
The Security of All Private-key Bits in Isogeny-based Schemes

Barak Shani
University of Pennsylvania

Abstract

We study the computational hardness of recovering single bits of the private key in the super-
singular isogeny Diffie–Hellman (SIDH) key exchange and similar schemes. Our objective is to
give a polynomial-time reduction between the problem of computing the private key in SIDH to the
problem of computing any of its bits. The parties in the SIDH protocol work over elliptic curve
torsion groups of different order N . Our results depend on the parity of N . Our main result shows
that if N is odd, then each of the top and lower O(log logN) bits of the private key is as hard to
compute, with any noticeable advantage, as the entire key. A similar, but conditional, result holds
for each of the middle bits. This condition can be checked, and heuristically holds almost always.
The case of even N is a bit more challenging. We give several results, one of which is similar to the
result for an odd N , under the assumption that one always succeeds to recover the designated bit.
To achieve these results we extend the solution to the chosen-multiplier hidden number problem,
for domains of a prime-power order, by studying the Fourier coefficients of single-bit functions over
these domains.

1. INTRODUCTION

Isogeny-based cryptography is a relatively new area in public-key cryptography. It is based on the

problem of computing isogenies between a given pair of isogenous elliptic curves. There is no (publicly)

known polynomial-time quantum (or classical) algorithm for this problem, as opposed to factoring and

computing discrete logarithms, and therefore it may serve in the future as a fundamental problem to

build cryptographic schemes upon. See [5, 10] for introduction to isogeny-based cryptography.

The use of isogenies for public-key cryptography was first considered in the unpublished work of

Couveignes [4] and was later rediscovered by Rostovtsev and Stolbunov [18] (see also Stolbunov [21]),

who proposed a key exchange protocol with ordinary elliptic curves. Subsequently Jao and De Feo [13]

proposed a key exchange protocol with supersingular elliptic curves, that does not suffer from some

weaknesses in the ordinary cryptosystem.

The main isogeny-based scheme so far is Jao–De Feo’s Diffie–Hellman-type key exchange, known

as the supersingular isogeny Diffie–Hellman (SIDH). Other schemes [6, 9, 25] build upon it. As such, it

is often convenient to introduce this area with a comparison to the original Diffie–Hellman key exchange

(see for example the introduction of [23]). We follow this analogy. In the rest of the paper we let H

1

be some group where its operation is written multiplicatively. The analogue to exponentiation in H is

applying an isogeny on the elliptic curve E, and the analogue to computing discrete logarithms in H is

computing an explicit isogeny φ : E → E′ (given E,E′).

One of the important aspects in the security of public-key cryptosystems is the bit security of the pri-

vate key (a comprehensive overview, including the relation to pseudorandom functions, is given in the

survey [11]). The study of bit security aims to determine whether the public key reveals partial informa-

tion about the private key, where the main interest is in the bits of the private key. Subsequently, it may

affect the choice of security parameters in implementations of the cryptosystems. Ideally one would

like to know that each bit of the private key is hard to predict, or at least have a precise classification of

which bits are easy to compute and which are hard.

This paper studies the bit security of the private key in SIDH and in similar isogeny-based cryp-

tosystems. We remark that other security aspects of SIDH were investigated in [8, 22, 17]. The setup

in these cryptosystems consists of a supersingular elliptic curve E and two points of a known smooth

order P,Q ∈ E[`e], for some prime `. Our main question of interest is the following:

Given Alice’s public key E/G, where G = 〈[a]P + [b]Q〉, how hard is it to retrieve bits of

the private key a, b?

A similar question can be asked when also two auxiliary points φ(P1), φ(Q1) ∈ E/G are given, as in

SIDH (see Section 2), where φ : E → E/G is Alice’s secret isogeny.

For this problem to be well defined, we assume the uniqueness (up to automorphism) of the isogeny

φ : E → E/G of degree dividing `e; this is typically the case, and it holds when the auxiliary points

are given (see [23, Lemma 3.2]). The equivalent problem for the discrete logarithm problem (DLP) is:

given g ∈ H and ga, how hard is it to retrieve bits of a?

One issue arises from the fact that G is not uniquely defined.1 For every c ∈ Z∗`e we have that

G = 〈[ca]P + [cb]Q〉. Thus there are many pairs a′, b′ that define G, i.e. G = 〈[a′]P + [b′]Q〉, and

there is no benefit in determining the exact values a, b chosen by Alice: recovering any such pair breaks

the cryptosystem. In particular, if a, b are chosen at random, then with high probability at least one of

these values, say a, is invertible (that is a ∈ Z∗`e) and so for c = a−1 we get that G = 〈P + [a−1b]Q〉.
Therefore with high probability one can determine all the bits of one of the coefficients. In particular we

see that even though the private key may consist of two randomly chosen n-bit integers, they provide at

most n+ 1 bits of security.2 In fact it is suggested in the literature [6, 3] to set either a = 1 or b = 1 to
1We remark that a similar problem arises in the study of bit security in LUC and XTR cryptosystems, and is a major

obstacle in getting results for XTR (see [15] for details).
2It is suggested to make sure that at least one of the coefficients a, b is invertible to have (at most) n bits of security (in

some cases the order of the group G can be computed and so if both coefficients are not invertible it can be detected and
exploited to have a smaller search space for the coefficients; see Section 4.3.1). The extra bit comes from the freedom to
choose the invertible coefficient.

2

speed-up the implementation.

Contribution: Suppose without loss of generality that G = 〈P + [b′]Q〉. We want to know how hard

it is to compute, or predict, a single bit of b′, the coefficient of Q, with a non-negligible advantage

(over the guessing strategy). A standard approach to showing that it is infeasible to predict bits of b′ is

to show that predicting a single bit of b′ leads to an algorithm that computes b′ (with some noticeable

probability). Since G = 〈[r]P + [rb′]Q〉 for any r ∈ Z∗`e , the ability to predict a bit of the coefficient of

Q allows one to predict a bit of rb′ for any r ∈ Z∗`e . Thus, we get (a variant of) the chosen-multiplier

hidden number problem, which is a very useful tool in the study of bit security. However, here the

problem takes place in a domain of highly composite order, Z`e , a case that has not been previously

addressed, to the best of our knowledge.

In Theorem 3 we provide a solution to the chosen-multiplier hidden number problem with single-bit

functions in Z`e , for ` 6= 2. We divide the solution into three cases: the top log log `e bits (where the

case ` = 2 also holds), the lower log log `e bits, and the rest of the bits – the middle bits – where the

solution is conditional. This result may be of independent interest.

In Section 4.1 we consider the case ` 6= 2. Building on the former result we prove that computing

any of the top or lower log log `e bits of b′ with non-negligible advantage is as hard as computing G

(or equivalently the entire value b′); the top-bits result also holds for ` = 2. For the middle bits, we

give a general condition for a similar result to hold. The condition, which can be checked, depends

on the particular domain size `e, and heuristically holds with overwhelming probability. These results

hold in a model where an oracle takes a pair of points P ′, Q′, and returns a bit of the (minimal positive)

coefficient s of Q′ such that G = 〈P ′ + [s]Q′〉 (if such s exists).

In Section 4.2 we consider the case ` = 2. For this case we consider a more restrictive model that

does not enable to specify the generating points P ′, Q′ of E[`e] as in the previous case, instead they are

given upon specifying the torsion group (which can be determined by the isogeny degree). We show

that recovering the least significant bit of both coefficients is as hard as recovering the entire group G.

In addition, in a similar model to the one in Section 4.1, we show that computing – with probability 1 –

a single bit of b′ is as hard as computing b′.

These results do not exploit the auxiliary points in the SIDH public key. We further show how to

use these points to randomise these reductions and to learn bits of the private key when the group G is

not generated properly.

2. ISOGENY-BASED CRYPTOGRAPHY

We state some facts on isogenies between elliptic curves. For general background on elliptic curves see

Silverman [20] and for mathematical background on isogeny-based cryptography see any of [5, 6, 8, 9,

3

10, 13, 17, 22, 23].

An isogeny between two elliptic curves E,E′ is a non-constant morphism φ : E → E′ that maps

the identity in E to the identity in E′. An isogeny is a group homomorphism, and it is separable

if its extension to function fields is separable. An isogeny is defined by its kernel: for every finite

subgroup G ⊆ E, there is a unique curve (up to isomorphism), denoted by E/G, and a separable

isogeny φ : E → E/G such that kerφ = G. The degree of φ satisfies deg φ = # kerφ. An isogeny of

a composite degree can be written as a composition of smaller-degree isogenies: if deg φ = n1n2 then

φ = φ2 ◦ φ1 where deg φ1 = n1 and deg φ2 = n2.

An elliptic curve E over a finite field Fpk , for a prime p, is said to be supersingular if |E(Fpk)| ≡ 1

(mod p). Every supersingular curve is isomorphic to a curve over Fp2 . The j-invariant of a curve is an

invariant of its isomorphism class, thus all isomorphic curves have the same j-invariant.

Given E and a subgroup G ⊆ E, Vélu’s formulas [24] can be used to compute the curve E/G and

the isogeny φ : E → E/G in time O(|G|). Specifically, if the order of G is smooth one can efficiently

compute the sequence of small-degree isogenies in the composition, and so also φ and E/G, in time

polylogarithmic in |G|, as we now show for a specific case of interest.

Let R ∈ E be of order `e, then G := 〈R〉 ⊆ E is a cyclic group of order `e. The isogeny with

kernel G factors to a chain of isogenies, each of degree `. Set E0 = E and R0 = R, and define for

0 ≤ i < e

Ei+1 = Ei/〈`e−i−1Ri〉 , φi+1 = Ei → Ei+1 , Ri+1 = φi(Ri) .

Then E/〈R〉 = Ee and φ = φe ◦ · · · ◦ φ1.

On the other hand, given two curves E,E′, computing an isogeny between them is believed to be a

hard problem, known as the (general) isogeny problem. The hardness of this problem has been used as

a basis for several cryptosystems, most notably using supersingular elliptic curves. SIDH key exchange

is the core construction; encryption, identification and signature schemes [6, 9, 25] build upon it. Thus,

our study of the bit security of the private key in SIDH applies to these schemes as well.

We now turn to describe SIDH. Note that the security of the cryptosystem relies a stronger problem,

known as the explicit isogeny problem: computing an isogeny of a given degree. On the other hand, in

addition to E,E′ two auxiliary points are also being published.

Key Exchange Protocol Alice and Bob agree on a prime of the form p = `nA`
m
Bf ± 1, where `A, `B

are small primes such that `nA ≈ `mB and f is small, a supersingular elliptic curve E(Fp2) with some

specific representation and two pairs of independent generators PA, QA ∈ E[`nA] and PB, QB ∈ E[`mB]:

the group 〈PA, QA〉 generated by PA and QA has (full) order `2nA , and similarly for 〈PB, QB〉.
The supersingular isogeny Diffie–Hellman key exchange protocol proceeds as follows:

4

1. Alice chooses random integers 0 ≤ a1, a2 < `nA, not both divisible by `A, computes GA :=

〈[a1]PA + [a2]QA〉 and an isogeny φA from E with kernel GA. She then obtains the curve

EA = E/GA and the points φA(PB), φA(QB) on it, and sends this triple to Bob.

2. Bob chooses random integers 0 ≤ b1, b2 < `mB , not both divisible by `B , computes GB :=

〈[b1]PB + [b2]QB〉 and an isogeny φB from E with kernel GB . He then obtains the curve EB =

E/GB and the points φB(PA), φB(QA) on it, and sends this triple to Alice.

3. Alice computes φB(GA) = 〈φB([a1]PA + [a2]QA)〉 = 〈[a1]φB(PA) + [a2]φB(QA)〉 and an

isogeny fromEB with kernel φB(GA). She then obtains the curveEB/〈φB(GA)〉 = E/〈GA, GB〉
and computes its j-invariant.

4. Bob computes φA(GB) = 〈φA([b1]PB+[b2]QB)〉 = 〈[b1]φA(PB)+[b2]φA(QB)〉 and an isogeny

from EA with kernel φA(GB). He then obtains the curve EA/〈φA(GB)〉 = E/〈GA, GB〉 and

computes its j-invariant.

Both parties obtain the curve EAB := E/〈GA, GB〉. It is not guaranteed that they use the same rep-

resentation of the curve, so using the j-invariant guarantees they share the same key. The protocol

revolves around the following commutative diagram:

E

E/GA

E/GB

E/〈GA, GB〉

φA

φB

Our analysis makes use of the following facts (see [3, Section 2] or [6, Section 3]). Let ` ∈ {`A, `B}
and let e ∈ {n,m} the corresponding exponent. We write Z`e for Z/`eZ. Since ` is coprime to p we

haveE[`e] ' Z`e×Z`e . Let P,Q ∈ E[`e] be two independent generators (a basis). A point [a]P +[b]Q

is of full order `e if and only if (at least) one of a, b is not divisible by `. There are `e−1(`+ 1) distinct

cyclic subgroups of order `e and `2e−2(`2 − 1) points of full order `e.

Thus, the probability that a point in E[`e], drawn uniformly at random (for example [a]P + [b]Q

for randomly chosen a, b ∈ Z`e), is of full order is at least 3/4. Moreover, the probability that two

uniformly sampled points P ′, Q′ form a basis of E[`e] is at least 3/8. Indeed, P ′ is of full order with

probability 1 − 1/`2; suppose that P ′, P ′′ is a basis, then for Q′ = [a]P ′ + [b]P ′′, the pair P ′, Q′ is a

basis if and only if b is invertible, which holds with probability 1− 1/`.

5

3. THE HIDDEN NUMBER PROBLEM AND BIT SECURITY

This section introduces the hidden number problem and its application in the study of bit security. We

remark that this is not the isogeny hidden number problem introduced in [8]. Previous results on the

hidden number problem, which are presented in this section, involve discrete Fourier analysis in the

group ZN . We refer to [7] for relevant background, however this background is not necessary for

the rest of the paper. We represent the group ZN by the set of integers {0, . . . , N − 1}, and define

|a| = min{a,N − a} for a ∈ ZN . The i-th bit function biti is defined by biti(x) = −1xi for an integer

x =
∑n

i=0 xi2
i, with xi ∈ {0, 1}. We set LSB := bit0.

The hidden number problem was introduced by Boneh and Venkatesan in the study of the hardness

of computing bits of Diffie–Hellman keys [2]. This problem has been proven to be very fruitful, with

applications in different areas (see the survey [19]). In particular a variant of this problem can be used

to study the hardness of computing bits of various secret values. Håstad and Näslund seem to be the first

to make this connection explicit, in their study of the RSA and the discrete logarithm problems [12].

We define this variant, called chosen-multiplier hidden number problem, as follows.

Definition 1 (CM-HNP). Let biti : ZN → {−1, 1} be the i-th bit function and let s ∈ ZN be unknown

(“hidden”). Recover s given query access to a predictor P satisfying

Pr
x∈ZN

[P (x) = biti(sx)] ≥ 1 + βi(N)

2
+ ε ,

where ε > 0 and βi(N) denotes the bias3 of biti, i.e. βi(N) satisfies Prx∈ZN
[biti(x) = 1] = 1+βi(N)

2 .

Håstad and Näslund solved this problem for every i when N is prime or an RSA modulus.4 Their

technique is adaptive (requires choosing queries with respect to the outcome of previous queries) and

is based on complicated manipulation of bits. A more general solution is given in the work of Akavia,

Goldwasser and Safra [1]. This solution is non-adaptive and based on tools from Fourier analysis (the

work [7] surveys these tools and their applications). It is based on the fact that the function biti has

(a few) large Fourier coefficients and that for s ∈ Z∗N the function x 7→ biti(sx) permutes the Fourier

coefficients of biti by the scaler s−1 (one then computes only the set of large coefficients for both

functions and finds the permutation; see Theorem 2 below).

Theorem 1 ([1, Theorem 6]). Let f : ZN → {−1, 1} and denote by f̂ its Fourier transform. Given

query access to f , a threshold τ > 0 and δ > 0, there exists an algorithm that outputs a list L of size

at most 1/τ such that L contains all a ∈ ZN such that |f̂(a)|2 > τ (and no a with |f̂(a)|2 ≤ τ/2) with

probability at least 1− δ. The algorithm runs in polynomial time in logN , 1/τ and log(1/δ).

3For some properties of the bias see [12, Section 2].
4More precisely, their applications are for such domains. Their algorithm either returns s or a non trivial factor of N .

6

It is shown by Morillo and Ràfols [16] that for all i there exists a ∈ ZN such that biti satisfies

|b̂iti(a)|2 > τ for τ−1 = O(logN) (see also [14] or [7, Section 4.1]).5 In other words, each single-bit

function has a significantly large Fourier coefficient. Using this property of biti, an application of [1,

Theorem 2] gives a solution to CM-HNP. We restate this result and sketch its proof.

Theorem 2. Let p be prime, let ε, δ > 0, let s be an invertible element in Zp, i.e. s ∈ Z∗p, and consider

the chosen-multiplier hidden number problem (CM-HNP) with “hidden number” s and some integer

0 ≤ i ≤ log p. There exists an algorithm for CM-HNP that returns a list of sizeO(log p/ε) that contains

s with probability 1− δ. The algorithm runs in polynomial time in log p, 1/ε and log(1/δ).

Proof sketch. First suppose that ε = 1/2 − βi(p)/2, that is P (x) = biti(sx) for all x. Since s is

invertible, the “scaling property” of the Fourier transform asserts that P̂ (a) = b̂iti(as−1). In other

words, P and biti have the same set of Fourier coefficients, ordered differently by a scale of s. To solve

CM-HNP it is sufficient to find this scaling factor. As we now explain, this is done by locating only the

‘large’ Fourier coefficients (for both functions) and pairing them until s is found.

Apply the algorithm from Theorem 1 with the same threshold τ on P and biti to obtain the (short)

lists LP , Li, respectively. The value τ can be chosen experimentally (in polynomial time in log p due

to the result of [16] mentioned above) until the returned lists are non-empty. By the scaling property,

for every a ∈ LP there exists b ∈ Li such that b = as−1. The secret s can be thus recovered efficiently,

as s = ab−1 and a, b ∈ Zp are invertible (non zero) 6.

Consider now ε < 1/2 − βi(p)/2. The Fourier coefficients of P may differ from those of biti, but

the difference is bounded by a constant proportional to ε, see [7, Section 3.3] for the exact details. One

should therefore lower the threshold τ proportionally to ε, and the same solution holds. This algorithm

runs in polynomial time in log p and ε−1.

We remark that Theorem 2 holds in any domain ZN , as long as a significant Fourier coefficient

of biti, which is guaranteed to exist by [16], is at an invertible element. That is, for a ∈ Z∗N and

τ−1 = O(logN) we have |b̂iti(a)|2 > τ . For a prime modulus this is trivial, and for an RSA modulus

N , if the large coefficient is not coprime to N , then after finding it (using the algorithm in Theorem 1)

one can factor N , similar to the result of Håstad and Näslund mentioned above. The following section

shows when this condition holds for domains of order N = `e.

3.1 Highly composite domains

We now present an extension to Theorem 2 for domains that are highly composite. For our applications

we are concerned withN = `e for some (small) prime `. First, we need a characterisation of the Fourier
5The result is even greater, the functions are concentrated (see [16, 14]).
6An exception is the most-significant-bit function in the case that the bias is too large, i.e. the function is almost constant,

therefore a = 0. In this case the advantage ε is negligible.

7

coefficients of the function biti, when defined over Z`e . The case ` = 2 was considered in [14], where

the following result is given.

Lemma 1 ([14, Lemma 6.2]). Let k ∈ N and 0 ≤ i < k. Define biti : Z2k → {−1, 1} by biti(x) =

(−1)xi where x =
∑k−1

j=0 xj2
j and xj ∈ {0, 1}. Let α ∈ Z2k . Then b̂iti(α) = 0 unless α is an odd

multiple of 2k−i−1, in which case |b̂iti(α)| = O(2k−i/|α|).

This result can be summarised as follows: the Fourier coefficient b̂iti(α) is zero when α is not an

odd multiple of 2k−i−1, and when it is non-zero it has magnitude bounded by 2k−i/|α|.
This result gives an upper bound on the magnitude of the coefficients of biti. From Parseval’s

identity, since ‖biti‖ = 1, we can also obtain a lower bound for these coefficients. In fact, from [7,

Claim 4.1] (combined with the proof of the Lemma 1), it can be shown that |b̂iti(α)| ≈ 2k−i/π|α| for

sufficiently small α satisfying the above (i.e. for the largest coefficients).

To illustrate this result, for i = 0, i.e. the least significant bit, there is one non-zero coefficient at

α = 2k−1 of magnitude 1 (indeed, the corresponding character alternates between 1 and -1); for i = 1

the non-zero coefficients are at α = ±2k−2, of magnitude 1/
√

2; for i = k− 1, i.e. the most significant

bit, the large coefficients are at odd values close to 0: the largest is at α = ±1, and the size decreases

with 1/|α|.
We see that except for the case i = k − 1 (the most significant bit), all large coefficients of biti are

at even values. Therefore, one cannot apply the algorithm in Theorem 2 in domains Z2e . We now turn

to domains Z`e , where ` is an odd prime. The Fourier coefficients of biti, over these domains, have not

been previously studied in the literature, to the best of our knowledge.

Recall that our goal is to be able to apply the algorithm from Theorem 2, therefore we need to show

that biti has a large coefficient at an invertible value α. We separate our analysis into three cases: the

lower O(log logN) bits, the top O(log logN) bits and the middle bits. For the lower bits, we show that

biti has a large coefficient at an invertible value. For the middle bits, we give a characterisation when

biti has such coefficients. For the top bits, we show how to solve the hidden number problem, even if

biti does not have such a coefficient.

We make use of the “changes in domain” of Laity and Shani [14]. The main idea is that we can

use the function biti over Z2k to study the Fourier coefficients of biti restricted to Z`e , where 2k−1 <

`e < 2k. Thus, the classification of the large Fourier coefficients in Lemma 1 becomes useful even in

other domains. In particular, we show the following. Suppose that the i-th bit function over Z2k has

a large Fourier coefficient at the value a. For the lower- and the middle-bit cases, we show that the

i-th bit function over Z`e has a large Fourier coefficient at the value b `e
2k
ae, the closest integer to `e

2k
a.

Moreover, the magnitude of the latter coefficient gets closer to the magnitude of the former coefficient,

the closer `e

2k
a is to an integer. In addition, there is a large coefficient at the second closest integer to

8

`e

2k
a, if this value is not too close to an integer, i.e. when | `e

2k
a− b `e

2k
ae|−1 < O(logN).

Claim 1. Let ` be an odd prime, let e be an integer and letN = `e, then for every 0 ≤ i ≤ O(log logN)

there exists z ∈ Z∗N and τ−1 = O(logN) such that |b̂iti(z)|2 > τ .

Proof. We show that biti has two consecutive large coefficients (in fact it is the case for all large coef-

ficients) and therefore one of them has to be at an invertible element. Let k such that 2k−1 < `e < 2k.

Consider biti : Z`e → {−1, 1} as the restriction of the i-th bit function bit′i : Z2k → {−1, 1} to Z`e . By

Lemma 1 the significantly large coefficients of the latter function are exponentially far apart. Therefore,

we can apply the results from [14, Section 3] even though bit′i has more than one non-zero coefficient,

as the weight of all of the coefficients of bit′i, except for at most one, on a specific coefficient of biti is

negligible (see also [14, Section 5]).

Suppose that b̂it′i(a) is a large Fourier coefficient. It is sufficient to assume that 0 < a ≤ 2k−1,

since |b̂it′i(−a)| = |b̂it′i(a)|, as the function is real valued. From Lemma 1, a = j2k−i−1 for odd j. Let

z = b `e
2k
ae = b `e

2i+1 je. Lemma 3.1 in [14] shows that b̂iti(z) is a large Fourier coefficient. If z ∈ Z∗N ,

we are done. Otherwise, let z′ be the second closest integer to `e

2k
a, and define r = | `e

2k
a − z′|, then

1/2 ≤ r < 1. Moreover, r is a multiple of 1/2i+1 since `e

2k
a = `e

2i+1 j. Combining with [14, Remark 2],

we get that |b̂iti(z′)| ≥ 2|b̂it′i(a)|/(π2i+1r) ≥ |b̂it′i(a)|/O(logN). Hence, b̂iti(z′) is a large Fourier

coefficient, and either z′ ≡ 1 (mod `) or z′ ≡ −1 (mod `), so z′ ∈ Z∗N .

Claim 2. Let ` be an odd prime, let e be an integer and let N = `e. For O(log logN) < i <

logN − O(log logN), denote z = b `e

2i+1 e and r = | `e
2i+1 − z|, the distance between `e

2i+1 to its closest

integer. Then there exists z′ ∈ Z∗N and τ−1 = O(logN) such that |b̂iti(z′)|2 > τ if and only if

r−1 = O(logN) or z ∈ Z∗N .

Proof. We rely on the ideas from the previous claim. As before we can apply the results from [14,

Section 3], since the Fourier coefficients of bit′i are sufficiently far apart. By Lemma 1 the coefficient

b̂it′i(2k−i−1) is large, thus for b `e
2k

2k−i−1e = b `e

2i+1 e = z, the coefficient b̂iti(z) is large. If z ∈ Z∗N , we

are done. Otherwise, if r−1 = O(logN), then as before, using the first inequality in [14, Remark 2],

we get that b̂iti(z′) is a large Fourier coefficient, where z′ is the second closest integer to `e

2i+1 .

On the other hand, suppose that r−1 > O(logN) (and z non-invertible), then from the second

inequality in [14, Remark 2] we get that |b̂iti(z′)| ≤ |b̂it′i(a)|π2
r

(1−r) < π|b̂it′i(a)|/O(logN), so it is

not sufficiently large. Moreover, this is the case for all z′ in a short interval around z. Since all the

large coefficients of bit′i are in small multiples of 2k−i−1, we get the same conclusions by repeating the

argument. That is, for a small odd j we get that b̂iti(jz) is a large coefficient, and jz is non-invertible

since z is non-invertible, and that any other coefficient in a small interval around jz is small, since

r′ = | `e
2i+1 j − jz| satisfies r′−1 > O(logN).

9

An example of the previous claim can be seen by considering N = 39 and i = 4. We have
`e

2i+1 = 19683
32 ≈ 615.09 (so r ≈ 0.9), and the only coefficients of biti that are larger than 0.0805 are at

the values±615,±3 ·615,±5 ·615, which are all non-invertible in ZN .7 We remark that since there are

at most logN values for i (there are logN bits), the condition r−1 > O(logN) is expected to hold with

negligible probability. Hence, heuristically, for almost all N we expect biti to have a large coefficient

at an invertible value for all O(log logN) < i < logN −O(log logN).

The case of the top bits is a bit more challenging, since now the large coefficients are very close

to each other and may affect each other (see [14, Section 5]). It is possible to show that for the most

significant bit and the second most significant bit, the function biti has a large coefficient at an invertible

value, and in fact it seems that it is possible to give a conditional result as in Claim 2 for all the top bits.8

However, since we are mainly interested in proving that we can solve the hidden number problem, we

show this could be done unconditionally.

Claim 3. Let ` be an odd prime, let e be an integer, let N = `e, and let logN − O(log logN) ≤
i ≤ logN . Then, there exists z and τ−1 = O(logN) such that |b̂iti(z)|2 > τ . Moreover, every z

such that |b̂iti(z)|2 > τ for some τ−1 = O(logN) satisfies z = `jz′, where z′ ∈ Z∗N and 0 ≤ j ≤
O(log` logN), where log` is the logarithmic function in base `.

Proof. We sketch the proof. From [16], the function biti has large Fourier coefficients. All the large co-

efficients of bit′i are at values of small size (small multiples of 2k−i−1). From [14], the large coefficients

of biti are also in a short interval, of polynomial size, around 0.

Using these three claims, we can now show that one can solve the hidden number problem in Z`e ,

for an odd prime `, for all top and lower bits unconditionally, and for the middle bits under the condition

in Claim 2. Moreover, the solution for the top bits applies to ` = 2.

Theorem 3. Let ` be an odd prime unless stated otherwise, let e be an integer, let N = `e and let

ε, δ > 0. Let s be an invertible element in ZN , i.e. s ∈ Z∗N , and consider the chosen-multiplier

hidden number problem (CM-HNP) with “hidden number” s and some integer 0 ≤ i ≤ logN . Denote

z = b `e

2i+1 e and r = | `e
2i+1 − z|. Then, if

• (lower bits) 0 ≤ i ≤ O(log logN), or

• (top bits) logN −O(log logN) ≤ i ≤ logN and ` is any prime, or

7For comparison |bit4(615)| > 0.62, |bit4(1845)| > 0.18, |bit4(3075)| > 0.089.
8To sketch the proof: we can bound from below the magnitude of the largest coefficient and bound from above the other

large coefficient, such that the other coefficients cannot reduce the magnitude of the largest one too much, so it has to remain
large. That is, the largest coefficient can be shown to be sufficiently large such that even if the other coefficients reduce its
size, it still remains significantly large.

10

• (middle bits, O(log logN) < i < logN −O(log logN)) r−1 = O(logN) or z ∈ Z∗N ,

there exists an algorithm for CM-HNP that returns a list of size O(logN/ε) that contains s with prob-

ability 1− δ. The algorithm runs in polynomial time in logN , 1/ε and log(1/δ).

Proof. To use the algorithm in Theorem 2 we need to show that biti has a significant Fourier coefficient

at an invertible value. The case of the lower bits follows from Claim 1, and the case of the middle bits

is shown in Claim 2. For the top bits, we do not require the large coefficients to be at invertible values.

Instead, if all the values in the lists Lp, Li (see Theorem 2) are non-invertible, then from Claim 3 (or

Lemma 1 if ` = 2) we can recover all bits of s except of at most O(log logN) top bits. Indeed, write

s = `e−js1 + s2, for s2 < `e−j . From Theorem 2 we have b = as−1, and from Claim 3, a = `ja′ and

b = `jb′, where a′, b′ ∈ Z∗N and 0 ≤ j ≤ O(log` logN). Thus, we can recover s2. The remaining bits

of s are brute forced.

4. HARDNESS OF THE PRIVATE KEY BITS

We present our main results. In Section 4.1, which addresses the case ` 6= 2, we show that (almost) all

bits of the private key in SIDH and similar isogeny-based schemes are as hard to compute (predict) as

the private key. In Section 4.2, which addresses the case ` = 2, we consider a more restricted problem

where one gets bits of the coefficients of given generating points (as opposed to the ability to choose

the generating points). We show that computing the least significant bit of both coefficients is as hard as

computing the secret isogeny. Both of these results do not use the auxiliary points in the SIDH public

key. We further show how to use these points to self randomise the problem and to compute bits of the

private key if the secret isogeny is not of the prescribed degree.

4.1 The case ` 6= 2: bits that are hardcore

We consider an oracle O that takes as input a curve E (the origin curve), a curve E′ (the image curve)

and two points P ′, Q′ ∈ E. If there are coefficients a, b such that G = 〈[a]P ′ + [b]Q′〉 and E′ =

E/G, we would like the oracle to output some information about the private key. As explained above

(see also [8, Lemma 1] and its preceding paragraph) there are no unique coefficients a, b (as modular

integers) that determineG, and so we need to specify some relation between the points. Our convention

is that the coefficient of P ′ is set to be 1 (there is no restriction in considering P ′, as by relabeling the

points we can consider the coefficient of Q′). Assuming E′ = E/G, the oracle outputs a bit of the

minimal positive s such that G = 〈P ′ + [s]Q′〉. If such s does not exist, i.e. E′ 6= E/G, the oracle

outputs a bit arbitrarily. The oracle’s probability of success is taken over the input points P ′, Q′ (in

section 4.3.2 we present a randomisation technique for the origin and image curves, so one can also

consider the case where the oracle fails on some curves).

11

For comparison with DLP, the analogous oracle takes as input the tuple (H,h, g) and outputs a bit

of a, for the minimal positive a if exists, such that h = ga, and the probability of success is over h, g

(DLP is easily self randomised; the trick is to consider hr, gr, instead of h, g, for random integers r).

We see that in both cases the oracle takes the defining group, the public key and a specific generator for

the space of the public keys.

Moreover, while not typical, it is possible that two different isogenies of degree (dividing) `e exist

between E and E/G. In order to make sure that our problem is well defined, we assume that such an

isogeny is unique, up to automorphism. In particular, if the auxiliary points are also considered, this

assumption holds (see [23, Lemma 3.2]).

First, we give the following lemma, where we consider a relaxed oracle that takes as input also

the coefficient of the point P ′ (as opposed to replace the input point P ′ by the point [r]P ′), and its

probability of success is taken over the input coefficient.

Lemma 2. Let E be a supersingular elliptic curve over Fp2 , let ` be an odd prime, let P,Q ∈ E[`e]

be two linearly independent generators of E[`e], and let G = 〈[a]P + [b]Q〉 of order `e be unknown.

Suppose that there is a unique isogeny from E to E/G of degree dividing `e. Let n = be log(`)c, let

0 ≤ i ≤ n and let ε, δ > 0. Suppose O satisfies

Pr
r∈Z`e

[O(E,E/G,P ′, Q′; r) = biti(s)] ≥
1 + βi(N)

2
+ ε ,

for the minimal s ∈ Z`e , if exists, such that G = 〈[r]P ′ + [s]Q′〉. Then, under the conditions in

Theorem 3 and given the curve E/G, the group G ⊆ E can be computed with probability 1 − δ in

polynomial time in e log(`), 1/ε and log(1/δ).

Proof. Since G is of order `e either a ∈ Z∗`e or b ∈ Z∗`e . Suppose b ∈ Z∗`e , otherwise switch P and Q.

If a = 0 then G = 〈Q〉. Otherwise write a = `ka′ for some 0 ≤ k < e such that a′ 6≡ 0 (mod `), then

a′ ∈ Z∗`e . Let b′ = a′−1b ∈ Z∗`e . Then G = 〈[`k]P + [b′]Q〉. For now suppose that k is known. We

show how to compute b′, which is sufficient to recover G.

Note that for any r ∈ Z∗`e we have G = 〈[r`k]P + [rb′]Q〉. Thus O(E,E/G, [`k]P,Q; r) outputs

biti(rb′) with advantage ε if r ∈ Z∗`e . For any other r we make a coin flip for the i-th bit of rb′. We

define O′ as follows

O′(r) =

O(E,E/G, [`k]P,Q; r), when r ∈ Z∗`e ,
coin flip, otherwise.

Since ` is prime, at least half of the values r ∈ Z`e satisfy r ∈ Z∗`e . For the other values, we expect coin

flips to give the correct bit with probability 1/2. Thus the advantage of O′ in predicting biti(rb′) is at

least ε/2. In other words

Pr
r∈Z`e

[O′(r) = biti(rb′)] ≥
1 + βi(N)

2
+ ε/2 .

12

The problem of recovering b′ is now reduced to CM-HNP in Z`e with predictor O′. By Theorem 3

we can obtain a bounded list of candidates for b′. Let b̄ be such a candidate, then one can compute

Ḡ = 〈[`k]P + [b̄]Q〉, and check whether E/Ḡ ' E/G (for example by computing their j-invariant).

With probability 1 − δ one of the candidates is b′, and so the claim follows. Finally, since we don’t

know k a priori, we run this algorithm for each k < e.

By restricting the oracle’s probability space to the coefficients r in the lemma, we know that for

any pair of points P ′, Q′ that generates G, the oracle has a non-negligible advantage in outputting the

correct bit. We now show that it is possible to obtain points P ′, Q′ for which the oracle has a non-

negligible advantage in outputting the correct bit, even when its success probability is taken over the

pair of points (P ′, Q′) (and the coefficient of P ′ is considered to be 1). For this result we need the

following claim, known as the reverse Markov inequality.

Claim 4. Let X be a random variable that satisfies Pr[X ≤ a] = 1 for some constant a. Then, for

d < E[X]

Pr[X > d] ≥ E[X]− d
a− d

.

Theorem 4. Let E be a supersingular elliptic curve over Fp2 , let ` be an odd prime, let P,Q ∈ E[`e]

be two linearly independent generators of E[`e], and let G = 〈[a]P + [b]Q〉 of order `e be unknown.

Suppose that there is a unique isogeny from E to E/G of degree dividing `e. Let n = be log(`)c, let

0 ≤ i ≤ n and let ε, δ′ > 0. Suppose O satisfies

Pr
P ′,Q′

[O(E,E/G,P ′, Q′) = biti(s)] ≥
1 + βi(N)

2
+ ε ,

for the minimal s ∈ Z∗`e , if exists, such that G = 〈P ′ + [s]Q′〉.9 Then, given the curve E/G and under

the conditions in Theorem 3, namely

• 0 ≤ i ≤ O(log logN), or

• logN −O(log logN) ≤ i ≤ logN , or

• O(log logN) < i < logN −O(log logN) and the “middle bits” condition in Theorem 3 holds,

the group G ⊆ E can be computed with probability 1 − δ′ in polynomial time in e log(`), 1/ε and

log(1/δ′).
9The general case of oracles with advantage over the entire Z`e is left open. The potential problem is an oracle that outputs

the correct bit when s is non-invertible (and otherwise a random bit), a case in which we cannot directly follow the proof of
Lemma 2.

13

Proof. Let r ∈ Z∗`e and note that if P̄ ∈ E[`e] is chosen uniformly at random, also P ′ := [r]P̄ is.

Indeed, multiplication by an invertible element r is a permutation of E[`e], as if [r]P1 = [r]P2 then

[r](P1 − P2) = 0, but ` - r so P1 = P2. We have

Pr
P̄ ,Q′,r

[O(E,E/G, [r]P̄ , Q′) = biti(s)] = Pr
P ′,Q′

[O(E,E/G,P ′, Q′) = biti(s)] .

Fix P̄ , Q′ and let X be the probability over r that O(E,E/G, [r]P̄ , Q′) = biti(s), for the minimal

positive s ∈ Z∗`e , conditioned that such s exists. That is,

X = Pr
r∈Z∗`e

[O(E,E/G, [r]P̄ , Q′) = biti(s) | ∃s ∈ Z∗`e , G = 〈[r]P̄ + [s]Q′〉] .

By the assumption on O, we have EP̄ ,Q′ [X] ≥ 1+βi(N)
2 + ε, where the expectation is taken over

all pairs (P̄ , Q′) such that G = 〈P̄ + [b′]Q′〉 for some b′ ∈ Z∗`e (note that since r ∈ Z∗`e then also

G = 〈[r]P̄ + [rb′]Q′〉, and s = rb′ ∈ Z∗`e). We now apply Claim 4 with a = 1 and d = 1+βi(N)
2 + ε/2.

We get that

Pr
P̄ ,Q′

[
Pr
r

[O(E,E/G, [r]P̄ , Q′) = biti(s) | ∃s ∈ Z∗`e , G = 〈[r]P̄ + [s]Q′〉] ≥ 1 + βi(N)

2
+
ε

2

]
≥ ε

2
.

Next, we show how to obtain points P̄ , Q′ ∈ E[`e] such that with probability ε/2 we have

Prr[O(E,E/G, [r]P̄ , Q′) = biti(s)] ≥ 1+βi(N)
2 + ε

2 . By the previous inequality, it is sufficient to

show that G = 〈P̄ + [b′]Q′〉 for some b′ ∈ Z∗`e . Draw at random P̃ , Q̃ ∈ E[`e]. Suppose that they are

linearly independent generators, so G = 〈[c]P̃ + [d]Q̃〉 for some c, d. As above, since G is of order `e

either c ∈ Z∗`e or d ∈ Z∗`e .

We now consider 2e− 1 alternatives. First, set P̄ = P̃ , and for each 0 ≤ k < e set Q′ = [`k]Q̃. If

c ∈ Z∗`e , then for one of the Q′ we have G = 〈P̄ + [b′]Q′〉, where b′ ∈ Z∗`e (except for the negligible

case where G = 〈P̄ 〉). Secondly, set Q′ = Q̃, and for each 0 < k < e set P̄ = [`k]P̃ . If c 6∈ Z∗`e , then

for one of the P̄ we have G = 〈P̄ + [b′]Q′〉, where b′ ∈ Z∗`e (with the exception G = 〈Q′〉).
Hence, one of these alternatives satisfies G = 〈P̄ + [b′]Q′〉, so with probability at least ε/2

Pr
r

[O(E,E/G, [r]P̄ , Q′) = biti(s)] ≥
1 + βi(N)

2
+
ε

2
, (1)

where r ∈ Z∗`e and s = rb′. As explained in the end of Section 2, the probability that the points P̃ , Q̃

are linearly independent generators is at least 3/8. Hence, the overall probability that (1) holds is at

least 3ε/16.

Conditioning on (1), we recover s similarly to the recovery procedure in Lemma 2 (note that while

in Lemma 2 the probability is taken over all r, we only queryO on r ∈ Z∗`e , as for other r the advantage

is not assumed not hold).

14

Finally, to recover G with probability 1 − δ′ we repeat this procedure (drawing P̃ , Q̃ and creating

the 2e−1 alternatives on which we apply Lemma 2)w times. For each recovered groupG′, we compute

the isogeny E → E/G′ and check if E/G′ ' E/G. We fail to get the desired P̄ , Q′ with probability at

most (1− 3ε/16)w. Therefore, the probability that one of the candidates G′ satisfy E/G′ ' E/G is at

least (1− (1−3ε/16)w)(1− δ), where (1− δ) is the sucess probability in Lemma 2. Set δ = δ′/2, then

we need 1− (1− 3ε/16)w > 1−δ′
1−δ′/2 = 1− δ′/2

(1−δ′/2) . Hence, by expressing w, we get that the number

of repetitions is polynomial in log(1/δ′), log(1/ε).

4.2 The case ` = 2: the hardness of LSB for non-chosen points

We first consider the case where the torsion points P ′, Q′ cannot be chosen, as opposed to the previous

case. Instead, they are given by the oracle upon specifying the torsion subgroup. For example, this can

be thought of the case where some “canonical” basis of E[`e] is set (see for example [26] where such

bases are used for compression).

We consider the special case ` = 2. We remark that for efficiency it is suggested to take the minimal

possible `, i.e. ` = 2 (in SIDH key exchange the other party takes ` = 3). We show that an algorithm

that computes the least significant bit of both coefficients can be turned into an algorithm that computes

the entire coefficients. Our recovery method resembles the one in [8, Section 3].

Theorem 5. Let E be a supersingular elliptic curve over Fp2 , let P,Q ∈ E[2n] be two linearly inde-

pendent generators of E[2n], and let G = 〈[a]P + [b]Q〉 of order 2n be unknown. Suppose O satisfies

O(E′, E′′, n′) = (P ′, Q′,LSB(a1),LSB(a2)) ,

for P ′, Q′ ∈ E′[2n′] two linearly independent generators of E′[2n
′
], if there exist a1, a2 ∈ Z2n′ such

that E′′ = E′/〈[a1]P ′ + [a2]Q′〉. Then, given the curve E/G, the group G ⊆ E can be computed in

polynomial time in n, if there is a unique isogeny from E to E/G of degree dividing 2n; otherwise, the

output is one of the defining kernels (not necessarily G).

Proof. As above we may assume that G = 〈P + [b′]Q〉 where b′ = a−1b. It is sufficient to recover b′

in order to compute G. We show how to recover b′, bit by bit, from the least significant bit to the most

significant bit. Write b′ = ε0 + ε12 + · · ·+ εn−12n−1. Let φ : E → E/G be an isogeny of degree 2n.

Then φ = φn ◦ · · · ◦ φ1 where deg φi = 2. Recall the notation from Section 2. The main idea of the

recovery construction is to use the information from O to compute φi given Ei−1. We first show how

to recover ε0, E1 and φ1 : E0 → E1.

At first make the query O(E,E/G, n). We recieve P ′, Q′ that generate E[2n], hence there are

α, β, γ, δ such that

P = αP ′ + βQ′ , Q = γP ′ + δQ′ ,

15

where at least one of α, β and one of γ, δ are odd, since P,Q are of full order. The values α, β, γ, δ

can be efficiently computed as a two-dimensional discrete logarithm problem (see for example [26]).

Moreover, since G ⊆ E[2n] there are a1, a2 such that G = 〈[a1]P ′ + [a2]Q′〉, and so we receive

LSB(a1),LSB(a2).

We have

R := P + [b′]Q = [α+ b′γ]P ′ + [β + b′δ]Q′ = [ā]P ′ + [b̄]Q′ ,

where ā = α + b′γ, b̄ = β + b′δ. Note that there exists c ∈ Z∗2n such that a1 = cā, a2 = cb̄, and since

c is odd we have LSB(a1) = LSB(ā),LSB(a2) = LSB(b̄). Suppose γ is odd, then α + b′ ≡ LSB(a1)

(mod 2), and since α is known we can compute ε0 = LSB(b′) = b′ mod 2 = LSB(a1)− α mod 2.

If γ is even then δ is odd and we compute ε0 in a similar way.

We show how to use ε0 to compute E1 and φ1. Recall that E1 = E/〈2n−1R〉. Thus

2n−1R = 2n−1P + 2n−1[b′]Q = 2n−1P + 2n−1[ε0]Q .

Since the kernel of φ1 is generated by 2n−1P + 2n−1[ε0]Q, we see that ε0 is sufficient to determine φ1

and the curve E1 = E/〈2n−1R〉.
Suppose ε0, . . . , εi−1, φ1, . . . , φi and E0, . . . , Ei are known. We show how to recover εi, φi+1 and

Ei+1. Define φ̄i = φi ◦ · · · ◦ φ1. Since φ1, . . . , φi are known, we can compute φ̄i(P), φ̄i(Q). Note that

Ri := φi(Ri−1) = φ̄i(R) = φ̄i(P + [b′]Q) = φ̄i(P) + [b′]φ̄i(Q) .

Therefore Ei+1 = Ei/〈2n−i−1Ri〉 = Ei/〈2n−i−1φ̄i(R)〉 = Ei/〈2n−i−1φ̄i(P + [b′]Q)〉.
Let K = ε0 + 2ε1 + · · ·+ 2i−1εi−1. We have

Ri = φ̄i(P) + [b′]φ̄i(Q) = φ̄i(P + [K]Q) +

[
b′ −K

2i

]
φ̄i(2

iQ) .

It is clear that φ̄i(2iQ) ∈ Ei[2n−i], as [2n−i]φ̄i(2
iQ) = φ̄i([2

n]Q) = 0. Moreover, φ̄i(2iQ) is of order

2n−i, otherwiseQ is not of full order. Similarly, φ̄i(P+[K]Q) ∈ Ei[2n−i] since [2n−i]φ̄i(P+[K]Q)) =

φi(2
n−iRi−1) = 0 by definition of φi. Moreover, φ̄i(P + [K]Q)) is of order 2n−i, otherwise φi(Ri−1)

is of order smaller than 2n−i which contradicts the fact that the degree of φi is 2 (as the group generated

by 2n−iRi−1 is not of order 2).

Make the queryO(Ei, E/G, n−i) to obtain two pointsP ′, Q′ that generateEi[2n−i] and LSB(a1),LSB(a2)

such that E/G = Ei/〈[a1]P ′ + [a2]Q′〉 (by the problem’s construction, it is clear that an isogeny of

degree 2n−i exists between Ei and E/G).

Since P ′, Q′ are of full order in E[2n−i], there are α, β, γ, δ such that

φ̄i(P + [K]Q)) = αP ′ + βQ′ , φ̄i(2
iQ) = γP ′ + δQ′ ,

16

where at least one of α, β and one of γ, δ are odd, since φ̄i(P + [K]Q)), φ̄i(2
iQ) ∈ Ei[2n−i] are of

full order. The values α, β, γ, δ can be efficiently computed as a two-dimensional discrete logarithm

problem. We have

Ri = φ̄i(P+[K]Q)+

[
b′ −K

2i

]
φ̄i(2

iQ) =

[
α+

b′ −K
2i

γ

]
P ′+

[
β +

b′ −K
2i

δ

]
Q′ = [ā]P ′+[b̄]Q′ ,

where ā = α + b′−K
2i

γ, b̄ = β + b′−K
2i

δ. Similar to the arguments above, we can recover εi = b′−K
2i

mod 2.

Finally,

2n−i−1Ri = [2n−i−1]φ̄i(P) + [2n−i−1b′]φ̄i(Q) = [2n−i−1]φ̄i(P) + [2n−i−1ε0 + · · ·+ 2n−1εi]φ̄i(Q) .

Since the kernel of φi+1 is generated by 2n−i−1Ri, we see that ε0, . . . , εi are sufficient to determine

φi+1 and the curve Ei+1 = Ei/〈2n−i−1Ri〉.

We can use the approach from the previous theorem to show that an oracle, as in Section 4.1, that

computes any single bit of the private key, can be used to fully compute the secret isogeny. This is done

by a standard method of shifting the bits to the computable position, and so we only sketch the proof.

Proposition 1. Let E be a supersingular elliptic curve over Fp2 , let P,Q ∈ E[2n] be two linearly

independent generators of E[2n], let G = 〈[a]P + [b]Q〉 of order 2n be unknown, and let 0 ≤ i < n.

Suppose that there is a unique isogeny from E to E/G of degree dividing 2n. Suppose O satisfies

O(E,E/G,P ′, Q′) = biti(s) ,

for the minimal s ∈ Z`e , if exists, such that G = 〈P ′ + [s]Q′〉. Then given the curve E/G, the group

G ⊆ E can be computed with n calls to O.

Proof sketch. SupposeG = 〈P +[b′]Q〉, we recover b′. The recovery procedure is divided into dn/(i+
1)e steps. At each step we recover a block of i + 1 (consecutive) bits, except for the last step that

may have less bits to recover. This is done by shifting each bit into the i-th position. First, for every

0 ≤ j ≤ i query O(E,E/G,P, [2j]Q) = biti−j(b′). This gives the lowest i + 1 bits of b′. Secondly,

we ‘shift’ the bits of b′ by i + 1 positions as follows. Let K = ε0 + 2ε1 + · · · + 2iεi be the recovered

bits, i.e. εj = bitj(b′). Then G = 〈P + [b′]Q〉 = 〈P + [K]Q +
[
b′−K
2i+1

]
([2i+1]Q)〉. Now, repeat the

first step with P → P + [K]Q and Q→ [2i+1]Q). That is, for every 0 ≤ j ≤ i query O(E,E/G,P +

[K]Q, [2j]([2i+1]Q)) to obtain the next block of i+ 1 bits. Repeat until all bits are recovered.

4.3 Making use of the auxiliary points

We show how the auxiliary points φ(P1), φ(Q1) in SIDH can be used to detect if the group G is not of

full order, thus revealing some low order bits of the private key, and to randomise our reductions. We

remark that the ideas presented here are well known, and so we keep this presentation brief.

17

4.3.1 Bits that are easy to compute

We first show that if the order ofG = 〈[a]P +[b]Q〉 ⊆ E[`e] is less than `e, then one can compute some

lower bits of a and b. This is due to the fact that G is not of full order in E[`e] if and only if a ≡ b ≡ 0

(mod `). Moreover, if a ≡ 0 (mod `α) and b ≡ 0 (mod `β), then for γ = min{α, β} we have that

G = 〈`γ([a′]P + [b′]Q)〉 and so G is a cyclic group of order (at most) `e−γ .

Since deg(φ) = |G| we can use the Weil pairing to compute γ. Indeed, a standard fact is that if

φ : E → E′ is an isogeny and if P1, Q1 ∈ E[N] then

eN (φ(P1), φ(Q1)) = eN (P1, Q1)deg(φ)

where the first Weil pairing is computed on E′ and the second on E. Therefore, one can range over

the possible γ and test this equality. Once γ is found we have partial knowledge on a, b, i.e. a, b ≡ 0

(mod `γ). For more details see for example [8, Remark 1] and reference within.

Interestingly a similar result holds for DLP, albeit with a different technique, in case the group

generated by g is of order 2sr, s > 0 and r odd. To learn the least significant bit of a given ga we

see that (ga)2s−1r is 1 if a is even and -1 if a is odd (this is simply the Jacobi symbol which tells us

whether ga is a quadratic residue). It is an easy exercise to generalise this technique to learn all s least

significant bits of a.

4.3.2 Randomisation

Note that during the reduction in Section 4.1 the curvesE,E/G are fixed, while in Section 4.2 the curve

E/G is fixed (and O always succeeds in the prediction). It is interesting to consider the case where O
fails on some set of origin curves E or image curves E/G. That is, O has no noticeable advantage on

these curves. It is therefore desirable to be able to randomise the input curves.

The auxiliary points allow us to change the origin and image curves. In fact, this is in the heart of

the key exchange that allows Alice and Bob to apply “their” isogenies (i.e. taking their secret path on

the isogeny graph) on the other party’s public curve. Consider the following diagram.

E

E/G

E′

E′′

φ

φ′

Let G = 〈[a]P + [b]Q〉 ⊆ E[`e] as above. We suppose that E,E/G and φ(P1), φ(Q1) ∈ E/G

are public, for some known P1, Q1 ∈ E[`e11], `1 6= `. Therefore, we can choose m,n and compute an

isogeny φ′ : E → E′ with kernel 〈[m]P1 + [n]Q1〉 (and the points φ′(P), φ′(Q)). Since φ(P1), φ(Q1)

18

are given, we can also compute the isogeny from E/G with kernel 〈[m]φ(P1) + [n]φ(Q1)〉 to a curve

denoted by E′′. A similar idea is described in [8, Section 5], which we refer to for more details.

It holds that there is an isogeny of degree `e from E′ to E′′ with kernel 〈[a]φ′(P) + [b]φ′(Q)〉.
Hence, one can replace E,E/G with E′, E′′ to get partial information on the same private key a, b.

Moreover, this allows us to have reduction even if the success probability of O in Section 4.2 is low, by

repeating each step on different pair of curves, and applying majority rule on the recovered bits.

5. SUMMARY AND OPEN PROBLEMS

In this paper we studied the bit security of the private key in (supersingular) isogeny-based schemes.

While the private key consists of two coefficients, one coefficient is essentially known, and so our study

focuses on the hardness of obtaining single bits of the other coefficient, which we now refer to as “the

private key”. For a party that works on a torsion group of an odd order N , we showed that each of

the top and lower O(log logN) bits of the private key is as hard to compute, with any non-negligible

advantage, as the entire private key. For the middle bits, we gave a condition for the same result to hold.

This condition can be checked and we believe that it holds almost always – proving this is left for the

future. For the even torsion group, the same result holds for the top bits. Moreover, we showed that

computing any bit of the private key, with probability 1, is as hard as computing the private key. We

also showed, in a less flexible model, that computing, with probability 1, the least significant bit of both

coefficients is as hard as computing the entire secret isogeny. We remark that since the odd-case result

is stronger, if both parties want to guarantee full bit security of their private keys, they may prefer to

agree on non-even primes `A, `B (for which the middle-bits condition holds for each bit).10

Our work leaves a few open problems. When the middle-bits condition does not hold for a certain

bit, is it possible to show that this bit cannot be predicted? Is it possible to obtain a more general result

for the even torsion group? One approach would be to use the randomisation technique in Section 4.3.2,

however this technique only holds for small primes `1. Achieving a total randomisation is an open

problem, with applications to other works.

We remark that the result in Theorem 5 may hold where one is given the most significant bit,

instead of the least significant bit; since the most significant bit is only used for the very last 2-isogeny,

the approach would be to start at the image curve and “walk” towards the origin. Finally, while not

directly related to the bit security of SIDH, it is interesting to consider a full solution to CM-HNP for

every secret s ∈ Z`e . This could be obtained if the functions gki (x) := biti(`kx) can be shown to have

large coefficients. One natural approach to (try to) achieve this result would be to walk along the proof

of [14, Lemma 6.2]. Filling the details for both of these remarks may be a nice student project.
10We clarify that other factors, like execution time, may also be taken into account in the choice of the SIDH primes.

19

Acknowledgements The author thanks two anonymous Eurocrypt 2019 reviewers for pointing out

several issues.

REFERENCES

[1] Akavia, A., Goldwasser, S., and Safra, S. (2003) “Proving Hard-Core Predicates Using List De-

coding,” in FOCS 2003, pp. 146–157. IEEE Computer Society, Washington, DC.

[2] Boneh, D., and Venkatesan, R. (1996) “Hardness of Computing the Most Significant Bits of Secret

Keys in Diffie–Hellman and Related Schemes,” in Koblitz, N. (ed.) Advances in Cryptology –

CRYPTO 1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg.

[3] Costello, C., Longa, P., and Naehrig, M. (2016) “Efficient Algorithms for Supersingular Isogeny

Diffie-Hellman,” in Robshaw, M., Katz, J. (eds.) Advances in Cryptology – CRYPTO 2016.

LNCS, vol. 9814, pp. 572–601. Springer, Heidelberg.

[4] Couveignes, J.-M. (2006) “Hard Homogeneous Spaces,” in Cryptology ePrint Archive, Report

2006/291. http://eprint.iacr.org/2006/291.

[5] De Feo, L. (2017) “Mathematics of Isogeny Based Cryptography,” in arXiv:1711.04062 [cs.CR].

https://arxiv.org/abs/1711.04062.

[6] De Feo, L., Jao, D., and Plût, J. (2014) “Towards Quantum-Resistant Cryptosystems from Super-

singular Elliptic Curve Isogenies,” in Journal of Mathematical Cryptology, 8(3), 209–247.

[7] Galbraith, S.D., Laity, J., and Shani, B. (2018) “Finding Significant Fourier Coefficients: Clarifica-

tions, Simplifications, Applications and Limitations,” in Chicago Journal of Theoretical Computer

Science, 2018(6), 1–38.

[8] Galbraith, S.D., Petit, C., Shani, B., and Ti, Y.B. (2016) “On the Security of Supersingular Isogeny

Cryptosystems,” in Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology – ASIACRYPT 2016.

LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg.

[9] Galbraith, S.D., Petit, C., and Silva, J. (2017) “Identification Protocols and Signature Schemes

Based on Supersingular Isogeny Problems,” in Takagi, T., Peyrin, T. (eds.) Advances in Cryptol-

ogy – ASIACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Heidelberg.

[10] Galbraith, S.D., and Vercauteren, F. (2017) “Computational Problems in Supersingular Elliptic

Curve Isogenies,” in Quantum Information Processing, 17:256.

20

[11] González Vasco, M.I., and Näslund, M. (2001) “A Survey of Hard Core Functions,” in Lam, K.-Y.,

Shparlinski, I., Wang, H., Xing, C. (eds.) Proc. Workshop on Cryptography and Computational

Number Theory 1999. Progress in Computer Science and Applied Logic, vol. 20, pp. 227–255.

Birkhäuser, Basel.

[12] Håstad, J., and Näslund, M. (2003) “The Security of all RSA and Discrete Log Bits,” in Journal

of the ACM, 51(2), 187–230.

[13] Jao, D., and De Feo, L. (2011) “Towards Quantum-Resistant Cryptosystems from Supersingular

Elliptic Curve Isogenies,” in Yang, B.-Y. (ed.) Post-Quantum Cryptography – PQCrypto 2011.

LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg.

[14] Laity, J., and Shani, B. (2018) “On Sets of Large Fourier Transform Under Changes in Domain,”

in Applied and Computational Harmonic Analysis 45, 216–232.

[15] Li, W.-C.W., Näslund, M., and Shparlinski, I.E. (2002) “Hidden Number Problem with the Trace

and Bit Security of XTR and LUC,” in Yung, M. (ed.) Advances in Cryptology – CRYPTO 2002.

LNCS, vol. 2442, pp. 433–448. Springer, Heidelberg.

[16] Morillo, P., and Ràfols, C. (2009) “The Security of All Bits Using List Decoding,” in Jarecki, S.,

Tsudik, G. (eds.) Public Key Cryptography – PKC 2009: Proceedings of the 12th International

Conference on Practice and Theory in Public Key Cryptography. LNCS, vol. 5443, pp. 15–33.

Springer, Heidelberg.

[17] Petit, C. (2017) “Faster Algorithms for Isogeny Problems Using Torsion Point Images,” in Takagi,

T., Peyrin, T. (eds.) Advances in Cryptology – ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–

353. Springer, Heidelberg.

[18] Rostovtsev, A., and Stolbunov, A. (2006) “Public-Key Cryptosystem Based on Isogenies,” in

Cryptology ePrint Archive, Report 2006/145. http://eprint.iacr.org/2006/145.

[19] Shparlinski, I.E. (2005) “Playing “Hide-and-Seek” with Numbers: The Hidden Number Prob-

lem, Lattices and Exponential Sums,” in Garrett, P., Lieman, D. (eds.) Public-Key Cryptography;

Proceedings of Symposia in Applied Mathematics, vol. 62, AMS, pp. 153–177.

[20] Silverman, J.H. (2009) The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol.

106 (2nd edition). Springer-Verlag, New York.

[21] Stolbunov, A. (2010) “Constructing Public-key Cryptographic Schemes Based on Class Group

Action on a Set of Isogenous Elliptic Curves,” in Advances in Mathematics of Communications,

4(2), 215–235.

21

[22] Ti, Y.B. (2017) “Fault Attack on Supersingular Isogeny Cryptosystems,” in Lange, T. Takagi, T.,

(eds.) Post-Quantum Cryptography – PQCrypto 2017. LNCS, vol. 10346, pp. 107–122. Springer,

Heidelberg.

[23] Urbanik, D., and Jao, D. (2018) “SoK: The Problem Landscape of SIDH,” in APKC ’18 – Pro-

ceedings of the 5th ACM on ASIA Public-Key Cryptography Workshop, pp. 53–60. ACM, New

York, NY, USA.

[24] Vélu, J. (1971) “Isogénies entre courbes elliptiques,” in Comptes Rendus de l’Académie des Sci-

ences de Paris, Série A, 273, 238–241.

[25] Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., and Soukharev, V. (2017) “A Post-quantum Digital

Signature Scheme Based on Supersingular Isogenies,” in Kiayias, A. (ed.) Financial Cryptography

2017. LNCS, vol. 10322, pp. 163–181. Springer, Heidelberg.

[26] Zanon, G.H.M., Simplicio Jr., M.A., Pereira, G.C.C.F., Doliskani, J., and Barreto, P.S.L.M. (2018)

“Faster Isogeny-Based Compressed Key Agreement,” in Lange, T., Steinwandt, R. (eds.) Post-

Quantum Cryptography – PQCrypto 2018. LNCS, vol. 10786, pp. 248–268. Springer, Heidelberg.

22

