
CRAFT: Lightweight Tweakable Block Cipher
with Efficient Protection Against DFA Attacks

Christof Beierle1, Gregor Leander2, Amir Moradi2 and
Shahram Rasoolzadeh2

1 SnT, University of Luxembourg, Luxembourg
beierle.christof@gmail.com

2 Ruhr University Bochum, Horst Görtz Institute for IT Security, Germany
firstname.lastname@rub.de

Abstract. Traditionally, countermeasures against physical attacks are integrated
into the implementation of cryptographic primitives after the algorithms have been
designed for achieving a certain level of cryptanalytic security. This picture has been
changed by the introduction of PICARO, ZORRO, and FIDES, where efficient protection
against Side-Channel Analysis (SCA) attacks has been considered in their design.
In this work we present the tweakable block cipher CRAFT: the efficient protection
of its implementations against Differential Fault Analysis (DFA) attacks has been
one of the main design criteria, while we provide strong bounds for its security in
the related-tweak model. Considering the area footprint of round-based hardware
implementations, CRAFT outperforms the other lightweight ciphers with the same
state and key size. This holds not only for unprotected implementations but also
when fault-detection facilities, side-channel protection, and their combination are
integrated into the implementation. In addition to supporting a 64-bit tweak, CRAFT
has the additional property that the circuit realizing the encryption can support the
decryption functionality as well with very little area overhead.
Keywords: CRAFT · block cipher · tweakable · lightweight · fault detection · involutory

1 Introduction
After almost two decades of the introduction of physical attacks [16, 57, 58], it is widely
known that the secrets stored in and processed by an implementation of strong cryp-
tographic algorithms can be recovered by means of physical attacks. One of the most
powerful class of such threats is certainly fault-injection attacks [16], where the adversary
disturbs the cryptographic device during its operation. Such disturbances, which are
usually transient faults, can be created by means of a clock glitch [3] (which violates
the delay of the circuit’s critical path), under-powering [23, 79] (which, in addition to
setup-time violation, may modify the circuit’s execution flow), an EM glitch [31] (which
can change the transistors’ state), or a laser beam [2, 23] (which as the most precise mean
can change the state of particular transistors). Their feasibility is mainly tied with the
fact that the attacker – in many applications such as pay-TV or electronic money – is
actually a legitimate user. Thus, we face the situation where the cryptographic devices are
in the hands of the adversary.

As a result, integrating countermeasures to prevent such physical attacks in general and
fault attacks in particular is essential for products that offer security and privacy. As an
example, for many years smart card (e.g. bank card) manufacturers had to1 integrate such

1It is forced if particular certification is needed, e.g. common criteria evaluation.

mailto:beierle.christof@gmail.com
mailto:firstname.lastname@rub.de

2 CRAFT

techniques at different levels of abstraction. However, such countermeasures usually come
with a significant cost. Since the cryptographic algorithms are usually designed considering
their robustness against cryptanalytic attacks, the integration of fault detection schemes
into their implementation becomes – most of the times – challenging and not necessarily
efficient. Indeed, integrating countermeasures easily increases the implementation costs
usually by a factor of at least two (see Section 2).

In this work we focus on countermeasures against Differential Fault Analysis (DFA)
attacks which are defined at algorithmic level with the area cost as the performance
parameter. More precisely – instead of hindering the faults – we focus on schemes that try
to detect the faults during the computations2. Generally speaking, the algorithmic-level
countermeasures to fault-injection attacks have to add redundancy to the implementation
to enable examining the consistency of the performed operations, hence fault detection.
Trivial examples include timing redundancy [63, 64] (e.g. by repeating the operations)
and area redundancy [46, 64] (e.g. by re-instantiating equal modules which perform the
same operations)3. Since the consistency of information is checked simultaneously with
the computation, such schemes are usually denoted as Concurrent Error Detection (CED).

Most of fault-detection mechanisms follow the reliability concept, i.e., with the goal
of increasing the percentage of detectable faults, which may occur due to environmental
effects. However, resistance against fault-injection attacks is based on a different concept,
where protection against an adversary who has certain bounded abilities should be achieved.
Recently, a mechanism has been introduced in [1] which can guarantee the detection of
faults injected by an attacker with the ability of making a bounded number of cells in the
entire circuit faulty. The underlying approach is a CED scheme constructed over an Error
Detecting Code (EDC) which can be easily adjusted by increasing the minimum distance
of the code, i.e., the maximum number of faults that the code can detect + 1. The authors
highlighted the fault propagation effect and introduced the independence property to be
fulfilled as a requirement in order to guarantee the detection of up to t = d − 1 faults,
when d is the minimum distance of the underlying EDC. The authors of [1] have applied
their proposed scheme on several different lightweight ciphers and compared their area
overhead.

Ineffective Fault Attacks. Compared to DFA [16], other attack vectors like safe-error [89]
and Ineffective Fault Attacks (IFA) [26] exploit the secret by just examining whether the
output is faulty or not. The same concept is followed in Fault Sensitivity Analysis (FSA) [60]
as well. While safe-error attacks are mainly applied on asymmetric cryptography, IFA
usually makes use of a precise fault model (e.g. stuck-at-0) which necessitate sophisticated
fault injection tools like laser beams, particularly challenging when modern nano-scale
circuits are targeted. In contrary a clock glitch is used in FSA to violate the critical-path
delay of the circuit for a subset of the given inputs. FSA exploits the time required
by a combinatorial circuit dealing with a secret, e.g. a realization of an Sbox. Then,
FSA conducts the attack by means of a hypothetical model similar to Correlation Power
Analysis (CPA) [22].

In the seminal work [34] the Statistical Ineffective Fault Attack (SIFA) has been
introduced that relaxes the necessity of a precise fault model of IFA, and at the same time
generalizes FSA by not requiring any hypothetical model. It is indeed able to break many
implementations protected by countermeasures against fault attacks. Its effectiveness even
on masked implementations is recently shown in [33].

The fault-detection mechanism which we consider in our designs cannot by itself
counteract IFA, FSA or SIFA. As stated in [34], detection-based countermeasures need
to be combined with other types of countermeasures to provide security against SIFA.

2Once a fault is detected, the operation can either be stopped or continued with random data [39, 90].
3For a detailed survey, the interested reader is referred to [43].

Beierle, Leander, Moradi and Rasoolzadeh 3

There are two possible generic ways to counter SIFA. First, instead of detecting errors
only, error-correction facilities would harden the implementations against SIFA. Second,
mechanisms to limit the number of faulty executions, e.g. implemented by a counter
that counts the number of detected errors and shuts down the device permanently after
a certain number of faults have been detected, provide a conceptual simple way to lift
detection-based countermeasures to counteract SIFA. Here in this work, we deal only with
the detection-based part of such a combination. Moreover, we exclude the safe-error and
stuck-at faults in our adversary model.

1.1 Lightweight Cryptography
In symmetric cryptography, motivated by new application scenarios – in particular the
Internet of Things – lightweight cryptography has been a very active research area in the
last decade. While there is no strict definition of the term lightweight cryptography, it is
usually understood as cryptography with a strong focus on efficiency. Here efficiency can
be measured according to various criteria and their combination.

The first generation of lightweight ciphers, e.g. PRESENT [19] and KATAN [24], focused
on chip area only and used very simple round functions as the main building block. Later
generations of lightweight ciphers broadened the scope significantly. By now, we have at
hand dedicated ciphers optimized with respect to code-size (e.g. PRIDE [4] and SPECK [10]),
latency (e.g. PRINCE [21], MANTIS [12] and QARMA [6]), efficiency of adding countermeasures
against passive Side-Channel Analysis (SCA) attacks (e.g. the family of LS-Designs [40],
PICARO [71] and ZORRO [38] (software oriented), FIDES [17] and actually NOEKEON [30]
(hardware oriented) even before the term lightweight cryptography was invented), efficient
fault detection (e.g. FRIT [81]), and energy (e.g. MIDORI [7] and GIFT [8]). Moreover, the
overhead of implementing decryption on top of encryption has been subject to optimization
(e.g. ICEBERG [82], MIDORI and NOEKEON where the components are involutions and PRINCE
with its α-reflection property).

Besides focusing on various criteria, there has also been an advance in the general
design philosophy. Indeed, many recent lightweight ciphers (e.g. LED [41], SKINNY [12]
and MIDORI) use the general framework of the AES round function and fine-tune its
components to achieve better performance while previous constructions were rather ad-hoc.
Borrowing from AES in particular allows for simpler security analysis, following e.g. the
wide-trail strategy (see [28]). More recently, there are also attempts to design lightweight
tweakable block ciphers, a block cipher that is extended with an additional public input,
the tweak; this primitive allows for better encryption modes and efficient constructions
of authenticated encryption schemes [61]. Examples here include SKINNY, MANTIS, QARMA,
and Joltik, and the TWEAKEY framework [45] as a general design principle.

1.2 Our Contribution
In this work, we intend to construct a new symmetric cipher for which protection against
DFA attacks has been considered in its design phase. To this end, we first show that
any cipher that allows the fault-detection unit to solely operate on the redundant part of
information with strictly shorter size than that of the plaintext/ciphertext has a critical
cryptographic weakness. In the second part, we introduce the tweakable block cipher
CRAFT (with effiCient pRotection Against differential Fault analysis aTtacks) with 64-bit
plaintext/ciphertext and 128-bit key width. In short, its properties are listed below.

• In addition to having strong cryptographic properties, CRAFT has been particularly
designed to ease the integration of code-based fault-detection schemes following the
concept presented in [1]. This allows the application of any arbitrary EDC in the
implementation; we have considered four such codes in our case studies. Recently, the

4 CRAFT

permutation FRIT [81] was introduced in which efficient implementation of a fault-
detection technique has been considered as a design criteria. Although broken [35],
FRIT uses interleaved parity for fault detection which – based on the definition of
the underlying code – can guarantee the detection of only single-bit faults.

• Due to the involutory property of its fundamental building blocks, the CRAFT encryp-
tion function can easily be turned to decryption, supporting both encryption and
decryption with minimal area cost.

• CRAFT supports a 64-bit tweak, which also adds a very little area overhead to the
corresponding implementation.

• Considering the area footprint of a round-based architecture, where each round of
the cipher is computed in one clock cycle, CRAFT outperforms – to the best of our
knowledge – all lightweight block ciphers with the same state and key size. As a
remarkable outcome, its encryption-only core needs 949GE, which is way lower
than any reported round-based implementation of a lightweight cipher4. It indeed
competes with a bit-serial implementation of SIMON with 958GE requiring 64× 44
clock cycles [10]. Among the key features that enable these achievements is the
construction of the key schedule in CRAFT, where – similar to MIDORI, PICCOLO [80],
and KTANTAN [24] – the key bits are alternated. This allows us to avoid instantiating
extra registers to process and generate the round keys in round-based architectures.

• Focusing on fault-protected implementations, under all settings with respect to
the employed EDC, its area overhead (even with decryption and tweak support) is
smaller than all block ciphers considered in [1] with compatible state and key size
(see Table 6).

Clearly, we build upon the knowledge and experience that has been established for
building lightweight (tweakable) ciphers by now. This is reflected in the fact that CRAFT,
on a high level view, is quite similar to, e.g. SKINNY, which itself borrows the general
structure of the AES. As mentioned above, this in particularly allows us to base our
security analyses on well-known principles.

2 On Redundancy
The concept of counteracting fault-injection attacks has sometimes been confused with
a fault-tolerance design methodology. As a result, the dependability community has
introduced several fault-detection schemes for cryptographic hardware with marginal
capability to counteract fault-injection attacks [13, 50, 51, 52, 53, 87]. The main reason
behind such shortcomings is the difference between the nature of the faults in these two
concepts. The dependability community consider the faults as single-event-upsets (SEUs)
that may rarely happen during the operation of the system and that are of limited weight,
e.g. a few bits in the entire circuit. In the case of DFA, depending on the underlying fault
model the adversary tries to hit several cells of the circuit as many times as he needs to
recover the secret. From another point of view, the trade-off between the countermeasure’s
overhead and the fault coverage5 plays an important role for the dependability community
while insuring the detection of all possible faults under a certain adversary model is of
crucial importance for the physical security community.

In order to detect any kind of fault, the circuit needs to be equipped with a type of
redundancy, i.e., a facility which enables examining the correctness of a computation that

4We exclude KTANTAN due to its 80-bit key size and high number of clock cycles for an encryption.
5Fault coverage is calculated by

∑
d /
∑

∀ with
∑

d the number of detectable and
∑

∀ the number of
possible faults.

Beierle, Leander, Moradi and Rasoolzadeh 5

?
=

T

Input

Output fault

A

A′

(a) timing redundancy

?
=

T T

Input

Output fault

A A′

(b) area redundancy

?
=

T

Input

Output fault

Encode

Encode

Predictor

signature
A

A′

(c) information redundancy

Figure 1: Common CED schemes.

is called Concurrent Error Detection (CED). Such a redundancy can be categorized into
different classes [43] listed below. Note that in Figure 1, where a block diagram for the
corresponding schemes are shown, we consider the underlying cryptographic algorithm as
iterations of a round function. The original and redundant parts of implementations are
marked by A and A′ respectively.

• In timing redundancy (see Figure 1(a)), the computation is repeated one (or more)
time(s) by the same piece of hardware, and the results are compared [64]. As the
name says, it has a timing overhead, which linearly increases by the number of times
a computation is repeated. In spite of its simplicity, it cannot detect permanent
faults.

• In area redundancy (see Figure 1(b)), the target module is instantiated more than
once in such a way that they all operate in parallel with the same input, and their
results can be compared. Although it has no timing overhead, it obviously leads
to two (or more) times area overhead. However, it can detect both transient and
permanent faults. The simplest version of such a scheme is known as duplication,
where the entire circuit is instantiated two times [64].

• In information redundancy (see Figure 1(c)), the goal is to keep the null timing
overhead, but to reduce the area overhead compared to duplication. Instead of fully
instantiating the same module twice, it computes a signature (e.g. parity) that
performs a correctness check [13, 52, 53, 87, 47, 51, 50]. Of course, there is a trade-off
between the area overhead and the efficiency of a fault-detection scheme. In the
most extreme case when the redundancy is a single parity bit, the area overhead is
minimized, but only certain faults can be detected.

• Hybrid redundancy is a customized type of either one or a combination of above-
explained schemes. For instance, instead of duplication one can compute the inverse
of the operations by the second module [48, 77], which leads to both area and limited
timing redundancy. As another example known as invariance-base CED, we can refer
to [42] which compared to classical timing redundancy can detect permanent faults
with a marginal area overhead.

Due to their limited area overhead, the schemes based on information redundancy have
been investigated more widely. However, they usually come with serious shortcomings,
which is due to the non-transparency of the signature (e.g. parity) to the underlying
function. For clarification, consider Figure 1(c); depending on the underlying signature

6 CRAFT

scheme, a certain type of faults can be detected during the computation of the function T .
However, it cannot detect any fault injected in the register cells or in the initial multiplexer
(marked by red arrows in Figure 1(c)). Considering limited environmental faults, such
constructions might be adequate to satisfy the desired fault-tolerance property, but the
level of protection that they can provide against fault-injection attacks is very limited. At
this point the difference between the fault-tolerance concept and fault-attack resistance
becomes clear.

In order to avoid such issues, duplication is a natural and straightforward solution.
It can indeed be seen as an information redundancy scheme where the signature is the
same as the original data. In spite of its simplicity, duplication has a pitfall of not being
able to detect symmetric faults, i.e., those faults which are similarly injected into both
original and redundant modules (usually possible by employing two precisely-localized
laser beams). Alternatively, a technique has recently been introduced in [1] which can
guarantee the detection of up to a certain number of faults in the entire circuit including
the data processing, control logic and the consistency check modules. Two constructions
for fault detection have been proposed in [1] which are shown in Figure 2. The one in
Figure 2(a) is always possible when the size of redundancy is at least as large as that of
the original data. Otherwise, the construction in Figure 2(b) is possible which needs a link
from the original circuit A. Below, we shortly restate the relevant definitions.

Definition 1. A binary linear code C comprising codewords c with length l, dimension k
and minimum distance d is denoted by [l, k, d]. The generator matrix G of size k × l maps
a message x ∈ Fk2 into the corresponding codeword c ∈ Fk2 with c = x ·G. The minimum
distance d is defined as

min ({w (c1 + c2) |c1, c2 ∈ C, c1 6= c2}) ,

with w(c) the number of 1’s in the binary representation of c and + denoting the addition
in F2.

In such a setting, if faults are modeled by an additive error vector e (i.e., the faulty
codeword c′ can be written as c+ e), a fault is definitely detected if w(e) < d. In other
words, a code C with minimum distance d guarantees the detection of up to d − 1 bit
faults.

Definition 2. The k× l generator matrix G of a systematic code C can be represented by
G = [Ik|P], with Ik the identity matrix of size k. This enables us to write each codeword
c as [x|p], i.e., the message padded with a redundant part p generated by the right part
of the generator matrix, i.e., P . The redundant part p is of size m = l − k bits and the
matrix P has dimension of k ×m.

Duplication is indeed a systematic binary linear code with the generator matrix
G = [Ik|Ik] which enables representing the codewords as [x|x]. Such a code is of minimum
distance d = 2, that theoretically explains why it cannot detect the symmetric faults
e = [δ|δ]. However, application of other systematic binary linear codes [l, k, d] enables
detection of more bits. To this end, two distinct cases have been considered in [1]:

• m ≥ k. This allows the generator matrix P to be injective. As shown in Figure 2(a)
the signatures are obtained as F : x 7→ x · P , which is an injective function. Hence,
the redundant module A′ can perform the entire computations only on signatures6

by T ′ = F ◦ T ◦ F−1.

• m < k. In this case, F cannot be injective, and the feasibility of the construction
shown in Figure 2(a) is not guaranteed. Therefore, the authors of [1] proposed

6In fact, this concept is along the same lines as the dual cipher notion [9].

Beierle, Leander, Moradi and Rasoolzadeh 7

rst

T

Input

F

Output
C

rst

Input′

T ′

C ′

×k ×m

A A′

(a)

rst

T

Input

F

Output
C

rst

Input′

T ′

C ′

×k ×m

A A′

(b)

Figure 2: The constructions proposed in [1].

another design shown in Figure 2(b) which forces the redundant module A′ to receive
extra information from the original module A (i.e., the input of T ′ = F ◦ T in
Figure 2(b) is taken from A).

Note that in both cases shown in Figure 2 the control logic and the consistency check
module are not presented. The places marked by c and c′ are the checkpoints whose
consistency should be examined for fault detection. In other words, using extra instances
of function F , c′′ = F (c) is calculated and c′′ ?= c′ is checked.

It is noteworthy to emphasize that after receiving the signature, A′ in Figure 2(a)
operates independently, i.e. without receiving any further information. In contrast, this is
not the same case for A′ in Figure 2(b) which requires extra information from A at each
clock cycle.

2.1 Lower Bounds for Redundancy
We concentrate on the construction shown in Figure 2(a). In fact, F does not need to be
linear. It can be replaced by any injective function and the goal of separation between A
and A′ can be fulfilled. The selection of a linear function helps to stay with characteristics
of systematic binary linear codes which, compared to non-linear functions, has better
fault detection properties7. It has another advantage that the algebraic degree of the
sub-functions T ′ stays the same as that of T . This is beneficial when the implementation
should also be protected against SCA attacks by Boolean masking [78], e.g. by threshold
implementation [68].

It is explained in [1] that if m < k, the construction shown in Figure 2(a) is not
necessarily feasible. It depends on the employed function F and the underlying computing
function T . As a temporary goal, we aim at examining whether it is possible to design a
block cipher, with its round function denoted by T , in such a way that its fault-protected
implementation (using F) can be realized following the construction in Figure 2(a). In
other words, it should be m < k, and A′ should solely operate on redundant information
(i.e., signature marked as Input′ in Figure 2(a)).

We show here that in the construction of Figure 2(a) if m < k, for any function
F : Fk2 → Fm2 there is a crucial structural weakness of the underlying cipher as explained
in the following.

Theorem 1. If a cipher can have an error detection structure using area redundancy,
where the redundancy part can be processed independently (the structure in Figure 2(a))

7For instance, parity as a linear code can detect all of the single-bit faults while there is no non-linear
code with m = 1 that can detect all such faults.

8 CRAFT

with redundancy size of smaller than the block size, then the cipher is not cryptographically
secure.

Proof. Let us assume an encryption function with key k, denoted by Ek, formed by
repeating the round function T for a certain number of rounds. We also suppose that the
bit length of the original data (plaintext/ciphertext) is a multiple of k bits, and the bit
length of the redundant information (signature) is a multiple of m bits. In our notation
below, by applying the function F we mean its application on each k-bit chunk separately.

By construction, there is a pair of functions (F, F ′) such that for each instance of a
cipher Ek, there exists a block cipher E ′k such that E ′k ◦ F = F ′ ◦ Ek. Thus, for every
two plaintexts p1 and p2 for which F (p1) = F (p2), one obtains F ′ ◦ Ek(p1) = F ′ ◦ Ek(p2).
Thus, regardless of the key, whenever two plaintexts have the same image under F ,
the corresponding ciphertexts will also have the same image under F ′. For instance, if
(F, F ′) are balanced functions mapping k to m bits, each of the 2m different preimages
F−1(x), x ∈ Fm2 is a set containing 2k−m elements (the same holds for F ′−1). Further,
every instance Ek operates as a permutation over these preimages, i.e.,

Ek : F−1(x) 7→ F ′−1(y), if E ′k : x 7→ y.

Thus, under a chosen-plaintext attack, the underlying cipher Ek can easily be distin-
guished from a random permutation. The adversary chooses plaintexts p1 and p2 with
F (p1) = F (p2). If ci = Ek(pi), the property F ′(c1) = F ′(c2) holds with a probability of
1. Note that this property should hold only with probability 2−m for a uniformly chosen
random permutation Ek : pi 7→ ci.

We conclude that whenever m < k, it is not possible to design a fully secure cipher if
the construction in Figure 2(a) is desired. Therefore, in the rest of the paper we introduce
a new cipher with low area overhead considering the construction in Figure 2(a) for m ≥ k,
and the design in Figure 2(b) for m < k.

3 Specification of CRAFT
CRAFT is a lightweight tweakable block cipher made out of involutory building blocks. It
consists of a 64-bit block, a 128-bit key, and a 64-bit tweak. The state is viewed as a
4 × 4 square array of nibbles. We use the notation Ii,j to denote the nibble located at
row i and column j of the state. One can also view this 4× 4 square array as a vector by
concatenating the rows. Thus, we denote with a single subscript Ii the nibble in the i-th
position of this vector. In other words, Ii,j = I4·i+j . Note that all the index counting start
from zero.

The 128-bit key K is split into two 64-bit keys K0 and K1. Together with the 64-bit
tweak input T , four 64-bit tweakeys TK0, TK1, TK2 and TK3 are derived. Each of
those 64-bit tweakeys is also considered as a 4 × 4 square array of nibbles and we use
similar indexing as for the cipher state. By initializing the state with the plaintext, the
cipher iterates 31 round functions (Ri, 0 ≤ i ≤ 30) and appends one more linear round
R′31) to compute the ciphertext. Figure 3 depicts the structure of CRAFT. Each round
function Ri applies the following five involutory round operations: SubBox, MixColumn,
PermuteNibbles, AddConstanti and AddTweakeyi, while R′31 only applies the MixColumn,
AddConstanti and AddTweakeyi operations. The round operations are defined as follows,
and one full-round function is depicted in Figure 4.

SubBox (SB): The 4-bit involutory Sbox S is applied 16 times in parallel, i.e., to each
nibble of the state. This Sbox is the same as the Sbox used in the block cipher MIDORI [7].
The table for the Sbox (in hexadecimal notation) is given in Table 1.

Beierle, Leander, Moradi and Rasoolzadeh 9

R0 R1 Ri R30 R′31· · · · · ·

TK0 TK1 TKi mod 4 TK2 TK3

RC0 RC1 RCi RC30 RC31

Figure 3: Structure of CRAFT

RTi mod4RCiMC

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

PermuteNibbles

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

15 12 13 14

10 9 8 11

6 5 4 7

1 2 3 0

Figure 4: One full round function of CRAFT

Table 1: The Sbox of MIDORI and CRAFT

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

MixColumn (MC): The following involutory binary matrixM is multiplied to each column
of the state:

M =

1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

 .

That is, for each column index j ∈ {0, . . . , 3},
I0,j
I1,j
I2,j
I3,j

 7→

I0,j ⊕ I2,j ⊕ I3,j

I1,j ⊕ I3,j
I2,j
I3,j

 .

PermuteNibbles (PN): An involutory permutation P is applied on the nibble positions
of the state. In particular, for all 0 ≤ i ≤ 15, Ii is replaced by IP(i), where

P = [15, 12, 13, 14, 10, 9, 8, 11, 6, 5, 4, 7, 1, 2, 3, 0] .

AddConstantsi (ARCi): One 4-bit and one 3-bit LFSR, whose states are denoted by
a = (a3, a2, a1, a0) and b = (b2, b1, b0) (with a0 and b0 being the least significant bits),
respectively, are used to generate round constants. The LFSRs are initialized by the values
(0001) and (001) and their update functions are

(a3, a2, a1, a0)→ (a1 ⊕ a0, a3, a2, a1) , (b2, b1, b0)→ (b1 ⊕ b0, b2, b1) .

In every round, (a3, a2, a1, a0) and (0, b2, b1, b0) are XOR-ed with the state nibbles I4 and
I5, respectively, and then both LFSRs get updated. Table 2 shows the hexadecimal values
of all round constants.

10 CRAFT

Table 2: Round constants of CRAFT

Round i RCi = (a, b)
0 - 15 11, 84, 42, 25, 96, c7, 63, b1, 54, a2, d5, e6, f7, 73, 31, 14
16 - 31 82, 45, 26, 97, c3, 61, b4, 52, a5, d6, e7, f3, 71, 34, 12, 85

AddTweakeyi (ATKi): Using a permutation Q on the nibbles of the given tweak, the
cipher derives four 64-bit tweakeys TK0, TK1, TK2 and TK3 from the tweak T and the
key (K0||K1) as

TK0 = K0 ⊕ T , TK1 = K1 ⊕ T , TK2 = K0 ⊕Q(T) , TK3 = K1 ⊕Q(T) .

Thereby, Q(T) applies the permutation

Q = [12, 10, 15, 5, 14, 8, 9, 2, 11, 3, 7, 4, 6, 0, 1, 13]

on the nibbles of the tweak T where for all 0 ≤ i ≤ 15, Ti is replaced by TQ(i). Then in
each round i, without any key update, the tweakey TKi mod 4 is XOR-ed to the cipher
state.

Round Function: To conclude, using the above explained operations, the round func-
tions Ri, i ∈ {0, . . . , 30}, are defined as

Ri = SB ◦ PN ◦ ATKi ◦ ARCi ◦ MC

and the last round R′31 as
R′31 = ATK31 ◦ ARC31 ◦ MC.

We give details of the corresponding hardware implementations in Section 6.

4 Design Rationale
When designing CRAFT, the main criterion was to use components which are best suited
for the fault-detection constructions following the structure introduced in [1], while also
providing the necessary cryptographic security. The second design criterion was to build
a construction for which, with least possible changes, both encryption and decryption
use a similar structure. All details of the design choices are explained in the following
subsections.

4.1 Involutory Building Blocks
To design a cipher with a similar structure for both encryption and decryption, we restrict
our choices for the components of substitution and permutation to involutory ones. From
the fact that all round operations are involutions and by applying the last linear round
R′31, we made the CRAFT decryption a parametrized CRAFT encryption.

Lemma 1. Decryption with CRAFT with tweakeys (TK0, TK1, TK2, TK3) and round con-
stants (RC0, · · · , RC31) is the same as the CRAFT encryption with tweakeys (TK ′3, TK ′2, TK ′1,
TK ′0) and round constants (RC31, · · · , RC0), where TK ′i = MC(TKi).

The proof is straightforward and is based on the facts that PN ◦ SB = SB ◦ PN and
MC ◦ ARC = ARC ◦ MC. The second identity holds since the round constants are applied on

Beierle, Leander, Moradi and Rasoolzadeh 11

the second nibble of each column while

MC

0
x
0
0

 =

0
x
0
0

 .
Algorithm 4.1 and 4.2 show pseudo-code for the encryption and decryption functions

respectively. Lemma 1 shows that the two algorithms can be efficiently merged. We further
discuss about this feature of CRAFT in Section 6 with respect to hardware implementations.

Algorithm 4.1: Encryption
Input :X: plaintext

K0||K1: cipher key
T : tweak

Output :Y : ciphertext
TK0 ← K0 ⊕ T
TK1 ← K1 ⊕ T
TK2 ← K0 ⊕Q(T)
TK3 ← K1 ⊕Q(T)
Y ← X
for i← 0 to 31 do

Y ← MC(Y)
Y4,5 ← Y4,5 ⊕RCi
Y ← Y ⊕ TKi mod 4
if i 6= 31 then

Y ← PN(Y)
Y ← SB(Y)

end
end

Algorithm 4.2: Decryption
Input :X: ciphertext

K0||K1: cipher key
T : tweak

Output :Y : plaintext
TK0 ← MC(K0 ⊕ T)
TK1 ← MC(K1 ⊕ T)
TK2 ← MC(K0 ⊕Q(T))
TK3 ← MC(K1 ⊕Q(T))
Y ← X
for i← 31 to 0 do

Y ← MC(Y)
Y4,5 ← Y4,5 ⊕RCi
Y ← Y ⊕ TKi mod 4
if i 6= 0 then

Y ← PN(Y)
Y ← SB(Y)

end
end

4.2 Sbox
To choose the Sbox which best suits our structure while at the same time having good
cryptographic properties, we do the following. For all 46 206 736 involutory 4-bit Sboxes,
we first evaluate their uniformity u and linearity l, i.e.,

u = max
α 6=0,β

|{x | S(x) + S(x+ α) = β}|,

l = 2 · max
α,β 6=0

|{x | 〈β, S(x)〉 = 〈α, x〉}| − 2n, n = 4

and discard all Sboxes with trivial differential or linear characteristics. Second, since a bit-
permutation at the input or at the output of an Sbox does not change its implementation
area, we omit those Sboxes from the candidate list which are bit-permutation equivalent
of each other. In other meaning, if two Sboxes are different only with respect to a bit-
permutation at the input/output, we keep only one of them. Then, we evaluate the
implementation area cost concerning the independence property introduced in [1] for the
remaining Sbox candidates.

Independence Property [1] Assume a function T : Fk2 7→ Fq2 which maps the input x to
a q-bit output y : 〈y1, . . . , yq〉. The function T (x) = y is physically realized by q
component circuits each of which realizing a coordinate function T i : Fk2 7→ F2 in such

12 CRAFT

a way that ∀i, T i(x) = yi. Such a set of component circuits are called independent
if no gate is shared between any two component circuits. In other words,

∀i, j; i 6= j Gi ∩ Gj = ∅,

where Gi stands for a set of gates implementing the component-function T i(·).
Fulfilling the independence property guarantees the prevention of fault propagation,
i.e., a faulty gate or register in such a circuit leads to at most one faulty output bit.

Therefore, the circuit implementing an Sbox needs to be split up into independent
component circuits each computing exactly one output bit. In the implementation of the
fault-detection structure – as explained in Section 2 – in addition to the Sbox S, depending
on the size of the redundancy, either F ◦ S ◦ F−1 or F ◦ S needs to be implemented (see
Figure 2), with F : x 7→ x · P and P the rightmost part of the generator matrix of the
underlying binary linear systematic code. Considering all four cases for the redundancy
size m ∈ {1, 2, 3, 4}, we define four redundant Sboxes S1 = F1 ◦S, S2 = F2 ◦S, S3 = F3 ◦S
and S4 = F4 ◦ S ◦ F−1

4 . The rightmost part of the corresponding generator matrices can
be given as follows:

P1 =
[
1 1 1 1

]
, P2 =

[
1 1 0 1
1 1 1 0

]
, P3 =

 1 0 1 1
1 1 0 1
1 1 1 0

 , P4 =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
Note that P1 is that of the parity code, and P4 the extended Hamming code. It is
noteworthy that any two rows of P4 result in a valid choice for P2, and the same holds for
P3 made of any three rows of P4. Therefore, in our comparisons we consider S′4 = F4 ◦ S,
and choose the two cheapest output bits (with respect to the necessary area) as S2 and
the three cheapest bits as S3 where by cheap we mean smaller area size in the hardware
implementation.

Since we need to fulfill the independence property, the size of the implementation for a
vectorial Boolean function is equal to the sum of the area for implementing each of its
Boolean coordinate functions. Hence, to evaluate the size of the implementation of S, S1,
. . . and S4, we need to know the size of the implementation of S, S1, S′4 and S4, which
include 13 Boolean coordinate functions. This means that we do not need to implement
and synthesize all Sbox candidates. Instead, we only need to evaluate the size of the
implementation of all 12 870 four-bit Boolean coordinate functions. Actually, by omitting
the Boolean coordinate functions which are bit-permutation-equivalent of the others,
we end up with only 730 Boolean coordinate functions which need to be implemented
and synthesized to evaluated their implementation size. To this end, using Synopsys
DesignCompiler with the publicly available IBM 130 nm ASIC library we accomplished
this task in a fraction of one day. Since we now have evaluated the area requirement of all
4-bit Boolean coordinate functions, we can easily calculate the implementation size of any
given S, S1, S′4 and S4.

In order to classify the constructed Sboxes, we consider the implementation size of five
combinations: S, (S, S1), (S, S2), (S, S3), (S, S4) corresponding to the Sbox itself (without
redundancy), and four other cases of the redundancy size m ∈ {1, 2, 3, 4}. We come up
with the results given in Table 3 sorted by the first being the best choice. By the class
number, we refer to the index of the affine equivalent class of 4-bit Sboxes, introduced
in [18], while (u, l) denote the uniformity and linearity of the corresponding class, and
(n,m) the minimum number of active Sboxes in the differential and linear attack to reach a
differential trail probability of ≤ 2−64 and a linear trail correlation of ≤ 2−32, respectively.

In order to obtain the list in Table 3, we searched through all cases and found no other
choice for which its all five size values are smaller than that of the candidate Sbox class

Beierle, Leander, Moradi and Rasoolzadeh 13

Table 3: Result of the Sbox search, area size using the IBM 130 nm ASIC library.

Class (u,l) (n,m) Sbox Size [GE]
S (S, S1) (S, S2) (S, S3) (S, S4)

266 (4,4) (32,32) 9BDFAE678041C253 11 16 22.5 26.5 26.25
262 (8,4) (64,32) 018945EA237DFB6C 12.25 19.5 20.75 26 29
45 (6,6) (46,78) 016E4F2798ACBD35 12 16 20 25.25 30.5
51 (6,6) (46,78) B7A39F816420DCE5 12.5 18.5 19.75 25.25 34.75
76 (6,6) (46,78) E6AFD5178C2B9403 12.75 18.75 20.5 25 34.75

208 (6,6) (46,78) 413205B7CEA68F9D 12.25 19 24.25 30.25 25.75
D16EF52798ACB034 13 19.25 23.75 29.75 25.75

24 (8,6) (64,78) 6C284E0F39BA1D57 13 16.5 21 25.75 32.5
32 (8,6) (64,78) 3210654D89CBA7EF 14 20 21 26.25 42.25
46 (8,6) (64,78) B7A395816420DCEF 12.5 17.5 19 24.25 33
57 (8,6) (64,78) DF574263B9A8E0C1 11.25 15.25 22 28 28.25
101 (8,6) (64,78) 21034D6CAF8E75B9 14 17.75 21.25 25.5 32.25

102 (8,6) (64,78) 290D6B4C81A573FE 13 19.75 25 31.5 25
DF32CE6A987B4051 12 19.25 20.25 26.5 25

137 (10,6) (95,78) 01CD6F4E89AB2375 19.25 21.25 21.25 25.75 32
98DCF65710BA32E4 19.5 20 21.25 25.75 33.25

141 (10,6) (95,78) 98DCF76510BA32E4 12.75 19 21.5 26 32.25
149 (10,6) (95,78) 465E021FCDAB8937 12 17.75 20.5 26 26.75

217 (10,6) (95,78) 6523410BEDF7C98A 11 16.25 20.25 22.25 31.25
6DF74903E5ABC182 14 21.5 20.25 20.5 35.75

216 (12,6) (155,78)

2301ABF7CD4589E6 10.75 15.5 21 27.5 25.75
A68437152B09FDEC 11 15.25 18.5 23.5 29.75
E6C43715B9A82F0D 11.25 16.5 20.75 26.25 27.75
6789AB012345FDEC 11.75 16.5 19.25 23.5 27
84A617350B29FDEC 12.5 15.75 20 25.25 29.25
210BFD8967A3E5C4 12.5 20.75 21 27.25 25.5
EAC8654F3B192D07 13 18.75 23 29 25.5

266, the so-called reference Sbox. In the list we included the other cases which have at
least one size (amongst five) smaller than the reference Sbox.

Notably, the reference Sbox has the minimum uniformity and linearity. Although other
candidates also lead to low area requirements, they have larger uniformity or linearity.
Hence, their usage would imply that we should use more rounds to protect the cipher
from differential or linear attacks. Therefore, we decided to choose the reference Sbox
as the best suited choice to our structure for fault detection. The reference Sbox is a
bit-permuted version of the MIDORI Sbox. It is a coincidence since the MIDORI Sbox has
been selected based on its predicted low energy consumption. Hence, to avoid introducing
a new Sbox we just use the MIDORI Sbox in CRAFT.

4.3 Linear Layer
For making CRAFT efficient to be implemented in fault-detection structures with redundancy
size m < 4, we decided to use a binary matrix for the MixColumn operation. According
to [1], it allows the MixColumn of the redundant part of the circuit A′ to solely operate
on the redundant part of the information (see [1, Theorem 1] and Figure 2(b)). Among
all 20 160 bijective 4 × 4 binary matrices, only 316 are involutions. On the other hand,
since CRAFT includes PermuteNibbles applied right after MC, and because we check all
the involutory permutations for each matrix, we reduce this set of 316 matrices to 30
candidates which are equivalent up to a permutation of the rows.

14 CRAFT

Lemma 2. Let Pr be a permutation over the rows of the state. The encryption with
round operations SB, MC and PN with matrix M and permutation P is the same as the
encryption with round operations SB, MC′ and PN′ with modified tweakey and round constants
and up to a nibble-wise permutation of the plaintext and ciphertext, where MC′ applies
M ′ = P−1

r ◦M ◦ Pr and PN′ applies P ′ = P−1
r ◦ P ◦ Pr.

The 30 candidates for the matrix M are given below.

M0 :

 1000
0100
0010
0001

 M1 :

 0100
1000
0010
0001

 M2 :

 0100
1000
0001
0010

 M3 :

 1001
0100
0010
0001

 M4 :

 0100
1000
0011
0001

M5 :

 1011
0100
0010
0001

 M6 :

 1001
0101
0010
0001

 M7 :

 1010
0101
0010
0001

 M8 :

 0101
1001
0010
0001

 M9 :

 1110
0010
0100
0001

M10 :

 1111
0100
0010
0001

 M11 :

 1001
0101
0011
0001

 M12 :

 0110
1001
0001
0010

 M13 :

 1011
0101
0010
0001

 M14 :

 0101
1001
0011
0001

M15 :

 1111
0010
0100
0001

 M16 :

 1011
0111
0010
0001

 M17 :

 0111
1011
0010
0001

 M18 :

 1110
0101
0011
0001

 M19 :

 0111
1010
0011
0001

M20 :

 1110
0011
0101
0001

 M21 :

 1011
0111
0001
0010

 M22 :

 1101
0111
0001
0010

 M23 :

 0111
1011
0001
0010

 M24 :

 1111
0101
0011
0001

M25 :

 1111
0011
0101
0001

 M26 :

 1111
1010
1011
0110

 M27 :

 1110
1101
1011
0111

 M28 :

 1110
1011
1101
0111

 M29 :

 0111
1011
1101
1110

For each of these 30 candidate matrices, in principle, we need to search through all

46 206 736 involutory permutations for PN. The lemma given below explains that it is not
necessary to consider all such permutations, but only those up to a permutation over the
columns of the state.

Lemma 3. Let Pc be a permutation over the columns of the state. The encryption with
round operations SB, MC and PN with permutation P is the same as the encryption with
round operations SB, MC and PN′ with modified tweakey and round constants and up to a
nibble-wise permutation of the plaintext and ciphertext, where PN′ applies P ′ = P−1

c ◦P ◦Pc.

Therefore, we can reduce the search space of all involutory permutations P by the
above equivalency. In combination with 30 candidate matrices M0 to M29, we need to
search through such permutations in order to find those which provide the highest possible
security level. To this end, we evaluated the minimum number of rounds such that the
linear layer attains full diffusion in both forward and backward directions (r1) together with
the minimum number of rounds to guarantee at least 32 active Sboxes in both differential
and linear attacks (r2).

Regardless of the choice for involutory P, the matrices M0, . . . , M11 do not provide
full diffusion. For the remaining 18 matrices, we list their minimum possible r1 and r2
together with their hardware implementation cost in Table 4. By the implementation
cost, we refer to: the number of 2-input XOR gates (#xor), and the number of the 2-to-1
multiplexers (#mux) needed to implement the tweakey schedule of both encryption and
decryption together. Note that for encryption, the tweakey TKi is added to the state

Beierle, Leander, Moradi and Rasoolzadeh 15

Table 4: Implementation cost and security properties of the candidate matrices for MC

Mi 12 13 14/15 16/17 18 19/20 21 22 23 24 25 26 27/28/29

#xor 2 3 3 4 4 4 5 7 8
#mux 4 2 3 2 3 4 3 4 4

r1 8 7 7 5 6 6 5 6 5 4 4 4 4
r2 10 9 11 16 9 8 16 8 8 8 11 8 7

while in decryption MC(TKi) is, hence #mux is only considered when the implementation
should support both encryption and decryption. It is noteworthy to emphasize that the
numbers given for #xor and #mux are those required for one column of bits. Hence for
one complete block, we need to multiply these values by 16.

From the remaining matrices,M12 is the smallest one with respect to its implementation
cost in the encryption-only case, whileM13 is the smallest if both encryption and decryption
should be supported. Since M13 can provide better security properties, we choose it as the
matrix of MC of CRAFT.

Over all involutory permutations, only the following candidate for P provides the
reported r1 and r2. More precisely, it attains full diffusion after 7 rounds and assures at
least 32 active Sboxes after 9 rounds in both differential and linear attacks.

P = [15, 12, 13, 14, 10, 9, 8, 11, 6, 5, 4, 7, 1, 2, 3, 0]

This permutation replaces the nibbles in the first row with the nibbles in the last row
and also the nibbles in the second row with those in the third row. Then it does a right
(resp. left) shift in the first (resp. fourth) row and a shuffle in the second and third rows
(see Figure 4).

4.4 Round Constants

We decided to use LFSRs to generate the round constants, since compared to a randomly
chosen set of round constants, an LFSR usually leads to lower implementation cost. Further,
to make it efficient with respect to the considered fault-detection mechanism, we restrict
the LFSR size to 4 bit as k = 4 in the underlying code [l, k, d] (due to the Sbox size). The
LFSR can also be considered as the round counter. This implies that the period of the
LFSR should be larger than the number of rounds. As an n-bit LFSR has maximum period
of 2n − 1, one 4-bit LFSR does not suffice. Hence, we decided to use two LFSRs, one
with a 4-bit and one with a 3-bit state. By using primitive polynomials for their feedback
functions, the joint period of the LFSRs can reach 15 · 7 = 105 which is more than enough.
While there is only one primitive polynomial for a 3-bit LFSR (x3 + x+ 1), there are two
choices for the 4-bit one (x4 + x+ 1 and x4 + x3 + 1). With respect to the size of their
hardware implementation, there is no preference between the 4-bit polynomials. We have
just chosen x4 + x+ 1 as the polynomial for the 4-bit LFSR.

In every round, we add the states of 4-bit and 3-bit LFSRs to the fourth and fifth
nibbles of the state of the cipher. We choose these two positions, since – considering our
chosen linear layer – nibbles in the first/second row of the state have full diffusion after
5/6 rounds. Actually, they get involved in the entire state nibbles after 5/6 rounds while
this happens after 7 rounds if the round constants are added to the third row. Although,
the first row has the fastest diffusion, adding round constants to this row causes larger
latency in each clock cycle compared to adding them to the second row. Hence, we decide
to add them in the fourth and fifth nibble of the cipher.

16 CRAFT

4.5 Key and Tweak Schedule
To make the key schedule of the cipher small and lightweight, we decided to use the same
round keys in an alternating way. In particular, by separating the 128-bit master key into
two 64-bit halves K0 and K1, using 64 multiplexers we use K0 in the even rounds and
K1 in the odd rounds. This is beneficial in a round-based implementation (as it is our
target design architecture) since no extra register is required to process and generate the
round keys. The same technique has been used in PICCOLO and MIDORI. As a side note, in
order to make sure that the first and the last round keys are different, the total number of
rounds has to be even.

To make use of the same concept for the tweak schedule, we decided to not use an
arbitrary update function for the tweak. Instead, using a permutation Q on the nibbles of
the tweak T we calculate Q(T) and iteratively add it to the round key. Actually, we use
T in the first two rounds and Q(T) for the next two rounds and iterate this order. In a
round-based implementation this needs only 64 XOR and 64 MUX extra logic.

To find a permutation Q which provides the highest security, we evaluated the necessary
number of rounds to assure that there are 32 active Sboxes with regard to the related-tweak
differential attack [49]. On the other hand, to make Time-Data-Memory trade-off attacks
less powerful, we decided to use a circular permutation. The reason for this restriction is
explained in Section 5.3 in more detail.

Since the search space for a circular permutation is 15! ≈ 240, it is not possible to
check all permutations. Hence, we decided to choose about one thousand randomly
generated permutations and examine their security. We found that the permutation given
in Section 3 that guarantees 32 active Sboxes in 13 rounds, which is less than the one for
other permutations.

5 Security Analysis of CRAFT

In this section, we provide a detailed analysis of the security of CRAFT. In fact, since the
general structure of CRAFT is similar to that of AES, MIDORI, SKINNY and MANTIS, the
security analysis of CRAFT is also more or less similar to that of those primitives.

5.1 Security Claim
Overall, we claim 124 bit security of CRAFT in the related-tweak model.

From the provided analyses below, the most promising cryptanalysis on CRAFT is a an
accelerated exhaustive search with a time complexity of 2124 cipher encryptions, and data
and memory complexity of 16 (see Section 5.2).

We expect that a 30-round version of CRAFT attains 128 bit security against (impossible)
differential and (zero-correlation) linear attacks, integral attacks and invariant attacks
as well as Meet-in-the-Middle attack. It is noteworthy that it does not mean that there
actually exists a 30-round attack on CRAFT. It is only an upper bound on the number of
rounds that can be attacked.

Hence, considering two extra rounds as a security margin, we claim that 32-round
CRAFT has 124-bit security in the related-tweak model. We do not claim any security in
the chosen-key, known-key or related-key model.

5.2 Exhaustive Search
Due to the simple tweakey schedule of CRAFT, there are some deterministic related-key
related-tweak characteristics which can accelerate the typical exhaustive search attack.
Consider K0,K1 and T as two halves of the key and tweak, respectively and K ′0 = K0 + ∆,

Beierle, Leander, Moradi and Rasoolzadeh 17

K ′1 = K1 + ∆ and T ′ = T + ∆ where ∆ = (x, x, . . . , x) and x ∈ F4
2. Then we have

Q(∆) = ∆ which cause the relations below.

TK ′0 = K ′0 + T ′ = (K0 + ∆) + (T + ∆) = K0 + T = TK0,

TK ′1 = K ′1 + T ′ = (K1 + ∆) + (T + ∆) = K1 + T = TK1,

TK ′2 = K ′0 +Q(T ′) = (K0 + ∆) + (Q(T) + ∆) = K0 +Q(T) = TK2,

TK ′3 = K ′1 +Q(T ′) = (K1 + ∆) + (Q(T) + ∆) = K1 +Q(T) = TK3.

This means encryption under two different tweakey tuples of (K0,K1, T) and (K ′0,K ′1, T ′)
are the same. Using these deterministic characteristics, the attacker can accelerate the
exhaustive search by a factor of 24. First, he asks for encryption of the same plaintext P
under 16 different tweaks of T, T + ∆1, . . . , T + ∆15 where ∆x = (x, x, . . . , x) that we show
the corresponding ciphertexts by C0, C1, . . . , C15. Then, by setting one of the key nibbles
to constant value of zero, for each of 2124 possible key candidate (K∗0 ,K∗1), he computes C∗,
the encryption of P using K∗0 ,K∗1 and T . If C∗ is equal to Cx, then (K∗0 + ∆x, K∗1 + ∆x) is
a candidate for the master key. This way, there will remain only about 264 key candidates
for the master key which a check on another pair of plaintext and ciphertext will determine
the only candidate for the master key. All together, exhaustive search attack on CRAFT
using 16 chosen plaintext data has complexity of 2124 encryptions.

5.3 Time-Data-Memory Trade-off Attacks
Since CRAFT uses a simple tweakey schedule, it is necessary to analyze the security of
the cipher against Time-Data-Memory Trade-off (TDM TO) attacks [32]. Actually, some
choices for the permutation Q in the tweak schedule give an opportunity to the attacker
to do a TDM TO attack. In the following we describe a TDM TO attack that helps us to
choose the permutation Q carefully.

In the offline phase, the attacker fixes the tweakeys to TK0 = 0, TK1 = X,TK2 = T ′

and TK3 = X + T ′ which means:

K0 = T , K0 +K1 = X , T +Q(T) = T ′.

For a fixed plaintext P0 and all possible values of X and T ′, he computes the corresponding
ciphertext CT ′,X and saves the X value in the index (T ′, C) of a table T . In the online
phase, by asking the encryption for a plaintext P0 and for all possible tweaks T , he receives
the corresponding ciphertext CT . Then for each value of T , he gets a candidate for K0 +K1
by looking up to the index (T +Q(T), CT) of T . By doing an exhaustive search on the
264 key candidates, he can find the correct value of the 128-bit key. This attack requires
264+dim{T+Q(T)} pre-computations, 264+dim{T+Q(T)} memory, 265 online computions and
264 data. But with some small modifications, it can be changed to all online attack with
264+dim{T+Q(T)} computations, 264 data and memory.

Since a circular permutation Q has the maximum value for dim{T +Q(T)} = 60 we
decided to use such a Q that improves the security of CRAFT against this attack. In other
words, the TDM TO attack on CRAFT has 2124 time, 264 data and memory complexity.

5.4 Differential and Linear Cryptanalysis
In order to argue for the resistance of CRAFT against differential and linear attacks, we
computed lower bounds on the minimum number of active Sboxes, both in the single-tweak
and related-tweak model. We recall that, in a differential (resp. linear) characteristic, an
Sbox is called active if the input difference (resp. mask) is non-zero. In contrast to the
single-tweak model, where the tweak is constant and thus does not change the activity
pattern, an attacker is allowed to introduce differences or masks within the tweak state in

18 CRAFT

the related-tweak model. It is noteworthy that such an attacker model is considered as
the most important model when examining the security of a tweakable block cipher. Note
that we don’t claim any security in the related-key model.

Table 5 shows the lower bounds on the minimum number of active Sboxes in the
single-tweak model (ST) and the related-tweak model (RT) for 1 up to 17 rounds. In
order to compute these bounds, we used the two techniques of Matsui’s recursive algorithm
as explained in [65] and Mixed-Integer Linear Programming as explained in [67, 83]. It is
noteworthy that both of the approaches take only the properties of the linear layer into
account and are independent of the specification of the Sbox. After 13 rounds, all bounds
are high enough in order to ensure that no distinguisher based on a single (related-tweak)
differential (respectively linear) characteristic exists. Since the maximum differential
probability (resp. absolute linear correlation) for an active Sbox is 2−2 (resp. 2−1),
having at least 32 active Sboxes will cause the probability (resp. absolute correlation) of a
differential (resp. linear) characteristic to be less than or equal to 2−64 (resp. 2−32). Hence,
such a characteristic is not useful to distinguish the cipher from a random permutation.
Since there is no cancellation of active Sboxes in linear characteristics in the related-tweak
model, we only considered the single-tweak model for the linear attack [59]. Thus, the
bounds for ST give valid bounds also for the RT case.

Table 5: Lower bounds on the minimum number of active Sboxes up to 17 rounds. RTi
refers to the characteristic starting with round R4j+i.

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Linear 1 2 4 6 10 14 20 26 32 36 40 44 48 52 56 60 64
ST Diff. 1 2 4 6 10 14 20 26 32 36 40 44 48 52 56 60 64
RT0 Diff. 0 1 2 4 6 12 14 19 22 25 27 32 36 38 40 46 49
RT1 Diff. 0 1 2 5 7 10 15 18 22 24 28 32 35 38 43 45 44
RT2 Diff. 0 1 2 4 6 12 16 19 21 24 27 30 34 39 41 42 44
RT3 Diff. 0 1 2 5 7 10 15 18 21 24 28 31 34 38 39 41 47

Note that only a single characteristic is considered in analysis so far. Thus, the
distinguishers might actually be stronger due to differential (resp. linear hull) effects.
To have a better estimation about the probability of differentials (resp. average square
correlation of linear hulls), by fixing input and output differences (resp. masks) in the
differential (resp. linear hull), we found all different single characteristics which follow
the same Sbox activity pattern with the minimum number of active Sboxes. Then by
summing all the probabilities (resp. square correlations) of each single characteristics, we
found a lower bound for the probability of corresponding differential (resp. average square
correlation of linear hull8). Note that it is a lower bound, because for a fixed input and
output difference (resp. mask), there might be some other single characteristics that are
not following the Sbox activity pattern. However, as for such characteristics the number
of active Sboxes will be higher, we assume their affect on the probability of differential
(resp. average square correlation of linear hull) to be negligible.

In the ST case, for 9-round CRAFT which has at least 32 active Sboxes, we found
four optimal differentials, each having a probability of 2−54.67. Similarly, we found four
optimal linear hulls, each having an average square correlation of 2−40.95. Using the same
method, we computed the highest probability and the average square correlation for a
higher number of rounds. In the ST differential case, for 10 round CRAFT, we found the

8In our considerations we assume that all linear trails contribute to the linear hull with the same sign,
i.e., each trail can only increase the average square correlation. Note that this is a worst-case consideration
as we can expect that the correlations will appear with different signs.

Beierle, Leander, Moradi and Rasoolzadeh 19

following eight differentials with probability of 2−62.61:

(a, 0, a, a, 0, 0, a, a, 0, 0, 0, 0, 0, 0, a, a)→ (a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, a)
(0, 0, a, 0, a, 0, a, 0, 0, 0, 0, 0, a, 0, a, 0)→ (a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, a, 0)
(0, a, a, a, 0, 0, a, a, 0, 0, 0, 0, 0, 0, a, a)→ (0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, a)
(0, 0, 0, a, 0, a, 0, a, 0, 0, 0, 0, 0, a, 0, a)→ (0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, a)
(a, a, a, 0, a, a, 0, 0, 0, 0, 0, 0, a, a, 0, 0)→ (0, 0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, a, 0, 0)
(a, 0, 0, 0, a, 0, a, 0, 0, 0, 0, 0, a, 0, a, 0)→ (0, 0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, a, 0)
(a, a, 0, a, a, a, 0, 0, 0, 0, 0, 0, a, a, 0, 0)→ (0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0, 0, a, a, 0, 0)
(0, a, 0, 0, 0, a, 0, a, 0, 0, 0, 0, 0, a, 0, a)→ (0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, a)

In the ST/RT linear case, for 14 round CRAFT, we found the following eight linear
hulls with average square correlation of 2−62.12:

(0, 5, 5, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 5, 5, 5)→ (0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5)
(0, 5, 0, 5, 0, 0, 0, 0, 0, 5, 0, 5, 0, 5, 0, 0)→ (0, 5, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5)
(5, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 5, 5, 0, 5, 5)→ (5, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0)
(5, 0, 5, 0, 0, 0, 0, 0, 5, 0, 5, 0, 5, 0, 0, 0)→ (5, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0)
(0, 5, 0, 5, 0, 0, 0, 0, 0, 5, 0, 5, 0, 0, 0, 5)→ (0, 5, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0)
(5, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 5, 5, 5, 0, 5)→ (5, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0)
(0, 5, 5, 0, 0, 0, 0, 0, 0, 5, 5, 0, 5, 5, 5, 0)→ (0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0)
(5, 0, 5, 0, 0, 0, 0, 0, 5, 0, 5, 0, 0, 0, 5, 0)→ (5, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0)

In order to recover the key, several rounds can be appended before and after the
differentials or linear hulls. The number of appended rounds depends on the minimum
number of rounds that achieve full diffusion, i.e., 7 rounds for CRAFT. Hence, the attacker
can add at most 7 rounds both at the beginning and at the end of the characteristic.
Thus, the total number of appended rounds can be at most 2× 7 = 14 rounds. Therefore,
we expect that an attacker cannot have a successful single-tweak differential attack on
more than 10 + 14 = 24 rounds and (single-/related-tweak) linear attack on more than
14 + 14 = 28 rounds. It is noteworthy that 14 rounds for appending to the trails is an
upper bound and is not always possible. For example, for the above mentioned differentials
and linear hulls, the maximum possible number of rounds to append is 7. It means that
using those differentials or linear hulls the attacker cannot have a successful single-tweak
differential attack on 18 rounds or a (single-/related-tweak) linear attack on 22 rounds.

In the related-tweak cases, the differentials are dependent on the starting round, i.e.,
the index of RT. For each 0 ≤ i ≤ 3, in a process similar to the single-tweak case, we found
the below differentials as the longest ones with a probability higher than 2−64:

RT0: 15-round with a probability of 2−55.14:

(0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, a, 0, 0, 0)

RT1: 16-round with a probability of 2−57.18:

(0, a, 0, a, 0, 0, a, a, 0, 0, 0, 0, 0, 0, 0, a)→ (0, 0, 0, 0, 0, 0, 0, a, a, 0, 0, 0, 0, 0, 0, 0)

RT2: 17-round with a probability of 2−60.14:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, a, 0, 0, 0)

RT3: 16-round with probability of 2−55.14:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, a, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, a, 0, 0, 0)

20 CRAFT

where for all of them ∆T is equal to (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0).
For the key recovery the number of rounds that can be appended for an RTi differential

is at most 4 + i rounds before and 7 rounds after the differential. But for the above
differentials, this number can be less than or equal to 10, 10, 12 and 13 rounds, respectively.
Therefore, we expect that an attacker cannot have a successful related-tweak differential
attack on 30 rounds.

It is noteworthy that in our entire analyses we did not consider the time complexity to
check the feasibility of the attacks. Hence, the number of rounds that can be analyzed by
the attacker is an upper bound.

5.5 Impossible Differentials and Zero-Correlation Linear Hulls
The structure of CRAFT is quite similar to SKINNY. Both ciphers employ very sparse and
binary MixColumn operations and there exist several activity patterns that deterministically
propagate through it. Because of that, there might exist distinguishers based on impossible
differentials [54, 15] over a high number of rounds. A pair of differences (Γ,∆) is said
to be an impossible differential over an encryption function F if, for all plaintexts x,
F (x) + F (x + Γ) 6= ∆. Such a distinguisher over a reduced-round version of the cipher
might be used for a key-recovery attack over a larger number of rounds by filtering all the
key candidates which lead to the intermediate state values with differences Γ and ∆, i.e., the
intermediate state values fulfilling the impossible differential. Indeed, for SKINNY, among
the conducted cryptanalytic attacks so far the bests are based on impossible differentials
(see [12, Section 4.3] and [5, 62]). Therefore, it is crucial to evaluate the resistance of
CRAFT against those attacks.

With the Mixed-Integer Linear Programming approach (see [27, 76]), we searched for
(truncated)9 impossible differentials over reduced-round versions of CRAFT. Thereby, we
constrained both the input and output activity patterns to have at most two active nibbles,
respectively. The largest number of rounds for which we found an impossible differential
was 13. In total, we found the following twelve different 13-round truncated impossible
differentials, where γ and δ can take any non-zero difference in F4

2. The first one is depicted
in more detail in Figure 5 where a black cell indicates an active nibble (i.e., a non-zero
difference), white indicates a passive nibble (i.e., a zero difference), and gray indicates a
nibble that might be active or passive.

(0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0)
(0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0)
(0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0)
(0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0)
(0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0)
(0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0)
(0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0)
(0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0)
(γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0)
(γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0)
(γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0) .

Using the same approach as for impossible differentials (by considering the transpose of
M instead of M), we were looking for zero-correlation linear hulls [20] over reduced-round

9Note that our approach only takes the properties of the linear layer into account and is independent
of the choice of the Sbox.

Beierle, Leander, Moradi and Rasoolzadeh 21

MC

ARC1
ATK1

PN

SB

MC

ARC2
ATK2

PN

SB

MC

ARC3
ATK3

PN

SB

MC

ARC0
ATK0

PN

SB

MC

ARC4
ATK0

PN

SB

MC

ARC5
ATK1

PN

SB

MC

ARC6
ATK2

PN

SB

MC

ARC7
ATK3

PN

SB

MC

ARC8
ATK0

PN

SB

MC

ARC9
ATK1

PN

SB

MC

ARC10
ATK2

PN

SB

MC

ARC11
ATK3

PN

SB

MC

ARC12
ATK0

PN

SB

contradiction

R0

R1 R2 R3

R4 R5 R6

R7 R8 R9

R10 R11 R12

Figure 5: A 13-round impossible differential characteristic for CRAFT. Note that active
nibbles of the plaintext difference have the same value.

versions of CRAFT. Again, the longest distinguisher that we found covers 13 rounds and we
found the following twelve (truncated) zero-correlation linear hulls:

(0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ)→ (0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ)→ (0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ)→ (0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0)→ (0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0)→ (0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0)→ (0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0)→ (0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0)→ (0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0)→ (0, 0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, γ, 0, 0, 0, 0, 0, 0, 0, γ, 0, 0, 0)→ (0, 0, 0, 0, 0, δ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

where γ and δ can take any non-zero mask in F4
2.

By appending at most 14 rounds before and after the impossible differentials or zero-
correlation linear hulls (reason for 14 rounds is explained at the end of Section 5.4), the
attacker can have successful key-recovery on a higher number of rounds. Actually, for the
reported characteristics it is possible to only append 12 rounds. Thus, we conclude that
the attacker may have a successful attack on at most 13 + 13 = 26 rounds.

22 CRAFT

5.6 Meet-in-the-Middle Attacks
To discuss the resistance of CRAFT against Meet-in-the-middle attacks [32], we use a similar
approach as in its application to the SPN structure [74] and the proposal of SKINNY
and MIDORI. The maximum number of attacked rounds can be evaluated considering the
maximum length of three features: partial-matching, initial structure and splice-and-cut.
For partial-matching, the number of rounds in both forward and backward directions
cannot reach to the full diffusion rounds (which for CRAFT is 7 rounds). Due to the key
length being higher than the state size, we can add one more round in each direction. Also,
because of the last linear half-round, partial-matching can work up to 2×(7−1+1)+1 = 15
rounds. In fact, there are four partial-matching characteristics for 15 rounds of CRAFT and
Figure 6 depicts one of them.

The condition for the initial structure [75] is that the key differential trails in both
forward and backward directions do not share active non-linear components. As any key
differential in CRAFT affects all 16 Sboxes after at least 7 + 1 rounds in both directions,
there is no such differential which shares active Sbox(es) in more than 7 rounds. Therefore,
it works up to 7 rounds for CRAFT.

Splice-and-cut may extend the number of attacked rounds up to the number of full
diffusion rounds, i.e., 7. Thus, we conclude that at most a (15 + 7 + 7) = 29-round
meet-in-the-middle attack might be feasible, but a higher number of rounds is secure. Note
that the freedom of the tweak is already considered in the number of rounds for which
there is a matching characteristic.

5.7 Integral Attack
Integral attacks [29, 55] are likely to be efficient for SPN block ciphers. The integral attack
takes a set of plaintexts, in which particular cells are fixed to a constant value, and the
other cells can contain all possible values. In case of CRAFT, each of such nibbles takes
values in F4

2. Considering a set of such plaintexts, each cell of the cipher state belongs to
one of the four cases below:

• All (A): all possible values in F4
2 appear the same number of times, i.e., a uniform

distribution.

• Balanced (B): the XOR sum of all values in the cell is 0.

• Constant (C): the value of the cell is constant.

• Unknown (U): no particular property holds.

In order to find the longest integral characteristic for CRAFT, first we set one active nibble to
the state, i.e., belonging to the A case. The cipher state is processed by the round functions
until all nibbles become unknown, i.e., U case. Then, we extend it to a higher-order integral
by propagating the active cell in the backward direction until all the nibbles become active.
The longest integral characteristics that we found in this way covers 13 rounds, one of
which is shown in Figure 7. We also checked the existence of integral distinguishers based
on the division property [84, 86] using the Mixed-Integer Linear Programming approach
described in [88]. With that, we did not find distinguishers for more than 13 rounds. By
appending 7 rounds for key recovery to the rest of the characteristic, the attacker might
have a successful attack on at most 20 rounds.

5.8 Invariant Attacks
In invariant attacks [85] the adversary aims at finding a (non-trivial) Boolean function
g for which there exist many keys k (so-called weak keys), such that g + g ◦ Ek is a

Beierle, Leander, Moradi and Rasoolzadeh 23

MC

ARC5
ATK1

PN

SB

MC

ARC6
ATK2

PN

SB

MC

ARC7
ATK3

PN

SB

MC

ARC2
ATK2

PN

SB

MC

ARC3
ATK3

PN

SB

MC

ARC4
ATK0

PN

SB

MC

ARC0
ATK0

PN

SB

MC

ARC1
ATK1

PN

SB

MC

ARC8
ATK0

PN

SB

MC

ARC9
ATK1

PN

SB

MC

ARC10
ATK2

PN

SB

MC

ARC11
ATK3

PN

SB

MC

ARC12
ATK0

PN

SB

MC

ARC13
ATK1

PN

SB

MC

ARC14
ATK2

matching

K0 K1 R0 R1

R2 R3 R4

R5 R6 R7

R8 R9 R10

R11 R12 R13

R14 K ′
0 K ′

1

Figure 6: A 15-round partial matching meet-in-the-middle for CRAFT.

constant function. Such a g is called an invariant for Ek . The knowledge of a non-trivial
invariant could be used as a distinguisher on the cipher. The most promising approach
for the adversary is to search for a Boolean function that is an invariant for all of the
building blocks, i.e., the Sbox layer and the linear layer (plus key addition) in each round,
simultaneously. Such an invariant could then be iterated over the rounds in order to
cover the full cipher. For SPNs with a simple key schedule, [11] presents a security
argument on the resistance against invariant attacks based on the round constants of the
cipher. It can easily be applied to CRAFT. In particular, let Ri and Rj be two rounds in
which the same round tweakey is added and let di,j := PN ◦ MC(RCi)⊕ PN ◦ MC(RCj). If
the smallest (PN ◦ MC)-invariant subspace that contains di,j has a dimension of at least
n− 1 = 63, then any Boolean function that is an invariant for both PN ◦ MC ◦ ARCi ◦ ATK′i
and PN ◦ MC ◦ ARCj ◦ ATK′j must be trivial or affine. Note that here for the simplicity,
we re-ordered the round operations and considered an equivalent tweakey which is used
before the MC operation. However, as the Sbox has no component of algebraic degree one,
such an invariant would be useless in order to attack the cipher. For CRAFT, the smallest
PN ◦ MC-invariant subspace that contains {d0,4, d1,5, d2,6, d3,7} is F64

2 , i.e., it has dimension
64. Therefore, we already get a sound security argument on the resistance against invariant
attacks after 8 rounds.

24 CRAFT

A A A A

A A X A

A A A A

A A A A

A A A A

A A C A

A A A A

A A A A

A A A A

A A A A

A A A

A A A A

MC

ARC0
ATK0

PN

SB

A A A A

A A A A

A A A

A A A A

A A A

A

A A A

A A A A

A A A A

A A A

A

A A A

A

A A

A

A A A

A A A

A

A A

A

A

A A

A

A

A A

A

MC

ARC1
ATK1

PN

SB

MC

ARC2
ATK2

PN

SB

MC

ARC3
ATK3

PN

SB

A

A A

A

A

A

A

A A

A A

A

MC

ARC4
ATK0

PN

SB

MC

ARC5
ATK1

PN

SB

MC

ARC6
ATK2

PN

SB

C C C C

C C C C

C C A C

C C C C

C C A C

C C C C

C C A C

C C C C

C C C C

A C C C

C C C C

C A C C

C A C C

A A C C

C C C C

C A C C

C C A C

C C C C

C A A C

A C C C

A A B C

A C C C

C A A C

A C C C

C A C C

A A C C

C C A C

A U C A

MC

ARC7
ATK3

PN

SB

MC

ARC8
ATK0

PN

SB

MC

ARC9
ATK1

PN

SB

C A C C

A A C C

C C A C

A U C A

A U A A

B U C A

C C A C

A U C A

A A U C

A C C C

C U U A

U A A A

U U U B

U A A A

C U U A

U A A A

A U A A

U U C A

A A U A

U U U U

U U U U

U U U U

A A U A

U U U U

U U U U

U A A A

U U U U

U U U U

MC

ARC10
ATK2

PN

SB

MC

ARC11
ATK3

PN

SB

MC

ARC12
ATK0

PN

SB

R0

R1 R2 R3

R4 R5 R6

R7 R8 R9

R10 R11 R12

Figure 7: A 13-round integral distinguisher for CRAFT.

6 Hardware Implementations

As stated before, our target is a round-based implementation, where one round of the
cipher is completed at every clock cycle. This leads to the design architecture shown in
Figure 8, which supports both encryption and decryption functionalities. To this end, we
just need to add a MC module through the round key path and a multiplexer to decide
whether the selected round key TKi or MC(TKi) should be given to the round function.
It is noteworthy that since MC does not change the third and fourth rows (see Section 3),
32 bits of TKi and MC(TKi) are the same. This help us to save 32 multiplexers. In total,
supporting decryption (only with respect to the round key) costs 3× 16 = 48 XOR gates
and 32 multiplexers. To provide the round constant for decryption, we implemented the
update function of each LFSR with both forward and backward functionalities, selected by
the encryption/decryption E/D signal bit. Hence, we further need to initialize the LFSRs
with either (1,1) or (8,5) for encryption/decryption respectively (see Table 2). As given
in Section 4.4, each LFSR for either forward or backward needs only one XOR gate for
the feedback function. This means that supporting decryption needs 2 extra XOR gates
and 7 multiplexers. Note that different initial values for encryption/decryption can be
generated by the E/D signal and only one NOT gate. More precisely, Ē00E, Ē01 generates
0001, 001 for encryption (E = 1) and 1000, 101 for decryption (E = 0). In total, turning
an encryption-only implementation of CRAFT into encryption/decryption costs at most 50
XOR gates, 39 multiplexers, and 1 inverter. The hardware synthesizers usually merge the
logic and even achieve a smaller overhead. Independent of whether decryption is supported
by an implementation, adding the tweak support needs 64 multiplexers (to choose T or
Q(T)) and 64 XOR gates (to add it to the Ki).

Beierle, Leander, Moradi and Rasoolzadeh 25

rst

E/D

f2(a, b)f1(a, b)

MC

PN

Input TK0K1

Output

SB

Q

MC

RC:(a, b)

rst

1/8

Update

LFSR4

1/5

Update

LFSR3

E/D

a b

Figure 8: Round-based design architecture of CRAFT supporting tweak, encryption and
decryption

For the implementations we used Synopsys Design Compiler with the IBM 130 nm ASIC
standard cell library. The result of pure implementations (not protected against either SCA
or DFA attacks) are shown in the first column of Table 6. Surprisingly, the only-encryption
CRAFT without tweak needs less than 1000GE which – to the best of our knowledge – is a
record for a round-based implementation with 64-bit state and 128-bit key. We should
highlight that due to the key-alternating fashion of the key schedule, we do not need to use
registers dedicated to the key state. Instead, we have to use large multiplexers (see Figure 8)
to select the corresponding 64-bit round key. The same approach has been used in the
design and implementation of MIDORI [7], PICCOLO [80], and KTANTAN [24]. We also did not
use register for the key state in the implementations of these three ciphers, but under the
same condition CRAFT outperforms MIDORI and PICCOLO with a large distance (see Table 6).
It is noteworthy that we have implemented all considered ciphers ourselves following a
unique design architecture and implementation fashion allowing us 1) to synthesize all
of them under the same ASIC library10, and 2) to apply the underlying countermeasure
to DFA attacks enabling a fair comparison. We further have not used any extraordinary
scan flip-flops, as an optimized combination of a flip-flop and a multiplexer. Therefore, the
area footprints given in Table 6 do not necessarily fit to the numbers reported in original
documents each of which synthesized by a different library.

In fact, serialized architectures (e.g. nibble-serial) have been used in several lightweight
ciphers to achieve a low area footprint but with a high latency. As an example, a bit-
serial implementation of SIMON with area footprint of 958GE needs 2816 clock cycles [10].
Serializing CRAFT would need extra registers for the key state to provide the key bits/nib-
bles/bytes per clock cycle. This implies that a serialized CRAFT with high latency needs
more area compared to its round-based variant accomplishing the encryption/decryption
in 32 clock cycles. Notably, the critical path delay (inverse of maximum clock frequency)
of CRAFT is higher than that of PRESENT, GIFT, and SIMON. This is because in such ciphers
the diffusion layer is realized by a bit permutation, which induces no delay at all. In
our comparisons, we also included KATAN and KTANTAN with 64-bit state, although their
80-bit key size and the high number of 762 clock cycles per encryption do not match the
other ciphers considered. We further included SKINNY with a 192-bit tweakey which is
compatible to CRAFT supporting a 64-bit tweak.

As a side note, it can be seen that CRAFT is smaller than MIDORI while they share some
10Synthesizing a single design using different ASIC libraries can lead to very diverse results [44].

26 CRAFT

Table 6: Area (GE) and Latency (ns) comparison of round-based implementations consider-
ing anMt=d−1-bounded univariate adversary with an [n, k, d] code, using the IBM 130 nm
ASIC library, partially borrowed from [1].

Algorithm Key
clock unprotected [5, 4, 2] [6, 4, 2] [7, 4, 3] [8, 4, 4]

cycles area area area area area
latency latency latency latency latency

SKINNY Enc 128 37 1738 3640 4494 5636 6804
3.66 5.16 5.24 6.09 6.37

LED Enc 128 49 1664 4499 5264 6699 8718
9.15 9.57 9.17 10.04 12.80

MIDORI Enc 128 17 1372 3282 3942 5262 6840
7.57 8.25 8.16 8.87 10.40

PRESENT Enc 128 32 1767 4211 5177 6639 8219
2.93 5.19 5.62 6.32 6.71

GIFT Enc 128 29 1587 3824 4722 6082 7767
2.88 5.11 5.32 6.11 6.61

SIMON Enc 128 45 1629 3614 4487 5621 7603
2.86 5.20 5.27 5.93 6.44

PICCOLO Enc 128 32 1462 3870 4763 6241 8217
7.69 9.86 9.47 10.10 12.15

KATAN Enc 80 762 1080 2946 3610 4746 6684
3.87 5.84 6.04 6.69 7.49

KTANTAN Enc 80 762 601 2039 2457 3069 4207
4.23 5.38 5.07 5.47 6.01

CRAFT Enc 128 32 949 2342 2857 3698 5014
3.19 5.13 5.25 5.56 6.26

CRAFT Enc&Dec 128 32 1089 2609 3169 4069 5459
3.60 5.07 5.40 6.19 6.43

CRAFT Enc Tweak 128 32 1193 2801 3420 4518 6657
3.37 5.15 5.27 5.56 6.25

CRAFT Enc&Dec T. 128 32 1339 3066 3731 4891 7110
3.99 5.36 5.43 6.09 6.64

SKINNY Enc 192 41 2206 4540 5656 7119 8553
4.00 5.63 5.74 6.34 6.74

components. At the same time, CRAFT needs a higher number of clock cycles (32 versus
17). However, the whole latency (of the entire encryption) of the slowest CRAFT (with
tweak and decryption support) is smaller than that of MIDORI (127.68 ns versus 128.69 ns).
Of course, due to higher number of clock cycles, CRAFT cannot outperform MIDORI with
respect to energy consumption per encryption.

Note that we have not restricted the clock period in our syntheses allowing the
synthesizer to achieve the smallest possible area. However, it is possible to force the
synthesizer to reach a certain maximum latency which leads to higher area requirement.
As a reference, in Figure 9 we show such results for round-based implementations of CRAFT.
We used the IBM 130 nm ASIC standard cell library due to its public availability and
the fact that it is used to benchmark SIMON area footprints in [10]. In order to give an
overview on the performance comparisons under a more modern ASIC library, we repeated
all our syntheses using a commercial 40 nm standard cell library11. The corresponding
results are shown in Appendix D.

6.1 Protection against DFA Attacks
Adversary Model. As stated before, we focus on the fault-detection technique proposed
in [1], where two adversary models are defined:

• Univariate modelMt, where at only one clock cycle of each encryption process the
adversary is able to make at most t cells of the entire circuit faulty.

11Due to an NDA, the full name of the used library is omitted.

Beierle, Leander, Moradi and Rasoolzadeh 27

2 2.5 3 3.5 4 4.5 5

1,000

1,500

2,000

Latency (ns)

A
re
a
(G

E
)

CRAFT Enc&Dec Tweak

CRAFT Enc Tweak

CRAFT Enc&Dec

CRAFT Enc

Figure 9: Latency versus area of unprotected round-based CRAFT, using the IBM 130 nm
ASIC library.

• Multivariate adversaryM∗t , which is bounded to t faulty cells in the entire circuit at
every clock cycle.

This implies that the safe-error [89] and stuck-at-0/1 [26] models are not covered. Fur-
ther, our fault-protected implementations do not necessarily provide security against
FSA [60] and SIFA [34]. Protection against such kind of attacks needs either a clock
glitch detector [36] or a combination of different countermeasures, e.g. a fault-correction
technique.

Results. We considered four cases for the redundancy size m ∈ {1, . . . , 4} bits. The
corresponding design architectures for m < k = 4 and m ≥ k = 4 are shown in Figure 10
and Figure 11 respectively (in Appendix C). We further considered [l, k, d] codes [5, 4, 2],
[6, 4, 2], [7, 4, 3], and [8, 4, 4] for m = 1, 2, 3, 4 respectively. Generator matrices of these
codes have been given in Section 4.2. This implies that with m = 1 and m = 2 (both
leading to d = 2) the circuit is able to detect at most t = d − 1 = 1 faulty cell, i.e.,
protection against anMt=1 adversary. This is improved by larger m = 3 and m = 4 to
protect against an Mt=2 and Mt=3 adversary respectively. Note that MC of CRAFT has
been chosen to 1) let MC operate solely on the redundant part of information for m < k
(see Figure 10), and 2) avoid any necessary extra check point at MC input (see [1, Lemma 4
and Theorem 1]). This, in addition to the LFSRs with at most 4-bit width (since k = 4),
help us to realize such implementations with low area overhead. The performance figure
and area requirement of several implementations compared to that of other ciphers are
listed in Table 6. It can be seen that CRAFT outperforms all other considered ciphers with
compatible state and key size even when CRAFT supports both encryption and decryption.

It might be thought that the fault-protected implementations of CRAFT are smaller
than the others since its unprotected variant is smaller. Table 6 shows the inconsistency
of this statement. As an example, unprotected LED and GIFT need less area compared to
SKINNY, while their fault-protected variants are larger.

According to [1], to provide security against a multivariate adversaryM∗t , extra check
points should be defined and the consistency check module needs to be adjusted. Doing
so, we achieved again the smallest area overhead for CRAFT under all considered settings.
The results are given in Table 8 (in Appendix C). As stated, the synthesis results using a
commercial 40 nm ASIC library are given in Appendix D.

Experiments. Since ASIC fabrication which enables practical experiments is time con-
suming, we have conducted a few simulations to ensure the fault-detection capability of our
implementations. For a given design, we have taken the net-list generated during the syn-
thesis process, and replaced every cell with the corresponding one whose output is toggled
by a fault signal. This way, we can control every cell of the synthesized circuit including
the data-processing, control logic, and check parts. As an example, an implementation of

28 CRAFT

Table 7: Area (GE) and Latency (ns) of round-based Threshold Implementations of
CRAFT with 3 shares considering anMt=d−1-bounded univariate adversary with an [n, k, d]
code, using the IBM 130 nm ASIC library.

Algorithm Key
clock only TI TI+[5, 4, 2] TI+[6, 4, 2] TI+[7, 4, 3] TI+[8, 4, 4]

cycles area area area area area
latency latency latency latency latency

CRAFT Enc 128 64 5106 10620 13851 16049 21687
4.05 5.63 5.80 6.75 6.99

CRAFT Enc&Dec 128 64 5303 10909 14194 16454 22210
4.33 6.46 6.28 7.85 7.20

CRAFT Enc Tweak 128 64 5412 11079 14416 16786 23351
4.17 5.63 5.80 6.74 6.95

CRAFT Enc&Dec T. 128 64 5605 11374 14763 17208 23868
4.92 6.37 6.27 7.89 7.16

CRAFT only-encryption (without tweak) protected against a multivariate adversaryM∗t=1
with redundancy size m = 1 contains 1437 cells, i.e., a vector of 1437 signals to inject
faults. Our simulations under the considered adversary model (i.e., single-bit faults at
every clock cycle) showed 100% fault coverage.

6.2 Combined Protection against SCA and DFA Attacks
Application of masking as the most common countermeasure against SCA attacks is
challenging when the underlying function is not transparent to the applied masking scheme.
In the most common technique, i.e., Boolean masking, the difficulty of realizing a masked
implementation is summarized to providing a secure masked variant of its non-linear
functions while linear operations can be repeated with respect to the order of the employed
masking scheme. Threshold Implementation (TI) [68] formalized this process and defined
requirements to be fulfilled for a provably-secure implementation (up to a certain order).
Hence, in order to realize a TI variant of CRAFT, we need to just provide its TI Sbox;
masked version of its other operations are straightforwardly made due to their linearity.
CRAFT’s Sbox belongs to the cubic class 266 [18], and it has been shown that such a class
can be uniformly shared in two stages with minimum number of 3 shares. This means that
we need to put a register in the middle of the TI Sbox. CRAFT’s Sbox is the same as that
of MIDORI, and a correct and uniform TI of MIDORI’s Sbox with 3 shares in two stages
is given in [66]. We have taken such a design for the Sbox and easily repeated the other
modules 3 times to realize a first-order secure round-based 3-share TI of CRAFT without
any fresh randomness. The design architecture is very similar to the one shown in Figure 8,
but with a register stage in SB module. Therefore, the entire encryption/decryption takes
now 64 clock cycles, but it forms a pipeline, where in 64 clock cycles two e.g. encryptions
can be accomplished. The performance figures of such implementations are given in the
first column of Table 7.

We further applied the same fault-detection mechanism explained before on such
implementations using all four considered codes. This offers protection against first-order
SCA attacks as well as a univariate fault-injection adversary modelMt with t = 1, 2, 3.
The rest of Table 7 shows the corresponding results. It is noteworthy that the result for
the similar implementations considering the corresponding multivariate adversary is shown
in Table 9 (in Appendix C), and by a commercial 40 nm ASIC library in Appendix D.

7 Conclusions
This paper introduced the block cipher CRAFT, for which the resistance of its implementa-
tions against DFA attacks was taken into account during the design phase. Considering one

Beierle, Leander, Moradi and Rasoolzadeh 29

of the recent developments in the areas of fault detection, we have designed the building
blocks of CRAFT leading to very limited area overhead. For the unprotected implementation
as well as the one equipped with fault-detection mechanisms, the corresponding results
show a clear distance between CRAFT and the state of the art. To the best of our knowledge,
it is a unique construction with 128-bit key whose round-based implementation (requiring
32 clock cycles to encrypt a 64-bit message) needs less than 1000GE. Further, it offers
two other interesting features by (a) supporting a 64-bit tweak which adds around 245GE
area and (b) being able to turn into decryption function with a very low area overhead of
around 140GE.

For further protection against the attacks such as SIFA [34], an interesting topic for
future work is to add error-correction capabilities. Since our underlying fault-detection
scheme is based on application of binary linear codes, it might be promising to adjust the
same principle to correct faults (of course using the codes with larger distance).

References
[1] Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Falk Schellenberg, and Tobias

Schneider. Impeccable Circuits. IACR Cryptology ePrint Archive, 2018:203, 2018.

[2] Michel Agoyan, Jean-Max Dutertre, Amir-Pasha Mirbaha, David Naccache, Anne-Lise
Ribotta, and Assia Tria. How to flip a bit? In IOLTS 2010, pages 235–239. IEEE
Computer Society, 2010.

[3] Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno Robisson, and Assia
Tria. When Clocks Fail: On Critical Paths and Clock Faults. In Dieter Gollmann,
Jean-Louis Lanet, and Julien Iguchi-Cartigny, editors, CARDIS 2010, volume 6035 of
LNCS, pages 182–193. Springer, 2010.

[4] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander, Christof
Paar, and Tolga Yalçin. Block Ciphers - Focus on the Linear Layer (feat. PRIDE). In
Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, volume 8616 of LNCS,
pages 57–76. Springer, 2014.

[5] Ralph Ankele, Subhadeep Banik, Avik Chakraborti, Eik List, Florian Mendel,
Siang Meng Sim, and Gaoli Wang. Related-Key Impossible-Differential Attack on
Reduced-Round Skinny. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi,
editors, ACNS 2017, volume 10355 of LNCS, pages 208–228. Springer, 2017.

[6] Roberto Avanzi. The QARMA Block Cipher Family. Almost MDS Matrices Over
Rings With Zero Divisors, Nearly Symmetric Even-Mansour Constructions With
Non-Involutory Central Rounds, and Search Heuristics for Low-Latency S-Boxes.
IACR Trans. Symmetric Cryptol., 2017(1):4–44, 2017.

[7] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga
Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A Block Cipher for Low
Energy. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, volume
9453 of LNCS, pages 411–436. Springer, 2015.

[8] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, and Yosuke Todo. GIFT: A Small Present - Towards Reaching the Limit of
Lightweight Encryption. In Fischer and Homma [37], pages 321–345.

[9] Elad Barkan and Eli Biham. In How Many Ways Can You Write Rijndael? In Yuliang
Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 160–175. Springer,
2002.

30 CRAFT

[10] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK lightweight block ciphers. In DAC 2015,
pages 175:1–175:6, 2015.

[11] Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella. Proving Resis-
tance Against Invariant Attacks: How to Choose the Round Constants. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, volume 10402 of LNCS, pages
647–678. Springer, 2017.

[12] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY Family of
Block Ciphers and Its Low-Latency Variant MANTIS. In Robshaw and Katz [73],
pages 123–153.

[13] Guido Bertoni, Luca Breveglieri, Israel Koren, Paolo Maistri, and Vincenzo Piuri.
Error Analysis and Detection Procedures for a Hardware Implementation of the
Advanced Encryption Standard. IEEE Trans. Computers, 52(4):492–505, 2003.

[14] Guido Bertoni and Jean-Sébastien Coron, editors. CHES 2013, volume 8086 of LNCS.
Springer, 2013.

[15] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In Jacques Stern, editor, EUROCRYPT 1999,
volume 1592 of LNCS, pages 12–23. Springer, 1999.

[16] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosystems.
In Burton S. Kaliski Jr., editor, CRYPTO 1997, volume 1294 of LNCS, pages 513–525.
Springer, 1997.

[17] Begül Bilgin, Andrey Bogdanov, Miroslav Knezevic, Florian Mendel, and Qingju
Wang. Fides: Lightweight Authenticated Cipher with Side-Channel Resistance for
Constrained Hardware. In Bertoni and Coron [14], pages 142–158.

[18] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, Natalia N. Tokareva,
and Valeriya Vitkup. Threshold implementations of small S-boxes. Cryptography and
Communications, 7(1):3–33, 2015.

[19] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An Ultra-
Lightweight Block Cipher. In Paillier and Verbauwhede [70], pages 450–466.

[20] Andrey Bogdanov and Vincent Rijmen. Linear Hulls with Correlation Zero and Linear
Cryptanalysis of Block Ciphers. Des. Codes Cryptography, 70(3):369–383, 2014.

[21] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A
Low-Latency Block Cipher for Pervasive Computing Applications - Extended Abstract.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS,
pages 208–225. Springer, 2012.

[22] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis with
a Leakage Model. In Marc Joye and Jean-Jacques Quisquater, editors, CHES 2004,
volume 3156 of LNCS, pages 16–29. Springer, 2004.

[23] Gaetan Canivet, Paolo Maistri, Régis Leveugle, Jessy Clédière, Florent Valette, and
Marc Renaudin. Glitch and Laser Fault Attacks onto a Secure AES Implementation
on a SRAM-Based FPGA. J. Cryptology, 24(2):247–268, 2011.

Beierle, Leander, Moradi and Rasoolzadeh 31

[24] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and
KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers. In
Christophe Clavier and Kris Gaj, editors, CHES 2009, volume 5747 of LNCS, pages
272–288. Springer, 2009.

[25] Jung Hee Cheon and Tsuyoshi Takagi, editors. ASIACRYPT 2016, volume 10031 of
LNCS, 2016.

[26] Christophe Clavier. Secret External Encodings Do Not Prevent Transient Fault
Analysis. In Paillier and Verbauwhede [70], pages 181–194.

[27] Tingting Cui, Keting Jia, Kai Fu, Shiyao Chen, and Meiqin Wang. New Automatic
Search Tool for Impossible Differentials and Zero-Correlation Linear Approximations.
IACR Cryptology ePrint Archive, 2016:689, 2016.

[28] Joan Daemen. Cipher and Hash Function Design, Strategies Based on Linear and
Differential Cryptanalysis, PhD Thesis. K.U.Leuven, 1995.

[29] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher square. In
Eli Biham, editor, FSE 1997, pages 149–165, 1997.

[30] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. Nessie
Proposal: NOEKEON. In First Open NESSIE Workshop, pages 213–230, 2000.

[31] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria. Electromag-
netic Transient Faults Injection on a Hardware and a Software Implementations of
AES. In Guido Bertoni and Benedikt Gierlichs, editors, FDTC 2012, pages 7–15.
IEEE Computer Society, 2012.

[32] Whitfield Diffie and Martin E. Hellman. Special Feature Exhaustive Cryptanalysis of
the NBS Data Encryption Standard. IEEE Computer, 10(6):74–84, 1977.

[33] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard, Florian
Mendel, and Robert Primas. Statistical Ineffective Fault Attacks on Masked AES
with Fault Countermeasures. In Thomas Peyrin and Steven D. Galbraith, editors,
ASIACRYPT 2018, volume 11273 of LNCS, pages 315–342. Springer, 2018.

[34] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Florian
Mendel, and Robert Primas. SIFA: Exploiting Ineffective Fault Inductions on Sym-
metric Cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):547–572,
2018.

[35] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Markus Schofnegger.
Algebraic Cryptanalysis of Frit. IACR Cryptology ePrint Archive, 2018:809, 2018.

[36] Sho Endo, Yang Li, Naofumi Homma, Kazuo Sakiyama, Kazuo Ohta, Daisuke Fuji-
moto, Makoto Nagata, Toshihiro Katashita, Jean-Luc Danger, and Takafumi Aoki. A
Silicon-Level Countermeasure Against Fault Sensitivity Analysis and Its Evaluation.
IEEE Trans. VLSI Syst., 23(8):1429–1438, 2015.

[37] Wieland Fischer and Naofumi Homma, editors. CHES 2017, volume 10529 of LNCS.
Springer, 2017.

[38] Benoît Gérard, Vincent Grosso, María Naya-Plasencia, and François-Xavier Standaert.
Block Ciphers That Are Easier to Mask: How Far Can We Go? In Bertoni and Coron
[14], pages 383–399.

32 CRAFT

[39] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. Infective Computation
and Dummy Rounds: Fault Protection for Block Ciphers without Check-before-Output.
In Alejandro Hevia and Gregory Neven, editors, LATINCRYPT 2012, volume 7533 of
LNCS, pages 305–321. Springer, 2012.

[40] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici. LS-
Designs: Bitslice Encryption for Efficient Masked Software Implementations. In Carlos
Cid and Christian Rechberger, editors, FSE 2014, volume 8540 of LNCS, pages 18–37.
Springer, 2014.

[41] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED
Block Cipher. In Preneel and Takagi [72], pages 326–341.

[42] Xiaofei Guo and Ramesh Karri. Invariance-based Concurrent Error Detection for
Advanced Encryption Standard. In DAC 2012, pages 573–578. ACM, 2012.

[43] Xiaofei Guo, Debdeep Mukhopadhyay, Chenglu Jin, and Ramesh Karri. Security Anal-
ysis of Concurrent Error Detection against Differential Fault Analysis. J. Cryptographic
Engineering, 5(3):153–169, 2015.

[44] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-Sliding: A
Generic Technique for Bit-Serial Implementations of SPN-based Primitives - Ap-
plications to AES, PRESENT and SKINNY. In Fischer and Homma [37], pages
687–707.

[45] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block Ciphers:
The TWEAKEY Framework. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT
2014, volume 8874 of LNCS, pages 274–288. Springer, 2014.

[46] Marc Joye, Pascal Manet, and Jean-Baptiste Rigaud. Strengthening hardware AES
implementations against fault attacks. IET Information Security, 1(3):106–110, 2007.

[47] Mark G. Karpovsky, Konrad J. Kulikowski, and Alexander Taubin. Robust Protec-
tion against Fault-Injection Attacks on Smart Cards Implementing the Advanced
Encryption Standard. In DSN 2004, pages 93–101. IEEE Computer Society, 2004.

[48] Ramesh Karri, Kaijie Wu, Piyush Mishra, and Yongkook Kim. Concurrent Error
Detection Schemes for Fault-based Side-Channel Cryptanalysis of Symmetric Block
Ciphers. IEEE Trans. on CAD of Integrated Circuits and Systems, 21(12):1509–1517,
2002.

[49] John Kelsey, Bruce Schneier, and David A. Wagner. Key-Schedule Cryptanalysis of
IDEA, G-DES, GOST, SAFER, and Triple-DES. In Koblitz [56], pages 237–251.

[50] Mehran Mozaffari Kermani and Arash Reyhani-Masoleh. Parity-Based Fault Detection
Architecture of S-box for Advanced Encryption Standard. In DFT 2006, pages 572–580.
IEEE Computer Society, 2006.

[51] Mehran Mozaffari Kermani and Arash Reyhani-Masoleh. A Lightweight Concurrent
Fault Detection Scheme for the AES S-Boxes Using Normal Basis. In Oswald and
Rohatgi [69], pages 113–129.

[52] Mehran Mozaffari Kermani and Arash Reyhani-Masoleh. Concurrent Structure-
Independent Fault Detection Schemes for the Advanced Encryption Standard. IEEE
Trans. Computers, 59(5):608–622, 2010.

Beierle, Leander, Moradi and Rasoolzadeh 33

[53] Mehran Mozaffari Kermani and Arash Reyhani-Masoleh. A Lightweight High-
Performance Fault Detection Scheme for the Advanced Encryption Standard Using
Composite Fields. IEEE Trans. VLSI Syst., 19(1):85–91, 2011.

[54] Lars Knudsen. DEAL - A 128-bit Block Cipher. In NIST AES Proposal, 1998.

[55] Lars R. Knudsen and David A. Wagner. Integral Cryptanalysis. In Joan Daemen and
Vincent Rijmen, editors, FSE 2002, volume 2365 of LNCS, pages 112–127. Springer,
2002.

[56] Neal Koblitz, editor. CRYPTO 1996, volume 1109 of LNCS. Springer, 1996.

[57] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Koblitz [56], pages 104–113.

[58] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Michael J. Wiener, editor, CRYPTO 1999, volume 1666 of LNCS, pages 388–397.
Springer, 1999.

[59] Thorsten Kranz, Gregor Leander, and Friedrich Wiemer. Linear Cryptanalysis:
Key Schedules and Tweakable Block Ciphers. IACR Trans. Symmetric Cryptol.,
2017(1):474–505, 2017.

[60] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko Takahashi,
and Kazuo Ohta. Fault Sensitivity Analysis. In Stefan Mangard and François-Xavier
Standaert, editors, CHES 2010, volume 6225 of LNCS, pages 320–334. Springer, 2010.

[61] Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable Block Ciphers.
In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 31–46. Springer,
2002.

[62] Guozhen Liu, Mohona Ghosh, and Ling Song. Security Analysis of SKINNY under
Related-Tweakey Settings (Long Paper). IACR Trans. Symmetric Cryptol., 2017(3):37–
72, 2017.

[63] Paolo Maistri and Régis Leveugle. Double-Data-Rate Computation as a Countermea-
sure against Fault Analysis. IEEE Trans. Computers, 57(11):1528–1539, 2008.

[64] Tal Malkin, François-Xavier Standaert, and Moti Yung. A Comparative Cost/Security
Analysis of Fault Attack Countermeasures. In Luca Breveglieri, Israel Koren, David
Naccache, and Jean-Pierre Seifert, editors, FDTC 2006, volume 4236 of LNCS, pages
159–172. Springer, 2006.

[65] Mitsuru Matsui. On Correlation Between the Order of S-boxes and the Strength of
DES. In Alfredo De Santis, editor, EUROCRYPT 1994, volume 950 of LNCS, pages
366–375. Springer, 1994.

[66] Amir Moradi and Tobias Schneider. Side-Channel Analysis Protection and Low-
Latency in Action - - Case Study of PRINCE and Midori. In Cheon and Takagi [25],
pages 517–547.

[67] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and Linear
Cryptanalysis Using Mixed-Integer Linear Programming. In Chuankun Wu, Moti
Yung, and Dongdai Lin, editors, Inscrypt 2011, volume 7537 of LNCS, pages 57–76.
Springer, 2011.

[68] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware Implementation
of Nonlinear Functions in the Presence of Glitches. J. Cryptology, 24(2):292–321,
2011.

34 CRAFT

[69] Elisabeth Oswald and Pankaj Rohatgi, editors. CHES 2008, volume 5154 of LNCS.
Springer, 2008.

[70] Pascal Paillier and Ingrid Verbauwhede, editors. CHES 2007, volume 4727 of LNCS.
Springer, 2007.

[71] Gilles Piret, Thomas Roche, and Claude Carlet. PICARO - A Block Cipher Allowing
Efficient Higher-Order Side-Channel Resistance. In Feng Bao, Pierangela Samarati,
and Jianying Zhou, editors, ACNS 2012, volume 7341 of LNCS, pages 311–328.
Springer, 2012.

[72] Bart Preneel and Tsuyoshi Takagi, editors. CHES 2011, volume 6917 of LNCS.
Springer, 2011.

[73] Matthew Robshaw and Jonathan Katz, editors. CRYPTO 2016, volume 9815 of
LNCS. Springer, 2016.

[74] Yu Sasaki. Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an
Application to Whirlpool. In Antoine Joux, editor, FSE 2011, volume 6733 of LNCS,
pages 378–396. Springer, 2011.

[75] Yu Sasaki and Kazumaro Aoki. Finding Preimages in Full MD5 Faster Than Exhaus-
tive Search. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS,
pages 134–152. Springer, 2009.

[76] Yu Sasaki and Yosuke Todo. New Impossible Differential Search Tool from Design
and Cryptanalysis Aspects - Revealing Structural Properties of Several Ciphers. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, volume
10212 of LNCS, pages 185–215, 2017.

[77] Akashi Satoh, Takeshi Sugawara, Naofumi Homma, and Takafumi Aoki. High-
Performance Concurrent Error Detection Scheme for AES Hardware. In Oswald and
Rohatgi [69], pages 100–112.

[78] Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI - Towards Combined
Hardware Countermeasures Against Side-Channel and Fault-Injection Attacks. In
Robshaw and Katz [73], pages 302–332.

[79] Nidhal Selmane, Sylvain Guilley, and Jean-Luc Danger. Practical Setup Time Violation
Attacks on AES. In EDCC-7 2008, pages 91–96. IEEE Computer Society, 2008.

[80] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita,
and Taizo Shirai. Piccolo: An Ultra-Lightweight Blockcipher. In Preneel and Takagi
[72], pages 342–357.

[81] Thierry Simon, Lejla Batina, Joan Daemen, Vincent Grosso, Pedro Maat Costa
Massolino, Kostas Papagiannopoulos, Francesco Regazzoni, and Niels Samwel. Towards
Lightweight Cryptographic Primitives with Built-in Fault-Detection. IACR Cryptology
ePrint Archive, 2018:729, 2018.

[82] François-Xavier Standaert, Gilles Piret, Gaël Rouvroy, Jean-Jacques Quisquater, and
Jean-Didier Legat. ICEBERG : An Involutional Cipher Efficient for Block Encryption
in Reconfigurable Hardware. In Bimal K. Roy and Willi Meier, editors, FSE 2004,
volume 3017 of LNCS, pages 279–299. Springer, 2004.

[83] Siwei Sun, Lei Hu, Ling Song, Yonghong Xie, and Peng Wang. Automatic Security
Evaluation of Block Ciphers with S-bP Structures Against Related-Key Differential
Attacks. In Dongdai Lin, Shouhuai Xu, and Moti Yung, editors, Inscrypt 2013, volume
8567 of LNCS, pages 39–51. Springer, 2013.

Beierle, Leander, Moradi and Rasoolzadeh 35

[84] Yosuke Todo. Structural Evaluation by Generalized Integral Property. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, volume 9056 of LNCS, pages
287–314. Springer, 2015.

[85] Yosuke Todo, Gregor Leander, and Yu Sasaki. Nonlinear Invariant Attack - Practical
Attack on Full SCREAM, iSCREAM, and Midori64. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, volume 10032 of LNCS, pages 3–33, 2016.

[86] Yosuke Todo and Masakatu Morii. Bit-Based Division Property and Application to
Simon Family. In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages
357–377. Springer, 2016.

[87] Kaijie Wu, Ramesh Karri, Grigori Kuznetsov, and Michael Gössel. Low Cost Con-
current Error Detection for the Advanced Encryption Standard. In ITC 2004, pages
1242–1248. IEEE Computer Society, 2004.

[88] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP Method
to Searching Integral Distinguishers Based on Division Property for 6 Lightweight
Block Ciphers. In Cheon and Takagi [25], pages 648–678.

[89] Sung-Ming Yen and Marc Joye. Checking Before Output May Not Be Enough Against
Fault-Based Cryptanalysis. IEEE Trans. Computers, 49(9):967–970, 2000.

[90] Sung-Ming Yen, Seungjoo Kim, Seongan Lim, and Sang-Jae Moon. RSA Speedup
with Residue Number System Immune against Hardware Fault Cryptanalysis. In
Kwangjo Kim, editor, ICISC 2001, volume 2288 of LNCS, pages 397–413. Springer,
2001.

36 CRAFT

A CRAFT Test Vectors
K0 0000000000000000 0000000000000000 0123456789ABCDEF 27A6781A43F364BC
K1 0000000000000000 0000000000000000 FEDCBA9876543210 916708D5FBB5AEFE
T 0000000000000000 0123456789ABCDEF 0000000000000000 54CD94FFD0670A58

T K0 0000000000000000 0123456789ABCDEF 0123456789ABCDEF 736BECE593946EE4
T K1 0000000000000000 0123456789ABCDEF FEDCBA9876543210 C5AA9C2A2BD2A4A6
T K2 0000000000000000 CAF5E892B374601D 0123456789ABCDEF 212225163E0A91F6
T K3 0000000000000000 CAF5E892B374601D FEDCBA9876543210 97E355D9864C5BB4

P 0000000000000000 0123456789ABCDEF FEDCBA9876543210 5734F006D8D88A3E
R1 CCCCCCCCCAACCCCC CCCCCCCC4026EEEE 6666666640265555 14E2E5E02782F597
R2 00001100CE8C1100 AD3C8902E34B3D7F BF7E7F3D12C52098 ABA3B0CCB8C23B2C
R3 CAAC8400CDEC6802 DB2F3CB644A69625 7427F59408BD0CC8 11120F88604F9F6C
R4 DF8C4200C90D6EDF 86F3276DC7FA3B90 834244790FFE4848 80E2CF433C4292D7
R5 6F42C90221568B47 66F7B4EA96015517 78B1BF8BB62FB270 3603261F77DA2A0B
R6 785EBADFEB8BBB30 898616A193F1E0D1 C8CF7C05FC73D3D8 2841C0B837B44781
R7 C55385454DF684BD 08C08CDB427DCB33 7A432B785981FE74 72F759C4DA069BF7
R8 28E562EF6C580A8C 415DCA6974A1575E E00F26DB942E3F1D 30CEE0B14FD1E4B1
R9 0C18B0F8F03343AE A915C261B08C38AF D6D682AB18CA1A6E B81BE02B405B80B4
R10 4E313C63BABF68B5 C6BED93712A9CABD 4D8794F4BC82114D DDEA85F954BB2B45
R11 BF8551562A8F0359 C1112A12A4D8EB62 D201DB392BA4AF54 351551FA14B133F8
R12 9C3B81D6CE56FB39 685717A0460DEB4E E92E62BC68DB8D21 0F8E6D922A25B568
R13 9653B40F42869BE1 ADF1160F84E9E370 4EC07A4C62B1267C 0258595AA3063184
R14 A9548DEF40B463EE 6D49E2CDA3085E50 0AEF4EAB1B98E2A6 D9BD288E678EB7CB
R15 4F345CEEC62A1C48 234E7CA0CBF614EB 9D6E3D93F821D6D6 2DF389BEB583821D
R16 8A0EDF011EBFBBF9 F7E6887D2E99F1F3 F4E0748B2BE22EBE 9291033671E12848
R17 955654A66F486E8D 030A371D4459916D A43BED19B29DC966 0EF17D4B9BE58B35
R18 2F48E6F8D675E939 DB08620DAF177A22 F6570E094527AA0D 3D693C57B6DE5852
R19 94937F2B09DACCEA 6A13F0A35F22E080 DF748000F7038B4A E091288EA7F3D076
R20 100429C10EDAA13B 28C9B04F56FA6EEA 159BBA872FDD24AB D8505AD6D13AC67C
R21 51A324C165E164B5 B13CB62A08BDA61A E49E7F1FE8A5604A 81891DE4E3560725
R22 BFE54BFA7ADEC67B BF56AA8FBE37458A 1BDB649A0E02D129 3138880E4745CBC1
R23 50F72174893A3ECC 7DB9E2C393574A48 FA0017892EEEB230 7B13E9762D290949
R24 0340398152E87CA4 BD1BDCD3ADA94B3F C8CD58B1D2EA8CD9 2BD6F51B474F89C0
R25 E7014DB8DC4B2C0D C8F2CEDD8775114B FEA3E5BACE367229 E47D2E253B34F3D9
R26 2D0CE025575B7E7A E20124C460EA646B 9EC3F85DC5650FC5 6B774CAF279F9314
R27 1747B7B5B976ED2C FCE7932436E207BD 10DD00E46BB6BECB DCD499AB12A24246
R28 042D795F99193A2E CF719B8FC6857E2C 580242AD57675703 DA964E94327E523A
R29 431DA9997D3A7A11 3530D6E40A2EF657 091404200AD99EBB 43024A11EA859590
R30 A71A32718748E3FE 8355838B2ABE8F10 51018072CEA3311F F3A3BA0717759526
R31 4436E78883063100 246C0991CF690C44 C606C7E8CF416941 CCE279D638A7C2DB
C F630538883063100 2DB468477C1D6C59 9EDA9131B9155B51 A17D6BD4BEEB996F

Beierle, Leander, Moradi and Rasoolzadeh 37

B CRAFT C++ Code
1 const i n t S [1 6] =
2 {0xc , 0 xa , 0 xd , 0 x3 , 0 xe , 0 xb , 0 xf , 0 x7 , 0 x8 , 0 x9 , 0 x1 , 0 x5 , 0 x0 , 0 x2 , 0 x4 , 0 x6 } ;
3 const i n t P [1 6] =
4 {0 xf , 0 xc , 0 xd , 0 xe , 0 xa , 0 x9 , 0 x8 , 0 xb , 0 x6 , 0 x5 , 0 x4 , 0 x7 , 0 x1 , 0 x2 , 0 x3 , 0 x0 } ;
5 const i n t Q[1 6] =
6 {0xc , 0 xa , 0 xf , 0 x5 , 0 xe , 0 x8 , 0 x9 , 0 x2 , 0 xb , 0 x3 , 0 x7 , 0 x4 , 0 x6 , 0 x0 , 0 x1 , 0 xd } ;
7 const i n t RC3 [3 2] =
8 {0x1 , 0 x4 , 0 x2 , 0 x5 , 0 x6 , 0 x7 , 0 x3 , 0 x1 , 0 x4 , 0 x2 , 0 x5 , 0 x6 , 0 x7 , 0 x3 , 0 x1 , 0 x4 ,
9 0x2 , 0 x5 , 0 x6 , 0 x7 , 0 x3 , 0 x1 , 0 x4 , 0 x2 , 0 x5 , 0 x6 , 0 x7 , 0 x3 , 0 x1 , 0 x4 , 0 x2 , 0 x5 } ;

10 const i n t RC4 [3 2] =
11 {0x1 , 0 x8 , 0 x4 , 0 x2 , 0 x9 , 0 xc , 0 x6 , 0 xb , 0 x5 , 0 xa , 0 xd , 0 xe , 0 xf , 0 x7 , 0 x3 , 0 x1 ,
12 0x8 , 0 x4 , 0 x2 , 0 x9 , 0 xc , 0 x6 , 0 xb , 0 x5 , 0 xa , 0 xd , 0 xe , 0 xf , 0 x7 , 0 x3 , 0 x1 , 0 x8 } ;
13
14 const bool dec = 0 ; // encrypt ion : 0 , decrypt ion : 1
15
16 i n t Key [2] [1 6] = {
17 {0x2 , 0 x7 , 0 xa , 0 x6 , 0 x7 , 0 x8 , 0 x1 , 0 xa , 0 x4 , 0 x3 , 0 xf , 0 x3 , 0 x6 , 0 x4 , 0 xb , 0 xc } ,
18 {0x9 , 0 x1 , 0 x6 , 0 x7 , 0 x0 , 0 x8 , 0 xd , 0 x5 , 0 xf , 0 xb , 0 xb , 0 x5 , 0 xa , 0 xe , 0 xf , 0 xe }} ;
19 i n t Tweak [1 6] =
20 {0x5 , 0 x4 , 0 xc , 0 xd , 0 x9 , 0 x4 , 0 xf , 0 xf , 0 xd , 0 x0 , 0 x6 , 0 x7 , 0 x0 , 0 xa , 0 x5 , 0 x8 } ;
21 i n t Stt [1 6] =
22 {0x5 , 0 x7 , 0 x3 , 0 x4 , 0 xf , 0 x0 , 0 x0 , 0 x6 , 0 xd , 0 x8 , 0 xd , 0 x8 , 0 x8 , 0 xa , 0 x3 , 0 xe } ;
23
24 i n t TK[4] [1 6] ;
25
26 void I n i t i a l i z e _ k e y () {
27
28 f o r (i n t i = 0 ; i < 1 6 ; i ++) {
29 TK[0] [i] = Key [0] [i] ^ Tweak [i] ;
30 TK[1] [i] = Key [1] [i] ^ Tweak [i] ;
31 TK[2] [i] = Key [0] [i] ^ Tweak [Q[i]] ;
32 TK[3] [i] = Key [1] [i] ^ Tweak [Q[i]] ; }
33
34 i f (dec)
35 f o r (i n t j = 0 ; j < 4 ; j++)
36 f o r (i n t i = 0 ; i < 4 ; i ++) {
37 TK[j] [i] ^= (TK[j] [i + 8] ^ TK[j] [i + 1 2]) ;
38 TK[j] [i + 4] ^= TK[j] [i + 1 2] ; }
39 }
40
41 void Round(i n t r) {
42
43 f o r (i n t i = 0 ; i < 4 ; i ++) { //MixColumn
44 Stt [i] ^= (Stt [i + 8] ^ Stt [i + 1 2]) ;
45 Stt [i + 4] ^= Stt [i + 1 2] ; }
46
47 i n t ind = r ;
48 i f (dec)
49 ind = 31 − r ;
50
51 Stt [4] ^= RC4[ind] ; // AddConstant
52 Stt [5] ^= RC3[ind] ;
53
54 f o r (i n t i = 0 ; i < 1 6 ; i ++) //AddTweakey
55 Stt [i] ^= TK[ind % 4] [i] ;
56
57 i f (r != 31) {
58 i n t Temp [1 6] ;
59 f o r (i n t i = 0 ; i < 1 6 ; i ++) // Permutation
60 Temp [P[i]] = Stt [i] ;
61
62 f o r (i n t i = 0 ; i < 1 6 ; i ++) //SBox
63 Stt [i] = S [Temp [i]] ; }
64 }
65
66 i n t main () {
67
68 I n i t i a l i z e_ Tw ea k ey () ;
69
70 f o r (i n t r = 0 ; r < 3 2 ; r++)
71 Round(r) ;
72
73 r e t u r n 0 ;
74 }

38 CRAFT

C More Implementation Details

rst

E/D

MC

F ◦ SB

Q

MC

RC ′:(a′, b′)

F

F

F

F
×k
×k

×k
×k

×m < k

×m < k

×m < k

×m < k

rst

E/D

MC

PN

Input TK0K1

Output

SB

Q

MC

RC:(a, b)

f1(a, b) f2(a, b)

C1
C ′

1

F◦f1(a, b) F◦f2(a, b)

A A′

Figure 10: Round-based design architecture of CRAFT with fault detection, m < k
(control unit not shown, checking PN output not required).

rst

E/D

MC

F ◦ SB ◦ F−1

PN

Q

MC

RC ′:(a′, b′)

F

F

F

F
×k
×k

×k
×k

×m ≥ k

×m ≥ k

×m ≥ k

×m ≥ k

rst

E/D

MC

PN

Input TK0K1

Output

SB

Q

MC

RC:(a, b)

f1(a, b) f2(a, b)

C1
C ′

1

f ′
1(a

′, b′) f ′
2(a

′, b′)

A A′

Figure 11: Round-based design architecture of CRAFT with fault detection, m ≥ k
(control unit not shown, checking PN output not required).

Beierle, Leander, Moradi and Rasoolzadeh 39

Table 8: Area (GE) and Latency (ns) comparison of round-based implementations consid-
ering anM∗t=d−1-bounded multivariate adversary with an [n, k, d] code, using IBM 130 nm
ASIC library, partially borrowed from [1].

Algorithm Key
clock unprotected [5, 4, 2] [6, 4, 2] [7, 4, 3] [8, 4, 4]

cycles area area area area area
latency latency latency latency latency

SKINNY Enc 128 37 1738 4236 5320 6879 8477
3.66 7.84 8.73 8.85 9.60

LED Enc 128 49 1664 4813 5729 7359 9637
9.15 13.11 12.46 12.96 15.89

MIDORI Enc 128 17 1372 3615 4358 5891 7693
7.57 11.18 11.42 11.52 14.30

PRESENT Enc 128 32 1767 4792 6015 7899 9896
2.93 7.83 8.53 8.87 9.37

GIFT Enc 128 29 1587 4420 5548 7325 9432
2.88 7.49 8.43 8.56 9.01

SIMON Enc 128 45 1629 4211 5311 6866 9277
2.86 7.28 7.86 8.03 9.97

PICCOLO Enc 128 32 1462 4196 5123 6873 9062
7.69 12.81 12.56 12.79 15.30

KATAN Enc 80 762 1080 3450 4293 5776 8092
3.87 8.41 9.07 9.98 9.38

KTANTAN Enc 80 762 601 2373 2881 3710 5073
4.23 9.45 9.28 9.82 10.94

CRAFT Enc 128 32 949 2670 3269 4325 5864
3.19 7.59 8.59 8.22 10.18

CRAFT Enc&Dec 128 32 1089 2938 3583 4699 6336
3.60 9.08 9.38 9.09 9.95

CRAFT Enc Tweak 128 32 1193 3129 3833 5148 7507
3.37 8.54 8.74 8.23 10.43

CRAFT Enc&Dec T. 128 32 1339 3397 4145 5520 7982
3.99 9.12 9.81 9.98 11.21

SKINNY Enc 192 41 2206 5272 6690 8676 10640
4.00 7.69 8.26 8.79 9.34

Table 9: Area (GE) and Latency (ns) of round-based Threshold Implementations
of CRAFT with 3 shares considering anM∗t=d−1-bounded multivariate adversary with an
[n, k, d] code, using IBM 130 nm ASIC library.

Algorithm Key
clock only TI TI+[5, 4, 2] TI+[6, 4, 2] TI+[7, 4, 3] TI+[8, 4, 4]

cycles area area area area area
latency latency latency latency latency

CRAFT Enc 128 64 5106 12015 15671 18965 25482
4.05 8.14 8.86 10.07 9.83

CRAFT Enc&Dec 128 64 5303 12288 16034 19385 26043
4.33 9.24 9.56 10.19 11.11

CRAFT Enc Tweak 128 64 5412 12469 16236 19696 27121
4.17 8.25 8.85 10.08 11.97

CRAFT Enc&Dec T. 128 64 5605 12751 16598 20117 27689
4.92 8.97 9.94 10.19 11.72

40 CRAFT

D Results Using a 40nm Commercial Library
D.1 Under Univariate Adversary Model

Table 10: Area (GE) and Latency (ns) comparison of round-based implementations
considering anMt=d−1-bounded univariate adversary with an [n, k, d] code, using a 40 nm
commercial ASIC library.

Algorithm Key
clock unprotected [5, 4, 2] [6, 4, 2] [7, 4, 3] [8, 4, 4]

cycles area area area area area
latency latency latency latency latency

SKINNY Enc 128 37 2041 4152 5154 6457 7773
1.28 2.55 2.61 2.89 2.88

LED Enc 128 49 1940 4906 5836 7470 9658
3.98 4.32 4.31 4.54 5.48

MIDORI Enc 128 17 1616 3675 4421 5938 7724
3.31 3.78 3.40 3.78 4.29

PRESENT Enc 128 32 2050 4685 5844 7502 9270
1.04 2.53 2.61 2.90 2.96

GIFT Enc 128 29 1848 4322 5367 6904 8817
0.86 2.31 2.58 2.81 3.00

SIMON Enc 128 45 1984 4052 5076 6371 8657
0.93 2.43 2.55 2.76 2.91

PICCOLO Enc 128 32 1631 4269 5235 6945 9185
3.21 4.22 4.31 4.84 5.11

KATAN Enc 80 762 1236 3274 4047 5342 7544
1.60 2.29 2.36 2.70 2.98

KTANTAN Enc 80 762 710 2308 2792 3493 4785
1.60 2.36 2.46 2.75 2.71

CRAFT Enc 128 32 1091 2660 3253 4223 5668
1.66 2.58 2.86 3.01 2.89

CRAFT Enc&Dec 128 32 1246 2948 3595 4627 6149
2.08 2.64 2.73 2.87 2.92

CRAFT Enc Tweak 128 32 1355 3167 3880 5149 7503
1.81 2.58 2.86 3.01 2.89

CRAFT Enc&Dec T. 128 32 1529 3454 4220 5548 7981
2.02 2.65 2.73 2.88 2.92

SKINNY Enc 192 41 2592 5146 6453 8118 9735
1.33 2.16 2.24 2.51 2.62

Table 11: Area (GE) and Latency (ns) of round-based Threshold Implementations of
CRAFT with 3 shares considering anMt=d−1-bounded univariate adversary with an [n, k, d]
code, using a 40 nm commercial ASIC library.

Algorithm Key
clock only TI TI+[5, 4, 2] TI+[6, 4, 2] TI+[7, 4, 3] TI+[8, 4, 4]

cycles area area area area area
latency latency latency latency latency

CRAFT Enc 128 64 5786 11974 15200 17936 24901
1.41 2.48 2.55 2.99 2.78

CRAFT Enc&Dec 128 64 6000 12273 15570 18389 25479
1.40 2.40 2.34 2.83 3.19

CRAFT Enc Tweak 128 64 6121 12482 15827 18862 26733
1.41 2.48 2.55 2.99 2.78

CRAFT Enc&Dec T. 128 64 6335 12778 16198 19308 27313
1.42 2.40 2.40 2.82 3.19

Beierle, Leander, Moradi and Rasoolzadeh 41

D.2 Under Multivariate Adversary Model

Table 12: Area (GE) and Latency (ns) comparison of round-based implementations
considering an M∗t=d−1-bounded multivariate adversary with an [n, k, d] code, using a
40 nm commercial ASIC library.

Algorithm Key
clock unprotected [5, 4, 2] [6, 4, 2] [7, 4, 3] [8, 4, 4]

cycles area area area area area
latency latency latency latency latency

SKINNY Enc 128 37 2041 4835 6118 7906 9714
1.28 3.50 3.56 3.84 4.15

LED Enc 128 49 1940 5286 6314 8197 10638
3.98 4.87 4.99 5.46 6.57

MIDORI Enc 128 17 1616 4047 4896 6658 8693
3.31 4.51 4.86 4.85 5.83

PRESENT Enc 128 32 2050 5369 6807 8949 11221
1.04 3.51 3.56 3.87 4.07

GIFT Enc 128 29 1848 5006 6331 8352 10761
0.86 3.44 3.52 3.79 3.92

SIMON Enc 128 45 1984 4735 6039 7820 10600
0.93 3.14 3.23 3.51 4.30

PICCOLO Enc 128 32 1631 4648 5712 7662 10151
3.21 5.52 5.56 6.14 7.18

KATAN Enc 80 762 1236 3853 4844 6543 9158
1.60 3.42 3.82 4.05 4.51

KTANTAN Enc 80 762 710 2696 3289 4242 5794
1.60 3.80 3.77 4.08 4.71

CRAFT Enc 128 32 1091 3041 3740 4961 6668
1.66 3.34 3.57 3.78 4.24

CRAFT Enc&Dec 128 32 1246 3327 4077 5363 7149
2.08 3.69 3.74 3.68 4.50

CRAFT Enc Tweak 128 32 1355 3548 4368 5887 8508
1.81 3.51 3.69 3.96 4.45

CRAFT Enc&Dec T. 128 32 1529 3833 4705 6283 8983
2.02 3.96 3.62 3.85 4.73

SKINNY Enc 192 41 2592 5982 7658 9930 12165
1.33 3.53 3.58 3.86 4.17

Table 13: Area (GE) and Latency (ns) of round-based Threshold Implementations
of CRAFT with 3 shares considering anM∗t=d−1-bounded multivariate adversary with an
[n, k, d] code, using a 40 nm commercial ASIC library.

Algorithm Key
clock only TI TI+[5, 4, 2] TI+[6, 4, 2] TI+[7, 4, 3] TI+[8, 4, 4]

cycles area area area area area
latency latency latency latency latency

CRAFT Enc 128 64 5786 13580 17354 21226 29339
1.41 3.68 3.51 3.83 4.44

CRAFT Enc&Dec 128 64 6000 13888 17721 21697 29921
1.40 3.96 3.51 4.19 4.79

CRAFT Enc Tweak 128 64 6121 14088 17982 22150 31178
1.41 3.82 3.60 3.83 4.64

CRAFT Enc&Dec T. 128 64 6335 14393 18352 22620 31761
1.42 4.11 3.72 3.89 5.10

	Introduction
	Lightweight Cryptography
	Our Contribution

	On Redundancy
	Lower Bounds for Redundancy

	Specification of CRAFT
	Design Rationale
	Involutory Building Blocks
	Sbox
	Linear Layer
	Round Constants
	Key and Tweak Schedule

	Security Analysis of CRAFT
	Security Claim
	Exhaustive Search
	Time-Data-Memory Trade-off Attacks
	Differential and Linear Cryptanalysis
	Impossible Differentials and Zero-Correlation Linear Hulls
	Meet-in-the-Middle Attacks
	Integral Attack
	Invariant Attacks

	Hardware Implementations
	Protection against DFA Attacks
	Combined Protection against SCA and DFA Attacks

	Conclusions
	CRAFT Test Vectors
	CRAFT C++ Code
	More Implementation Details
	Results Using a 40nm Commercial Library
	Under Univariate Adversary Model
	Under Multivariate Adversary Model

