; 

NIZKPoK≔NIZKPoK{ 𝑠1 , 𝜌 : 𝖢𝑠1
=

𝐠𝑖
𝑠1𝐡𝑖

𝜌
} 

 

 

𝖢𝑠1
, NIZKPoK 

𝑖 (𝑖𝑖𝑠𝑖 , 𝑖𝑖𝑝𝑖 , 𝑝𝑘𝑖𝑑 , 𝑠𝑘𝑖𝑑 , 𝑖𝑟𝑝𝑖,𝑗 , 𝑝𝑎𝑟𝑎𝑚𝑠) Identity Provider(𝑖𝑖𝑝𝑖 , 𝑖𝑟𝑝𝑖,𝑗 , 𝑝𝑎𝑟𝑎𝑚𝑠) 

𝑠 ≔ 𝑠1 + 𝑠2;  𝜎𝑖𝑑 ≔  𝜌 + 𝑟, 𝜎𝑖𝑑 , 𝑣 ; 

𝑤 ≔ 𝐮𝑖,𝑗  

𝑠2, 𝜎𝑖𝑑 , 𝑟, 𝑣, 𝑐𝑒𝑟𝑡 

Figure (1) The UserJoin protocol between a new user and an identity provider.

3. The output of the game is defined as 1 (i.e., A wins), if for any VABS that verifies, at least θ tracing
authorities (therefore necessarily including honest ones) do not output the uid that belongs to the original
signer of the comprising VABS during any run of the Trace protocol. Otherwise, the output of the game
is defined as 0 (i.e., A loses).

Definition 4 (Reliable Traceability). A VABS scheme Π provides reliable traceability, if ∀n, δ ∈ poly(λ), for
each PPT adversary A, there exists a negligible function n(·) such that

Pr[VABSTraceA,Π(λ) = 1] ≤ n(λ)

4 Our Modular VABS
In this section, we present our VABS construction in a modular manner. We first start by a basic design that
provides periodic usage limitation. Then, we add reliable threshold traceability, user/attribute revocation, and
authority hiding features one by one. Depending on the application, any combination of these features can be
used as part of our VABS construction.

4.1 Our Basic Decentralized ABS Scheme with Periodic Usage Limitation
In this subsection, we propose our basic solution for obtaining a usage-limited decentralized ABS scheme,
which will be extended in later subsections to satisfy other VABS requirements. We build our scheme by
proposing modifications, additions, and optimizations to [16]. However, note that [16] is only an n-times
unlinkable anonymous authentication scheme utilizable for individual attributes, and targets cases where only
one authority is present. In contrast, our scheme is an ABS scheme without double spending tags, and supports
AND and OR operations in attribute policies.3 In the following subsections, we further add many novel VABS
properties to this basic solution.

We note that in the protocol and algorithm descriptions, parts that are inside rectangles are only utilized
for user/attribute revocation, and parts that are within rounded rectangles are employed for reliable threshold
traceability. Therefore, the reader may skip those for our basic solution.

Setup. In GlobalSetup, a cyclic group 〈g〉 = G of prime order q such that 2`q−1 < q < 2`q is generated.
Another generator h of G is also generated in a distributed computation [42, 43] so that logg h would be
intractable. Essentially, each party i (a user or an authority) that wants to join the generation process of h
picks a random value xi ∈ Zq. It then publishes hi := gxi and NIZKPoK{(xi) : hi = gxi} with authentication
tags.4 At the end of the setup, all of the k parties involved compute h :=

∏
i∈{1,...,k} g

xi and output the
parameters (q,G, g, h).

Authority Join. To join the system, each identity provider or attribute authority runs Algorithm 1.
The proofs of knowledge for NIZKPoK1 and NIZKPoK2 can be instantiated as in [38] and [13], respectively,
showing that the authority generated its parameters honestly. Upon executing the algorithm, the authority
publishes its public key iipi/aipi together with the proofs NIZKPoK1 and NIZKPoK2, while keeping its secret
key iisi/aisi. For efficiency in key management, we require that each attribute authority only has a fixed length
public key, no matter how many different attributes it can issue. Additionally, each identity provider runs the

3In many cases, a NOT operation can easily be obtained via simple conversions (e.g., “Birth year NOT before 2000”,
could be converted to “Birth year after 1999”) or can be separately obtained as an attribute from an authority. We
highlight that existing decentralized schemes of [2, 3, 4] also do not have direct NOT operation support.

4The parties may be required to publish them on a public ledger, to maintain the consistency among parties and to
thwart equivocation attempts.
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Algorithm 1 Our IdPJoin/AuthJoin algorithm for the identity provider/attribute authority i
input: a unary security parameter 1λ and global setup parameters params = (q,G, g, h).
output: an identity provider/attribute authority issuing public
key iipi/aipi = (gi,hi, ji,Ni), its issuing secret key iisi/aisi =

(p′i, q
′
i), its initial revocation public key irpi,0/arpi,0 = (ui,0,g′i,h

′
i,Mi) ,

its revocation secret key irsi/arsi = (p′′i , q
′′
i ) , and the related proofs (NIZKPoK1, NIZKPoK2,

NIZKPoK3 , NIZKPoK4 ).

p′i, q
′
i � O(1λ) Sophie Germain primes; Ni := (2p′i + 1)(2q′i + 1); gi,hi, ji � QRNi

p′′i , q
′′
i � O(1λ) Sophie Germain primes; Mi := (2p′′i + 1)(2q′′i + 1);

ui,0,g′i,h
′
i � QRMi

NIZKPoK1 :=NIZKPoK{(q′i, p′i) : Ni = (2p′i + 1)(2q′i + 1)}
NIZKPoK2 :=NIZKPoK{gi,hi, ji ∈ QRNi}
NIZKPoK3 :=NIZKPoK{(q′′i , p′′i ) : Mi = (2p′′i + 1)(2q′′i + 1)}
NIZKPoK4 :=NIZKPoK{u0,i,g′i,h

′
i ∈ QRMi

}

if 𝜎 or any NIZKPoK do not verify 

 abort 

𝖢𝑠+𝐻(𝜔)
′ ≔ 𝖢𝑠

′ 𝐠𝑖
𝐻 𝜔 

; 𝜎𝜔       𝑂 1λ  prime number; 

𝑟      𝑂 1λ ; 𝑣 ≔ (𝖢𝑠+𝐻(𝜔)
′ 𝐡𝑖

𝑟 𝐣𝑖)
1

𝜎𝜔 ;  𝐮𝑖,𝑗+1 = 𝐮𝑖,𝑗
𝜎𝜔   

 

User Attribute Authority

𝜌      ℤ𝑞
∗ ; 𝖢s

′ : = 𝐠𝑖
𝑠𝐡𝑖

𝜌
; parse 𝑐𝑒𝑟𝑡 to obtain 𝖢𝑠 = 𝖢s1+s2

  

NIZKPoK1≔NIZKPoK that 𝖢𝑠 and 𝖢s
′  are the 

commitments to the same value 

NIZKPoK2≔NIZKPoK of 𝑤𝑖𝑑  such that 𝜎𝑖𝑑  is 

accumulated in 𝑖𝑟𝑝  

 

 
𝜎𝜔 , 𝑟, 𝑣 

𝖢𝑠
′ , 𝑐𝑒𝑟𝑡, NIZKPoK1, NIZKPoK2 

(𝑠, 𝑐𝑒𝑟𝑡, 𝜔, 𝑎𝑖𝑝𝑖 , 𝑎𝑟𝑝𝑖,𝑐𝑢𝑟𝑟 , 𝑤𝑖𝑑 , 𝑖𝑟𝑝, 𝑝𝑎𝑟𝑎𝑚𝑠) 𝑖 (𝑎𝑖𝑠𝑖 , 𝑎𝑖𝑝𝑖 , 𝜔, 𝑝𝑘𝑖𝑑 , 𝑎𝑟𝑝𝑖,𝑗 , 𝑖𝑟𝑝, 𝑝𝑎𝑟𝑎𝑚𝑠) 

𝜎𝜔 ≔  𝜌 + 𝑟, 𝜎𝜔 , 𝑣 ;  𝑤 ≔ 𝐮𝑖,𝑗  

Figure (2) The AttrIssue protocol between a user and an attribute authority.

DSKeyGen algorithm of a conventional digital signature scheme (DSKeyGen,DSSign,DSVerify) to obtain a key
pair (pkid, skid) and publishes the associated public key.

User Join. To join the system, a user interacts with the identity provider in her state through a secure
and authenticated channel, where they run the UserJoin protocol in Figure 1 (i.e., an extended version of the
“Signature on a Committed Value” protocol of [34]). At the end of the protocol, the user obtains a certificate
cert, which is composed of user identification information, the commitment Cs to her secret key, possibly
expiration date and other information, together with the signature of the identity provider on them. The user
uses the certificate cert given by the identity provider to obtain tokens using the same secret key from all
attribute authorities. The user also obtains σid as a CL signature on her secret key s, which is utilized each
time she signs a message for the purpose of limiting the number of signatures within a time period. In contrast
to [16], in our solution, a user has only one secret key s due to the removal of the double spending tag.

Attribute Issue. To obtain the token for an attribute ω from an authority i, through a secure and
authenticated channel the user and the authority runs the protocol in Figure 2 (i.e., again an extended version
of the “Signature on a Committed Value” protocol of [34]), where H : {0, 1}∗ → Zq is modeled as a random
oracle. At a high level, the user obtains a CL signature on s+H(ω), after proving in zero knowledge that she
holds the identity s to tie her attributes to her identity blindly. We enforce randomization of the attributes
by H(ω) to prevent malicious collusion of users (see Lemma 2).5 Note that in our basic scheme we trust
identity providers for randomization, but if the tracing function is added as in Subsection 4.2, then the tracing
authorities can detect this type of malicious behaviour.

Sign. We present our Sign algorithm with AND policy ω1 ∧ . . . ∧ ωk in Algorithm 2. The algorithm
outputs a serial number S for the VABS, commitments CJ and Cs to the number of generated signatures
in the current time period and the user’s secret key, and a number of proofs for the correct construction of
the signature and knowledge of CL signatures on s plus the randomized attribute. The proof of knowledge

5Unlike the ABS schemes of [2, 3, 4], we employ a hash function for randomization, instead of trusting authorities for
that purpose. This is reasonable in scenarios where there exist multiple authorities and multiple attributes, and each
attribute is not known from the start but rather dynamically established.
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Algorithm 2 Our Sign algorithm with AND policy
input: a message m, a secret key s, an AND policy β = ω1 ∧ . . . ∧ ωk, a
global id σid, a non-revocation witness witness wid for σid , a set Σβ = (σω1

, . . . , σωk)
of the attribute tokens for β, a set Wβ = (w1, . . . , wk) of non-revocation witness
of those attributes, a set ΣT = (σT,1, . . . , σT,θ) of the tracing tokens , the issuing public key
iip and the revocation public key irp of the provider of the σid, the issuing public key
set AIP and the revocation public key set ARP of the authorities that have issued Σβ ,
the tracing public key set TP of the tracing authorities that have issued ΣT , the current time pe-
riod t ≥ 1, the number J of ABSs generated by the signer in the current period, the allowed number
n of the legitimate signatures by a user in a time period, the signature and global setup parameters
params = (q,G, g, h).
output: an ABS σ = (S,CJ ,Cs, Φ , SoK1, . . . ,SoK3+k, SoK4+k, . . . ,SoK5+k+θ ).

ρ1, ρ2, ρ3 � Zq; S := g1/(s+t2`cnt+J); CJ := gJhρ1 ; Cs := gshρ2

Φ := (gρ3

1 , gρ3

2 , gs1h1
ρ3 , cρ3dρ3κ) where κ := H(gρ3

1 , gρ3

2 , gs1h1
ρ3)

SoK1 :=SoK[m]{(J, ρ1) : J ∈ {0, . . . , n− 1} ∧ CJ = gJhρ1}
SoK2 :=SoK[m]{(α, γ) : S = gα ∧ g = (Csg

t2`cntCJ)αhγ}
SoK3 :=SoK[m]{(s, ρ2, σid, wid ) : σid is a σCL on s committed in Cs verifiable with iip,
and wid is a witness that σ̃id is accumulated in irp }

for i = 1, . . . , k do
SoK3+i :=SoK[m]{(s, ρ2, σωi , wi ) : σωi is a σCL on s+H(ωi) committed in Cs+H(ωi) = Csg

H(ωi)

verifiable with aipi ∈ AIP , and wi is a witness that σ̃ωi is accumulated in arpi ∈ ARP }
SoK4+k :=SoK[m] that Φ is constructed correctly
SoK5+k :=SoK[m] that Cs and ġs1ḣρ3 are commitments to
the same value
for i = 1, . . . , θ do

SoK5+k+i :=SoK[m]{(s, ρ2, σT,i) : σT,i is a σCL on s commit-
ted in Cs verifiable with tpi ∈ TP}

schemes for SoK1 and SoK2 can be realized using [40] and [39] and converting them into non-interactive
signatures on m, thereby showing that the signature was not produced more than n times in the current
time period (also to be verified against a database to ensure the serial number is not used multiplicatively).
For SoK3, the signer does as follows. She computes the commitment Cs := gshρ1 and the commitments,
Cρ+r := gρ+rhρ2 , Cσ̃id := gσ̃idhρ3 , Cv := vgρ4 , Cρ4 := gρ4hρ5 , Cρ4σ̃id := gρ4σ̃idhρ6 , and C := (Cv)σ̃idhρ7 using
σid = (ρ + r, σ̃id, v) and picking ρ1, . . . , ρ7 at random as in “Proof of Knowledge of a Signature" protocol of
[34].6 She then generates zero-knowledge proofs of all listed proofs in the mentioned proof scheme of [34] as
SoKs on m. For SoK3+1, . . . ,SoK3+k, the signer also follows the same method as SoK3 by replacing s with
s+H(ω) and id with ω.

Note that our basic solutions has some improvements over what would have been obtained if one had just
converted [16] to a non-interactive signature scheme. First, we provide a method for attribute authorities
generate a signature on the same secret key of the user to eliminate collusion among the users. Second, we
require computation of the serial number S and the commitments CJ and Cs only once per signature, since they
are utilized in counting the number of signatures a person has generated (but not how many times a particular
one of her attributes is utilized), and the commitments Cs+H(ω) can be obtained utilizing Cs. Third, due to
the fact that we only require the more than n-times signing attempts to be detectable but not de-anonymized,
we removed the double spending tags of [16] for efficiency.

For the Sign algorithm with OR policy, the subpolicies can be combined in SoK using [37]. For example,
to sign with a policy (ω1 ∧ ω2) ∨ (ω3 ∧ ω4), the subpolicies (ω1 ∧ ω2) and (ω3 ∧ ω4) can be combined with an
OR proof.

Verify. Algorithm 3 shows our Verify algorithm for an AND policy. The Verify algorithm with OR policies
is obtained via check of OR proofs.

6Note that the commitments that we provide here are the commitments listed in that protocol of [34] in the same
order, with different notation.

10



Algorithm 3 Our Verify algorithm for AND policy
input: a message m, an ABS µ, an AND policy β = ω1 ∧ . . . ∧ ωk, the issuing pub-
lic key iip and the revocation public key irp of the provider of the σid, the issuing public
key set AIP and the revocation public key set ARP of the authorities that have issued Σβ ,
the tracing public key set TP of the tracing authorities that have issued ΣT , the current time pe-
riod t, a signature database SDBj , the allowed number n of the legitimate signatures by a user in
a time period, and global setup parameters params = (q,G, g, h).
output: a bit b and implicitly an updated signature database SDBj+1.

(S,CJ ,Cs, Φ , SoK1, . . . ,SoK3+k, SoK4+k, . . . ,SoK5+k+θ ) := µ

b := 1; SDBj+1 := SDBj ||µ
if S is a part of any signature in SDB then

// check for any other use of S to ensure n times usage
b := 0; SDBj+1 := SDBj

else
for i = 1, . . . , k do Cs+H(ωi) := Csg

H(ωi)

for i = 1, . . . , 3 + k do
// check for n times usage is completed in the first 3
// iterations of this loop
if SoKi does not verify then b := 0; SDBj+1 := SDBj

for i = 4 + k, . . . , 5 + k + θ do
if SoKi does not verify then b := 0; SDBj+1 := SDBj

Algorithm 4 CL signature key generation algorithm for the tracing authority i
input: a unary security parameter 1λ and global setup parameters params = (q,G, g, h).
output: a tracing authority CL public key (g′′i ,h

′′
i , j
′′
i ,Oi), its CL secret key (p′′′i , q

′′′
i ), and the

related proofs (NIZKPoKt,1, NIZKPoKt,2).

p′′′i , q
′′′
i � O(1λ) Sophie Germain primes; Oi := (2p′′′i + 1)(2q′′′i + 1); g′′i ,h

′′
i , j
′′
i � QROi

NIZKPoKt,1 :=NIZKPoK{(q′′i , p′′i ) : Oi = (2p′′′i + 1)(2q′′′i + 1)}
NIZKPoKt,2 :=NIZKPoK{g′′i ,h

′′
i , j
′′
i ∈ QROi}

4.2 Adding Threshold Traceability
In this subsection, we explain how to add traceability to our basic solution. To protect against malicious tracing
authorities, our solution employs a threshold scheme, where an adversary who controls fewer than threshold-
many tracing authorities cannot attack the system. Only at least threshold-many (θ) tracing authorities can
de-anonymize a user from a given signature. Moreover, no authority can blame a user by forging a signature on
her behalf. Below, we only explain the changes needed on top of our basic scheme (round cornered rectangle
parts in the pseudocodes).

Our technique utilizes the threshold public key encryption (TPKE) scheme of [44]. Note that we have
chosen this TPKE scheme for efficiency, yet it may also be possible to build a similar construction via other
non-broadcast TPKE schemes (e.g., [45, 46, 47, 48, 49, 50], as long as they allow efficient zero-knowledge
proof of equality of encrypted value to a committed value and efficient validation of correct construction of a
ciphertext by a third party. On the other hand, the broadcast TPKE schemes [51, 52] are not suitable in our
scheme for traceability, due to the fact that they require the signer to provide the public-secret key pairs to the
tracing authorities herself, which results in disclosure of her identity even by the verifier that needs to validate
tracing transcripts.

Setup. In TraceSetup protocol, first a group GT of prime order q with generators g1 and g2 is generated in
a distributed fashion by all φ tracing authorities. Then, the authorities together generate the encryption public
key tep := (p, q, g1, g2, c, d, h1) and their decryption secret key shares tesi (such that θ of them can decrypt a
ciphertext) as described in [44]. Each tracing authority i runs Algorithm 4 for CL signature key generation,
sets its tracing public key as tpi := (tep,g′′i ,h

′′
i , j′′i ,Oi) and secret key as tsi = (tesi, p

′′′
i , q

′′′
i ), and publishes tpi,

NIZKPoKt,1, and NIZKPoKt,2, showing correct generation of the values. In this phase, each honest authority
checks the transcripts of every other tracing authority, and terminates the procedure in case of detection of
any malicious behaviour.

User Join. When a user joins the system, upon running the protocol in Figure 1 with an identity provider,
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she interacts with at least θ tracing authorities, with each of which she runs the TraceIssue protocol given in
Figure 3 to obtain her tracing tokens σT,i, i.e., a CL signature on s. The tracing authorities together register the
tuple (uid, gs1) into the shared tracing database TDB of tracing authorities, which only permits update by the
consensus of θ tracing authorities. Note that there are generic ways (e.g., Byzantine Fault Tolerance [53, 54])
of maintaining such a consistent and consensus-based database as long as the majority of the authorities are
honest (i.e., in our case 2(θ − 1) < φ).

User Tracing Authority

𝜎𝑇 , 𝑟, 𝑣 

𝖢s
′ , 𝑔1

𝑠 , 𝑐𝑒𝑟𝑡, NIZKPoK1, 

NIZKPoK2 NIZKPoK3 

(𝑠, 𝑐𝑒𝑟𝑡, 𝑡𝑝𝑖 , 𝑤, 𝑔𝑟𝑝, 𝑝𝑎𝑟𝑎𝑚𝑠) 𝑖 (𝑡𝑠𝑖 , 𝑡𝑝𝑖 , 𝑝𝑘𝑔𝑖𝑑 , 𝑔𝑟𝑝, 𝑝𝑎𝑟𝑎𝑚𝑠) 

𝜎𝑇,𝑖 ≔  𝜌′ + 𝑟, 𝜎𝑇 , 𝑣 ; 

if σ or any NIZKPoK do not verify 

 abort 

𝜎𝑇       𝑂 1λ  prime number; 𝑟      𝑂 1λ ; 𝑣 ≔

(𝖢𝑠
′ 𝐡𝑖

𝑟 𝐣𝑖)
1

𝜎𝑇 ; 

if 𝑔1
𝑠 is already in TDB 

 detect malicious identity provider 

else 

record (𝑢𝑖𝑑, 𝑔1
𝑠) into TDB 

 

𝜌′     ℤ𝑞
∗ ; 𝖢s

′ : = 𝐠𝑖
𝑠𝐡𝑖

𝜌′
; Parse 𝑐𝑒𝑟𝑡 to obtain 𝖢𝑠 = 𝖢s1+s2

 

NIZKPoK1≔NIZKPoK that 𝖢𝑠 and 𝖢s
′  are the commitments to the 

same value 

NIZKPoK2 ≔NIZKPoK that 𝖢s
′  is a commitment to exponent of 𝑔1

𝑠 

NIZKPoK3≔NIZKPoK of 𝑤 such that 𝑔𝑖𝑑 is accumulated in 𝑔𝑟𝑝  

 

 

 

Figure (3) The TraceIssue protocol between a user and a tracing authority.

Sign. After getting her tracing tokens, a signer can use them in her signatures by including the parts
inside the rounded cornered rectangles in the Sign algorithm. The tracing tag Φ is the ciphertext obtained
by encrypting gs1 with TPKE [44]. SoK4+k is generated by showing ρ3 values are the same in all of gρ3

1 , gρ3
2 ,

gs1h1
ρ3 as a SoK on m and cρ3dρ3κ. SoK5+k is composed of the conventional proof of equality of committed

values on m. Overall, these proofs show that the user provided her own tracing tag as part of the VABS.
SoK6+k, . . . , SoK5+k+θ are again generated by the same technique as described in Subsection 4.1 for the knowl-
edge of CL signatures for identity and attribute tokens, showing that she obtained at least θ CL signatures
from tracing authorities on her same identity. Note that instead of encrypting s, signer encrypts gs1 within the
tracing tag Φ, which has two advantages: secrecy of s and ease of SoK5+k. As expected, in Verify algorithm,
the verifier also checks SoK4+k, . . . , SoK5+k+θ.

Trace. In the Trace protocol, given a valid VABS, tracing authorities run the TPKE decryption [44] for
its tracing tag Φ as an authenticated Byzantine Fault Tolerance [53, 54] protocol, so that at the end the ones
that follow the protocol would come to a consensus in the decryption7 of Φ as gs1, and they find the associated
uid in TDB via searching gs1. In our case, we assume at most θ− 1 tracing authorities are malicious, resulting
in at least θ honest tracing authorities always coming to the consensus on the correct signer uid. We note
that “tracing soundness” of [7] is also ensured, since Φ can only be decrypted to a single value, assuming the θ
tracing authorities joining the operation are honest.

4.3 Adding User/Attribute Revocation
To add user/attribute revocation to the system, the following steps should additionally be taken (sharp cornered
rectangle parts in the pseudocodes).

Authority Join. In Algorithm 1, the proofs of knowledge for NIZKPoK3 and NIZKPoK4 can be instanti-
ated as in [38] and [13], respectively, to show that revocation public key is set up correctly. Upon executing the
algorithm, the identity provider/attribute authority i also publishes its initial revocation public irpi,0/arpi,0
together with the proofs NIZKPoK3 and NIZKPoK4, while keeping its secret key irsi/arsi.

User Revoke. For UserRevoke, inline with [55], an identity provider i updates its current revocation public
key as

irpi,j+1 := irp
σ̃−1
id

mod 4p′′i q′′i
i,j mod Mi

to revoke an issued σid using the related revocation handle σ̃id. Note that according to [55], after each issuing or
revocation, the identity provider may publish σ̃id, so that the other users can update their witnesses. Instead,
it is also possible to periodically issue or revoke users in a batch as

ψ :=

(∏
i∈revoked σ̃id,i∏
i∈issued σ̃id,i

)
mod 4p′′j q′′j ,

so that for a user k with gcd(ψ, σ̃id,k) = 1, she would only need ψ to efficiently update her witness by
first computing a and b such that a.σ̃id,k + b.ψ = 1 via the extended Euclidean algorithm, and then setting

7“Interactive proofs of validity of partial decryptions” method in [44] should be utilized for honest majority to obtain
the correct plaintext.
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wid,j+1 := wbid,j .irp
a
i+1. This is an optimization we propose over [55] to obtain a constant size product via

modulo operation (see Appendix B for efficiency improvement analysis).
Sign & Verify. In the Sign algorithm, the SoK3 related to the CL signature for identity is generated as

follows. The signer computes the commitments Cs, Cρ+r, Cgĩd, Cv, Cρ4 , Cρ4σ̃id , and C, as described in Section
4.1. She then computes the commitments and values listed in “Efficient Proof That a Committed Value Was
Accumulated” protocol in [55] to prove that the committed value in Cσ̃id is accumulated in the part ui,j+1 of
irpi,j . The signer then generates zero-knowledge proofs of all listed proofs in the mentioned proof schemes of
[34] and [55] as SoKs on m. Overall, in SoK3 she additionally demonstrates that her identity is not revoked by
proving a witness, and in SoK3+1, . . . ,SoK3+k, she shows that the attributes that she is using to sign are not
revoked by the related attribute authorities by proving associated witnesses. In the Verify algorithm, although
the notation does not change, we also verify the witnesses mentioned above for SoK3, . . . ,SoK3+k.

4.4 Hiding Authorities
It is possible to enhance our Sign algorithm to achieve authority hiding in applications where revealing the
authorities can disclose the identity of the signers.

To hide the identity provider, the signer includes in the input the issuing public key set IIP (instead of a
single iip) and the revocation public key set IRP (instead of a single irp) of all identity providers. She then
computes SoK3 as
SoK3 :=SoK[m]{(s, ρ2, σid, wid) :

∨
|IIP |
j=1 (σid is a CL signature on the committed value in Cs verifiable

with iipj ∈ IIP , and wid is a witness that gĩd is accumulated in irpj ∈ IRP )}
To hide the authority of an attribute token σωi , the signer includes in the input

the issuing public key set AIPωi (instead of the aip of the authority that issued σωi)
and the revocation public key set ARPωi (instead of the arp of the authority that issued σωi) of
all authorities that can issue ωi. She then computes SoK3+i as
SoK3+i :=SoK[m]{(s, ρ2, σωi , wi) :

∨|AIPωi |
j=1 (σωi is a CL signature on the

committed value in Cs+H(ωi) = Csg
H(ωi) verifiable with aipj ∈ AIPωi ,

and wi is a witness that σ̃ωi is accumulated in arpj ∈ ARPωi )}
To hide the tracing authorities that she obtained the tracing tokens from, the

signer includes in the input the public key set TPφ of all tracing authorities (instead
of TP ). She then replaces SoK6+k . . . SoK5+k+θ with a single SoK6+k computed as
SoK6+k :=SoK[m]{(s, ρ2,ΣT ) : ΣT is a set of σCL signatures on s committed in Cs verifiable with θ
elements of TPφ}

All of these SoKs can be computed by the generic method provided in [37]. More concretely, to
hide an authority, the signer first generates all the commitments for the tokens that she has as before,
and then simulates the other commitments for the tokens that she does not have. Then, she generates
all the SoKs on m as non-interactive OR proofs for her identity/attribute token or knowledge of θ out
of φ proofs for her tracing tokens. In our modular design, it is possible, for example, to hide only the
attribute authorities.

5 Security of Our VABS Scheme
Theorem 1. If the Strong RSA assumption [16, 56] holds in the group Z∗Ni and Z∗Mi

of each identity
provider/attribute authority i and in the group Z∗Oi of each tracing authority i, the underlying SoK
schemes are secure (i.e., they satisfy completeness, soundness, and zero-knowledge properties of zero-
knowledge proofs), Fg,s(x) = g1/s+x is a pseudorandom function (PRF) with input x ∈ Z∗q , the TPKE
scheme of [44] is secure against chosen ciphertext attack (CCA-secure), H(·) is modeled as random
oracle, the assumptions on the authorities hold, i.e., the identity providers/attribute authorities issue
the tokens only to deserving users and out of φ ≥ 2θ−1 tracing authorities at most θ−1 are malicious;
then our VABS scheme is secure (i.e., it satisfies anonymity, signature unforgeability, soundness, and
reliable traceability).

Remark 1. The security of the recommended SoK schemes and the pseudorandomness of the function
Fg,s(x) = g1/s+x are proven to be reducible to the Strong RSA assumption and the SDDHI assumption
[16] holding in 〈g〉. Further, the CCA-security of the TPKE scheme of [44] is reducible to the DDH
assumption holding in 〈g1〉.
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We prove that our VABS scheme does not allow collusion of users to combine their attribute tokens,
and show that it satisfies anonymity, signature unforgeability, soundness, and reliable traceability. Due
to space limitation, we keep here only the anonymity proof as an example, and put other full proofs
in Appendix A.

Lemma 1. If the underlying SoK schemes are zero-knowledge, and Fg,s(x) = g1/s+x is a pseudorandom
function (PRF) for x ∈ Z∗q , and the TPKE scheme of [44] is secure against chosen ciphertext attack
(CCA-secure); then our VABS scheme achieves anonymity.

Proof. Assuming that the underlying SoK schemes are zero-knowledge and the threshold encryption
of [44] is CCA-secure, we now reduce the anonymity of our VABS scheme to the pseudorandomness of
Fg,s(x) = g1/s+x. If a PPT adversary Â wins the anonymity game VABSAnonym with non-negligible
advantage, then we can utilize Â to construct a PPT algorithm B̂ that distinguishes Fg,s from a random
function f : Z∗q → 〈g〉 with non-negligible advantage. In the VABSAnonym game, Â and B̂ play the
roles of A and C, respectively. In the DistPRF game, B̂ plays the role of A against an honest challenger
Ĉ. In VABSAnonym, since we assume the security of the SoKs and the CCA-security of the TPKE
scheme, we give the control of the simulators for non-interactive proofs and the TPKE scheme to B̂,
e.g., B̂ simulates SoKs for Â. Note that in the TPKE scheme of [44], B̂ can create a ciphertext by
picking a random group element for each of its four parts, and during the decryption, if B̂ knows a
plaintext m, using at least one authority under its control, it can simulate the partial decryption of
that authority so that overall the decryption outputs m. The reduction follows:

1. In DistPRF, B̂ obtains 1λ, g, and q. Ĉ also gives to B̂ the oracle access to Fs(·) or f(·) (chosen
fairly at random).

2. In VABSAnonym, B̂ picks arbitrary h ∈ 〈g〉 and n, δ ∈ poly(λ), and gives to Â the values 1λ,
n, δ, and params = (q, 〈g〉, g, h). B̂ and Â then follow TraceSetup and publish the outputs as
described. The time counter t is initialized as 1, and is started (Step 1 of VABSAnonym).

3. In VABSAnonym, B̂ follows Step 2 of the game with Â in the exact same way as an honest C
would do.

4. B̂ obtains an attribute policy β chosen by Â (Step 3 of VABSAnonym).

5. In VABSAnonym, B̂ generates two user secret keys s0 and s1, and computes commitments to
these values using the authority public keys. B̂ gives to Â all the commitments to s0 and s1. Â
generates attribute tokens on s0 and s1 to prove that both users conform to β and gives those
signatures to B̂ (Step 4 of VABSAnonym).

6. In VABSAnonym, a bit b is randomly picked by B̂ (normally an honest challenger would pick this
bit in Step 7 of the game).

7. Â is given access to the Sign oracles for s0 and s1. However, the oracle outputs are ar-
ranged by B̂ as follows. If the Sign oracle for sb is queried with (m′, β̃′), B̂ queries the
oracle in DistPRF with t′2`cnt + Jb, obtains the oracle output S′, and then generates σ ←
(S′,CJb , ς

′,Φ, the simulated SoKs on m′), where ς ′ � 〈g〉 is the commitment simulation, and
all the SoKs and the ciphertext Φ (so that it always traces to the signer) are simulated. If
Sign(·, sb̄, β̃, Σ̃Ω, ÃP , t, Jb̄) is queried with (m′, β̃′), B̂ itself picks S′ � 〈g〉 instead of querying the
oracle in DistPRF, and generates the other parts of the signature in the same way as in sb. B̂
gives the oracle outputs to Â (Step 5 of VABSAnonym).

8. In VABSAnonym, Â generates two messages m0 and m1 (Step 6 of VABSAnonym).

9. In DistPRF, B̂ queries the oracle with t2`cnt + Jb, and obtains the oracle output
Sb. In VABSAnonym, B̂ sets σ0 := (Sb, ς1,CJb , the simulated SoKs on m0, A) and σ1 :=
(Sb̄, ς2,CJb̄ , the simulated SoKs on m1, A) where Sb̄ � 〈g〉, ς1, ς2 � 〈g〉 are commitment sim-
ulations, and all the SoKs are simulated (Step 7 of VABSAnonym).

10. In VABSAnonym, Â eventually outputs a bit b′ (Step 8 of VABSAnonym). If b = b′, in DistPRF,
B̂ outputs its guess for the oracle as Fg,s. Otherwise, B̂ outputs its guess as f .
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1 attribute 3 attributes 5 attributes 10 attributes 15 attributes 20 attributes

Exec. time of Sign 119.5 ms 225.5 ms 331.5 ms 596.5 ms 861.5 ms 1126.5 ms

Exec. time of Verify 98.4 ms 186.4 ms 274.4 ms 494.4 ms 714.4 ms 934.4 ms

VABS size 51.2 kB 92.2 kB 133.2 kB 235.7 kB 338.2 kB 440.7 kB

Table (2) The implementation results of Sign and Verify algorithms of our basic ABS scheme for
various attribute policy sizes. The RSA and prime-order group modulus lengths are set as 1024 bit,
and SHA256 is used as the random oracle.

In both σ0 and σ1, the only values where Â can make the differentiation are Sb and Sb̄, since
the Pedersen commitment scheme is information theoretically hiding, and SoKs and Φ are simulated.
Moreover, if the oracle in DistPRF is the random function f , then Sb and Sb̄ are also perfectly indis-
tinguishable, which implies that Â would not obtain non-negligible advantage from these values. If Â
obtains non-negligible advantage from these values, then the oracle is the pseudorandom function Fg,s.
Let ε1 and ε2 denote the advantages of the adversaries in VABSAnonym and DistPRF, respectively.
Then, we have

Pr[Â wins VABSAnonym (i.e., b = b′)] =
1

2
+ ε1

Pr[B̂ outputs Fg,s| the oracle is Fg,s]Pr[B̂ outputs Fg,s| the oracle is f ] =ε2

Via the total probability law, we can write the first equality as

Pr[b = b′| the oracle is Fg,s].Pr[the oracle is Fg,s]+Pr[b = b′| the oracle is f ].Pr[the oracle is f ] =
1

2
+ε1

Also, since if b = b′, B̂ outputs Fg,s, and otherwise, it outputs f , we can convert the second equality as

Pr[b′ = b| the oracle is Fg,s]− Pr[b′ = b| the oracle is f ] = ε2

Combining the above two resulting equation and substituting 1/2 for both Pr[the oracle is Fg,s] and
Pr[b = b′| the oracle is f ], we obtain

1

2
· (Pr[b′ = b| the oracle is f ] + ε2) +

1

2
· Pr[b′ = b| the oracle is f ] =

1

2
+ ε1

Pr[b′ = b| the oracle is f ] +
1

2
ε2 =

1

2
+ ε1

If the oracle is f , Â can win VABSAnonym with exactly 1/2 probability, since its view for both b = 0
and b = 1 is statistically identical. Therefore, 1

2ε2 = ε1 and if Â wins VABSAnonym with non-negligible
advantage ε1, then B̂’s advantage ε2 in DistPRF is also non-negligible. Hence, since ε2 is negligible if the
PRF is indistinguishable from random, so must ε1 be, showing that our VABS provides anonymity.

6 Efficiency
Observe that GlobalSetup and TraceSetup protocols take place only once. Further, IdPJoin, AuthJoin,
UserJoin, TraceIssue, AttrIssue, AttrRevoke, and Trace operations also take place infrequently, and re-
quire a constant number of public key operations. The most frequently used operations would be Sign
and Verify, and hence in this part, we concentrate on analyzing their efficiency.

Asymptotically, Sign algorithm’s computational cost and the signature size is proportional to the
number of attributes, and hence is O(|IIP | + |β|.|AIP | + φ) SoK costs. Similarly, Verify algorithm
requires the verifier to execute O(|IIP | + |β|.|AIP | + φ) SoK verifications and a search for the serial
number of the signature in the database for the last time period. The main overhead O(|β|.|AIP |)
suggests that a limitation on the number of authorities that are issuing each attribute in practice may
help with the efficiency of the system.

With a prototype code, we analyzed the cost of the Sign and Verify algorithms of our basic con-
struction in Section 4.1 using the given primitives implemented in the Cashlib cryptographic library8

8https://github.com/brownie/cashlib
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[57]. Our test environment is a virtual machine (under VirtualBox) using Intel(R) Core(TM) i7-7600U
(2.80GHz) CPU with 6.4 GB RAM running Lubuntu 16.04.5. The RSA and prime-order group mod-
ulus lengths are set as 1024 bit, and SHA256 is used as the random oracle. We repeated our tests
10 times. Table 2 shows the average results of our implementation for various attribute policy sizes.
More precisely, on average, our Sign algorithm takes 66.5 ms plus 53.0 ms per attribute that needs to
be proven. Also, on average, the length of the generated ABS is 30.7 kB plus 20.5 kB per attribute.
Further, on average, our Verify algorithm requires 54.4 ms plus 44.0 ms per attribute. In the future, we
plan to extend our implementation to cover the modular extensions of our VABS, and obtain efficiency
numbers for higher security parameters as well.
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A Completion of the Proof of Theorem 1
Lemma 2. If the identity providers are honestly randomize the secret keys, and H(·) is modeled as
random oracle; then the probability that different users can combine their attribute tokens is negligible.

Proof. In our scheme, users i and j with secret keys si and sj can combine their attribute tokens for
the attributes ωk and ωl, only in three different cases: (1) si = sj , (2) the equality si = sj + H(ωl)
holds for some si 6= sj and the user attribute authority is permitted to issue attribute ωl, and (3) the
equality si + H(ωk) = sj + H(ωl) holds for some si 6= sj and some ωk 6= ωl. Our scheme does not
allow any collusion in any other case, since CL signatures are only generated on these values and do
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not permit combining. Therefore, it will be sufficient to show that the probability that there exists
two different users with secret keys si and sj , and two different attributes ωk and ωl, such that at least
one of the cases (1), (2), and (3) holds is negligible. Let Γ, Ψ, η and ϕ denote the set of the secret keys
s in the system, the set of attributes ω in the system, the number of elements of Γ, and the number
of elements of Ψ, respectively. Note that the number of users and attributes can be considered as
bounded by a polynomial poly(λ). If the identity providers are honest, and randomize the user secret
keys, each user key si, sj , and their difference si−sj is statistically identical to picking randomly from
Zq. Also, as H(·) is modeled as a random oracle, each randomized attribute H(ωk), H(ωl), and their
difference H(ωk) −H(ωl) is statistically identical to picking randomly from Zq. Considering the fact
that the number of elements in Zq is q, for cases (1), (2), and (3), we calculate

Pr[∃si, sj ∈ Γ s.t. si = sj , i 6= j] = 1−
η∏
x=2

(
1− x− 1

q

)
= O(η2/q),

Pr[∃si, sj ∈ Γ,∃H(ω) ∈ Ψ s.t. si = sj +H(ω), i 6= j] ≤ 1−
(

1− ϕ

q

)2·(η2)
= O(η2ϕ/q),

Pr[∃si, sj ∈ Γ,∃H(ωk), H(ωl) ∈ Ψ s.t. si +H(ωk) = sj +H(ωl),

i 6= j, ωk 6= ωl] ≤ 1−
(

1−
(
ϕ
2

)
q − 1

)2·(η2)
= O(η2ϕ2/q).

From the above, we calculate the probability ε of at least one of the above three events occuring as
at most the addition of them, i.e., ε = O(η2/q)+O(η2ϕ/q)+O(η2ϕ2/q) = O(η2ϕ2/q). Since q ∈ Θ(2λ)
and η, ϕ ∈ poly(λ), we deduce that ε is a negligible function of λ.

Lemma 3. If the Strong RSA assumption [16, 56] holds in the groups Z∗Ni and Z∗Mi
of each identity

provider/attribute authority i, logg h is not deducible by any party (due to the DDH assumption in
〈g〉), the underlying SoK schemes are sound, and the underlying hash function H : {0, 1}∗ → Zq is
modeled as a random oracle; then our VABS scheme achieves signature unforgeability.

Proof. Assuming that logg h is not deducible by any party, and that all the underlying SoK schemes
satisfy soundness, and that H is modeled as a random oracle, we now reduce signature unforgeability
of our VABS scheme to the Strong RSA assumption that should hold in all Z∗Ni and Z∗Mi

of identity
providers and attribute authorities. Note that we also assumue that non-revocation witnesses are
unforgeable, since otherwise, it is also shown in [55] that one can break Strong RSA assumption. If a
PPT adversary Â wins the signature unforgeability game VABSForge with non-negligible advantage,
then we can utilize Â to construct a PPT algorithm B̂ that breaks the unforgeability of CL signature of
at least one authority non-negligible advantage. Since forging CL signatures imply breaking the Strong
RSA assumption as shown in [34], B̂ can trivally be utilized for constructing a PPT algorithm that
breaks the Strong RSA assumption in at least one attribute authority group. In the game VABSForge, Â
and B̂ play the roles of A and C, respectively. In the CLSignForge game (the CL signature equivalent of
the conventional existential unforgeability under adaptive chosen message attack game for signatures
as described as Sig-forge in [58]), B̂ plays the role of A against an honest challenger Ĉ. Briefly, in
CLSignForge, given a security parameter λ, a CL public key p and access to the related CL signing
oracle, the adversary wins by computing a message m and a signature σCL on it that gets verified by
the public key p, subject to the restriction that m cannot be previously queried to the oracle.

We start by replacing H with a random oracle under control of B̂ and accessible by Â. Also, B̂
extracts SoKs of Â such that if Â needs to generate SoK[m]{ξ : ξ satisfies ζ}, it needs to give the input
a message m, the information ξ, and condition ζ to B̂, who only checks whether ξ satisfies ζ.

1. In CLSignForge, B̂ obtains 1λ.

2. In VABSForge, B̂ runs GlobalSetup on 1λ and obtains params = (q,G, g, h). Also, it picks
arbitrary n, δ ∈ poly(λ), and gives 1λ, n, δ, and params to Â. B̂ and Â then follow TraceSetup
and publish the outputs as described. The time counter t is initialized as 1, and is started (Step
1 of VABSForge).
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3. In VABSForge, B̂ follows Step 2 of the game with Â in the exact same way as an honest C would
do, except for one of the attribute authorities (picked randomly by B̂) that can issue ω under B̂’s
control generated after Â’s request. Note that according to the game definition Â must request
at least one attribute authority (see Step 5 of VABSForge) for verification of ω. For that authority
only9, B̂ acts as the Steps 6 and 8 of this proof below.

4. Â is allowed to corrupt all φ tracing authorities (Step 3 of VABSForge.

5. In VABSForge, Â returns an attribute ω (that is not queried to the authorities under B̂’s control
for users under Â’s control (Step 4 of VABSForge).

6. In CLSignForge, B̂ obtains the public key p. B̂ gives to Â as one of the public keys of authorities
under B̂’s control (Step 5 of VABSForge).

7. In VABSForge, for each si queried for the attribute ω by Â that verifies in the checks of the
previous step, B̂ itself picks a random value %, sets it as the query output to the random oracle
for ω, and sets mi = si + %.

8. In VABSForge, if Â queries the authority oracle for p, then B̂ queries mi to the signing oracle in
CLSignForge, receives the output and returns it to Â. Otherwise, B̂ signs the message with the
secret key of the queried authority itself.

9. In VABSForge, Â eventually outputs (m,β ∧ ω, σ) to B̂ (Step 6 of VABSForge). If Â wins, B̂
extracts the SoK3+i query for the winning µ, where i is the index of ω. B̂ then parses the related
SoK query from Â and using the SoK extractor B̂ obtains the CL signature σCL that Â utilized.

10. In CLSignForge, B̂ outputs σCL.

As shown in [16], Â cannot achieve a forgery in commitments with non-negligible probability, since
it cannot deduce logg h. Also, since SoKs are sound, Â cannot prove with non-negligible probabil-
ity without knowing the CL signatures. Since the non-revocation witnesses are also assumed to be
unforgeable, the only way that Â wins VABSForge is via forging a CL signature with non-negligible
probability. Since the generated signature would correspond to the authority p with non-negligible
probability (i.e., at least 1/K where K ∈ poly(λ) is the number of the authorities), B̂ also wins
CLSignForge with non-negligible probability.

Lemma 4. If Strong RSA assumption holds in the group Z∗Ni of each identity provider i, and the
underlying SoK schemes are sound, then our VABS scheme achieves soundness.

Proof Intuition. The soundness proof of [16] covers our soundness proof, since we achieve this property
by limiting the use of the user secret key s via S, Cs, CJ and three SoKs (SoK1, . . . ,SoK3) related
to these serial number and commitments. The serial number S, and commitments Cs and CJ are
structured exactly the same as in [16]. The minor difference is that instead of ZKPoK protocols of
[16], the user proves the knowledge of the same information via SoKs (which provides the same security
guarantees in the random oracle mode) on the signed messages.

Lemma 5. If the Strong RSA assumption holds in the group Z∗Oi of each tracing authority i, the TPKE
scheme is CCA-secure (due to DDH assumption holding in 〈g1〉), and the underlying SoK schemes are
sound; then our VABS scheme achieves reliable traceability.

Proof. Assuming that all the underlying SoK schemes satisfies soundness and the DDH assumption
holds in 〈g1〉, we now reduce reliable traceability of our VABS scheme to the Strong RSA assumption
that should hold in all Z∗Oi of tracing authorities. If a PPT adversary Â wins the reliable traceability
game VABSTrace with non-negligible advantage, then we can utilize Â to construct a PPT algorithm B̂
that breaks unforgeability of the CL signature of at least one authority with non-negligible advantage.
Since [34] already showed that their signature scheme is unforgeable under the Strong RSA assumption,
B̂ can trivally be utilized for constructing a PPT algorithm that breaks the Strong RSA assumption
in at least one tracing authority group. In the game VABSTrace, Â and B̂ play the roles of A and C,
respectively. In the CLSignForge game (described in the proof of Lemma 3), B̂ plays the role ofA against

9If there are multiple such authorities, B̂ picks one randomly reducing its chance only inverse polynomially.
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an honest challenger Ĉ. B̂ extracts SoKs of Â so that if Â needs to generate SoK[m]{ξ : ξ satisfies ζ}, B̂
learns the witness ξ in addition to the messagem and condition ζ, and only checks whether ξ satisfies ζ.

1. In CLSignForge, B̂ obtains 1λ.

2. In VABSTrace, B̂ runs GlobalSetup on 1λ and obtains params = (q,G, g, h). Also, it picks
arbitrary n, δ ∈ poly(λ), and gives 1λ, n, δ, params to Â. B̂ and Â then follow TraceSetup and
publish the outputs as described. The time counter t is initialized as 1, and is started (Step 1
of VABSTrace).

3. In VABSTrace, B̂ follows Step 2 of the game with Â in the exact same way as an honest C would
do, except for one of the tracing authorities (picked randomly by B̂) under B̂’s control. For that
authority only, B̂ acts as follows. In CLSignForge, B̂ obtains the public key p. B̂ gives p to Â as
the CL public key part of the public key of that authority (TPKE public key part is prepared as
in the honest way). If Â asks to involve the tracing authority with public key p in a TraceIssue
execution, then B̂ queries to the signing oracle in CLSignForge, receives the output and returns
it to Â. Otherwise, B̂ signs the message with the secret key of the queried authority itself.

4. In VABSTrace, Â eventually gives a VABS to B̂ (Step 3 of VABSTrace). If Â wins, B̂ extracts
the SoK6+k query for that VABS to obtain the CL signature σCL that Â utilized.

5. In CLSignForge, B̂ outputs σCL.

Clearly, the only way that Â wins VABSTrace is via forging a CL signature with non-negligible
probability. Since one of the generated signatures would correspond to the authority p with non-
negligible probability (i.e., at least 1/K where K ∈ poly(λ) is the number of the tracing authorities),
B̂ also wins CLSignForge with non-negligible probability.

B Efficiency Improvement Due to Bulk Update of Accumula-
tors

Our optimization is due to the observation that in “adding or deleting several values at once” recom-
mended in [55], the costly operation needs to be done only if gcd(ψ, σ̃id,k) 6= 1, which may occur in
case ψ is a multiple of σ̃id,k since σ̃id,k is prime. Let us approximate to the average frequency z of the
costly operation to see the efficiency improvement. Let Mj be Υ(λ) bits where Υ(·) is a polynomial,
(for ease of calculation) ψ be randomly picked from [0, 2Υ(λ)) , and each σ̃id,k be a prime in the range
[2, 2Υ(λ)). In this range there exists roughly ϑ = 2Υ(λ)

/
ln 2Υ(λ) prime numbers, and the i-th prime

number can be approximated as i ln i. Hence,

z ≈ 1

ϑ

(
2Υ(λ)

/
2

2Υ(λ)
+

ϑ∑
i=2

2Υ(λ)
/

(i ln i)

2Υ(λ)

)
<

1

ϑ

ϑ∑
i=1

1

i
<

lnϑ+ 1

ϑ
<

(Υ(λ) ln 2)2

2Υ(λ)
= n(λ)

where we have applied the Maclaurin-Cauchy test on the harmonic series. Thus, the check for
gcd(ψ, gĩdk) = 1 can be omitted by the users. For AttrRevoke, the same arp update operations is
utilized by the attribute authority i via replacing σid, σ̃id, and irp with σω, σ̃ω, and arp, respectively.
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