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Abstract

We study the problem of constructing secure multiparty computation (MPC) protocols in
the standard broadcast communication model from minimal assumptions. We focus on security
in the plain model against malicious adversaries who may corrupt any majority of parties. In
this setting, we first identify k-round “bidirectional” oblivious transfer (OT) as the minimal
assumption for k-round MPC. In a bidirectional OT, each round consists of messages from both
the OT sender and receiver (as opposed to alternating-message OT, where a round consists of
a message from only one of the parties).

Since four rounds are necessary for MPC, we next investigate the possibility of constructing
k-round MPC for every k ≥ 4 from minimal assumptions. We provide a nearly full resolution:

• We construct four round MPC based on any four round bidirectional OT and injective
one-way functions.

• For any k > 4, we construct k-round MPC based on any k-round bidirectional OT.

Our second result is optimal and the first result is nearly optimal. Previously, four round
MPC protocols were only known based on stronger assumptions, and five or more round MPC
protocols were known based on alternating-message OT.

1 Introduction

The ability to securely compute on private datasets of individuals has wide applications of tremen-
dous benefits to society. Secure multiparty computation (MPC) [Yao86, GMW87] provides a solu-
tion to the problem of computing on private data by allowing a group of parties to jointly evaluate
any function over their private inputs in such a manner that no one learns anything beyond the
output of the function.

Since its introduction nearly three decades ago, MPC has been extensively studied along two
fundamental lines: necessary assumptions [GMW87, Kil88, IPS08], and round complexity [GMW87,
BMR90, KOS03, KO04, Pas04, PW10, Wee10, Goy11, GMPP16, ACJ17, BHP17, COSV17b, COSV17a].
We focus on security against a dishonest majority of malicious corruptions in the plain model. In
this setting, both of these topics, individually, are by now pretty well understood:

• It is well known that oblivious transfer (OT) is both necessary and sufficient [Kil88, IPS08]
for MPC.

• A recent sequence of works have established that four rounds are both necessary [GMPP16]
and sufficient [ACJ17, BHP17, BGJ+18, HHPV18] for MPC (with respect to black-box simu-
lation). However, the assumptions required by these works are far from optimal, ranging from
sub-exponential hardness assumptions [ACJ17, BHP17] to polynomial hardness of specific
forms of encryption schemes [HHPV18] or specific number-theoretic assumptions [BGJ+18].
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In this work, we consider the goal of simultaneously minimizing the round complexity and the
necessary assumptions for MPC. Namely, we ask the following question:

Can we construct round optimal MPC from minimal assumptions?

On the Minimal Assumption. We study MPC in the standard broadcast communication model,
where in each round, every party broadcasts a message to the other parties. In this model, k-round
MPC with dishonest majority implies k-round (malicious-secure) OT where each round consists of
messages from both the OT sender and the receiver, i.e., bidirectional OT. In particular, it does
not necessarily imply k-round OT in the two-party alternating message model, where each round
consists of a message from only one of the two parties. In other words, the minimal assumption for
k-round MPC is k-round bidirectional OT. As such the above question can be re-stated as whether
there exists four round MPC from four round bidirectional OT?

Interestingly, while we focus on the case of k = 4, k-round MPC is not known from k-round
bidirectional OT even for the case of k > 4. A recent work of [BL18] constructed k-round MPC
from any k-round OT with alternating messages; however, their work does not extend to the case
of bidirectional OT. This leaves open the following fundamental question:

Does there exist k-round MPC based on k-round bidirectional OT?

1.1 Our Results

We provide a nearly full resolution of the above question. Our main result is a four round MPC pro-
tocol in the plain model based on any four round bidirectional OT and injective one-way functions
(OWFs).

Theorem 1. Assuming the existence of four round bidirectional OT and injective OWFs, there
exists a four round MPC protocol for any efficiently computable functionality in the plain model.

While OT implies one-way functions, we do not know whether it also implies injective OWFs.
As such, the main remaining problem left open by our work is removing the use of injective OWFs
from our result.

We next consider the case of k > 4. Here, we provide an optimal result by constructing k-round
MPC based only on k-round bidirectional OT.

Theorem 2. For any k > 4, assuming the existence of k-round bidirectional OT, there exists a
k-round MPC protocol for any efficiently computable functionality in the plain model.

We note that while a k-round OT with alternating messages is also a k-round bidirectional OT,
it is unknown whether a k-round bidirectional OT implies k-round OT with alternating messages.
Indeed, using k-round bidirectional OT in the design of k-round MPC leads to new challenges. See
Section 1.2 for discussion.

In the sequel, unless mentioned otherwise, we refer to bidirectional OT as simply OT.

1.2 Technical Overview

In this section, we provide an overview of the main ideas underlying our results. We first focus
on four round MPC based on four round OT and injective one-way functions. In Section 1.3, we
describe how we can omit the use of injective one-way functions to obtain k-round MPC for k > 4
based only on k-round OT.
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How to Enforce Honest Behavior? We start by highlighting the main challenge in the design
of four round MPC. In any candidate four round protocol, a rushing adversary may always choose to
abort after receiving the messages of honest parties in the last round. At this point, the adversary
has already received enough information to obtain the output of the function being computed.
This suggests that we must enforce “honest behavior” on the protocol participants within the first
three rounds in order to achieve security against malicious adversaries. Indeed, without any such
safeguard, a malicious adversary may be able to learn the inputs of the honest parties, e.g., by
acting maliciously so as to change the functionality being computed to the identity function.

Zero knowledge (ZK) proofs [GMR89] are a standard tool for enforcing honest behavior on
the participants of a protocol. However, ZK proofs (with black-box simulation) are known to
be impossible in three rounds [GK96b]. Indeed, for this reason, all recent works on four round
MPC devise non-trivial strategies that only utilize weaker notions of ZK (that are achievable in
three or less rounds) to enforce honest behavior within the first three rounds. However, all these
approaches end up relying on assumptions that are far from optimal: [ACJ17] and [BHP17] use
super-polynomial time hardness assumptions, [HHPV18] use Zaps [DN00] and affine-homomorphic
encryption schemes, and [BGJ+18] use a new notion of promise ZK together with three round
strong WI [JKKR17], both of which require specific number-theoretic assumptions.

A Deferred Verification Approach. We devise a different approach to address the above
challenge. We do not require the parties to explicitly prove honest behavior within the first three
rounds. Of course, this immediately opens up the possibility for an adversary to cheat in the
first three rounds in such a manner that by observing the messages of the honest parties in the
fourth round, it can completely break privacy. To prevent such an attack, we require the parties
to “encrypt” their last round message in such a manner that it can only be decrypted by using a
“witness” that establishes honest behavior in the first three rounds. In other words, the verification
check for honest behavior is deferred to the fourth round.

This raises two immediate questions: what constitutes a valid witness, and how can we im-
plement such a conditional decryption mechanism? Let us start by addressing the first question.
A natural idea is to set the input and randomness of a party i used in the first three rounds of
the protocol as its witness for establishing honest behavior. However, consider the case where the
number of parties is n > 2, and the number of corrupted parties is at least t = 2. In this case, it
is not sufficient for a “decryptor” i to establish its own honest behavior in the first three rounds.
Indeed, in this case, a corrupted party who behaved honestly during the first three rounds would be
able to decrypt the honest party messages in the fourth round even when another corrupted party
behaved maliciously. Therefore, a valid witness must certify honest behavior by all the parties as
opposed to a single party. One such witness is simply the input and randomness of all the parties.
However, it is not clear how an individual decryptor can obtain such a witness without trivially
violating privacy. Indeed, we need a “public” witness that can be obtained by all the parties.

We look towards ZK proof systems to address this issue. Suppose that we require each party
to give a four round ZK proof of honest behavior. If the ZK proof is delayed-input, it can be
parallelized with the rest of the protocol such that the last round of ZK proof occurs in the last
round of the MPC protocol. Now, let us set the witness to be the last round messages of all the
ZK proofs. This witness can be obtained by any party in the last round, who can then use it for
decryption. Indeed, this idea can be made to work if we implement the conditional decryption
mechanism using witness encryption [GGSW13]. However, presently witness encryption is only
known from non-standard assumptions (let alone OT and injective OWFs).

We, instead, use garbled circuits [Yao86] and four round OT to implement the conditional
decryption mechanism. Namely, each party i garbles a circuit that contains hardwired the entire
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transcript of the first three rounds as well the fourth message of party i. Upon receiving as input
a witness w = w1, . . . , wn, where wj is a witness for honest behavior of party j, it outputs the
fourth round message. Each party j can encode its witness wj in the OT receiver messages, and
then release its randomness used inside OT in the fourth round so that any other party j′ can use
it to compute the output of the OT, thereby learning the necessary wire labels for evaluating the
garbled circuit sent by party i.

A problem with the above approach is that in a four round OT, the receiver’s input must fixed
in the third round. This means that we can no longer use four round ZK proofs, and instead must
use three round proofs to create public witnesses of honest behavior. But which three round proofs
must we use? Towards this, we look to the weaker notion of promise ZK introduced by [BGJ+18]
suffices. Roughly, promise ZK only achieves ZK property against malicious verifiers who do not
abort. Importantly, unlike standard ZK, distributional1 promise ZK can be achieved in only three
rounds with black-box simulation in the bidirectional message model. This raises two questions – is
promise ZK sufficient for our purposes, and what assumptions are required for three round promise
ZK?

Promise ZK Under the Hood. Let us start with the first question. An immediate challenge
with using promise ZK is that it provides no security in the case where the verifier always aborts. In
application to four round MPC, this corresponds to the case where the (rushing) adversary always
aborts in the third round. Since the partial transcript up to third round already contains inputs of
honest parties, we still need to argue security in this case. The work of [BGJ+18] addressed this
problem by using a “hybrid” ZK protocol that achieves promise ZK property when adversary is
non-aborting, and strong witness-indistinguishability (WI) property against aborting adversaries.
The idea is that by relying on strong WI property (only in the case where adversary aborts in the
third round), we can switch from using real inputs of honest parties to input 0. However, three
round strong WI is only known based on specific number-theoretic assumptions [JKKR17].

To minimize our use of assumptions, we do not use strong WI, and instead “mimic” its affect
by using promise ZK under the hood. Specifically, since we use the third round prover message
of promise ZK as a witness for conditional decryption, it is not given in the clear, but is instead
“encrypted” inside the OT receiver messages in the third round. This has the positive effect of
“shielding” promise ZK from the case where the adversary always aborts in the third round. In
particular, we can use the following strategy for arguing security against aborting adversaries: we
first switch from using promise ZK third round prover message to simply using 0’s as the OT
receiver’s inputs. Now, we can replace the honest parties’ inputs with 0 inputs by relying on the
security of the sub-protocols used within the first three rounds. Next, we can switch back to using
honestly computed promise ZK third round prover message as the OT receiver’s inputs.

Let us now consider the second question, namely, the assumptions required for three round
promise ZK. The work of [BGJ+18] used specific number-theoretic assumptions to construct three
round (distributional) promise ZK. However, we only wish to rely on the use of injective OWFs.
Towards this, we note that the only ingredient in the construction of promise ZK by [BGJ+18] that
relies on the use of specific number-theoretic assumptions is a three round rewind-secure WI proof
system. Roughly, this is a proof system where the WI property holds even against verifiers who can
rewind the prover an a priori bounded number of times. A very recent work of [GR19] provides a
construction of such a rewind-secure WI only based on injective OWFs. By using their result, we
can obtain three round promise ZK based on injective OWFs. For completeness, we describe the
construction of [GR19] in Appendix A.

Implementing the Strategy. While the above ideas form the basis of our approach, we run into

1That is, where the instances are sampled from a public distribution.

4



several additional challenges during implementation. In order to explain these challenges and our
solution ideas, we first describe the high-level template of our four round MPC protocol based on
the ideas discussed so far. To narrow the focus of the discussion on the challenges unique to the
present work, we ignore several important details for now and discuss them later.

We devise a compiler from a specific four round delayed semi-malicious [BL18, ACJ17] MPC
to a four round malicious-secure MPC protocol. Roughly speaking, a k-round MPC protocol is
delayed semi-malicious if in the second last round, a corrupted party is required to output (on a
special tape) a witness (namely, its input and randomness) that establishes its honest behavior
in all the rounds so far. We use the four round delayed semi-malicious protocol obtained by
plugging in a four-round malicious-secure (which implies delayed semi-malicious security) OT in
the k-round semi-malicious MPC protocol of [GS18, BL18] based on k-round semi-malicious OT.
A useful property of this protocol is that it consists only of OT messages in the first k − 2 rounds.
Further, we also rely upon the random self-reducibility of OT, which implies that the first two
rounds do not depend on the OT receiver’s input, and the first three rounds do not depend on the
sender’s input.2 To achieve malicious security, our compiler uses several building blocks, e.g., a
three-round extractable commitment scheme that is executed in parallel with the first three rounds
of the delayed semi-malicious MPC. The extractable commitment scheme is used by the parties to
commit to their inputs and randomness. This allows the simulator for our protocol to extract the
adversary’s inputs (and randomness) by rewinding the second and third rounds, and then use it to
simulate the delayed semi-malicious MPC.

Rewind-Secure OT. The above template poses an immediate challenge in proving security of the
protocol. Since the simulator rewinds the second and third rounds in order to extract the adversary’s
inputs, this means that the second and third round messages of the delayed semi-malicious MPC
also get rewound. For this reason, we can not rely upon delayed semi-malicious security of the
MPC. Instead, we need the MPC protocol to achieve rewind security. More specifically, since we
are using an MPC protocol where the first two rounds only consist of OT messages, we need a four
round rewind-secure OT protocol. We need the following forms of rewind security from the OT: (1)
An adversarial sender cannot determine the input bit used by the receiver even if it can rewind the
receiver an a priori bounded number of times during the second and third round. (2) The protocol
achieves simulation-security even against corrupted receivers who can rewind the sender an a priori
bounded number of times during the second and third round. We emphasize that we need rewind
security for both sender and receiver since we are using bidirectional OT.3

Of course, standard OT protocols do not guarantee rewind security. We provide a generic
construction of a four round rewind secure OT starting from any four round OT, which may be of
independent interest. Our transformation proceeds in two steps: first, we transform any four round
OT into one that achieves rewind security for honest receivers. Next, we transform this protocol
into one that also achieves rewind security for honest senders. Our transformation is in fact more
general and works for any k ≥ 4 round OT, when rewinding is restricted to rounds k− 2 and k− 1.
For simplicity, we describe our ideas for the case where we need security against one rewind; our
transformation easily extends to handle more rewinds.

A first idea to achieve one-rewind security for receivers is the following: run two copies of an
OT protocol in parallel for the first k − 2 rounds. In round k − 1, the receiver randomly chooses

2We note that this property was also used by [BL18] in their construction of k-round malicious-secure MPC.
3Indeed, in a k-round OT with alternating messages, rewinding in the k− 2 and k− 1 rounds only affects security

of the receiver since the k − 1 round does not contain any message from the sender. In contrast, in a k-round
bidirectional OT, each round contains a message from both the sender and receiver, and therefore necessitates rewind
security for both the parties. Indeed, this is why the malicious-secure MPC construction of [BL18] does not extend
to the case of bidirectional OT.
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one of the two copies and only continues that OT execution, while the sender continues both the
OT executions. In the last round, the parties only complete the OT execution that was selected by
the receiver in round k−1. Now, suppose that an adversarial sender rewinds the receiver in rounds
k − 2 and k − 1. Then, if the receiver selects different OT copies on the “main” execution thread
and the “rewound” execution thread, we can easily reduce one-rewind security of this protocol to
stand-alone security of the underlying OT.

The above idea suffers from a subtle issue. Note that the above strategy for dealing with
rewinds is inherently biased, namely, the choice made by the receiver on the rewound thread is
not random, and is instead correlated with its choice on the main thread. If we use this protocol
in the design of our MPC protocol, it leads to the following issue during simulation: consider an
adversary who chooses a random z and then always aborts if the receiver selects the z-th OT copy.
Clearly, this adversary only aborts with probability 1/2 in an honest execution. Now, consider the
high-level simulation strategy for our MPC protocol discussed earlier, where the simulator rewinds
the second and third rounds to extract the adversary’s inputs. In order to ensure rewind security
of the OT, this simulator, with overall probability 1/2, will select the z-th OT copy on all the
rewound execution threads. However, in this case, the simulator will always fail in extracting the
adversary’s inputs no matter how many times it rewinds.

We address the above problem via a secret-sharing approach. Instead of simply running two
copies of OT, we run ` · n copies in parallel during the first k − 2 rounds. These ` · n copies can
be divided into n tuples, each consisting of ` copies. In round k − 1, the receiver selects a single
copy from each of the n tuples at random. It then uses n-out-of-n secret sharing to divide its input
bit b into n shares b1, . . . , bn, and then uses share bi in the OT copy selected from the i-th tuple.
In the last round, sender now additionally sends a garbled circuit (GC) that contains its input
(x0, x1) hardwired. The GC takes as input all the bits b1, . . . , bn, reconstructs b and then outputs
xb. The sender uses the labels of the GC as its inputs in the OT executions. Intuitively, by setting
` appropriately, we can ensure that for at least one tuple i, the OT copies randomly selected by
the receiver on the main thread and the rewound threads are different, which ensures that bi (and
thereby, b) remains hidden.

To achieve rewind security for honest senders, we once again use a secret-sharing approach,
albeit in the opposite direction. Crucially, we are able to show that our transformation preserves
the rewind security of receivers, while also achieving rewind security of senders. We refer the reader
to the technical section for more details.

Proofs Of Proofs. We now describe another challenge in implementing our template of four
round MPC. As discussed earlier, we use a three round extractable commitment scheme to enable
extraction of the adversary’s inputs and randomness. For technical reasons, we use an extractable
commitment scheme where the third round message of the committer is not “verifiable”, namely,
the committer may be able to send a malformed message without being detected by the receiver.4

Further, we require each party to prove the “well-formedness” of its commitment via promise ZK.
This, however, poses the following challenge during simulation: since the third round prover message
of promise ZK is encrypted inside OT receiver message, the simulator doesn’t know whether the
adversary’s commitment is well-formed or not. In particular, if the adversary’s commitment is not
well-formed, the simulator may end up running forever, in its attempt to extract the adversary’s
input via rewinding.

One natural idea to deal with this issue is to first extract adversary’s promise ZK message
from the OT executions via rewinding, and then decide whether or not to attempt extracting the

4This property is crucially used to achieve rewind-security, which in turn is required in the security proof of our
MPC protocol for similar reasons as discussed for the case of OT.
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adversary’s input. However, since we are using an arbitrary (malicious-secure) OT, we do not know
in advance the number of rewinds required for extracting the receiver’s input. This in turns means
that we cannot correctly set the rewind security of the sub-protocols used in our final MPC protocol
appropriately in advance.

We address this issue via the following strategy. We use another three round (delayed-input)
extractable commitment scheme [PRS02] as well as another copy of promise ZK. This copy of
promise ZK proves honest behavior in the first three rounds, and its third message is committed in-
side the extractable commitment. Further, the third round message of the extractable commitment
is such that it allows for polynomial-time extraction (with the possibility of “over-extraction”).
This, however, comes at the cost that this extractable commitment does not achieve any rewind
security. Interestingly, stand-alone security of this scheme suffices for our purposes since we only
use it in the case where the adversary always aborts in the third round (and therefore, no rewinds
are performed).

The main idea is that by using such a special-purpose extractable commitment scheme, we can
ensure that an a priori fixed constant number of rewinds are sufficient for extracting the committed
value, namely, the promise ZK third round prover message, with noticeable probability. This, in
turn, allows us to set the rewind security of other sub-protocols used in our MPC protocol in
advance to specific constants.

Of course, the adversary may always choose to commit to malformed promise ZK messages
within the extractable commitment scheme. In this case, our simulator may always decide not to
extract adversary’s input, even if the adversary was behaving honestly otherwise. To address this
issue, we use a proofs of proofs strategy. Namely, we require the first copy of promise ZK, which is
encrypted inside OT, to prove that the second copy of promise ZK is “accepting”. In this case, if
the adversary commits malformed promise ZK messages within the extractable commitment, the
promise ZK message inside OT will not be accepting. This, in turn, means that due to the security
of garbled circuits, the fourth round messages of the parties will become “opaque”.

Other Challenges. The above discussion ignores several additional challenges that arise in fully
implementing our template for four round MPC. This includes issues such as malleability of promise
ZK as well as malleability across different sub-protocols used inside our protocol. We handle many
of these issues by adapting ideas from [BGJ+18]. For example, similar to [BGJ+18], we use the
specific three-round non-malleable commitment scheme of [GPR16] with a pseudorandom third
message. Further, we also use different “levels” of rewinding security for our sub-protocols in order
to achieve non-malleability across different sub-protocols. We also carefully use the analysis of
[GK96a] to ensure that our simulator runs in expected polynomial time.

Finally, we note that we use promise ZK in a non-black-box manner. That is, we directly use
all of its building blocks inside our MPC protocol, and rely on their security properties separately.

1.3 k-round MPC for k > 4

We now briefly discuss how our four round MPC protocol can be adapted to obtain k-round MPC
from any k-round OT for k > 4.

We first note that the only reason why our four round protocol relies on injective OWFs is
because of the use of non-interactive commitments inside the constructions of (rewind-secure) ex-
tractable commitments, non-malleable commitments and rewind-secure WI. By using two round
statistically binding commitment schemes based on one-way functions, we can easily obtain a five
round MPC protocol based only on five round OT. The first round of this protocol consists only
of the first round messages of the two round commitment scheme used within the aforementioned
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sub-protocols, and the first round messages of five round OT. The remaining four rounds are similar
to the four round MPC protocol.

Next, the above five round protocol can be extended to obtain any k > 5 round MPC based on
k-round OT. The first k − 5 rounds of the protocol consist only of the first k − 5 round messages
of the OTs. The remaining five rounds are similar to the five round MPC protocol.

1.4 Related Work

The round complexity of MPC has been extensively studied over the years in a variety of models.
Here, we provide a short survey of malicious-secure MPC protocols in the plain model. We refer
the reader to [BGJ+18] for a more comprehensive survey.

Beaver et al. [BMR90] initiated the study of constant round MPC in the honest majority
setting. Several follow-up works subsequently constructed constant round MPC against dishonest
majority (which is the focus of the present work) [KOS03, Pas04, PW10, Wee10, Goy11]. Garg et
al. [GMPP16] established a lower bound of four rounds for MPC. They constructed five and six
round MPC protocols using indistinguishability obfuscation and LWE, respectively, together with
three-round robust non-malleable commitments.

The first four round MPC protocols were constructed independently by Ananth et al. [ACJ17]
and Brakerski et al. [BHP17] based on different sub-exponential-time hardness assumptions.
[ACJ17] also constructed a five round MPC protocol based on polynomial-time hardness assump-
tions. Ciampi et al. constructed four-round protocols for multiparty coin-tossing [COSV17b]
and two-party computation [COSV17a] from polynomial-time assumptions. Benhamouda and Lin
[BL18] gave a general transformation from any k-round OT with alternating messages to k-round
MPC, for k > 5. More recently, independent works of Badrinarayanan et al. [BGJ+18] and Halevi
et al. [HHPV18] constructed four round MPC protcols for general functionalities based on different
polynomial-time assumptions. Specifically, [BGJ+18] rely on DDH (or QR or N -th Residuosity),
and [HHPV18] rely on Zaps, affine-homomorphic encryption schemes and injective one-way func-
tions (which can all be instantiated from QR).

2 Preliminaries

2.1 Secure Multiparty Computation

We provide the definition of MPC against malicious adversaries as well as (delayed) semi-malicious
adversaries. Parts of this section have been taken verbatim from [Gol04].

A multi-party protocol is cast by specifying a random process that maps pairs of inputs to
pairs of outputs (one for each party). We refer to such a process as a functionality. The security
of a protocol is defined with respect to a functionality f . In particular, let n denote the number
of parties. A non-reactive n-party functionality f is a (possibly randomized) mapping of n inputs
to n outputs. A multiparty protocol with security parameter λ for computing a non-reactive
functionality f is a protocol running in time poly(λ) (λ) and satisfying the following correctness
requirement: if parties P1, . . . , Pn with inputs (x1, . . . , xn) respectively, all run an honest execution
of the protocol, then the joint distribution of the outputs y1, . . . , yn of the parties is statistically
close to f(x1, . . . , xn).

A reactive functionality f is a sequence of non-reactive functionalities f = (f1, . . . , f`) computed
in a stateful fashion in a series of phases. Let xji denote the input of Pi in phase j, and let sj denote
the state of the computation after phase j. Computation of f proceeds by setting s0 equal to
the empty string and then computing (yj1, . . . , y

j
n, sj) ← fj(s

j−1, xj1, . . . , x
j
n) for j ∈ [`], where yji
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denotes the output of Pi at the end of phase j. A multi-party protocol computing f also runs
in ` phases, at the beginning of which each party holds an input and at the end of which each
party obtains an output. (Note that parties may wait to decide on their phase-j input until the
beginning of that phase.) Parties maintain state throughout the entire execution. The correctness
requirement is that, in an honest execution of the protocol, the joint distribution of all the outputs
{yj1, . . . , y

j
n}`j=1 of all the phases is statistically close to the joint distribution of all the outputs of

all the phases in a computation of f on the same inputs used by the parties.

Defining Security. We assume that readers are familiar with standard simulation-based defi-
nitions of secure multi-party computation in the standalone setting. We provide a self-contained
definition for completeness and refer to [Gol04] for a more complete description. The security of a
protocol (with respect to a functionality f) is defined by comparing the real-world execution of the
protocol with an ideal-world evaluation of f by a trusted party. More concretely, it is required that
for every adversary A, which attacks the real execution of the protocol, there exist an adversary
Sim, also referred to as a simulator, which can achieve the same effect in the ideal-world. Let’s
denote −→x = (x1, . . . , xn).

The real execution In the real execution of the n-party protocol π for computing f is executed
in the presence of an adversary A. The honest parties follow the instructions of π. The adversary
A takes as input the security parameter k, the set I ⊂ [n] of corrupted parties, the inputs of the
corrupted parties, and an auxiliary input z. A sends all messages in place of corrupted parties and
may follow an arbitrary polynomial-time strategy.

The interaction of A with a protocol π defines a random variable REALπ,A(z),I(k,
−→x ) whose value

is determined by the coin tosses of the adversary and the honest players. This random variable
contains the output of the adversary (which may be an arbitrary function of its view) as well
as the outputs of the uncorrupted parties. We let REALπ,A(z),I denote the distribution ensemble
{REALπ,A(z),I(k,

−→x )}k∈N,〈−→x ,z〉∈{0,1}∗ .
The ideal execution – security with abort . In this second variant of the ideal model, fairness
and output delivery are no longer guaranteed. This is the standard relaxation used when a strict
majority of honest parties is not assumed. In this case, an ideal execution for a function f proceeds
as follows:

– Send inputs to the trusted party: As before, the parties send their inputs to the trusted
party, and we let x′i denote the value sent by Pi. Once again, for a semi-honest adversary we
require x′i = xi for all i ∈ I.

– Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . , x
′
n) =

(y1, . . . , yn) and sends {yi}i∈I to the adversary.

– Adversary instructs trust party to abort or continue: This is formalized by having
the adversary send either a continue or abort message to the trusted party. (A semi-honest
adversary never aborts.) In the latter case, the trusted party sends to each uncorrupted party
Pi its output value yi. In the former case, the trusted party sends the special symbol ⊥ to
each uncorrupted party.

– Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the
values obtained from the trusted party.

The interaction of Sim with the trusted party defines a random variable IDEALf⊥,A(z)(k,
−→x ) as

above,and we let {IDEALf⊥,A(z),I(k,
−→x )}k∈N,〈−→x ,z〉∈{0,1}∗ where the subscript ”⊥” indicates that the

adversary can abort computation of f .
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Having defined the real and the ideal worlds, we now proceed to define our notion of security.

Definition 1. Let k be the security parameter. Let f be an n-party randomized functionality, and
π be an n-party protocol for n ∈ N.

1. We say that π t-securely computes f in the presence of malicious (resp., semi-honest) ad-
versaries if for every PPT adversary (resp., semi-honest adversary) A there exists a PPT
adversary (resp., semi-honest adversary) Sim such that for any I ⊂ [n] with |I| ≤ t the
following quantity is negligible:

|Pr[REALπ,A(z),I(k,
−→x ) = 1]− Pr[IDEALf,A(z),I(k,

−→x ) = 1]|

where −→x = {xi}i∈[n] ∈ {0, 1}∗ and z ∈ {0, 1}∗.

2. Similarly, π t-securely computes f with abort in the presence of malicious adversaries if for
every PPT adversary A there exists a polynomial time adversary Sim such that for any I ⊂ [n]
with |I| ≤ t the following quantity is negligible:

|Pr[REALπ,A(z),I(k,
−→x ) = 1]− Pr[IDEALf⊥,A(z),I(k,

−→x ) = 1]|.

Security Against (Delayed) Semi-Malicious Adversaries We also define security against
semi-malicious adversaries that are stronger than semi-honest adversaries. A semi-malicious adver-
sary is modeled as an interactive Turing machine (ITM) which, in addition to the standard tapes,
has a special witness tape. In each round of the protocol, whenever the adversary produces a new
protocol message msg on behalf of some party Pk, it must also write to its special witness tape
some pair (x, r) of input x and randomness r that explains its behavior. More specifically, all of
the protocol messages sent by the adversary on behalf of Pk up to that point, including the new
message m, must exactly match the honest protocol specification for Pk when executed with input
x and randomness r. Note that the witnesses given in different rounds need not be consistent. Also,
we assume that the attacker is rushing and hence may choose the message m and the witness (x, r)
in each round adaptively, after seeing the protocol messages of the honest parties in that round
(and all prior rounds). Lastly, the adversary may also choose to abort the execution on behalf of
Pk in any step of the interaction.

A delayed semi-malicious adversary [BL18] is similar to semi-malicious adversary, except that
it only needs to output the witness (i.e., a defense of honest behavior) in the second last round of
the protocol. We refer the reader to [BL18] for a more detailed discussion.

Definition 2. We say that a protocol π securely realizes f for (delayed) semi-malicious adversaries
if it satisfies Definition 1 when we only quantify over all (delayed) semi-malicious adversaries A.

2.2 Extractable Commitment Scheme

We will use a variant of a simple challenge-response based extractable statistically-binding string
commitment scheme 〈C,R〉 that has been used in several prior works, most notably [PRS02, Ros04].
We note that in contrast to [PRS02] where a multi-slot protocol was used, here (similar to [Ros04]),
we only need a one-slot protocol.

Protocol 〈C,R〉. Let com(·) denote the commitment function of a non-interactive perfectly bind-
ing string commitment scheme which requires the assumption of injective one-way functions for its
construction. Let n denote the security parameter. The commitment scheme 〈C,R〉 is described
as follows.

Commit Phase:

10



1. To commit to a string str, C chooses k = ω(log(n)) independent random pairs {α0
i , α

1
i }ki=1

of strings such that ∀i ∈ [k], α0
i ⊕ α1

i = str; and commits to all of them to R using com. Let
B ← com(str), and A0

i ← com(α0
i ), A

1
i ← com(α1

i ) for every i ∈ [k].

2. R sends k uniformly random bits v1, . . . , vn.

3. For every i ∈ [k], if vi = 0, C opens A0
i , otherwise it opens A1

i to R by sending the appropriate
decommitment information.

Open Phase: C opens all the commitments by sending the decommitment information for each
one of them.

For our construction, we require a modified extractor for the extractable commitment scheme.
The standard extractor returns the value str that was committed to in the scheme. Instead,
we require that the extractor return i, and the openings of A0

i and A1
i . This extractor can be

constructed easily, akin to the standard extractor for the extractable commitment scheme.
This completes the description of 〈C,R〉.

2.3 Rewinding Secure Extractable Commitments

In this section, we describe a three round extractable commitment protocol RECom = (S,R). While
several constructions of three round extractable commitment schemes are known in the literature
(see, e.g., [PRS02, Ros04]), the commitment scheme satisfies a “bounded-rewinding security” prop-
erty, which roughly means that the value committed by a sender in an execution of the commitment
protocol remains hidden even if a malicious receiver can rewind the sender back to the start of the
second round of the protocol an a priori bounded Brecom number of times. In our application, we
set Brecom = 4; however, our construction also supports larger values of Brecom. For technical rea-
sons, we don’t define or prove Brecom-rewinding security property and reusability property for our
extractable commitment protocol. Instead, this is done inline in the our four round MPC protocol.

Construction. Let Com denote a non-interactive perfectly binding commitment scheme based on
injective one-way functions. Let N and Brecom be positive integers such that N−Brecom−1 ≥ N

2 +1.
For Brecom = 4, it suffices to set N = 12.

The three round extractable commitment protocol RECom is described in Figure 1.

Well-Formedness of recom Transcripts. We now define a “well-formedness” property of an ex-
ecution transcript of RECom. Roughly, we say that a transcript (recomS→R

1 , recomR→S
2 , recomS→R

3 )
is well-formed w.r.t. an input x and randomness r if:

– N − 1 out of the N tuples recomS→R
3,` = (α`, β`) (where ` ∈ [N ]) are “honestly” computed

using randomness r =
(
{pi}Ni=1, {ri}Ni=1

)
in the sense that: each α` is a one-time pad of x

w.r.t. the key p`(0) where p` is a polynomial committed (using randomness r`) in the first
round message recomS→R

1 , and each β` is a correct evaluation of the polynomial p` over the
“challenge” value z` contained in recomR→S

2 .

We now proceed to formally define the well-formedness property. For any set T , let T [i] denote
the ith element of T .

Definition 3 (Well-Formed Transcripts). An execution transcript (recomS→R
1 , recomR→S

2 , recomS→R
3 )

of recom is said to be well-formed with respect to an input x and randomness r =
(
{pi}Ni=1, {ri}Ni=1

)
if there exists an index set I of size N − 1 such that the following holds:

– For every j ∈ |I|, recomS→R
1,I[j] = Com(pI[j]; rI[j]) (AND)

11



Sender S has input x.

Commitment Phase:

1. Round 1:
S does the following:

– Pick N random degree Brecom polynomials p1, . . . , pN over Zq, where q is a prime larger
than 2λ.

– Compute recomS→R
1,` ← Com(p`; r`) using a random string r`, for every ` ∈ [N ].

– Send recomS→R
1 = (recomS→R

1,1 , . . . , recomS→R
1,N ) to R.

2. Round 2:
R does the following:

– Pick random values z`←$Zq for every ` ∈ [N ].

– Send recomR→S
2 = (z1, . . . , zN ) to S.

3. Round 3:
S does the following:

– Compute recomS→R
3,` ← (x⊕ p`(0), p`(z`)) for all ` ∈ [N ].

– Send recomS→R
3 = (recomS→R

3,1 , . . . , recomS→R
3,N ) to R.

Decommitment Phase:

1. S outputs p1, . . . , pN together with the randomness r1, . . . , rN used in the first round com-
mitments.

2. R first verifies the following:

– For each ` ∈ [N ], recomS→R
1,` = Com(p`; r`).

– Parse recomS→R
3,` = (α`, β`). Verify that β` = p`(z`).

– For each ` ∈ [N ], compute x` = p`(0)⊕ α`. Verify that all the x` values are equal.

If any of the above verifications fail, R outputs ⊥. Otherwise, R outputs x.

Figure 1: Extractable Commitment Scheme recom.

– For every j ∈ |I|, recomS→R
3,I[j] = (x⊕ pI[j](0), pI[j](zI[j])), where recomR→S

2 = (z1, . . . , zN )

We remark that the above well-formedness property is “weak” in the sense that we only require
N − 1 out of the N tuples recomS→R

3,` = (α`, β`) to be honestly generated (instead of requiring
that all N tuples are honestly generated). This relaxation is crucial to establishing the Brecom-
rewinding-security property for recom.

We now define an “admissibility” property for any input to the extractor.

Definition 4 (Admissible Inputs). An input set (recom1, {recomi
2, recomi

3}
Brecom+1
i=1 ) is said to be

admissible if for every i, j ∈ [Brecom + 1] s.t. i 6= j and every ` ∈ [N ], we have that zi` 6= zj`, where
recomt

2 = (zt1, . . . , z
t
N ).

Extractor Extrecom. The extractor algorithm Extrecom is described in Figure 2.5

5An admissible input set consisting of (Brecom + 1) “well-formed” execution transcripts of recom that share the
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Lemma 1. There exists a PPT extractor algorithm Extrecom such that, given a set of (Brecom + 1)
“well-formed” and “admissible” execution transcripts of RECom where each transcript consists of
the same first round sender message, the extractor successfully extracts the value committed in each
transcript, except with negligible probability.

Input: An admissible set (recom1, {recomi
2, recomi

3}
Brecom+1
i=1 ) where ∀i, (recom1, recomi

2, recomi
3) is

well-formed w.r.t. some value xi.

1. For every i ∈ [Brecom + 1], parse recomi
2 = (zi1, . . . , z

i
N ) and recomi

3 =
(recomi

3,1, . . . , recomi
3,N+2).

2. For each ` ∈ [N ]:

– Parse recomi
3,` = (αi`, β

i
`).

– Using polynomial interpolation, compute a degree Brecom polynomial p` over Zq such
that on point zi`, p`(zi`) = βi`.

– Compute xi` = (αi` ⊕ p`(0)).

3. For every i ∈ [Brecom], let xi be the value that equals a majority of the values in the set
{xi1, . . . , xiN}. If no such ki value exists, set xi = ⊥.

4. Output (x1, . . . , xBrecom).

Figure 2: Strategy of algorithm Extrecom.

Proof. We now analyze the extraction algorithm. Recall that for every i ∈ [Brecom+1], the transcript
(recom1, recomi

2, recomi
3) is well-formed w.r.t. some value xi. By the definition of well-formedness,

we have that for every i, there exists at most one j ∈ [N ] such that recomi
3,j was not computed

correctly and consistently with the other recomi
3,j′ . This means that overall, across all i ∈ [Brecom+1]

execution transcripts, there exists at most (Brecom + 1) values of recomi
3,j that were not computed

correctly. This implies that for at least (N − Brecom − 1) values of j, the values recomi
3,j were

computed correctly in all Brecom + 1 transcripts. This means that for every i ∈ [Brecom + 1],
(N − Brecom − 1) out of N values {ki1, . . . , kiN} computed by the extractor are the same. Then,
since N − Brecom − 1 ≥ N

2 + 1, we have that the extractor computes the correct values ki and xi
for every i ∈ [Brecom].

2.4 Non-Malleable Commitments

We start with the definition of non-malleable commitments by Pass and Rosen [PR05] and further
refined by Lin et al [LPV08] and Goyal [Goy11]. (All of these definitions build upon the original
definition of Dwork et al. [DDN91]).

In the real experiment, a man-in-the-middle adversary MIM interacts with a committer C in
the left session, and with a receiver R in the right session. Without loss of generality, we assume

same first round sender message can be obtained from a malicious sender via an expected PPT rewinding procedure.
The expected PPT simulator in our application performs the necessary rewindings to obtain such transcripts and
then feeds them to the extractor Extrecom.
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that each session has identities or tags, and require non-malleability only when the tag for the left
session is different from the tag for the right session.

At the start of the experiment, the committer C receives an input val and MIM receives an
auxiliary input z, which might contain a priori information about val. Let MIM〈C,R〉(val, z) be a

random variable that describes the value ṽal committed by MIM in the right session, jointly with
the view of MIM in the real experiment.

In the ideal experiment, a PPT simulator S directly interacts with MIM. Let Sim〈C,R〉(1
λ, z)

denote the random variable describing the value ṽal committed to by S and the output view of S.
In either of the two experiments, if the tags in the left and right interaction are equal, then the

value ṽal committed in the right interaction, is defined to be ⊥.
We define a strengthened version of non-malleable commitments for use in this paper.

Definition 5 (Special Non-malleable Commitments). A three round commitment scheme 〈C,R〉
is said to be special non-malleable if:

– For every synchronizing6 PPT MIM, there exists a PPT simulator S such that the following
ensembles are computationally indistinguishable:

{MIM〈C,R〉(val, z)}λ∈N,val∈{0,1}λ,z∈{0,1}∗ and {Sim〈C,R〉(1
λ, z)}λ∈N,val∈{0,1}λ,z∈{0,1}∗

– 〈C,R〉 is delayed-input, that is, correctness holds even when the committer obtains his input
only in the last round.

– 〈C,R〉 satisfies last-message pseudorandomness, that is, for every non-uniform PPT receiver
R∗, it holds that {REALR

∗
0 (1λ)}λ and {REALR

∗
1 (1λ)}λ are computationally indistinguishable,

where for b ∈ {0, 1}, the random variable REALR
∗

b (1λ) is defined via the following experiment.

1. Run C(1λ) and denote its output by (Com1, σ), where σ is its secret state, and Com1 is
the message to be sent to the receiver.

2. Run the receiver R∗(1λ,Com1), who outputs a message Com2.

3. If b = 0, run C(σ,Com2) and send its message Com3 to R∗. Otherwise, if b = 1, compute
Com3←$ {0, 1}m and send it to R∗. Here m = m(λ) denotes |Com3|.

4. The output of the experiment is the output of R∗.

– 〈C,R〉 satisfies 2-extractability.

Goyal et al. [GPR16] construct three-round special non-malleable commitments satisfying Def-
inition 5 based on injective OWFs.

Imported Theorem 1 ([GPR16]). Assuming injective one-way functions, there exists a three
round non-malleable commitment satisfying Definition 5.

2.5 Trapdoor Generation Protocol

This section, taken verbatim from [BGJ+18], discusses and constructs a Trapdoor Generation
Protocol. In such a protocol, a sender S (a.k.a. trapdoor generator) communicates with a receiver
R. The protocol satisfies two properties: (i) Sender security, i.e., no cheating PPT receiver can

6A synchronizing adversary is one that sends its message for every round before obtaining the honest party’s
message for the next round.

14



learn a valid trapdoor, and (ii) Extraction, i.e., there exists an expected PPT algorithm (a.k.a.
extractor) that can extract a trapdoor from an adversarial sender via rewinding.

We construct a three-round trapdoor generation protocol where the first message sent by the
sender determines the set of valid trapdoors, and in the next two rounds the sender proves that
indeed it knows a valid trapdoor. Such schemes are known in the literature based on various
assumptions [PRS02, Ros04, COSV17b]. Here, we consider trapdoor generation protocols with a
stronger sender security requirement that we refer to as 1-rewinding security. Below, we formally
define this notion and then proceed to give a three-round construction based on one-way functions.
Our construction is a minor variant of the trapdoor generation protocol from [COSV17b].

Syntax. A trapdoor generation protocol

TDGen = (TDGen1,TDGen2,TDGen3,TDOut,TDValid,TDExt)

is a three round protocol between two parties - a sender (trapdoor generator) S and receiver R
that proceeds as below.

1. Round 1 - TDGen1(·):
S computes and sends tdS→R1 ← TDGen1(rS) using a random string rS .

2. Round 2 - TDGen2(·):
R computes and sends tdR→S2 ← TDGen2(tdS→R1 ; rR) using randomness rR.

3. Round 3 - TDGen3(·):
S computes and sends tdS→R3 ← TDGen3(tdR→S2 ; rS)

4. Output - TDOut(·)
The receiver R outputs TDOut(tdS→R1 , tdR→S2 , tdS→R3 ).

5. Trapdoor Validation Algorithm - TDValid(·):
Given input (t, tdS→R1 ), output a single bit 0 or 1 that determines whether the value t is
a valid trapdoor corresponding to the message td1 sent in the first round of the trapdoor
generation protocol.

In what follows, for brevity, we set td1 to be tdS→R1 . Similarly we use td2 and td3 instead
of tdR→S2 and tdS→R3 , respectively. Note that the algorithm TDValid does not form a part of the
interaction between the trapdoor generator and the receiver. It is, in fact, a public algorithm that
enables public verification of whether a value t is a valid trapdoor for a first round message td1.

Extraction. There exists a PPT extractor algorithm TDExt that, given a set of values7 (td1, {tdi2, tdi3}3i=1)
such that td1

2, td2
2, td3

2 are distinct and TDOut(td1, tdi2, tdi3) = 1 for all i ∈ [3], outputs a trapdoor t
such that TDValid(t, td1) = 1.

1-Rewinding Security. We define the notion of 1-rewinding security for a trapdoor generation
protocol TDGen. Consider the following experiment between a sender S and any (possibly cheating)
receiver R∗.

Experiment E:

7These values can be obtained from the malicious sender via an expected PPT rewinding procedure. The expected
PPT simulator in our applications performs the necessary rewindings and then feeds these values to the extractor
TDExt.
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– R∗ interacts with S and completes one execution of the protocol TDGen. R∗ receives values
(td1, td3) in rounds 1 and 3 respectively.

– Then, R∗ rewinds S to the beginning of round 2.

– R∗ sends S a new second round message td∗2 and receives a message td∗3 in the third round.

– At the end of the experiment, R∗ outputs a value t∗.

Definition 6 (1-Rewinding Security). A trapdoor generation protocol TDGen = (TDGen1,TDGen2,
TDGen3,TDOut,TDValid) achieves 1-rewinding security if, for every non-uniform PPT receiver R∗

in the above experiment E,

Pr
[
TDValid(t∗, td1) = 1

]
= negl(λ) (λ),

where the probability is over the random coins of S, and where t∗ is the output of R∗ in the
experiment E, and td1 is the message from S in round 1.

2.5.1 Construction

We now describe a three round trapdoor generation protocol based on one way functions.
Let S and R denote the sender and the receiver, respectively. Let λ denote the security pa-

rameter. Let (Gen, Sign,Vf) be a signature scheme that is existentially unforgeable against chosen-
message attacks. Such schemes are known based on one-way functions [GMR88].

1. Round 1 - TDGen1(rS):
S does the following:

– Generate (sk, vk)← Gen(rS).

– Send tdS→R1 = vk to R.

2. Round 2 - TDGen2(tdS→R1 ):
R sends a random string m as the message tdR→S2 to S.

3. Round 3 - TDGen3(tdS→R1 , tdR→S2 ; rS):
S computes and sends tdS→R3 = Sign(sk,m; rm) where rm is randomly chosen.

4. Output: - TDOut(tdS→R1 , tdR→S2 , tdS→R3 )
The receiver R outputs 1 if Vf(tdS→R1 ,m, tdS→R3 ) = 1.

5. Trapdoor Validation Algorithm - TDValid(t, td1):
Given input (t, td1), the algorithm does the following:

– Let t = {mi, σi}3i=1.

– Output 1 if m1,m2,m3 are distinct and Vf(td1,mi, σi) = 1 for all i ∈ [3].

Figure 3: Trapdoor Generation Protocol ΠTD.

Theorem 3. Assuming the existence of one way functions, the protocol ΠTD described in Figure 3
is a 1-rewinding secure trapdoor generation protocol.
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Proof. Suppose the protocol ΠTD is not 1-rewinding secure. That is, there exists a malicious
receiver R∗ that breaks the 1-rewinding security. We will use R∗ to design an adversary ASign that
breaks the unforgeability of the signature scheme. ASign, and upon receiving a verification key vk,
it interacts with CSign and with R∗, as follows: First, it sets td1 = vk and sends td1 to R∗ in round
1. Upon receiving a query td2 = m from R∗, ASign forwards this to CSign and receives a value σm
from CSign which it sends to R∗ as the message td3. Then, upon receiving a query td∗2 = m∗ from
R∗ in the rewound execution, ASign once again does the same. That is, ASign forwards this to CSign
and receives a value σm∗ from CSign which it sends to R∗ as the message td∗3.

Then, since R∗ breaks the 1-rewinding security, it outputs a value t∗ in experiment E such
that TDValid(t∗, td1) = 1 with non-negligible probability p. Recall from the definition of the
algorithm TDValid, it must be the case that t∗ = {mi, σi}3i=1 such that m1,m2,m3 are distinct and
Vf(vk,mi, σi) = 1 for all i. ASign picks the value mi /∈ {m,m∗} and outputs (mi, σi) as a forgery.

Extractor TDExt(·). The extractor works as follows. It receives a verification key vk = td1, and a
set of values {mi, σi}3i=1 such that mi are all distinct and Vf(vk,mi, σi) = 1 for every i ∈ [3]. Then,
TDExt outputs t = {mi, σi}3i=1 as a valid trapdoor. Correctness of the extraction is easy to see by
inspection.

Remark: In the application to our MPC protocol, one party is the sender and sends the first
round message td1. Each of the other (n − 1) parties send a second round message td2,i and
the sender now sets the concatenation of all of them as the second round message td2 - that is,
td2 = (td2,1|| . . . ||td2,n−1). The sender then computes td3 as before.

2.6 Delayed-Input Interactive Arguments

In this section, we describe delayed-input interactive arguments.

Definition 7 (Delayed-Input Interactive Arguments). An n-round delayed-input interactive pro-
tocol (P,V) for deciding a language L is an argument system for L that satisfies the following
properties:

– Delayed-Input Completeness. For every security parameter λ ∈ N, and any (x,w) ∈ RL
such that |x| ≤ 2λ,

Pr[(P,V)(1λ, x, w) = 1] = 1− negl(λ) (λ).

where the probability is over the randomness of P and V. Moreover, the prover’s algorithm
initially takes as input only 1λ, and the pair (x,w) is given to P only in the beginning of the
n’th round.

– Delayed-Input Soundness. For any PPT cheating prover P∗ that chooses x∗ (adaptively)
after the first n− 1 messages, it holds that if x∗ /∈ L then

Pr[(P∗,V)(1λ, x∗) = 1] = negl(λ) (λ).

where the probability is over the random coins of V .

2.7 WI with Bounded Rewinding Security

In this section, we define three round delayed-input witness indistinguishable argument with Brwi-
rewinding security, where the same statement is proven across all the rewinds.
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Definition 8 (3-Round Delayed-Input WI with Non-Adaptive Fixed Statement Bounded Rewind-
ing Security). Fix a positive integer Brwi. A delayed-input 3-round interactive argument (as defined
in Definition 7) for an NP language L, with an NP relation RL is said to be WI with Non-Adaptive
Fixed Statement Brwi-Rewinding Security if for every non-uniform PPT interactive Turing Ma-
chine V ∗, it holds that {REALV

∗
0 (1λ)}λ and {REALV

∗
1 (1λ)}λ are computationally indistinguishable,

where for b ∈ {0, 1} the random variable REALV
∗

b (1λ) is defined via the following experiment. In
what follows we denote by P1 the prover’s algorithm in the first round, and similarly we denote by
P3 his algorithm in the third round.

Experiment REALV
∗

b (1λ):

1. Run P1(1λ) and denote its output by (rwi1, σ), where σ is its secret state, and rwi1 is the
message to be sent to the verifier.

2. Run the verifier V ∗(1λ, rwi1), who outputs (x,w0, w1) and a set of messages {rwii2}i∈[Brwi].

3. For each i ∈ [Brwi], run P3(σ, rwii2, x, wb), where P3 is the (honest) prover’s algorithm for
generating the third message of the WI protocol, and send its message P3 to V ∗.

4. The output of the experiment is the output of V ∗.

The following theorem is proven in [GR19]. For completeness, we provide a full description of
their construction in Appendix A.

Theorem 4. Assuming injective one way functions, for every (polynomial) rewinding parameter B,
there exists a three round delayed-input witness-indistinguishable argument system with B-rewinding
security.

2.8 Garbled Circuits

Definition 9 (Garbling Scheme). A garbling scheme for circuits is a tuple of PPT algorithms
GC := (Gen,Garble,Eval) such that”

– ({labw,b}w∈inp,b∈{0,1}) ← Gen(1λ, inp): Garble takes the security parameter 1λ and length of

input for the circuit as input and outputs a set of input labels {labw,b}w∈inp,b∈{0,1}.

– C̃ ← Garble(C, {labw,b}w∈inp,b∈{0,1}): Garble takes as input a circuit C : {0, 1}inp → {0, 1}out

and a set of input labels {labw,b}w∈inp,b∈{0,1} and outputs the garbled circuit C̃.

– y ← Eval(C̃, labx): Eval takes as input the garbled circuit C̃, input labels labx corresponding
to the input x ∈ {0, 1}inp and outputs y ∈ {0, 1}out.

This garbling scheme satisfies the following properties:

1. Correctness: For any circuit C and input x ∈ {0, 1}inp,

Pr[C(x) = Eval(C̃, labx)] = 1

where ({labw,b}w∈inp,b∈{0,1})← Gen(1λ, inp) and C̃ ← Garble(C, {labw,b}w∈inp,b∈{0,1}).

2. Selective Security: There exists a PPT simulator SimGC such that, for any PPT adversary
A, there exists a negligible function µ(.) such that,

|Pr[ExperimentA,SimGC
(1λ, 0) = 1]− Pr[ExperimentA,SimGC

(1λ, 1) = 1]| ≤ µ(1λ)

where the experiment ExperimentA,SimGC
(11λ , b) is defined as follows:
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(a) The adversary A specifies the circuit C and an input x ∈ {0, 1}inp and gets C̃ and labx,
which are computed as follows:

– If b = 0:

– ({labw,b}w∈inp,b∈{0,1})← Gen(1λ, inp)

– C̃ ← Garble(C, {labw,b}w∈inp,b∈{0,1})
– If b = 1:

– (C̃, labx)← SimGC(11λ , C, x)

(b) The adversary outputs a bit b′, which is the output of the experiment.

2.9 Rewind Secure Oblivious Transfer

Definition 10. A rewind secure oblivious transfer (OT) is a tuple of polynomial time interactive
Turing machines OT = (OTS ,OTR) where (t, x) = (OTS(s0, s1; ρ),OTR(b; ρ′)) is the pair composed
of the transcript t and the output of x after the interaction between the sender OTS with inputs
s0, s1 ∈ {0, 1} and randomness ρ while receiver OTR has input b and randomness ρ′ satisfying the
following properties:

– Correctness. For any selection bit b, for any messages s0, s1 ∈ {0, 1}, for any ρ, ρ′ ∈ {0, 1}τ
it holds that

Pr

[
sb = s : ρ, ρ′←$ {0, 1}τ ; (t, x) =

(
OTS(s0, s1; ρ),OTR(b; ρ′)

) ]
= 1

– Security against Malicious Sender with B rewinds. Here, we require indistinguishabil-
ity security against a malicious receiver where the receiver uses input b[k] in the k-th rewound
execution of the second and third round. Specifically, the consider the experiment described
below. ∀

{
b0[k], b1[k]

}
k∈[B]

∈ {0, 1} where Experiment Eσ:

1. Run OTR to obtain ot1,R which is independent of its input. Send to A that returns ot1,S.

2. Run OT on input ot1,S and ot1,R to obtain ot2,R which is independent of its input. This
is then sent to A.

3. A then returns
{

otj2,S

}
j∈[B]

messages.

4. For each j ∈ [B], run OTR on (ot1,S , otj2,S , b
σ[j]) and send the response to A.

5. Run OTR on ot1
3,S to obtain the completed transcript for a single thread.

6. The output of the experiment is the entire transcript.

We say that the scheme is secure against malicious senders with B rewinds if the experiments
E0 and E1 are indistinguishable.

– Security against Malicious Receiver with B rewinds. For this we achieve a stronger
notion of simulation security against a corrupted receiver. Specifically, we consider the stan-
dard notion ideal/real notion for a malicious sender. But additionally allow for the receiver
to rewind the sender up to BOT-times. We We say that the scheme is secure against malicious
senders with B rewinds if there is an ideal world simulator S such that the following quantity
is negligible:

|Pr[REALOT,A(z),I(k,
−→x ) = 1]− Pr[IDEALf,S(z),I(k,

−→x ) = 1]|

where −→x = {(s0, s1), b} and z ∈ {0, 1}∗. Where f is the ideal functionality computing OT.
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Remark 1. Even though we define this stronger notion of bounded-rewind secure OT, for our
construction it in fact suffices to have security against delayed semi honest receivers.

3 Four Round MPC

Components. We list below the components of our protocol.

– TDGen = (TDGen1,TDGen2,TDGen3,TDOut,TDValid,TDExt) is a three round trapdoor gen-
eration protocol based on one-way functions.

– TDOut computes the receiver’s output.

– TDValid determines whether an input trapdoor value is valid with respect to the first
round of the protocol transcript.

– TDExt computes a valid trapdoor given Btd distinct protocol transcripts that share the
same first message

Here Btd is set to be 3.

– WI = (WI1,WI2,WI3,WI4) is a three round delayed-input witness indistinguishable proof
system, where WI4 is used to compute the decision of the verifier. Such schemes are know
from injective one-way functions [LS91].

– RWI = (RWI1,RWI2,RWI3,RWI4) is a three round delayed-input witness-indistinguishable
proof with B-rewinding security, where RWI4 is used to compute the decision of the veri-
fier. For the rewinding security to be non-adaptive, the verifier generates the second round
challenges independent of the third round responses. We will require two instances of the
protocol in our construction. Such schemes were constructed in [BGJ+18] from injective one-
way functions. Their construction can be parameterized by multiple values of B, but we set
Brwi to be some polynomial.

– NMCom = (NMCom1,NMCom2,NMCom3) is a three round special non-malleable commitment
scheme of [GPR16] satisfying Definition 5. It is base on injective one-way functions. Let
ExtNMCom denote the PPT extractor associated with the 2-extraction property satisfied by
NMCom.

– OT = (OT1,OT2,OT3,OT4) is a four round oblivious transfer protocol. We abuse notation
slightly and use this as implementing parallel OT executions where the receiver’s input is a
string of length ` and the sender now has ` pairs of inputs. We require indistinguishability
security against a malicious sender. In addition, we require extraction of the receiver’s input
bit.

– RECom = (RECom1,RECom2,RECom3,ExtRECom) is the three round delayed-input extractable
commitment based on injective one-way functions constructed in [BGJ+18]. For completeness,
we have reproduced the protocol in Section 2.3. The rewinding parameter Brecom is set to be
4. ExtRECom is the extractor associated with RECom.

– Ecom = (Ecom1,Ecom2,Ecom3,ExtEcom) is the three round delayed-input extractable commit-
ment scheme based on statistically binding commitment schemes which in turn can be based
on injective one-way functions. These have been used is several prior works, most notably in
[PRS02]. They satisfy the 2-extraction property.
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– An input delayed semi-malicious MPC Π satisfying the following properties, where we denote
by msgk the messages of all parties output in the k-th round by Π.

1. Property 1: msg1 and msg2 of Π contain only instances of S− OT.

2. Property 2: msg1 and msg2 of Π does not depend on the input. The input is used only
in the computation of msg3 and msg4.

3. Property 3: The simulator S simulates the honest parties’ messages msg1 and msg2

via S1 and S2 by simply running the honest S− OT sender and receiver algorithms.

The S− OT is an oblivious transfer protocol satisfying bounded rewind security, defined and
constructed in Section 4. The recent works of [GS18, BL18] guarantee that the protocol
remains secure as long as the S− OT maintain their bounded rewind security. In addition
they satisfy the above properties.

– GC = (Garble,Eval) is a secure garbling scheme. We denote the labels {labi,0, labi,1}i∈[L] by

lab.

For primitives with bounded rewind security, we require

Brwia , Brwia , BS−OT > Brecom > Btd

where they denote the total number of rewinds (including the main thread) that they are secure
against. In addition, we require all of them to be larger than the number of threads required
to extract from NMCom and Ecom which are both 2-extractable. i.e. two threads are sufficient
to extract from these primitives. For the primitives picked, we have, Brwia = Brwia = poly(λ),
BS−OT = 6, Brecom = 4 and Btd = 2 thus satisfying our requirements.

NP languages. The proofs are associated with the following languages.

– Language La is characterized by the following relation Ra:

Statement: st :=

({
recomj

i

}
i∈[3],j∈[n]

,Trans2, {msgi}i∈[3] , {nmcomi}i∈[3] , td1

)
Witness: w :=

(
inp, r,

{
rjrecom

}
j∈[n]

, t, rnmcom

)
Ra(st,w) = 1 if and only if

1. for every j,
(

recomj
1, recomj

2, recomj
3

)
is a well-formed transcript of RECom with respect

to the input (inp, r) and randomness rjrecom, and msg3 is an honestly computed third
round message in the protocol Π with respect to input inp, randomness r and first two
round protocol transcript Trans2 (OR)

2. (nmcom1, nmcom2, nmcom3) is a transcript of a non-malleable commitment of NMCom
with respect to the input t and randomness rnmcom and t is a valid trapdoor with respect
to td1

Formally, Ra(st,w) = 1 if and only if:

– ∀j ∈ [n], recomj
1 = RECom1(rjrecom) AND

– ∀j ∈ [n], recomj
3 = RECom3((inp, r), recomj

1, recomj
2; rjrecom) AND
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– ∀j ∈ [n],
(

recomj
1, recomj

2, recomj
3

)
is well-formed with respect to input (inp, r) and

randomness rjrecom AND

– msg1 = Π1 (r) AND

– msg2 = Π2 (Trans1; r) AND

– msg3 = Π3 (inp,Trans2; r)

(OR)

– TDValid(td1, t) = 1 AND

– nmcom1 = NMCom1(rnmcom) AND

– nmcom3 = NMCom3(t, nmcom1, nmcom2rnmcom)

In our protocol, the language La will be used for the first instance of the bounded-rewinding
secure delayed-input RWI proofs. When we consider proofs between prover Pi and verifier Pj ,

we denote the language as Li→ja .

– Language Lb is characterized by the following relation Rb:

Statement:

st :=

({
recomj

i , ecomj
i , nmcomj

i

}
i∈[3],j∈[n]

,Trans2, {msgi}i∈[3] ,
{

rwiji

}
i∈[2],j∈[n]

{nmcomi}i∈[3] , td1

)

Witness: w :=

({
rjecom

}
j∈[n]

, t, rnmcom

)
Rb(st,w) = 1 if and only if

1. ∀j ∈ [n],
(

ecomj
1, ecomj

2, ecomj
3

)
is a well-formed transcript of Ecom with respect to the

input
{

rwik3
}
k∈[n]

and randomness rjecom, and ∀k,
{

rwiki
}
i∈[3]

is an accepting transcript

for La (OR)

2. (nmcom1, nmcom2, nmcom3) is a transcript of a non-malleable commitment of NMCom
with respect to the input t and randomness rnmcom and t is a valid trapdoor with respect
to td1.

Formally, Rb(st,w) = 1 if and only if

– ∀j ∈ [n], ecomj
1 = Ecom1(rjecom) AND

– ∀j ∈ [n], ecomj
3 = Ecom3(

{
rwik3

}
k∈[n]

, ecomj
1, ecomj

2; rjecom) AND

– ∀j ∈ [n],
(

ecomj
1, ecomj

2, ecomj
3

)
is well-formed with respect to input

{
rwik3

}
k∈[n]

and

randomness rjecom AND

– ∀j ∈ [n], WI4
(

rwij1, rwij2, rwij3, ŝt
j
)

= 1 where

ŝt
j

:=

({
recomj

i

}
i∈[3]

,Trans2, {msgi}i∈[3] ,
{

nmcomj
i

}
i∈[3]

, td1

)
(OR)
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– TDValid(td1, t) = 1 AND

– nmcom1 = NMCom1(rnmcom) AND

– nmcom3 = NMCom3(t, nmcom1, nmcom2, rnmcom)

In our protocol, the language Lb will be used for the second instance of the bounded-rewinding
secure delayed-input RWI proofs. When we consider proofs between prover Pi and verifier Pj ,

we denote the language as Li→jb .

– Language Lc is characterized by the following relation Rc:

Statement:

st :=

(
{msgi, nmcomi}i∈[3] ,

{
recomj

i

}
i∈[3],j∈[n]

,
{

rwiji

}
i∈[2],j∈[n]

,Trans3,
{

otji

}
i∈[4],j∈[n]

, td1,
{

stj
}
j∈[n]

, C̃

)

Witness: w :=

(
inp, r,

{
rjrecom

}
j∈[n]

, rgc,
{

rjot

}
j∈[n]

, t, rnmcom

)
Rc(st,w) = 1 if and only if

1. for every j,
(

recomj
1, recomj

2, recomj
3

)
is a well-formed transcript of RECom with respect

to the input (inp, r) and randomness rjrecom. The garbled circuit C̃ is computed correctly
with randomness rgc and embeds msg4, the honestly computed fourth round message in
the protocol Π with respect to input inp, randomness r and first three round protocol
transcript Trans2 (OR)

2. (nmcom1, nmcom2, nmcom3) is a transcript of a non-malleable commitment of NMCom
with respect to the input t and randomness rnmcom and t is a valid trapdoor with respect
to td1

Formally, Rc(st,w) = 1 if and only if:

– ∀j ∈ [n], recomj
1 = RECom1(rjrecom) AND

– ∀j ∈ [n], recomj
3 = RECom3((inp, r), recomj

1, recomj
2; rjrecom) AND

– ∀j ∈ [n], (recom1, recom2, recom3) is well-formed with respect to input (inp, r) and ran-
domness rrecom AND

– msg1 = Π1 (r) AND

– msg2 = Π2 (Trans1; r) AND

– msg3 = Π3 (inp,Trans2; r) AND

– msg4 = Π4 (inp,Trans3; r) AND

–
(

C̃, lab
)

:= Garble

(
C

[
msg4,

{
rwiji

}
i∈[2],j∈[n]

{
stj
}
j∈[n]

]
; rgc

)
where C in Figure 4 AND

– for all j ∈ [n], otj4 ← OT4

(
lab|j , otj1, otj2, otj3; rjot

)
.

(OR)

– TDValid(td1, t) = 1 AND
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C

[
i,msg4,i,

{
rwij→i`

}
`∈[2],j∈[n]\{i}

{
stj→i

}
j∈[n]\{i}

]

Input:
{

rwij→i3

}
j∈[n]\{i}

– If ∀j ∈ [n] \ {i},
RWI4

(
rwij→i1 , rwij→i2 , rwij→i3 , stj→i

)
= 1

then output msg4,i;

– Else, output ⊥.

Figure 4: Circuit C

– nmcom1 = NMCom1(rnmcom) AND

– nmcom3 = NMCom3(t, nmcom1, nmcom2rnmcom)

In our protocol, the language Lc will be used for the delayed-input WI proofs. When we
consider proofs between prover Pi and verifier Pj , we denote the language as Li→jc .

3.1 The Protocol

We now describe our four round protocol between n players P1, · · · ,Pn. The input of party Pi is
denoted as xi.

Round 1: Pi does the following:

1. Compute the first round message of the underlying protocol Π,

msg1,i := Π1 (ri)

using randomness ri Recall that the first two messages of Π are independent of the party’s
input.

2. Compute the first round of the trapdoor generation phase TDGen,

td1,i := TDGen1 (rtd,i)

using randomness rtd,i

3. Compute first round of the three input delayed witness indistinguishable proof systems.
Specifically, ∀j ∈ [n] \ {i}, compute

– first round of the input-delayed witness indistinguishable proof system

wii→j1 ←WI1
(

1λ
)

– first round of the input-delayed rewinding secure witness indistinguishable proof system
for La

rwii→ja,1 ← RWI1
(

1λ
)
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– first round of the input-delayed rewinding secure witness indistinguishable proof system
for Lb

rwii→jb,1 ← RWI1
(

1λ
)

4. Compute first round of the three commitment schemes. Specifically, ∀j ∈ [n] \ {i}, compute

– first round of the extractable commitment scheme:

ecomi→j
1 := Ecom1

(
ri→jecom

)
using the randomness ri→jecom.

– first round of the rewinding-secure extractable commitment scheme:

recomi→j
1 := RECom1

(
ri→jrecom

)
using the randomness ri→jrecom.

– first round of non-malleable commitment scheme:

nmcomi→j
1 := NMCom1

(
ri→jnmcom

)
using the randomness ri→jnmcom.

5. The first round of the OT scheme, where Pi is the receiver. Specifically, ∀j ∈ [n]\{i}, compute

otj→i1 := OT1

(
rj→iot

)
using the randomness rj→iot . Here the superscript j → i indicates that the OT message is for
the instances where Pi is the receiver.

6. Broadcast(
msg1,i, td1,i,

{
wii→j1 , rwii→ja,1 , rwii→jb,1 , ecomi→j

1 , recomi→j
1 , nmcomi→j

1 , otj→i1

}
j∈[n]\{i}

)
to all other parties.

Round 2: Pi does the following:

1. Compute the second round message of the underlying protocol Π,

msg2,i := Π2 (Trans1; ri)

using randomness ri and the transcript obtained so far.

2. Compute the second round of the trapdoor generation phase TDGen, ∀j ∈ [n] \ {i}

tdi→j2 ← TDGen2 (td1,j)

using randomness rtd,i

3. Compute second round of the three input delayed witness indistinguishable proof systems,
where Pi takes the role of the verifier. Specifically, ∀j ∈ [n] \ {i}, compute
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– second round of the input-delayed witness indistinguishable proof system

wij→i2 ←WI2
(

wij→i1

)
– second round of the input-delayed rewinding secure witness indistinguishable proof sys-

tem for La
rwij→ia,2 ← RWI2

(
rwij→ia,1

)
– second round of the input-delayed rewinding secure witness indistinguishable proof sys-

tem for Lb
rwij→ib,2 ← RWI2

(
rwij→ib,1

)
Note that the superscript j → i denotes that Pi is computing the second round message of
the proof where Pj is the prover and Pi is the verifier.

4. Compute second round of the three commitment schemes. Specifically, ∀j ∈ [n]\{i}, compute

– second round of the extractable commitment scheme:

ecomj→i
2 ← Ecom2

(
ecomj→i

1

)
– second round of the rewinding-secure extractable commitment scheme:

recomj→i
2 ← RECom2

(
recomj→i

1

)
– second round of non-malleable commitment scheme:

nmcomj→i
2 ← NMCom2

(
nmcomj→i

1

)
As in the case of the proofs, the superscript j → i denotes that Pi is the receiver in the
commitment from Pi.

5. The second round of the OT scheme, where Pi is the sender. Specifically, ∀j ∈ [n] \ {i},
compute

oti→j2 := OT2

(
oti→j1 ; ri→ji,ot

)
.

Here the superscript i→ j indicates that the OT message is for the instances where Pi is the
sender.

6. Broadcast(
msg2,i,

{
tdi→j2 ,wij→i2 , rwij→ia,2 , rwij→ib,1 , ecomj→i

2 , recomj→i
2 , nmcomj→i

2 , oti→j2

}
j∈[n]\{i}

)
to all other parties.

Round 3: Pi does the following:

1. Compute the third round message of the underlying protocol Π,

msg3,i := Π3 (xi,Trans2; ri)

using P′is input xi, randomness ri and the transcript obtained so far. This is the first step in
the protocol that Pi is using its input xi.
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2. Compute the second round of the trapdoor generation phase TDGen. Let td2,i :=
(
td1→i

2 || · · · ||td1→i
2

)
,

compute
td3,i ← TDGen3 (td1,i, td2,i; rtd,i) .

3. Compute the third round of the non-malleable commitment scheme to commit to ⊥. Specif-
ically, ∀j ∈ [n] \ {i}, compute

nmcomi→j
3 ← NMCom3

(
⊥, nmcomi→j

1 , nmcomi→j
3 ; ri→jnmcom

)
using the randomness ri→jnmcom.

4. Compute the third round of the rewinding-secure extractable commitment scheme to commit
to (xi, ri). Specifically, ∀j ∈ [n] \ {i}, compute

recomi→j
3 ← RECom3

(
(xi, ri), recomi→j

1 , recomi→j
2 ; ri→jrecom

)
using the randomness ri→jrecom.

5. Compute the third round of the input-delayed rewinding secure witness indistinguishable
proof system for La. Specifically, ∀j ∈ [n] \ {i}, set

sti→ja :=

({
recomi→j

` , nmcomi→j
`

}
`∈[3],j∈[n]\{i}

,
{

msg`,i
}
`in[3]

Trans2, td1,j

)
wi→j
a :=

(
xi, ri,

{
ri→jrecom

}
j∈[n]\{i} ,⊥,⊥

)
and compute

rwii→ja,3 ← RWI3
(

sti→ja ,wi→j
a , rwii→ja,1 , rwii→ja,2

)
.

6. Compute the third round of the extractable commitment scheme to commit to the third round
proof rwii→ja,3 . Specifically, ∀j ∈ [n] \ {i}, compute

ecomi→j
3 ← Ecom3

(
rwii→ja,3 , ecomi→j

1 , ecomi→j
3 ; ri→jecom

)
using the randomness ri→jecom.

7. Compute the third round of the input-delayed rewinding secure witness indistinguishable
proof system for Lb. Specifically, ∀j ∈ [n] \ {i}, set

sti→jb :=

({
recomi→j

` , ecomi→j
` , nmcomi→j

`

}
`∈[3],j∈[n]\{i}

,{
nmcomi→j

` ,msg`,i

}
`∈[3]

{
rwii→jb,`

}
`∈[2]

Trans2, td1,j

)
wi→j
b :=

({
ri→jecom

}
j∈[n]\{i} ,⊥,⊥

)
and compute

rwii→jb,3 ← RWI3
(

sti→jb ,wi→j
b , rwii→jb,1 , rwii→jb,2

)
.
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8. Compute the third round of the OT scheme, where Pi is the receiver. Specifically, ∀j ∈ [n]\{i},
compute

otj→i3 ← OT3

(
rwii→jb,3 , otj→i1 , otj→i2 ; rj→ii,ot

)
.

Here the superscript j → i indicates that the OT message is for the instances where Pi is the
receiver.

9. Broadcast (
msg3,i, td3,i,

{
ecomi→j

3 , recomi→j
3 , nmcomi→j

3 , otj→i3

}
j∈[n]\{i}

)
to all other parties.

Round 4: Pi does the following:

1. If ∃j ∈ [n] \ {i}, such that
TDValid(td1,j , td2,j , td3,j) 6= 1

where td2,j is computed as earlier, abort.

2. Compute the second round message of the underlying protocol Π,

msg4,i := Π3 (xi,Trans3; ri)

using P′is input xi, randomness ri and the transcript obtained so far. This is the first step in
the protocol that Pi is using its input xi.

3. Compute the garbled circuits containing msg4,i. Specifically,(
C̃i, labi

)
:= Garble

(
C

[
i,msg4,i,

{
rwij→ib,`

}
`∈[2],j∈[n]\{i}

{
stj→ib

}
j∈[n]\{i}

]
; rgc,i

)
where stj→ib is computed as above.

4. Compute the second round of the OT scheme, where Pi is the receiver. Specifically, ∀j ∈
[n] \ {i}, compute

oti→j4 ← OT4

(
labi|j , oti→j1 , oti→j2 , oti→j3 ; ri→ji,ot

)
.

Here the superscript i→ j indicates that the OT message is for the instances where Pi is the
sender. Where labi|j indicates the labels corresponding to the input wire of Pj ’s input.

5. Reveal the randomness used in OT executions where Pi is the receiver. Specifically, ∀j ∈
[n] \ {i} reveal rj→ii,ot .

6. Compute the third round of the input-delayed rewinding secure witness indistinguishable
proof system for Lc. Specifically, ∀j ∈ [n] \ {i}, set

sti→jc :=

({
msg`,i, nmcomi→j

`

}
`∈[3]

,
{

recomi→j
`

}
`∈[3],j∈[n]\{i}

,{
rwii→jb,`

}
`∈[2],j∈[n]\{i}

,
{

stj→ib

}
j∈[n]\{i}

,Trans3,
{

oti→j`

}
`∈[4],j∈[n]\{i}

, td1,j , C̃i

)
wi→j
c :=

(
xi, ri,

{
ri→jrecom

}
j∈[n]\{i} , rgc,i,

{
rj→ii,ot

}
j∈[n]\{i}

,⊥,⊥
)

and compute

wii→j3 ←WI3
(

sti→jc ,wi→j
c ,wii→j1 ,wii→j2

)
.
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7. Broadcast (
C̃i,
{

wii→j3 , oti→j4 , rj→ii,ot

}
j∈[n]\{i}

)
to all other parties.

Output Computation: Pi does the following:

1. If ∃j ∈ [n] \ {i}, such that

WI4
(

stj→ic ,wij→i1 ,wij→i2 ,wij→i3

)
6= 1

where stj→ic is computed as earlier, then output ⊥ and abort.

2. Open the OT messages using the randomness broadcast by other parties. Specifically, ∀j ∈
[n] \ {i} , ∀k ∈ [n] \ {i, j}

l̃abj|k := OTEval
(

otj→k1 , otj→k2 , otj→k3 , otj→k4 , rj→kk,ot

)
3. Evaluate the garbled circuit with the labels obtained above. ∀j ∈ [n] \ {i} set

l̃abj :=
(

l̃abj|1 || · · · ||l̃abj|n

)
and evaluate

m̃sg4,j := Eval
(

Cj , l̃abj
)
.

If any of the evaluations return ⊥, then output ⊥ and abort.

4. Compute output
yi := OUT(xi,Trans4; ri)

where Trans4 is the four round transcript derived by combining all the m̃sg4,j obtained above
with Trans3.

3.2 Security

Consider a malicious non-uniform PPT adversary A who corrupts t < n parties. Let p be a
polynomial such that p(λ) denotes the total length of the input and randomness of each party Pi
in the underlying protocol Π, i.e., |(xi, ri)| = p(λ) .

3.2.1 Description of the simulator

Simulator Sim.

Step 1 - Check Abort:

1. Round 1: Compute the first round message of all honest parties of the underlying protocol
Π, {

msg1,i

}
Pi∈H

:= S1

(
1λ; rS

)
whereH denotes the set of honest parties. Recall that this is done as just the honest execution
of the first round on behalf of the honest players Pi using randomness rS := {ri}Pi∈H.

For each honest party Pi, Sim follows the honest party protocol in the first round. Specifically,
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(a) Compute the first round of the trapdoor generation phase TDGen,

td1,i := TDGen1 (rtd,i)

using randomness rtd,i

(b) Compute first round of the three input delayed witness indistinguishable proof systems.
Specifically, ∀j ∈ [n] \ {i}, compute

– first round of the input-delayed witness indistinguishable proof system

wii→j1 ←WI1
(

1λ
)

– first round of the input-delayed rewinding secure witness indistinguishable proof
system for La

rwii→ja,1 ← RWI1
(

1λ
)

– first round of the input-delayed rewinding secure witness indistinguishable proof
system for Lb

rwii→jb,1 ← RWI1
(

1λ
)

(c) Compute first round of the three commitment schemes. Specifically, ∀j ∈ [n] \ {i},
compute

– first round of the extractable commitment scheme:

ecomi→j
1 := Ecom1

(
ri→jecom

)
using the randomness ri→jecom.

– first round of the rewinding-secure extractable commitment scheme:

recomi→j
1 := RECom1

(
ri→jrecom

)
using the randomness ri→jrecom.

– first round of non-malleable commitment scheme:

nmcomi→j
1 := NMCom1

(
ri→jnmcom

)
using the randomness ri→jnmcom.

(d) The first round of the OT scheme, where Pi is the receiver. Specifically, ∀j ∈ [n] \ {i},
compute

otj→i1 := OT1

(
rj→iot

)
using the randomness rj→iot . Here the superscript j → i indicates that the OT message
is for the instances where Pi is the receiver.

(e) Send(
msg1,i, td1,i,

{
wii→j1 , rwii→ja,1 , rwii→jb,1 , ecomi→j

1 , recomi→j
1 , nmcomi→j

1 , otj→i1

}
j∈[n]\{i}

)
to A.
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2. Round 2:

For the second round too, Sim follows the honest strategy since the inputs of the honest
parties are not required up until the third round of the protocol. Compute the second round
message of all honest parties of the underlying protocol Π,{

msg2,i

}
Pi∈H

:= S2 (Trans1; rS)

using the transcript obtained so far. Where H denotes the set of honest parties. Recall that
this is done as just the honest execution of the second round on behalf of the honest players
Pi using randomness rS := {ri}Pi∈H.

(a) Compute the second round of the trapdoor generation phase TDGen, ∀j ∈ [n] \ {i}

tdi→j2 ← TDGen2 (td1,j)

using randomness rtd,i

(b) Compute second round of the three input delayed witness indistinguishable proof sys-
tems, where Pi takes the role of the verifier. Specifically, ∀j ∈ [n] \ {i}, compute

– second round of the input-delayed witness indistinguishable proof system

wij→i2 ←WI2
(

wij→i1

)
– second round of the input-delayed rewinding secure witness indistinguishable proof

system for La

rwij→ia,2 ← RWI2
(

rwij→ia,1

)
– second round of the input-delayed rewinding secure witness indistinguishable proof

system for Lb

rwij→ib,2 ← RWI2
(

rwij→ib,1

)
Note that the superscript j → i denotes that Pi is computing the second round message
of the proof where Pj is the prover and Pi is the verifier.

(c) Compute second round of the three commitment schemes. Specifically, ∀j ∈ [n] \ {i},
compute

– second round of the extractable commitment scheme:

ecomj→i
2 ← Ecom2

(
ecomj→i

1

)
– second round of the rewinding-secure extractable commitment scheme:

recomj→i
2 ← RECom2

(
recomj→i

1

)
– second round of non-malleable commitment scheme:

nmcomj→i
2 ← NMCom2

(
nmcomj→i

1

)
As in the case of the proofs, the superscript j → i denotes that Pi is the receiver in the
commitment from Pi.
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(d) The second round of the OT scheme, where Pi is the sender. Specifically, ∀j ∈ [n] \ {i},
compute

oti→j2 := OT2

(
oti→j1 ; ri→ji,ot

)
.

Here the superscript i→ j indicates that the OT message is for the instances where Pi
is the sender.

(e) Send(
msg2,i,

{
tdi→j2 ,wij→i2 , rwij→ia,2 , rwij→ib,1 , ecomj→i

2 , recomj→i
2 , nmcomj→i

2 , oti→j2

}
j∈[n]\{i}

)
to A.

3. Round 3:

For round 3, Sim generates the third round messages honestly using input 0.

(a) Compute the third round message of the underlying protocol Π,

msg3,i := Π3 (0,Trans2; ri)

using input 0, randomness ri and the transcript obtained so far.

(b) Compute the second round of the trapdoor generation phase TDGen. Let td2,i :=(
td1→i

2 || · · · ||td1→i
2

)
, compute

td3,i ← TDGen3 (td1,i, td2,i; rtd,i) .

(c) Compute the third round of the non-malleable commitment scheme to commit to ⊥.
Specifically, ∀j ∈ [n] \ {i}, compute

nmcomi→j
3 ← NMCom3

(
⊥, nmcomi→j

1 , nmcomi→j
3 ; ri→jnmcom

)
using the randomness ri→jnmcom.

(d) Compute the third round of the rewinding-secure extractable commitment scheme to
commit to (0, ri). Specifically, ∀j ∈ [n] \ {i}, compute

recomi→j
3 ← RECom3

(
(0, ri), recomi→j

1 , recomi→j
2 ; ri→jrecom

)
using the randomness ri→jrecom.

(e) Compute the third round of the input-delayed rewinding secure witness indistinguishable
proof system for La. Specifically, ∀j ∈ [n] \ {i}, set

sti→ja :=

({
recomi→j

` , nmcomi→j
`

}
`∈[3],j∈[n]\{i}

,
{

msg`,i
}
`in[3]

Trans2, td1,j

)
wi→j
a :=

(
0, ri,

{
ri→jrecom

}
j∈[n]\{i} ,⊥,⊥

)
and compute

rwii→ja,3 ← RWI3
(

sti→ja ,wi→j
a , rwii→ja,1 , rwii→ja,2

)
.
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(f) Compute the third round of the extractable commitment scheme to commit to the third
round proof rwii→ja,3 . Specifically, ∀j ∈ [n] \ {i}, compute

ecomi→j
3 ← Ecom3

(
rwii→ja,3 , ecomi→j

1 , ecomi→j
3 ; ri→jecom

)
using the randomness ri→jecom.

(g) Compute the third round of the input-delayed rewinding secure witness indistinguishable
proof system for Lb. Specifically, ∀j ∈ [n] \ {i}, set

sti→jb :=

({
recomi→j

` , ecomi→j
` , nmcomi→j

`

}
`∈[3],j∈[n]\{i}

,{
nmcomi→j

` ,msg`,i

}
`∈[3]

{
rwii→jb,`

}
`∈[2]

Trans2, td1,j

)
wi→j
b :=

({
ri→jecom

}
j∈[n]\{i} ,⊥,⊥

)
and compute

rwii→jb,3 ← RWI3
(

sti→jb ,wi→j
b , rwii→jb,1 , rwii→jb,2

)
.

(h) Compute the third round of the OT scheme, where Pi is the receiver. Specifically,
∀j ∈ [n] \ {i}, compute

otj→i3 ← OT3

(
rwii→jb,3 , otj→i1 , otj→i2 ; rj→ii,ot

)
.

Here the superscript j → i indicates that the OT message is for the instances where Pi
is the receiver.

(i) Send (
msg3,i, td3,i,

{
ecomi→j

3 , recomi→j
3 , nmcomi→j

3 , otj→i3

}
j∈[n]\{i}

)
to A.

4. Check Abort Condition:

Sim now checks whether A aborted in the third round. This happens if A doesn’t send its
third round messages, or if every honest party aborts if the trapdoor condition does not verify.
Let H denote the set of honest parties. Then check ∀Pi ∈ H, ∃Pj ∈ A,

if TDOut (td1,j , td2,j , td3,j) = 1

then Sim outputs the partial view generated so far and stops. Otherwise, we say that “Check
Abort” succeeded and we proceed.

5. Check Implicit Abort: We run a look ahead threads to extract the RWI proofs for La
from each malicious party Pj . These are extracted from Ecom. We check if all the extracted
RWI proofs verify. This ensures that on the given thread, the malicious parties exhibit honest
behavior. If for even a single malicious party Pj the proofs don’t verify, then we take evasive
action as mentioned in Step 1.5. We denote the “Check Abort” thread as GOOD if the
adversary doesn’t abort explicitly or implicitly.
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Remark 2. We use a specific property of Extecom, namely that since it’s input delayed, the
commitment in the first round is to a mask mask and the input delayed property is achieved
by masking the input with mask. In fact, mask is statistically determined by the first round of
Ecom. Thus, to extract from multiple instances of the input-delayed extractable commitment
with a single shared first message that potentially commit to different inputs, it suffices to
extract mask in a single instance and using mask to unmask, and thus retrieve, other inputs.
Since the mask is extracted by decommittments, it’s easy to verify that the extracted value
mask is indeed correct.

Step 1.5 - Evasive Action for Implicit Abort: We run this step only if there is an implicit
abort. Since we cannot do an explicit abort on behalf of the honest parties, we want to continue
the main thread from Step 1 but garble the C⊥ circuit in the fourth round since we’re sure that
adversary will not be able to evaluate the garbled circuit to produce any other output. But in order
to do this, we will need to extract the trapdoor to prove the WI statement for Lc claiming that
the garbled circuit was computed honestly. We can do this because the adversary did not cause an
explicit abort, and the extracted trapdoor can be publicly checked. Specifically,

1. Create look-ahead threads running rounds 2 and 3 as before, and extract trapdoor tj for ever
adversarial player Pj by running the TDExt on the look-ahead threads.

2. Compute the garbled circuit as
(
Ci, labi

)
:= Garble (C⊥; rgc,i) where C⊥ is the circuit that

always outputs ⊥, but has the same topology as Ci.

3. The OT messages are computed as before.

Step 2 - Rewinding:

1. Sim now rewinds A to the end of round 1 and freezes the main thread at this point. Then,
Sim creates a set of T (to be determined later) look-ahead threads, where on each thread,
only rounds 2 and 3 of the protocol are executed in the following manner:

(a) Round 2:

In every look-ahead thread, for each honest party Pi and for each j ∈ [n] \ {i}, Sim
executes the same strategy as in round 2 of step 1, using fresh randomness each time.

(b) Round 3:

In every look-ahead thread, for each honest party Pi and for each j ∈ [n] \ {i}, Sim
executes the same strategy as in round 3 of step 1, using fresh randomness each time.

2. For each look-ahead thread, define a thread to be GOOD with respect to Pi∗ if for all malicious
parties Pj :

– Pj doesn’t send its third round messages.

– if TDOut (td1,j , td2,j , td3,j) = 1 where td2,j is as computed in round 3.

– The extracted RWI proofs for La where Pj is the prover are all accepting. We use mask
obtained in Step 1 to do the extractions by simply unmasking the commitment in Ecom.

3. The number of threads T created is such that at least (12 · λ) GOOD threads exists. That is,
Sim keeps running till it obtains (12 · λ) GOOD threads.
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Step 3 - Input and Trapdoor Extraction:
Sim does the following:

1. Select 5 threads that are GOOD with respect to some honest party Pi∗ . In each GOOD thread,
we know ∃ honest party Pi such that for all malicious parties Pj , the adversary does not cause
Pi to abort. Since (12 · λ) > (5 · n)8, there must exist one honest party Pi∗ corresponding to
a set of 5 GOOD threads.

2. Trapdoor Extraction: For every corrupted party Pj , extract a trapdoor tj by running the
trapdoor extractor TDExt on input the transcript of the trapdoor generation protocol with Pj
playing the role of the trapdoor generator from any 3 GOOD threads. Specifically, compute

tj ← TDExt

(
td1,

{
tdk2, tdk3

}
k∈[3]

)
where

(
td1, tdk2, tdk3

)
denotes the transcript of the trapdoor generation protocol with Pj as the

sender of the k-th GOOD thread.

3. Input Extraction: For every corrupted party Pj , extract the mask for the input and
randomness pair (xj , rj) by running the extractor ExtRECom on input the transcript of the
extractable commitment protocol between Pj and Pi∗ from the 5 GOOD threads picked above.
That is, compute

maskj→i
∗ ← ExtRECom

(
recomj→i∗

1 ,
{

recomj→i∗
2,k , recomj→i∗

3,k

}
k∈[5]

)
where recomj→i∗

1 , recomj→i∗
2,k , recomj→i∗

3,k denotes the transcript of the extractable commitment
protocol between Pj and Pi∗ on the k-th GOOD thread.

4. Proof Extraction: Since we’ve already extracted the proofs in Step 1, by Remark 2 we
can extract the proofs in each thread without having to rewind, by just unmasking with the
extracted mask from Step 1.

5. Output ⊥extract if any of steps 2 or 3 fail.

Step 4 - Abort Probability Estimation:
Set ε′ = 12·λ

T as the probability that the adversary doesn’t abort.

Step 5 - Re-sampling the Main Thread:
Sim sets a counter to value 0. Now Sim attempts to force the following transcript in the main

thread until it accepts, or the counter reaches the cut-off point.

1. Round 2 :

Run exactly as done in Step 1.

2. Round 3 :

There are some key differences from the threads generated in the previous steps:

8without loss of generality, assume the number of parties n = λ
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– The non-malleable commitment from an honest party Pi to a malicious party Pj now
contains the extracted trapdoor tj .

– The witness indistinguishable proofs use the “trapdoor witness”.

– The third round of the MPC is generated by the simulator for the underlying protocol.

In more detail. Firstly, compute the second round message of all honest parties of the under-
lying protocol Π, {

msg3,i

}
Pi∈H

:= S3 (Trans2; rS)

using the transcript obtained so far. Where H denotes the set of honest parties. In addition,
for each honest Pi, Sim does the following:

(a) Compute the third round of the trapdoor generation phase TDGen. Let td2,i :=
(
td1→i

2 || · · · ||td1→i
2

)
,

compute
td3,i ← TDGen3 (td1,i, td2,i; rtd,i) .

(b) Compute the third round of the non-malleable commitment scheme to commit to the
extracted trapdoor. Specifically, ∀j ∈ [n] \ {i}, compute

nmcomi→j
3 ← NMCom3

(
tj , nmcomi→j

1 , nmcomi→j
3 ; ri→jnmcom

)
using the randomness ri→jnmcom.

(c) Compute the third round of the rewinding-secure extractable commitment scheme to
commit to 0. Specifically, ∀j ∈ [n] \ {i}, compute

recomi→j
3 ← RECom3

(
0, recomi→j

1 , recomi→j
2 ; ri→jrecom

)
using the randomness ri→jrecom.

(d) Compute the third round of the input-delayed rewinding secure witness indistinguishable
proof system for La. Specifically, ∀j ∈ [n] \ {i}, set

sti→ja :=

({
recomi→j

` , nmcomi→j
`

}
`∈[3],j∈[n]\{i}

,
{

msg`,i
}
`in[3]

Trans2, td1,j

)
wi→j
a :=

(
⊥,⊥,⊥, tj , ri→jnmcom

)
and compute

rwii→ja,3 ← RWI3
(

sti→ja ,wi→j
a , rwii→ja,1 , rwii→ja,2

)
.

(e) Compute the third round of the extractable commitment scheme to commit to the third
round proof rwii→ja,3 . Specifically, ∀j ∈ [n] \ {i}, compute

ecomi→j
3 ← Ecom3

(
rwii→ja,3 , ecomi→j

1 , ecomi→j
3 ; ri→jecom

)
using the randomness ri→jecom.
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(f) Compute the third round of the input-delayed rewinding secure witness indistinguishable
proof system for Lb. Specifically, ∀j ∈ [n] \ {i}, set

sti→jb :=

({
recomi→j

` , ecomi→j
` , nmcomi→j

`

}
`∈[3],j∈[n]\{i}

,{
nmcomi→j

` ,msg`,i

}
`∈[3]

{
rwii→jb,`

}
`∈[2]

Trans2, td1,j

)
wi→j
b :=

(
⊥, tj , ri→jnmcom

)
and compute

rwii→jb,3 ← RWI3
(

sti→jb ,wi→j
b , rwii→jb,1 , rwii→jb,2

)
.

(g) Compute the third round of the OT scheme, where Pi is the receiver. Specifically,
∀j ∈ [n] \ {i}, compute

otj→i3 ← OT3

(
rwii→jb,3 , otj→i1 , otj→i2 ; rj→ii,ot

)
.

Here the superscript j → i indicates that the OT message is for the instances where Pi
is the receiver.

(h) Send (
msg3,i, td3,i,

{
ecomi→j

3 , recomi→j
3 , nmcomi→j

3 , otj→i3

}
j∈[n]\{i}

)
to A.

3. Abort Condition:

(a) If the adversary doesn’t send its third round message or ∀Pi ∈ H,∃Pj ∈ A,

if TDOut (td1,j , td2,j , td3,j) = 1

or the extracted proofs for La from Pj do not accept, increment counter by 1.

(b) If Sim’s running time is 2λ. Abort.

(c) If the counter value was not increased, then the adversary did not abort in the third
round. We can proceed to Step 7.

(d) Else, if the counter value is less that λ2

ε′ rewind back to the beginning of round 2 in Step
6 and re-sample the main thread. Otherwise, Abort.

Step 6 - Query the Ideal Functionality:

1. Sim queries the ideal functionality with the set of values {xj} where xj is the input of adver-
sarial party Pj that was extracted in the previous step using mask obtained through extraction
by rewinding. This is done in this manner since the adversary may use a different input in
each thread, and we want to use the input it uses on the main thread. Since the adversary
commits to its input only on completion of the third round on the main thread.

2. Sim receives output y from the ideal functionality.

Step 7 - Finishing the Main Thread:
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1. Round 4:

– Compute the simulated fourth round message of Π

msg4,i ← S4

(
y, {xj , rj}Pj /∈H ,Trans3; rS

)
i

where i on the right hand side indexes the i-th component of the output. Note that S4

will not be called unless there is an honest party Pi that receives all accepting RWI proof
for La.

– Compute the garbled circuit using the simulated fourth round message

(
Ci, labi

)
:= Garble

(
C

[
i,msg4,i,

{
rwij→ib,`

}
`∈[2],j∈[n]\{i}

{
stj→ib

}
j∈[n]\{i}

]
; rgc,i

)
– Compute the third round of the input-delayed rewinding secure witness indistinguishable

proof system for Lb. Specifically, ∀j ∈ [n] \ {i}, set

sti→jc :=

({
msg`,i, nmcomi→j

`

}
`∈[3]

,
{

recomi→j
`

}
`∈[3],j∈[n]\{i}

,{
rwii→jb,`

}
`∈[2],j∈[n]\{i}

,
{

stj→ib

}
j∈[n]\{i}

,Trans3,
{

oti→j`

}
`∈[4],j∈[n]\{i}

, td1,j , C̃i

)
wi→j
b :=

(
⊥, tj , ri→jnmcom

)
and compute

wii→j3 ←WI3
(

sti→jc ,wi→j
c ,wii→j1 ,wii→j2

)
.

– Send (
Ci,
{

wii→j3 , oti→j4 , rj→ii,ot

}
j∈[n]\{i}

)
to A.

2. Output Computation:

In the main thread, for each honest party Pi, Sim does the following:

– If ∃j ∈ [n] \ {i}, such that

WI4
(

stj→ic ,wij→i1 ,wij→i2 ,wij→i3

)
6= 1

where stj→ic is computed as earlier then abort. Also abort if any adversarial party did
not send the fourth round message.

If there is no abort, instruct the ideal functionality to deliver output to the honest parties.
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3.2.2 Hybrids

Assume by contradiction that there is an adversary A that distinguishes the real and ideal worlds
with some non-negligible probability µ. µ will be used to set certain parameters in the hybrids.

HybREAL: Real World: The hybrid is the same as the real world execution. We consider a
simulator SimHyb that plays the role of the honest parties.

Hyb0: Determining Abort in the 3rd Round an Extraction: In this hybrid, SimHyb makes
the following changes:

1. SimHyb executes the first 3 rounds of the protocol using the honest parties’ strategy. If the
adversary causes an abort, SimHyb outputs only the view of the adversary and stops. The rest
of the hybrid is skipped in this case.

2. If the “Check Abort” step succeeds, SimHyb checks if there is an implicit abort by extracting
the RWI proofs. If there is an implicit abort, SimHyb extracts only the trapdoor in the
subsequent step and all hybrids up until the change to the garbled circuit are skipped.

3. If there is no implicit abort, SimHyb rewinds back to after the completion of round 1 of the
protocol and freezes the main thread. SimHyb creates a set of 5·n·λ

µ look ahead threads as
described in Step 2 of Sim. Which is to say that in all the threads, SimHyb uses the honest
parties’ inputs and follows the protocol.

4. SimHyb now extracts the input, trapdoors and proofs from the created look-ahead threads.
Specifically, it runs the “Input and Trapdoor Extraction” phase described in step 3 of the
description of Sim using the first 5 look-ahead threads that are GOOD with respect to some
honest party Pi∗ .

5. SimHyb outputs ⊥extract if the above step fails.

6. SimHyb continues the execution of the main thread it had previously frozen. It does this as
in the honest execution of HybREAL. If the adversary causes an abort, SimHyb rewinds to the
end of round 1 and re-samples the main thread honestly. This process is repeated at most λ

µ

Since µ is noticeable, we are guaranteed that SimHyb will run in polynomial in this hybrid, and
subsequent hybrids, when performing this check.

Hyb1: Using input 0 in the Aborting Step: In this hybrid, SimHyb does the “Check Abort”
step using the input 0 instead of the real honest party inputs. If the adversary does cause an abort,
then SimHyb just outputs the view of the adversary and stops. Else, it proceeds as in Hyb0. This
is done using a sequence of sub-hybrids. We only describe changes made in each sub-hybrid, with
the remaining execution identical to the previous hybrid.

Hyb1,0: Change OT receiver input to 0: In this sub-hybrid, SimHyb only modifies the third
round to replace the OT receiver input for all honest parties with 0. In Hyb0, the receiver
input to the OT was the third message of the RWI proof for Lb.

Hyb1,1: Change Ecom input to 0: In this sub-hybrid, SimHyb only modifies the third round
to replace the Ecom input for all honest parties with 0. In Hyb1,0, the input to Ecom was the
third message of the RWI proof for La.
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Hyb1,2: Change RECom input to 0: In this sub-hybrid, SimHyb only modifies the third
round to replace the RECom input for all honest parties with (0, ri). In Hyb1,1, the input to
Ecom for an honest party Pi was its input and randomness (xi, ri) for the underlying protocol
Π.

Hyb1,3: Change Π input to 0: In this sub-hybrid, SimHyb only modifies the third round
to replace the Π input for all honest parties with 0. In Hyb1,2, the input to Π for an honest
party Pi in the third round was xi.

Hyb1,4: Change Ecom input to RWI: In this sub-hybrid, SimHyb only modifies the third
round to replace the Ecom input for all honest parties with the correctly computed third
message of the RWI proof for La using input 0. In Hyb1,3, the input to Ecom was 0.

Hyb1,5: Change OT receiver input to RWI: In this sub-hybrid, SimHyb only modifies the
third round to replace the OT receiver input for all honest parties with the correctly computed
third message of the RWI proof for Lb using. In Hyb0, the receiver input to the OT was 0.

Note that Hyb1,5 ≡ Hyb1

Hyb2: Using input 0 in the look-ahead threads: In this hybrid, SimHyb modifies each look-
ahead thread to follow the protocol but replacing the honest player inputs with 0. This is done in
a sequence of hybrids, where in each sequence we only modify a single look ahead thread. Since
the number of threads are T , we do the following:

∀k ∈ [T ] the following changes are made only to the k-th thread :

Hyb2,k,0: Change NMCom on k-th thread: In this sub-hybrid, SimHyb only modifies the
third round of the k-th thread to commit in the NMCom to the trapdoor. In Hyb1, NMCom
was a commitment to ⊥. Specifically, for every honest party Pi and every malicious party Pj ,
SimHyb modifies the third round NMCom message to be

nmcomi→j
3 ← NMCom3

(
tj , nmcomi→j

1 , nmcomi→j
3 ; ri→jnmcom

)
where tj is a valid trapdoor extracted from the other look-ahead threads as in Hyb1.

Hyb2,k,1: Switch RWI proofs for La on the k-th thread: In this sub-hybrid, SimHyb only
modifies the third round of the k-th thread to switch to the “trapdoor witness” in the RWI
proofs for La. Specifically, for every honest party Pi and every malicious party Pj , SimHyb

does the following

sti→ja :=

({
recomi→j

` ,msg`,i, nmcomi→j
`

}
`∈[3]

,Trans2, td1,j

)
wi→j
a :=

(
⊥,⊥,⊥, tj , ri→jnmcom

)
and compute

rwii→ja,3 ← RWI3
(

sti→ja ,wi→j
a , rwii→ja,1 , rwii→ja,2

)
.

Hyb2,k,2: Switch RWI proofs for Lb on the k-th thread: In this sub-hybrid, SimHyb only
modifies the third round of the k-th thread to switch to the “trapdoor witness” in the RWI
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proofs for Lb. Specifically, for every honest party Pi and every malicious party Pj , SimHyb

does the following

sti→jb :=

({
recomi→j

` , ecomi→j
` ,msg`,i, nmcomi→j

`

}
`∈[3]

,
{

rwii→jb,`

}
`∈[2]

Trans2, td1,j

)
wi→j
b :=

(
⊥, tj , ri→jnmcom

)
and compute

rwii→jb,3 ← RWI3
(

sti→jb ,wi→j
b , rwii→jb,1 , rwii→jb,2

)
.

Hyb2,k,3: Change RECom input to 0 on the k-th thread: In this sub-hybrid, SimHyb only
modifies the third round of the k-th thread to replace the RECom input for all honest parties
with (0, ri). In Hyb2,2, the input to Ecom for an honest party Pi was its input and randomness
(xi, ri) for the underlying protocol Π. This is done by a sequence of sub-hybrids given below.

Hyb2,k,3,0: Change Com sender’s message on main thread: In this hybrid, SimHyb

changes the Com commitment inside the RECom in the first round of the protocol.
Specifically, for every honest party Pi and malicious party Pj and for all ` ∈ [N ],
compute recom1,` ← Com(0).

Hyb2,k,3,1: Change polynomial in third round: In this hybrid, SimHyb picks a new
polynomial q to change the RECom third round messages. Specifically, for every honest
party Pi and malicious party Pj do the following:

– for every ` ∈ [N ], pick a new degree 4 polynomial q` such that (xi ⊕ p`(0)) =
(0⊕ q`(0)).

– compute recom3,` as (0⊕ q`(0), q`(z`).

Hyb2,k,3,2: Commit to new polynomial: In this hybrid, SimHyb changes the Com
commitment inside the RECom in the first round of the protocol. Specifically, for every
honest party Pi and malicious party Pj and for all ` ∈ [N ], compute recom1,` ← Com(q`).

Note that Hyb2,k,3,2 ≡ Hyb2,k,3

Hyb2,k,4: Change Π input to 0 on the k-th thread: In this sub-hybrid, SimHyb only
modifies the third round of the k-th thread to replace the Π input for all honest parties with
0. In Hyb2,3, the input to Π for an honest party Pi in the third round was xi.

Hyb2,k,5: Switch RWI proofs for Lb on the k-th thread: In this sub-hybrid, SimHyb only
modifies the third round of the k-th thread to switch back to the “honest witness” in the RWI
proofs for Lb. Specifically, for every honest party Pi and every malicious party Pj , SimHyb

does the following

sti→jb :=

({
recomi→j

` , ecomi→j
` ,msg`,i, nmcomi→j

`

}
`∈[3]

,
{

rwii→jb,`

}
`∈[2]

Trans2, td1,j

)
wi→j
b :=

(
ri→jecom,⊥,⊥

)
and compute

rwii→jb,3 ← RWI3
(

sti→jb ,wi→j
b , rwii→jb,1 , rwii→jb,2

)
.
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Hyb2,k,6: Switch RWI proofs for La on the k-th thread: In this sub-hybrid, SimHyb only
modifies the third round of the k-th thread to switch back to the “honest witness” in the RWI
proofs for La. Specifically, for every honest party Pi and every malicious party Pj , SimHyb

does the following

sti→ja :=

({
recomi→j

` ,msg`,i, nmcomi→j
`

}
`∈[3]

,Trans2, td1,j

)
wi→j
a :=

(
0, ri, r

i→j
recom,⊥,⊥

)
and compute

rwii→ja,3 ← RWI3
(

sti→ja ,wi→j
a , rwii→ja,1 , rwii→ja,2

)
.

Hyb2,k,7: Change NMCom on k-th thread: In this sub-hybrid, SimHyb only modifies the
third round of the k-th thread to commit in the NMCom to ⊥. Specifically, for every honest
party Pi and every malicious party Pj , SimHyb modifies the third round NMCom message to
be

nmcomi→j
3 ← NMCom3

(
⊥, nmcomi→j

1 , nmcomi→j
3 ; ri→jnmcom

)
.

Note that Hyb2,T,7 ≡ Hyb2

Hyb3: Change NMCom on main thread: In this hybrid, SimHyb only modifies the third round of
the main thread to commit in the NMCom to the trapdoor. In Hyb2, NMCom was a commitment to
⊥. Specifically, for every honest party Pi and every malicious party Pj , SimHyb modifies the third
round NMCom message to be

nmcomi→j
3 ← NMCom3

(
tj , nmcomi→j

1 , nmcomi→j
3 ; ri→jnmcom

)
where tj is a valid trapdoor extracted from the look-ahead threads as in Hyb2.

Hyb4: Switch RWI proofs for La on the main thread: In this hybrid, SimHyb only modifies
the third round of the main thread to switch to the “trapdoor witness” in the RWI proofs for La.
Specifically, for every honest party Pi and every malicious party Pj , SimHyb does the following

sti→ja :=

({
recomi→j

` ,msg`,i, nmcomi→j
`

}
`∈[3]

,Trans2, td1,j

)
wi→j
a :=

(
⊥,⊥,⊥, tj , ri→jnmcom

)
and compute

rwii→ja,3 ← RWI3
(

sti→ja ,wi→j
a , rwii→ja,1 , rwii→ja,2

)
.

Hyb5: Switch RWI proofs for Lb on the main thread: In this hybrid, SimHyb only modifies
the third round of the main thread to switch to the “trapdoor witness” in the RWI proofs for Lb.
Specifically, for every honest party Pi and every malicious party Pj , SimHyb does the following

sti→jb :=

({
recomi→j

` , ecomi→j
` ,msg`,i, nmcomi→j

`

}
`∈[3]

,
{

rwii→jb,`

}
`∈[2]

Trans2, td1,j

)
wi→j
b :=

(
⊥, tj , ri→jnmcom

)
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and compute

rwii→jb,3 ← RWI3
(

sti→jb ,wi→j
b , rwii→jb,1 , rwii→jb,2

)
.

Hyb6: Switch WI proofs for Lc on the main thread: In this hybrid, SimHyb only modifies
the fourth round of the main thread to switch to the “trapdoor witness” in the WI proofs for Lc.
Specifically, for every honest party Pi and every malicious party Pj , SimHyb does the following

sti→jc :=

({
recomi→j

` ,msg`,i, nmcomi→j
`

}
`∈[3]

,
{

rwii→jb,`

}
`∈[2]

Trans3,
{

oti→j`

}
`∈[4]

, td1,j ,Ci

)
wi→j
c :=

(
⊥,⊥,⊥,⊥, tj , ri→jnmcom

)
and compute

wii→j3 ←WI3
(

sti→jc ,wi→j
c ,wii→j1 ,wii→j2

)
.

Hyb7: Change RECom input to 0 on the main thread: In this hybrid, SimHyb only modifies
the third round of the k-th thread to replace the RECom input for all honest parties with (0, ri).
In Hyb6, the input to Ecom for an honest party Pi was its input and randomness (xi, ri) for the
underlying protocol Π.

Hyb8: Change GC on main thread: In this hybrid SimHyb only modifies the garbled circuits of
honest parties Pi if there is an implicit abort in Step 1. Specifically, if there is an implicit abort,
the garbled circuit for each honest party Pi is computed as:(

Ci, labi
)
← Garble (C⊥)

where C⊥ is the circuit with the same topology as C but always outputs ⊥. We note that even in
the case of an implicit abort, we’re able to extract the trapdoor, but not necessarily the witness.

Hyb9: Simulate Π on main thread: In this hybrid SimHyb only modifies the transcript of the
underlying protocol Π. Specifically, SimHyb does the following:

1. Due to the fact that the first two simulated rounds of Π are honest computations, we do not
make any changes to the first two rounds but refer to the collective first round honest inputs
as the output of S1 with randomness rS := {ri}Pi∈H. Likewise for the second round messages.

2. Compute the third round messages of all honest parties in the underlying protocol Π{
msg3,i

}
Pi∈H

:= S3 (Trans2; rS)

using the transcript obtained so far and randomness rS as defined above.

3. Compute the third round messages of all honest parties in the underlying protocol Π{
msg4,i

}
Pi∈H

← S4

(
y, {xj , rj}Pj /∈H ,Trans3; rS

)
where i on the right hand side indexes the i-th component of the output. Note that S4 will
not be called unless there is an honest party Pi that receives all accepting RWI proof for
La. And for honest parties Pi whose garbled circuit is being simulated, we won’t need their
corresponding msg4,i.
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HybIDEAL: Run the actual probability estimation: In this hybrid, the number of look-ahead
threads is increased from 5·n·λ

µ to as many as needed to estimate the probability of the adversary

not aborting − ε′.
Additionally, at this point, SimHyb doesn’t re-sample the main thread λ

µ times. Instead, SimHyb

resamples the main thread for min
(

2λ, λ
2

ε′

)
times as in the ideal world. This hybrid corresponds

exactly to the ideal world.

3.2.3 Indistinguishability of Hybrids

We will maintain the following invariant across the hybrids.

Definition 11 (Invariant). Consider any malicious party Pj and any honest party Pi. td1,i denotes
the first message of the trapdoor generation protocol with Pi as the trapdoor generator. The tuple(

nmcomj→i
1 , nmcomj→i

2 , nmcomj→i
3

)
denotes the messages of the non-malleable commitment with

Pj as the committer.

Consider the following event E which occurs if ∃
(
j, i, ti, r

j→i
nmcom

)
such that

1. nmcomj→i
1 = NMCom1(rj→inmcom) (AND)

2. nmcomj→i
3 = NMCom3(ti, nmcomj→i

1 , nmcomj→i
2 ; rj→inmcom) (AND)

3. TDValid(td1,i, ti)

That is, the event E occurs if any corrupted party Pj commits to a valid trapdoor ti (correspond-
ing to the trapdoor generation protocol where Pi was the trapdoor generator) in the non-malleable
commitment protocol with Pi.

The invariant is
Pr
[
Event E occurs

]
≤ negl(λ)

Claim 1. Assuming the “1-rewinding security” of the trapdoor generation protocol TDGen and
the existence of an extractor ExtNMCom for the non-malleable commitment scheme NMCom, the
invariant holds in HybREAL.

Proof. This is proven by contradiction. Assume that the invariant doesn’t hold in HybREAL. Then
there exists an adversary A such that for some honest party Pi∗ and malicious party Pj∗ , A causes
event E to occur with non-negligible probability. We will use this adversary to create an adversary
ATDGen that breaks the “1-rewinding security” of the trapdoor generation protocol TDGen with
non-negligible probability.

We now describe the working of ATDGen which interacts with the challenger CTDGen. ATDGen

picks randomly an honest party Pi and a random malicious party Pj . All messages other than the
trapdoor messages are computed in the same manner as SimHyb. The trapdoor messages for Pi are
exposed to the external challenger. Specifically, in round 1, set td1,i = td1 where td1 is received

from CTDGen. On receiving all the values td1→i
2 , · · · , tdn→i2 , including the value tdj→i2 from A in

round 2, ATDGen sets td2,i :=
(
td1→i

2 || · · · ||td1→i
2

)
and this is the value forwarded to CTDGen as the

second round response. Set td3,i = td3 where td3 is received from CTDGen and compute the rest of
the third round messages for A. At this point, ATDGen rewinds A back to the beginning of round 2
to enable extraction from the NMCom. Specifically, ATDGen creates a look ahead thread that runs
only the second and third round. As in the main thread, the trapdoor messages are received from
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CTDGen. Recall that the “1-rewinding” property of the trapdoor generation protocol allows for a
second td2 query to CTDGen.

Now ATDGen runs the extractor ExtNMCom of the non-malleable commitment scheme using the
message in both the threads that correspond to the non-malleable commitment from malicious
party Pj to honest party Pi. Let the output of ExtNMCom be t∗. ATDGen outputs t∗ as a valid
trapdoor to CTDGen.

By our assumption, since the invariant doesn’t hold, the adversary Pj∗ commits to a valid
trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗ with non-negligible
probability ε. With probability at least 1

n2 , where n is the total number of players, this corresponds
to honest party Pi and malicious party Pj picked randomly by ATDGen. Therefore, with non-
negligible probability ε

n2 , the adversary Pj , using the non-malleable commitment, commits to a
valid trapdoor ti∗ for the trapdoor generations messages of the honest party Pi. Now, by the
2-extractability property, given the messages of the non-malleable commitment in 2 threads, the
extractor ExtNMCom is successful with some non-negligible probability ε′. Therefore, with non-
negligible probability ε·ε′

n2 , ATDGen outputs t∗ as a valid trapdoor to CTDGen which breaks the 1-
rewinding security of the trapdoor generation protocol TDGen. Thus, it must be the case that the
invariant holds in HybREAL.

Claim 2. The invariant holds in Hyb0.

Proof. Since there is no difference in the main thread in the first 3 rounds between HybREAL and
Hyb0, the invariant continues to hold.

Claim 3. Hyb0 is indistinguishable from HybREAL except with probability at most µ
4 + negl(λ).

Proof. This is argued in two cases depending on the probability with which the adversary abort.

Case 1: Pr[not abort] ≥ µ
4 :

Suppose the adversary doesn’t cause an abort with probability greater that µ
4 . Let us analyze

the probability with which ⊥extract is output by SimHyb. By the Chernoff bound, in Hyb0,
except with negligible probability, in the set of 5·n·λ

µ threads, there will be at least 5 GOOD
threads with respect to some honest party Pi∗ . Now all that’s left to argue is that ExtRECom
and TDExt fail to extract with negligible probability.

From the definition of RECom, algorithm ExtRECom is successful except with negligible

probability if given as input
(

recom1,
{

recomk
2, recomk

3

}
k∈[5]

)
such that

(
recom1, recomk

2, recomk
3

)
constitute “well-formed” and “admissible” rewinding secure extractable commitment mes-
sages. “Admissibility” follows trivially since SimHyb picks random challenges z for the ex-
tractable commitment. From the above claim, we’ve proved that the invariant holds in
Hyb0, and thus from the soundness of RWI and WI, in each GOOD thread with respect to
some honest party Pi∗ , the following holds: for every malicious Pj and every honest Pi,(

recomj→i
1 , recomj→i

2 , recomj→i
3

)
is a “well formed” tuple of RECom. Thus ExtRECom fails only

with negligible probability.
From the definition of TDGen, algorithm TDExt is successful except with negligible prob-

ability if given as input
(

td1,
{

tdk2, tdk3
}
k∈[3]

)
where td1 is the first message of the protocol

TDGen and tdk2, tdk3 denote the second and third round message of the k-th execution of
TDGen using the same first round message. Since there are 5 GOOD threads, we can extract
every malicious party’s trapdoor except with negligible probability.

45



Finally, from the Chernoff bound, in the set of λ
µ re-sampled main threads, there will

be at least one completed execution. Thus, the adversary’s view in HybREAL and Hyb0 is
indistinguishable.

Case 2: Pr[not abort] < µ
4 :

Suppose the adversary doesn’t cause an abort with probability smaller than µ
4 . Then, in

both hybrids, SimHyb aborts at the end of the “Check Abort” step except with probability µ
4 .

Thus, in this case, the adversary’s view in HybREAL and Hyb0 is indistinguishable except with
probability at most µ

4 + negl(λ).

Claim 4. The invariant holds in Hyb1,0.

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,0 and
Hyb0, the invariant continues to hold.

Claim 5. Assuming the hiding property of OT against malicious senders, Hyb1,0 is indistinguishable
from Hyb0.

Proof. The only difference between the two hybrids is when the “Check Abort” step doesn’t succeed.
In that case, in Hyb0, SimHyb uses as input to OT the third round message for the RWI proof for Lb,
while in Hyb1,0, SimHyb uses input 0 for the third round of OT. This is in fact done by a sequence
of hybrids, wherein only a single instance of the honest party’s input to the OT is changed. There
are < n2 instances where an honest party is the receiver, and thus at most n2 intermediate hybrids.
Suppose there is an adversary D that can distinguish between any two adjacent hybrids, we will
create an adversary AOT that breaks the hiding of the OT scheme. Recall that this is only in the
setting that “Check Abort” doesn’t succeed and hence the fourth round messages of the honest
party are not sent.

We now describe the working of AOT which interacts with the challenger COT. Let the change
in these adjacent hybrids be made for an honest party Pî to a party Pĵ . All messages other than

those of the chosen OT are computed as in the same manner as SimHyb. First, set otj→i1 := ot1

where ot1 is sent by COT. On receiving/computing9 message otj→i1 , send this along with (rwii→jb,3 , 0)

to COT. Where rwii→jb,3 is computed as in the previous hybrid by SimHyb. COT then chooses as input

one of the two values at random and sends ot3. AOT sets otj→i3 := ot3. The view generated is then
given to the adversary D, wherein depending on the choice of COT, the view corresponds to one of
the two adjacent hybrids. The output from D is set to be the output of AOT.

By our assumption, views of adjacent hybrids are distinguishable with non-negligible probability
ε. Therefore, with the same probability ε AOT can break the hiding property of OT. Thus, it must
be the case that ε is negligible. Since there are at most n2 intermediate hybrids, the two end
hybrids, Hyb1,0 and Hyb0, remain indistinguishable except with negligible probability.

Claim 6. The invariant holds in Hyb1,1.

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,1 and
Hyb1,0, the invariant continues to hold.

Claim 7. Assuming the hiding property of Ecom, Hyb1,1 is indistinguishable from Hyb1,0.

9Since the OT sender in question may in fact be an honest party.
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Proof. The proof works in the same way as the proof in the above claim. The only difference
between the two hybrids is when the “Check Abort” step doesn’t succeed. In that case, in Hyb1,0,
SimHyb uses as input to Ecom the third round message for the RWI proof for La, while in Hyb1,1,
SimHyb uses input 0 for the third round of Ecom. This is in fact done by a sequence of hybrids,
wherein only a single instance of the honest party’s input to the Ecom is changed. There are
< n2 instances where an honest party is the committer, and thus at most n2 intermediate hybrids.
Suppose there is an adversary D that can distinguish between any two adjacent hybrids, we will
create an adversary ARECom that breaks the hiding of the Ecom scheme.

We now describe the working of AEcom which interacts with the challenger CEcom. Let the
change in these adjacent hybrids be made for an honest party Pî to a party Pĵ . All messages
other than those of the chosen Ecom are computed as in the same manner as SimHyb. First, set

ecomi→j
1 := recom1 where ecom1 is sent by Crecom. On receiving/computing message ecomi→j

1 ,

send this along with (rwii→ja,3 , 0) to CEcom. Where rwii→jb,3 is computed as in the previous hybrid by
SimHyb. CEcom then commits to one of the two values at random and sends recom3. AEcom sets

ecomi→j
3 := ecom3. The view generated is then given to the adversary D, wherein depending on

the choice of CEcom, the view corresponds to one of the two adjacent hybrids. The output from D
is set to be the output of AEcom.

By our assumption, views of adjacent hybrids are distinguishable with non-negligible probability
ε. Therefore, with the same probability ε AEcom can break the hiding property of Ecom. Thus, it
must be the case that ε is negligible. Since there are at most n2 intermediate hybrids, the two end
hybrids, Hyb1,1 and Hyb1,0, remain indistinguishable except with negligible probability.

Claim 8. The invariant holds in Hyb1,2.

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,2 and
Hyb1,1, the invariant continues to hold.

Claim 9. Assuming the hiding property of RECom, Hyb1,2 is indistinguishable from Hyb1,1.

Proof. The proof works in the same way as the proof in the above claim. The only difference
between the two hybrids is when the “Check Abort” step doesn’t succeed. In that case, in Hyb1,1,
SimHyb uses as input to RECom (x̂i, r̂i), while in Hyb1,2, SimHyb uses input 0 for the third round of
RECom. This is in fact done by a sequence of hybrids, wherein only a single instance of the honest
party’s input to the RECom is changed. There are < n2 instances where an honest party is the
committer, and thus at most n2 intermediate hybrids. Suppose there is an adversary D that can
distinguish between any two adjacent hybrids, we will create an adversary ARECom that breaks the
hiding of the RECom scheme.

We now describe the working of ARECom which interacts with the challenger CRECom. Let the
change in these adjacent hybrids be made for an honest party Pî to a party Pĵ . All messages
other than those of the chosen RECom are computed as in the same manner as SimHyb. First, set

recomi→j
1 := recom1 where recom1 is sent by Crecom. On receiving/computing message recomi→j

1 ,
send this along with

(
(x̂i, r̂i), 0

)
to CRECom. Where (x̂i, r̂i) is the input and randomness of Pî

computed as in the previous hybrid by SimHyb. CRECom then commits to one of the two values

at random and sends recom3. ARECom sets recomi→j
3 := recom3. The view generated is then given

to the adversary D, wherein depending on the choice of CRECom, the view corresponds to one of the
two adjacent hybrids. The output from D is set to be the output of ARECom.

By our assumption, views of adjacent hybrids are distinguishable with non-negligible probability
ε. Therefore, with the same probability ε ARECom can break the hiding property of RECom. Thus,
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it must be the case that ε is negligible. Since there are at most n2 intermediate hybrids, the two
end hybrids, Hyb1,2 and Hyb1,1, remain indistinguishable except with negligible probability.

Claim 10. The invariant holds in Hyb1,3.

Proof. Since there is no difference in the main thread in the first 3 rounds between Hyb1,3 and
Hyb1,2, the invariant continues to hold.

Claim 11. Assuming the indistinguishability of the first round of Π, Hyb1,3 is indistinguishable
from Hyb1,2.

Proof. The proof works in a similar way as the proof in the above claim. The only difference
between the two hybrids is when the “Check Abort” step doesn’t succeed. In that case, in Hyb1,2,
SimHyb uses as input to the third round of Π 10 (xi, ri) for all honest parties Pi, while in Hyb1,3,
SimHyb uses as input to the third round of Π (0, r̂i) for all honest parties Pi. This is in fact done
by a sequence of hybrids, wherein only a single instance of the honest party’s input to the Π is
changed. There are < n parties, and thus at most n2 intermediate hybrids. Suppose there is an
adversary D that can distinguish between any two adjacent hybrids, we will create an adversary
AΠ that breaks the indistinguishability of Π.

We now describe the working of AΠ which interacts with the challenger CΠ. Let the change
in these adjacent hybrids be made for an honest party Pi. All messages other than those of the
chosen Π are computed as in the same manner as SimHyb. First, set msg1,i := msg1 where msg1 is
sent by Crecom. On receiving and computing message msg1,j for all other parties Pj , send this to
CΠ. Set msg2,i := msg2 where msg2 is sent by Crecom. On receiving and computing message msg2,j

for all other parties Pj , send this to CΠ along with ((xi, ri), (0, ri)). Where (xi, ri) is the input and
randomness of Pi computed as in the previous hybrid by SimHyb. CΠ then uses one of the two
values at random and sends msg3. AΠ sets msg3,i := msg3. The view generated is then given to
the adversary D, wherein depending on the choice of CΠ, the view corresponds to one of the two
adjacent hybrids. The output from D is set to be the output of AΠ.

By our assumption, views of adjacent hybrids are distinguishable with non-negligible probability
ε. Therefore, with the same probability ε AΠ can break the input indistinguishability property of
Π. Thus, it must be the case that ε is negligible. Since there are at most n intermediate hybrids, the
two end hybrids, Hyb1,3 and Hyb1,2, remain indistinguishable except with negligible probability.

This gives us that Hyb1 and Hyb0 are indistinguishable other than with negligible probability.

We now prove claims for all k ∈ [T ], where we set Hyb2,0,7 ≡ Hyb1

We note that we will argue that the invariant holds even in the look ahead thread that we’re
making changes in. Initially, since all the look ahead threads are identical to the main thread, by
10 we know that the invariant holds in each of them. The invariant is useful since we will argue
that if the invariant holds true, the probability of the extracted RWI accepting cannot change with
noticeable probability. This guarantees that, with the change, we’re still successfully extracting
from the adversary with the same probability.

Claim 12. Assuming NMCom is a secure non-malleable commitment scheme, the invariant holds
in Hyb2,k,0.

10This is the first round of Π that uses the input.
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Proof. First, observe that if the number of GOOD look-ahead threads is less than 5 with respect to
every honest party, then SimHyb outputs ⊥extract is both hybrids and they’re identical. Therefore,
suppose we have 5 GOOD look-ahead threads in both hybrids with respect to some honest party
Pi.

We know that the invariant holds Hyb2,k−1,7. The only difference between Hyb2,k−1,7 and Hyb2,k,0

is that the simulator commits to the trapdoor in the k-th look ahead thread. Assume, for the sake
of contradiction, that the invariant doesn’t hold in Hyb2,k,0. Then there exists an adversary A
such that for some honest party Pi∗ and malicious party Pj∗ , A causes event E to occur with non-
negligible probability. We will use this adversary to create an adversary ANMCom that breaks the
security of the non-malleable commitment scheme NMCom with non-negligible probability.

We now describe the working of ANMCom which interacts with the challenger CNMCom. ANMCom

picks randomly an honest party Pi and a random malicious party Pj . All messages other than the
chosen NMCom messages are computed in the same manner as SimHyb. The NMCom messages from

Pi to Pj are exposed to the external challenger. Specifically, in round 1, set nmcomi→j
1 := nmcomL

1

where nmcomL
1 is received from CNMCom for the left execution. On receiving nmcomj→i

1 from A,
ANMCom forwards this to CNMCom as its first round message on the right hand side.
ANMCom creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3 of

the protocol alone. In each look-ahead thread, ANMCom computes nmcomi→j
3 as a commitment to

⊥. From the definition of the NMCom scheme, ANMCom can do this even without knowing the
randomness used to generate nmcomi→j

1 . These 5 threads are all GOOD with respect to some party
H with noticeable probability. With the 5 threads, ANMCom can successfully run the input and
trapdoor extraction phase.

On the k-th thread ANMCom receives nmcomR
2 from CNMCom as the second round message on

the right side which it sets as the value nmcomj→i
2 . On receiving nmcomi→j

2 in the k-th thread,
ANMCom sends this to CNMCom as its second round message on the left side along with the pair of
values (⊥, tj) where tj was obtained during the extraction phase.
ANMCom receives a third round message nmcomL

3 which is either a commitment to ⊥ or tj . This

is sent to A as the value nmcomi→j
3 in the k-th thread. On receiving nmcomj→i

3 from A in the main
thread, ANMCom sends it to CNMCom as its third round message in the right thread. Depending on
the value committed to by CNMCom, we are either in Hyb2,k−1,7 or Hyb2,k,0.

By our assumption, since the invariant doesn’t hold, the adversary Pj∗ commits to a valid
trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗ with non-negligible
probability ε. With probability at least 1

n2 , where n is the total number of players, this corresponds
to honest party Pi and malicious party Pj picked randomly by ANMCom. Therefore, with non-
negligible probability ε

n2 , the adversary Pj , using the non-malleable commitment, commits to a
valid trapdoor ti∗ for the trapdoor generations messages of the honest party Pi. Therefore, with
non-negligible probability ε

n2 , ANMCom commits to a valid trapdoor t∗.
Therefore, when the value committed to by the honest party in the left execution changed, the

value committed to by the adversary in the right execution changed with noticeable probabiliyt.
This breaks the security of NMCom, which is a contradiction. Thus the invariant must also hold
for Hyb2,k,0.

Claim 13. Assuming hiding of NMCom, Hyb2,k−1,7 is indistinguishable from Hyb2,k,0

Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue that the
extraction continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one
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hybrid and not the other. The only difference between Hyb2,k−1,7 and Hyb2,k,0 is that the simulator
commits to the trapdoor in the k-th look ahead thread.

Since we’ve already established that the variant holds in each look-ahead thread independently,
we want to use the fact that the probability that the RWI proof for La is accepting cannot change
with noticeable probability if the invariant is true. If this were the case, the probability SimHyb

outputs ⊥extract will not change in the extraction phase of the two hybrids, since La proves honest
behavior of the first 3 rounds of the protocol.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary A
such that for some honest party Pi∗ and malicious party Pj∗ , A commits RWI proofs for La in Ecom
such that the probability of accept in the two cases in non-negligible. We will use this adversary
to create an adversary ANMCom that breaks the hiding of the non-malleable commitment scheme
NMCom with non-negligible probability.

We now describe the working of ANMCom which interacts with the challenger CNMCom. ANMCom

picks randomly an honest party Pi and a random malicious party Pj . All messages other than the
chosen NMCom messages are computed in the same manner as SimHyb. The NMCom messages from

Pi to Pj are exposed to the external challenger. Specifically, in round 1, set nmcomi→j
1 := nmcom1

where nmcom1 is received from CNMCom.
ANMCom creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3 of

the protocol alone. In each look-ahead thread, ANMCom computes nmcomi→j
3 as a commitment to

⊥. From the definition of the NMCom scheme, ANMCom can do this even without knowing the
randomness used to generate nmcomi→j

1 . These 5 threads are all GOOD with respect to some party
H with noticeable probability. With the 5 threads, ANMCom can successfully run the input and
trapdoor extraction phase.

On receiving nmcomi→j
1 , ANMCom forwards it to CNMCom along with pair of values (⊥, tj) where

tj was obtained during the extraction phase.
ANMCom receives a third round message nmcomL

3 which is either a commitment to ⊥ or tj . This

is sent to A as the value nmcomi→j
3 on the k-th thread. On receiving the third round messages

from A, from 2 GOOD look ahead threads with respect to Pi, extract rwij→ia,3 from Ecom11. From
the definition of Ecom, the extracted value can be verified to be correctly extracted. ANMCom now
checks if

RWI4
(

stj→ia , rwij→ia,1 , rwij→ia,2 , rwij→ia,3

)
= 1.

If so, it guesses that the commitment was to ⊥. Otherwise, it guesses that the commitment was to
tj . Let us define Trap as the event that the commitment was to the trapdoor and Trap as the even
that the commitment was to ⊥. From the challenge game, we know Pr [Trap] = Pr

[
Trap

]
= 1

2

Pr [guess correct] = Pr
[
guess correct

∣∣∣ Trap
]
· Pr [Trap] + Pr

[
guess correct

∣∣∣ Trap
]
· Pr

[
Trap

]
= Pr

[
guess correct

∣∣∣ Trap
]
· 1

2
+ Pr

[
guess correct

∣∣∣ Trap
]
· 1

2

=
1

2
·
(

Pr
[
RWI proof accepts

∣∣∣ Trap
]

+ Pr
[
RWI proof rejects

∣∣∣ Trap
])

=
1

2
·
(

Pr
[
RWI proof accepts

∣∣∣ Trap
]

+ 1− Pr
[
RWI proof accepts

∣∣∣ Trap
])

=
1

2
+

1

2
·
(

Pr
[
RWI proof accepts

∣∣∣ Trap
]
− Pr

[
RWI proof accepts

∣∣∣ Trap
])

11The extraction in fact does not require further rewinds since mask already extracted in the “Check Abort” phase.
But for simplicity, we ignore this point for now.
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By our assumption, the adversary Pj∗ ’s acceptance probability of the RWI proof for La to Pi∗

differs non-negligible probability ε. With probability at least 1
n2 , where n is the total number of

players, this corresponds to honest party Pi and malicious party Pj picked randomly by ANMCom.
Therefore, Pj ’s acceptance probability of the RWI proof for La to Pi differs non-negligible probability
ε
n2 . Now, by the 2-extractability property, given the messages of the extractable commitment in
2 threads, the extractor ExtEcom is successful with some non-negligible probability ε′. Therefore,
with non-negligible advantage ε·ε′

2·n2 , ANMCom wins the challenge game with CNMCom which breaks the
hiding property of NMCom. Thus, εmust be negligible, and thus the views are indistinguishable.

Claim 14. Assuming Assuming that RWI is a bounded rewinding secure protocol, and the existence
of an extractor ExtNMCom, the invariant holds in Hyb2,k,1.

Proof. We know that the invariant holds Hyb2,k,0. The only difference between Hyb2,k,0 and Hyb2,k,1

is that the simulator switches the witness in the RWI for La. Assume, for the sake of contradiction,
that the invariant doesn’t hold in Hyb2,k,1. Then there exists an adversary A such that for some
honest party Pi∗ and malicious party Pj∗ , A causes event E to occur with non-negligible probability.
We will use this adversary to create an adversary ARWI that breaks the bounded rewinding security
of RWI with non-negligible probability.

We now describe the working of ARWI which interacts with the challenger CRWI. ARWI picks
randomly an honest party Pi and a random malicious party Pj . All messages other than the chosen
RWI messages are computed in the same manner as SimHyb. The RWI messages from Pi to Pj are

exposed to the external challenger. Specifically, in round 1, set rwii→ja,1 := rwi1 where rwi1 is received
from CRWI.

After receiving rwii→ja,2 from A, ARWI creates a set of 5 look-ahead threads, in each of which, it

runs rounds 2 and 3 of the protocol alone. In each look-ahead thread, ARWI on receiving rwii→ja,1

forwards it to CRWI as its second round message. For each thread, ARWI also sends the statement

sti→ja :=

({
recomi→j

` ,msg`,i, nmcomi→j
`

}
`∈[3]

,Trans2, td1,j

)
where the other values are generated as in Hyb2,k,0.

In the main thread, ARWI also sends the pair of witnesses
(

xi, ri, r
i→j
recom,⊥,⊥

)
and

(
⊥,⊥,⊥, tj , ri→jnmcom

)
where tj is obtained in the input extraction phase. For the look-ahead threads for extraction, ARWI

sends the witness
(

xi, ri, r
i→j
recom,⊥,⊥

)
. For each thread, ARWI receives rwi3 which is set as rwii→ja,3 .

Recall that RWI is secure even in the presence of 6 total threads. Now ARWI runs the extractor
ExtNMCom of the non-malleable commitment scheme using the message in both the threads that
correspond to the non-malleable commitment from malicious party Pj to honest party Pi. Let the
output of ExtNMCom be t∗. If TDValid(td1,i, t

∗) = 1, then ARWI outputs case 2 indicating that the
RWI was constructed using the second witness on the main thread. Else, it outputs case 1.

By our assumption, since the invariant doesn’t hold, the adversary Pj∗ commits to a valid
trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗ with non-negligible
probability ε. With probability at least 1

n2 , where n is the total number of players, this corresponds
to honest party Pi and malicious party Pj picked randomly by ARWI. Therefore, with non-negligible
probability ε

n2 , the adversary Pj , using the non-malleable commitment, commits to a valid trapdoor
ti∗ for the trapdoor generations messages of the honest party Pi. Since the invariant holds in
Hyb2,k,0, by the 2-extractability property of the non-malleable commitment, when the extractor
ExtNMCom outputs a valid trapdoor t∗, it must be the case that we’re in Hyb2,k,1 with non-negligible
probability. That is, when ExtNMCom outputs a valid trapdoor, it corresponds to ARWI receiving
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a proof using the trapdoor witness and otherwise it corresponds to ARWI receiving a proof using
the first witness. Thus, ARWI breaks the bounded rewinding security of the scheme RWI which is
a contradiction. Therefore, the invariant also holds for Hyb2,k,1.

Claim 15. Assuming the bounded rewinding witness indistinguishability RWI, Hyb2,k,0 is indistin-
guishable from Hyb2,k,1

Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue that the
extraction continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one
hybrid and not the other. The only difference between Hyb2,k,0 and Hyb2,k,1 is that the simulator
switches the witness in the RWI for La.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary A
such that for some honest party Pi∗ and malicious party Pj∗ , A commits RWI proofs for La in Ecom
such that the probability of accept in the two cases in non-negligible. We will use this adversary to
create an adversary ARWI that breaks the bounded rewinding security of RWI with non-negligible
probability.

The proof is similar to that of Claim 13 and Claim 14. We note that we use the fact that RWI
is secure even in the presence of the 2 total threads used for extracting from Ecom.

Claim 16. Assuming Assuming that RWI is a bounded rewinding secure protocol, and the existence
of an extractor ExtNMCom, the invariant holds in Hyb2,k,2.

Proof. We know that the invariant holds Hyb2,k,1. The only difference between Hyb2,k,1 and Hyb2,k,2

is that the simulator switches the witness in the RWI for Lb. Assume, for the sake of contradiction,
that the invariant doesn’t hold in Hyb2,k,2. Then there exists an adversary A such that for some
honest party Pi∗ and malicious party Pj∗ , A causes event E to occur with non-negligible probability.
We will use this adversary to create an adversary ARWI that breaks the bounded rewinding security
of RWI with non-negligible probability. The rest of the proof is similar to that of Claim 14.

Claim 17. Assuming the bounded rewinding witness indistinguishability RWI, Hyb2,k,1 is indistin-
guishable from Hyb2,k,2

Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue that the
extraction continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one
hybrid and not the other. The only difference between Hyb2,k,1 and Hyb2,k,2 is that the simulator
switches the witness in the RWI for Lb.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary A
such that for some honest party Pi∗ and malicious party Pj∗ , A commits RWI proofs for La in Ecom
such that the probability of accept in the two cases in non-negligible. We will use this adversary to
create an adversary ARWI that breaks the bounded rewinding security of RWI with non-negligible
probability.

The proof is similar to that of Claim 13 and Claim 14.

Claim 18. Assuming that Com is a secure commitment scheme, and the existence of an extractor
ExtNMCom, the invariant holds in Hyb2,k,3.

Proof. We prove this by a sequence of sub-claims.

Sub-Claim 19. Assuming that Com is a secure commitment scheme, and the existence of
an extractor ExtNMCom, the invariant holds in Hyb2,k,3,0.
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Proof. We know that the invariant holds Hyb2,k,2. The only difference between Hyb2,k,2 and
Hyb2,k,3,0 is that the simulator switches the commitment in Com from polynomials p to 0.
This is in fact done by a sequence of hybrids where only a single Com is changed at a time. For
simplicity, we proceed with the assumption that in this hybrid, only a single commitment was
changed. Assume, for the sake of contradiction, that the invariant doesn’t hold in Hyb2,k,3.
Then there exists an adversary A such that for some honest party Pi∗ and malicious party Pj∗ ,
A causes event E to occur with non-negligible probability. We will use this adversary to create
an adversary ACom that breaks the hiding property of Com with non-negligible probability.

We now describe the working of ACom which interacts with the challenger CEcom. ACom

picks randomly an honest party Pi and a random malicious party Pj . All messages other than
the chosen Com messages are computed in the same manner as SimHyb. The Com messages
from Pi to Pj are exposed to the external challenger. Specifically, ACom sends two challenges

(p`, 0) to C. And sets recomi→j
1,` := com where com is received from CCom. Depending on the

challenge used by CCom, we are either in Hyb2,k,2 or Hyb2,k,3,0.
ACom creates sufficiently many look ahead threads where it runs rounds 2 and 3 of the

protocol alone. Now ACom runs the extractor ExtNMCom of the non-malleable commitment
scheme using the message in both the threads that correspond to the non-malleable com-
mitment from malicious party Pj to honest party Pi. Let the output of ExtNMCom be t∗. If
TDValid(td1,i, t

∗) = 1, then ARECom outputs case 2 indicating that the RECom was constructed
using input 0 on the main thread. Else, it outputs case 1.

By our assumption, since the invariant doesn’t hold, the adversary Pj∗ commits to a valid
trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗ with non-negligible
probability ε. With probability at least 1

n2 , where n is the total number of players, this
corresponds to honest party Pi and malicious party Pj picked randomly by ACom. Therefore,
with non-negligible probability ε

n2 , the adversary Pj , using the non-malleable commitment,
commits to a valid trapdoor ti∗ for the trapdoor generations messages of the honest party Pi.
Since the invariant holds in Hyb2,k,2, by the 2-extractability property of the non-malleable
commitment, when the extractor ExtNMCom outputs a valid trapdoor t∗, it must be the case
that we’re in Hyb2,k,3,0 with non-negligible probability. Thus, ACom breaks the hiding property
of the scheme Com which is a contradiction. Therefore, the invariant also holds for Hyb2,k,3.

Sub-Claim 20. The invariant holds in Hyb2,k,3,1.

Proof. The change from is statistical Hyb2,k,3,0 when there are fewer than Brecom rewinds when
extracting from the NMCom. This follows from the fact that the degree of the polynomial is
set to be Brecom, and thus statistically undetermined by the number of rewinds ≤ Brecom. By
our setting of parameters, we know that NMCom has the 2-extraction property and is thus
≤ Brecom. Thus The invariant holds in Hyb2,k,3,1.

Sub-Claim 21. Assuming that Com is a secure commitment scheme, and the existence of
an extractor ExtNMCom, the invariant holds in Hyb2,k,3,2.

Proof. The proof follows identically as in Sub-Claim 19.

Thus we have that the invariant holds for Hyb2,k,3.

Claim 22. Assuming that Com is a secure commitment scheme, Hyb2,k,2 is indistinguishable from
Hyb2,k,3
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Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue that the
extraction continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one
hybrid and not the other. The only difference between Hyb2,k,2 and Hyb2,k,3 is that the simulator
switches commitment in RECom to 0.

The proof is similar to that of Claim 13 and Claim 18.

Claim 23. Assuming that Π is a rewinding secure protocol for the first three rounds, and the
existence of an extractor ExtNMCom, the invariant holds in Hyb2,k,4.

Proof. We know that the invariant holds Hyb2,k,3. The only difference between Hyb2,k,3 and Hyb2,k,4

is that the simulator switches the input in Π from (x, r) to 0 for each honest party Pi. This is in
fact done by a sequence of hybrids where only a single party’s input is changed at a time. For
simplicity, we proceed with the assumption that in this hybrid, only a single party’s input was
changed. Assume, for the sake of contradiction, that the invariant doesn’t hold in Hyb2,k,4. Then
there exists an adversary A such that for some honest party Pi∗ and malicious party Pj∗ , A causes
event E to occur with non-negligible probability. We will use this adversary to create an adversary
AΠ that breaks the bounded rewinding security of the first three round of Π with non-negligible
probability.

We now describe the working of AΠ which interacts with the challenger CΠ. AΠ picks randomly
an honest party Pi and a random malicious party Pj . All messages other than the chosen Π
messages for Pi are computed in the same manner as SimHyb. The Π messages for Pi are exposed
to the external challenger. Specifically, in round 1, set msg1,i := msg1 where msg1 is received from
CΠ.

After generating/receiving Trans1 from A, AΠ creates a set of 5 look-ahead threads, in each of
which, it runs rounds 2 and 3 of the protocol alone. In each look-ahead thread, AΠ on receiving
Trans1 forwards it to CΠ.

In the main thread (k-th look-ahead thread), AΠ also sends the pair of inputs (xi, ri) and 0.
For the look-ahead threads for extraction, AΠ sends the input (xi, ri). For each thread, AΠ receives
msg2 which is set as msg2,i. Depending on the input used by CΠ, we are either in Hyb2,k,3 or Hyb2,k,4.

Recall that Π is secure even in the presence of 3 total threads. Now AΠ runs the extractor
ExtNMCom of the non-malleable commitment scheme using the message in both the threads that
correspond to the non-malleable commitment from malicious party Pj to honest party Pi. Let the
output of ExtNMCom be t∗. If TDValid(td1,i, t

∗) = 1, then ARECom outputs case 2 indicating that the
RECom was constructed using input 0 on the main thread. Else, it outputs case 1.

By our assumption, since the invariant doesn’t hold, the adversary Pj∗ commits to a valid
trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗ with non-negligible
probability ε. With probability at least 1

n2 , where n is the total number of players, this corresponds
to honest party Pi and malicious party Pj picked randomly by ARWI. Therefore, with non-negligible
probability ε

n2 , the adversary Pj , using the non-malleable commitment, commits to a valid trapdoor
ti∗ for the trapdoor generations messages of the honest party Pi. Since the invariant holds in
Hyb2,k,3, by the 2-extractability property of the non-malleable commitment, when the extractor
ExtNMCom outputs a valid trapdoor t∗, it must be the case that we’re in Hyb2,k,4 with non-negligible
probability. Thus, AΠ breaks the bounded rewinding security of the first three round of Π with
non-negligible probability. Therefore, the invariant also holds for Hyb2,k,4.

Claim 24. Assuming that Π is a rewinding secure protocol for the first three rounds, Hyb2,k,3 is
indistinguishable from Hyb2,k,4
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Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue that the
extraction continues to succeed. i.e. SimHyb does not output ⊥extract in the extraction phase of one
hybrid and not the other. The only difference between Hyb2,k,3 and Hyb2,k,4 is that the simulator
switches input to 0.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary
A such that for some honest party Pi∗ and malicious party Pj∗ , A commits RWI proofs for La
in Ecom such that the probability of accept in the two cases in non-negligible. We will use this
adversary to create an adversary ARECom that breaks the bounded rewinding security of RECom
with non-negligible probability.

The proof is similar to that of Claim 13 and Claim 23.

Claim 25. Assuming Assuming that RWI is a bounded rewinding secure protocol, and the existence
of an extractor ExtNMCom, the invariant holds in Hyb2,k,5.

Proof. Proof is identical to that of Claim 16.

Claim 26. Assuming the bounded rewinding witness indistinguishability RWI, Hyb2,k,4 is indistin-
guishable from Hyb2,k,5

Proof. Proof is identical to that of Claim 17.

Claim 27. Assuming Assuming that RWI is a bounded rewinding secure protocol, and the existence
of an extractor ExtNMCom, the invariant holds in Hyb2,k,6.

Proof. Proof is identical to that of Claim 14.

Claim 28. Assuming the bounded rewinding witness indistinguishability RWI, Hyb2,k,5 is indistin-
guishable from Hyb2,k,6

Proof. Proof is identical to that of Claim 15.

Claim 29. Assuming NMCom is a secure non-malleable commitment scheme, the invariant holds
in Hyb2,k,7.

Proof. Proof is identical to that of Claim 12.

Claim 30. Assuming NMCom is a secure non-malleable commitment scheme, Hyb2,k,6 is indistin-
guishable from Hyb2,k,7

Proof. Proof is identical to that of Claim 13.

Claim 31. Assuming NMCom is a secure non-malleable commitment scheme, the invariant holds
in Hyb3.

Proof. Proof is identical to that of Claim 12.

Claim 32. Assuming NMCom is a secure non-malleable commitment scheme, Hyb3 is indistin-
guishable from Hyb2
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Proof. The only difference between Hyb3 and Hyb2 is that the simulator commits to the trapdoor
in the main look ahead thread.

Assume, for the sake of contradiction, that that the views are distinguishable. Then there
exists an adversary D such that D can distinguish between Hyb3 and Hyb2 with non-negligible
advantage. We will use this adversary to create an adversary ANMCom that breaks the hiding of
the non-malleable commitment scheme NMCom with non-negligible probability.

We now describe the working of ANMCom which interacts with the challenger CNMCom. ANMCom

picks randomly an honest party Pi and a random malicious party Pj . All messages other than the
chosen NMCom messages are computed in the same manner as SimHyb. The NMCom messages from

Pi to Pj are exposed to the external challenger. Specifically, in round 1, set nmcomi→j
1 := nmcom1

where nmcom1 is received from CNMCom.
ANMCom creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3 of

the protocol alone. In each look-ahead thread, ANMCom computes nmcomi→j
3 as a commitment to

⊥. From the definition of the NMCom scheme, ANMCom can do this even without knowing the
randomness used to generate nmcomi→j

1 . These 5 threads are all GOOD with respect to some party
H with noticeable probability. With the 5 threads, ANMCom can successfully run the input and
trapdoor extraction phase.

On receiving nmcomi→j
1 , ANMCom forwards it to CNMCom along with pair of values (⊥, tj) where

tj was obtained during the extraction phase.
ANMCom receives a third round message nmcomL

3 which is either a commitment to ⊥ or tj . This

is sent to A as the value nmcomi→j
3 on the main thread. The rest of the messages are obtained

in the same manner as SimHyb. Depending on which value was committed we are either in Hyb3

or Hyb2. On completion of the execution, the view is input to D and the output returned is the
output of ANMCom

By our assumption, D can distinguish between the two hybrids with noticeable probability
ε. Therefore, with non-negligible advantage ε

n2 , ANMCom wins the challenge game with CNMCom

which breaks the hiding property of NMCom. Thus, ε must be negligible, and thus the views are
indistinguishable.

Claim 33. Assuming the bounded rewinding witness indistinguishability RWI, the invariant holds
in Hyb4.

Proof. Proof is identical to that of Claim 14.

Claim 34. Assuming the bounded rewinding witness indistinguishability RWI, Hyb4 is indistin-
guishable from Hyb3

Proof. The only difference between Hyb4 and Hyb3 is that the simulator switches the witness in the
RWI for La.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary D can
distinguish between Hyb4 and Hyb3 with non-negligible advantage. We will use this adversary to
create an adversary ARWI that breaks the bounded rewinding security of RWI with non-negligible
probability.

The proof is similar to that of Claim 32 and Claim 33.

Claim 35. Assuming the bounded rewinding witness indistinguishability RWI, the invariant holds
in Hyb5.

Proof. Proof is identical to that of Claim 16.
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Claim 36. Assuming the bounded rewinding witness indistinguishability RWI, Hyb5 is indistin-
guishable from Hyb4

Proof. The only difference between Hyb5 and Hyb4 is that the simulator switches the witness in the
RWI for Lb.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary D can
distinguish between Hyb5 and Hyb4 with non-negligible advantage. We will use this adversary to
create an adversary ARWI that breaks the bounded rewinding security of RWI with non-negligible
probability.

The proof is similar to that of Claim 32 and Claim 33.

Claim 37. The invariant holds in Hyb6.

Proof. The claim is trivially true since the change is made only in the fourth round.

Claim 38. Assuming the witness indistinguishability WI, Hyb6 is indistinguishable from Hyb5

Proof. The only difference between Hyb6 and Hyb5 is that the simulator switches the witness in the
WI for Lc.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary D
can distinguish between Hyb6 and Hyb5 with non-negligible advantage. We will use this adversary
to create an adversary AWI that breaks the witness indistinguishability of WI with non-negligible
probability.

The proof is similar to that of Claim 32 and Claim 33. We point out that since only the second
round of WI overlaps with the rewinding rounds, we don’t need the external challenger to handle
rewinds since the responses on the look-ahead threads, that are run only till the end of third round,
are discarded.

Claim 39. Assuming that Com is a secure commitment scheme, and the existence of an extractor
ExtNMCom, the invariant holds in Hyb7.

Proof. We prove that the invariant holds in the look-ahead threads that we make the changes in.
We know that the invariant holds Hyb6. The only difference between Hyb6 and Hyb7,2 is that the
simulator commits to 0 in the third round of RECom. This is in fact done by a sequence of hybrids
where only a single Com is changed at a time. For simplicity, we proceed with the assumption that
in this hybrid, only a single commitment was changed. Assume, for the sake of contradiction, that
the invariant doesn’t hold in Hyb7,2. Then there exists an adversary A such that for some honest
party Pi∗ and malicious party Pj∗ , A causes event E to occur with non-negligible probability. We
will use this adversary to create an adversary ARECom that breaks the hiding property of RECom
with bounded rewinds with non-negligible probability.
ARECom sets recomi→j

1,` := recom where recom is received from CRECom and sends it A. After

receiving recomi→j
2 from A, ARECom creates a set of 2 look-ahead threads, in each of which, it runs

rounds 2 and 3 of the protocol alone. In each look-ahead thread, ARECom on receiving recomi→j
2

forwards it to CRECom.
In the main thread, ARECom also sends the pair of inputs (xi, ri) and 0 where (xi, ri) is the honest

parties inputs. For the look-ahead threads for extraction, AEcom sends the witness (xi, ri). For each
thread, ARECom receives recom3 which is set as recomi→j

3 . Depending on the value committed by
CNMCom, we are either in Hyb7,6 or Hyb7,7.

Now ACom runs the extractor ExtNMCom of the non-malleable commitment scheme using the
message in both the threads that correspond to the non-malleable commitment from malicious
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party Pj to honest party Pi. Let the output of ExtNMCom be t∗. If TDValid(td1,i, t
∗) = 1, then

ARECom outputs case 2 indicating that the RECom was constructed using input 0. Else, it outputs
case 1.

By our assumption, since the invariant doesn’t hold, the adversary Pj∗ commits to a valid
trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗ with non-negligible prob-
ability ε. With probability at least 1

n2 , where n is the total number of players, this corresponds to
honest party Pi and malicious party Pj picked randomly by ACom. Therefore, with non-negligible
probability ε

n2 , the adversary Pj , using the non-malleable commitment, commits to a valid trap-
door ti∗ for the trapdoor generations messages of the honest party Pi. Since the invariant holds
in Hyb6, by the 2-extractability property of the non-malleable commitment, when the extractor
ExtNMCom outputs a valid trapdoor t∗, it must be the case that we’re in Hyb7,2 with non-negligible
probability. Thus, ARECom breaks the bounded rewinding property of the scheme RECom which is
a contradiction. Therefore, the invariant also holds for Hyb7,2.

Claim 40. Assuming the rewinding security of RECom, Hyb7 is indistinguishable from Hyb6

Proof. This is proved via a sequence of hybrids given below.
This is done by a sequence of hybrids mentioned below. We note that we separate the look-

ahead threads into two separate types: (i) to extract trapdoor, (ii) to extract input. In our hybrids,
we shall only make changes to type (ii) threads.

Hyb7,0: Change main thread RECom to random: In this hybrid, SimHyb modifies the
third round of the main thread to send “junk” responses. Specifically, for every honest party
Pi and malicious party Pj do the following:

– for every ` ∈ [N ], pick a new degree 4 polynomial q`.

– compute recom3,` as (0⊕ q`(0), q`(z`).

Given that we changed our RECom to random, we want to claim that the adversary’s
input has not also become random.

Claim 41. Assuming the security of Com and the 2-extractability property of NMCom, the
invariant holds in Hyb7,0.

Proof. We prove that the invariant holds in the look-ahead threads that we make the changes
in. We know that the invariant holds Hyb6. The only difference between Hyb6 and Hyb7,0 is
that the simulator uses random polynomials to compute the third round messages of RECom
on the main thread. An alternate way to think of this is that either the polynomials used
inside Com and that used to compute the third round of RECom are the same, or they’re
independently sample random polynomials. Thus we think of the change as SimHyb switching
the commitment in Com from polynomials p to q while using p to compute the third round
of RECom. This is in fact done by a sequence of hybrids where only a single Com is changed
at a time. For simplicity, we proceed with the assumption that in this hybrid, only a single
commitment was changed. Assume, for the sake of contradiction, that the invariant doesn’t
hold in Hyb7,0. Then there exists an adversary A such that for some honest party Pi∗ and
malicious party Pj∗ , A causes event E to occur with non-negligible probability. We will use
this adversary to create an adversary ACom that breaks the hiding property of Com with
non-negligible probability.

We now describe the working of ACom which interacts with the challenger CCom. ACom

picks randomly an honest party Pi and a random malicious party Pj . All messages other than
the chosen Com messages are computed in the same manner as SimHyb. The Com messages
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from Pi to Pj are exposed to the external challenger. Specifically, ACom sends two challenges

(p`, q`) to C. And sets recomi→j
1,` := com where com is received from CCom. Depending on the

challenge used by CCom, we are either in Hyb6 or Hyb7,0.
ACom creates 2 look ahead threads where it runs rounds 2 and 3 of the protocol alone.

Now ACom runs the extractor ExtNMCom of the non-malleable commitment scheme using the
message in both the threads that correspond to the non-malleable commitment from malicious
party Pj to honest party Pi. Let the output of ExtNMCom be t∗. If TDValid(td1,i, t

∗) = 1, then
ARECom outputs case 2 indicating that the RECom was constructed using input q. Else, it
outputs case 1.

By our assumption, since the invariant doesn’t hold, the adversary Pj∗ commits to a valid
trapdoor ti∗ for the trapdoor generation messages of the honest party Pi∗ with non-negligible
probability ε. With probability at least 1

n2 , where n is the total number of players, this
corresponds to honest party Pi and malicious party Pj picked randomly by ACom. Therefore,
with non-negligible probability ε

n2 , the adversary Pj , using the non-malleable commitment,
commits to a valid trapdoor ti∗ for the trapdoor generations messages of the honest party
Pi. Since the invariant holds in Hyb0, by the 2-extractability property of the non-malleable
commitment, when the extractor ExtNMCom outputs a valid trapdoor t∗, it must be the case
that we’re in Hyb7,2 with non-negligible probability. Thus, ACom breaks the hiding property
of the scheme Com which is a contradiction. Therefore, the invariant also holds for Hyb7,2.
This works because as long as the number of threads created to extract from NMCom is
less than Brecom, which is in fact true, since otherwise, the “random” polynomial no longer
appears random. It should be noted that we don’t need to extract the adversary’s input for
the reduction, and thus no use of creating any Type (ii) threads.

Claim 42. Assuming the security of Com, Hyb7,0 is indistinguishable from Hyb6

Proof. Since we’re only making changes in a look-ahead thread, all we need to do is argue
that the adversary doesn’t switch to “junk” commitments when we make the change. The
only difference between Hyb6 and Hyb7,2 is that the simulator uses random polynomials to
compute the third round messages of RECom look-ahead threads.

Assume, for the sake of contradiction, that this isn’t true. Then there exists an adversary
A such that for some honest party Pi∗ and malicious party Pj∗ , A commits RWI proofs for La
in Ecom such that the probability of accept in the two cases in non-negligible. We will use this
adversary to create an adversary ACom that breaks the security of Com with non-negligible
probability.

The proof is similar to that of Claim 13 and Claim 39.

Hyb7,1: Create Type (ii) look-ahead thread: In this hybrid, SimHyb creates Type (ii)
threads that are identical to the main thread. These will be used to extract the adversary’s
input. We create as many needed for the extraction of the adversary’s input.

Claim 43. Assuming the security of Com and the 2-extractability property of NMCom, the
invariant holds in Hyb7,1.

Proof. This trivially follows from the fact that invariant holds in Hyb7,0 are identical to the
main thread.

Claim 44. Assuming the security of Com, Hyb7,1 is indistinguishable from Hyb6
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Proof. This follows as in the proof of Claim 42.

Hyb7,2: Change main thread RECom to 0: In this hybrid, SimHyb modifies the third round
of the main thread to commit to 0. Specifically, for every honest party Pi and malicious party
Pj do the following:

– compute recom3,` as (0⊕ p`(0), poly(λ)` (z`).

where p` are the polynomials committed to in the first round.

Claim 45. Assuming the security of Com and the 2-extractability property of NMCom, the
invariant holds in Hyb7,2.

Proof. The proof follows as in 41.

Claim 46. Assuming the security of Com, Hyb7,2 is indistinguishable from Hyb6

Proof. The proof follows as in 42

Note that Hyb7,2 ≡ Hyb7

Thus Hyb7 is indistinguishable from Hyb6.

Claim 47. The invariant holds in Hyb8.

Proof. The claim is trivially true since the change is made only in the fourth round.

Claim 48. Assuming the security of GC and sender’s OT messages, Hyb8 is indistinguishable from
Hyb7

Proof. This is established by the creating the following sub-hybrids. Recall these changes are only
made when there is an implicit abort.

Hyb8,0: Change OT sender’s message on main thread: In this hybrid, SimHyb changes
how the sender OT is computed. We extract from ot to obtain the adversary’s receiver
message. Use the receiver value extracted from the ot to change the sender OT to include
only a single label of the garbled circuit. Specifically, ∀j ∈ [n] \ {i}, compute

oti→j4 ← OT4

((
labi,v|j , labi,v|j

)
, oti→j1 , oti→j2 , oti→j3 ; ri→ji,ot

)
.

where v is the extracted receiver string from oti→j3 .

Claim 49. Assuming the security of sender’s OT messages, Hyb8,0 is indistinguishable from
Hyb7

Proof. The only difference between Hyb8,0 and Hyb7 is that the simulator SimHyb switches the
sender OT input to using the same label twice Pi if it receives a non-accepting RWI proof for
La.

Assume, for the sake of contradiction, that that the views are distinguishable. Then
there exists an adversary D such that D can distinguish between Hyb8,0 and Hyb7 with non-
negligible advantage. We will use this adversary to create an adversary AOT that breaks the
sender’s security in OT with non-negligible probability.
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We now describe the working of AOT which interacts with the challenger COT. AOT picks
randomly an honest party Pi and a random malicious party Pj . All messages other than the
chosen OT messages are computed in the same manner as SimHyb. The OT messages from Pi
to Pj are exposed to the external challenger. Specifically, in round 1, send to COT the first

round OT message oti→j1 sent by A. Receive ot2 and set oti→j2 := ot2.
ANMCom creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3

of the protocol alone. In each look-ahead thread, AOT re-sends the same oti→j2 message in

the second round. Only oti→j3 on the main thread is forwarded to COT. With the 5 threads,
ANMCom can successfully run the extraction phase to extract the OT receiver bit from Pj to

be v. Send
(

l̃abi|j , l̃abi|j

)
and

(
labi,v|j , labi,v|j

)
to COT as challenges.

The rest of the messages are obtained in the same manner as SimHyb. Depending on pair
was used as sender input we are either in Hyb8 or Hyb7. On completion of the execution, the
view is input to D and the output returned is the output of AOT

By our assumption, D can distinguish between the two hybrids with noticeable probability
ε. Therefore, with non-negligible advantage ε

n2 , AOT wins the challenge game with COT

which breaks the sender security of OT. Thus, ε must be negligible, and thus the views are
indistinguishable.

Hyb8,1: Simulate garbled circuit: In this hybrid, SimHyb computes a garbled circuit to
output ⊥. Specifically, (

Ci, l̃abi
)
← Garble (C⊥)

Claim 50. Assuming the security of GC, Hyb8,1 is indistinguishable from Hyb8,0

Proof. The only difference between Hyb8,1 and Hyb7 is that the simulator SimHyb switches
the garbled circuit to a circuit for each Pi. Note that this is a functionally equivalent circuit
given we’re in the situation of implicit abort.

Assume, for the sake of contradiction, that that the views are distinguishable. Then
there exists an adversary D such that D can distinguish between Hyb8,1 and Hyb8,0 with
non-negligible advantage. We will use this adversary to create an adversary AGC that breaks
GC security with non-negligible probability.

We now describe the working of AGC which interacts with the challenger CGC. AGC picks
randomly an honest party Pi. All messages other than the garbled circuit are computed in
the same manner as SimHyb. The GC messages from Pi are exposed to the external challenger.

Specifically, in round four, it sends as challenges to CGC C⊥ and

(
C

[
i,msg4,i,

{
rwij→ib,`

}
`∈[2],j∈[n]\{i}

{
stj→ib

}
j∈[n]\{i}

]
, v

)
where v is the concatenation of all extracted/generated receiver values for all parties other

than Pi. CGC then returns a garbled circuit C̃ and labels l̃ab. These are set as C̃i := C̃ and
l̃abi := l̃ab. The rest of the messages are obtained in the same manner as SimHyb. Depending
on challenge bit used by CGC we are either in Hyb8 or Hyb7. On completion of the execution,
the view is input to D and the output returned is the output of AGC.

By our assumption, D can distinguish between the two hybrids with noticeable probability
ε. Therefore, with non-negligible advantage, AOT wins the challenge game with CGC which
breaks the security of GC. Thus, ε must be negligible, and thus the views are indistinguishable.

Note that Hyb8,1 ≡ Hyb8
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Claim 51. Assuming that Π is a secure protocol instantiated with rewinding secure S− OT, the
invariant holds in Hyb9.

Proof. Here, since the invariant only depends on the first three rounds, we need to prove that the
invariant holds conditioned on the view of the first three rounds. The proof is similar to Claim
23.

Claim 52. Assuming that Π is a secure protocol instantiated with rewinding secure S− OT, Hyb9

is indistinguishable from Hyb8

Proof. The only difference between Hyb9 and Hyb8 is how the transcript of the underlying protocol
Π is computed.

Assume, for the sake of contradiction, that that the views are distinguishable. Then there exists
an adversary D such that D can distinguish between Hyb9 and Hyb8 with non-negligible advantage.
We will use this adversary to create an adversary AΠ that breaks the indistinguishability of Π when
instantiated with bounded rewinding secure S− OT with non-negligible probability. Essentially,
we rely on the fact that if the S− OT is rewinding secure, then the transcript of Π for an honest
and simulated transcript are indistinguishable.

We now describe the working of AΠ which interacts with the challenger CΠ. All messages other
than the Π messages are computed in the same manner as SimHyb. The Π messages from are
exposed to the external challenger. Specifically, in round 1, set

{
msg1,i

}
Pi∈H

:= −−→msg1 where −−→msg1

is received from CΠ. Send to CΠ

{
msg1,i

}
Pi /∈H

that is sent by A. The response from CΠ, −−→msg2 is

parsed as
{

msg2,i

}
Pi∈H

:= −−→msg2.
AΠ creates a set of 5 look-ahead threads, in each of which, it runs rounds 2 and 3 of the

protocol alone. In each look-ahead thread, AΠ forwards the
{

msg2,i

}
Pi /∈H

sent by A in each look-
ahead thread to CΠ. These are simply S− OT messages and will be responded to by CΠ. The
response is likewise forwarded to A. These 5 threads are all GOOD with respect to some party H
with noticeable probability. With the 5 threads, AΠ can successfully run the extraction phase.

On completion of the extraction phase, prior to the third round on the main thread, AΠ sends to
CΠ all parties inputs ({xi, ri}i∈[n] , y) to CΠ. CΠ then either responds with the simulated last message
or the honest execution for the rest of the transcript. The rest of the messages are obtained in
the same manner as SimHyb. Depending on the choice of CΠ we are either in Hyb9 or Hyb8. On
completion of the execution, the view is input to D and the output returned is the output of AΠ

By our assumption, D can distinguish between the two hybrids with noticeable probability ε.
Therefore, with non-negligible advantage ε, AΠ wins the challenge game with CΠ which breaks the
security of Π when rewinding security of S− OT is maintained. Thus, ε must be negligible, and
thus the views are indistinguishable.

Claim 53. The invariant holds in HybIDEAL.

Proof. The claim is trivially true since the main thread remains unchanged.

Claim 54. Hyb9 is indistinguishable from HybIDEAL except with probability at most µ
4 + negl(λ).

Proof. This is argued in two cases depending on the probability with which the adversary abort.

Case 1: Pr[not abort] ≥ µ
4 :

Suppose the adversary doesn’t cause an abort with probability greater that µ
4 . Let us analyze

the probability with which ⊥extract is output by SimHyb. By the Chernoff bound, in Hyb10,
except with negligible probability, in the set of 5·n·λ

µ threads, there will be at least 5 GOOD
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threads with respect to some honest party Pi∗ . Also in HybIDEAL, SimHyb will run an expected
polynomial number of threads to get 12λ (which is greater than 5 · n) GOOD threads. Thus
the extractions will be successful in except with negligible probability.

Therefore the only difference between HybREAL and Hyb10 is that in Hyb10, after extrac-
tion, SimHyb samples the main thread λ

µ times while in HybREAL, SimHyb first estimates the

probability of not aborting to be ε′ and then re-samples the main thread min
(

2λ, λ
2

ε′

)
times.

The rest of the proof follows in a very similar manner to the proof of claim 5.8 in [Lin16].
That is, we show that if “Check Abort” step succeeds, the simulator in HybIDEAL fails only
with negligible probability using the claim in [Lin16]. Also, by a Markov argument, we know
that Hyb10, if the “Check Abort” step succeeds, the simulation successfully forces the output
and hence, this completes the proof.

Case 2: Pr[not abort] < µ
4 :

Suppose the adversary doesn’t cause an abort with probability smaller than µ
4 . Then, in

both hybrids, SimHyb aborts at the end of the “Check Abort” step except with probability
µ
4 . Thus, in this case, the adversary’s view in HybIDEAL and Hyb10 is indistinguishable except
with probability at most µ

4 + negl(λ).

We now calculate the probability that the adversary can distinguish between HybREAL and
HybIDEAL.

Except in two cases, every pair of hybrids are indistinguishable except with negligible probabil-
ity. In the two special cases, the hybrids are indistinguishable except with probability µ

4 + negl(λ).
Thus, HybREAL and HybIDEAL are indistinguishable except with probability µ

2 + negl(λ). This con-
tradicts our assumption that there must be an adversary A that can distinguish the REAL and
IDEAL executions with probability at least µ.

4 Rewinding Secure Oblivious Transfer in the Simultaneous Mes-
sage Model

We construct a rewinding secure Oblivious Transfer (OT) assuming the existence of four round OT
protocol secure in the simultaneous message model. For an OT protocol to be rewind secure, we
require security against an adversary who is allowed to re-execute the second and third round of
the protocol multiple times. But the first and fourth round are executed only once.

4.1 Rewind Security against Malicious Senders

We describe below the protocol Πrec which achieves rewind security against malicious senders. The
Sender S’s input is s0, s1 ∈ {0, 1} while the receiver R’s input is b ∈ {0, 1}.

Components. We require the following two components:

– n ·BOT instances of a 4 round OT protocol which achieves indistinguishability security against
malicious senders.

– GC = (Garble,Eval) is a secure garbling scheme.

Protocol. The basic idea is to split the receiver input across multiple different OT executions
such that during any rewind, a different set of OTs will be selected to proceed with the execution
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thereby preserving the security of the receiver’s input. The sender constructs a garbled circuit
which is used to internally recombine the various inputs shares and only return the appropriate
output. The protocol is described below.

1. Round 1 (Πrec
1,S ,Π

rec
1,R):

S does the following:

– For i ∈ [n], k ∈ [BOT], computes oti,k1,S := OT1,S

(
1λ; rS

)
and send

{
oti,k1,S

}
i∈[n],k∈[BOT]

to

R

R does the following:

– For i ∈ [n], k ∈ [BOT], computes oti,k1,R ← OT1,R

(
1λ; rR

)
and send

{
oti,k1,R

}
i∈[n],k∈[BOT]

to

S

2. Round 2 (Πrec
2,S ,Π

rec
2,R):

S does the following:

– For i ∈ [n], k ∈ [BOT], computes oti,k2,S := OT2,S

(
oti,k1,R; rS

)
and sends

{
oti,k2,S

}
i∈[n],k∈[BOT]

to R

R does the following:

– For i ∈ [n], k ∈ [BOT], computes oti,k2,R ← OT2,R

(
oti,k1,S ; rR

)
and send

{
oti,k2,R

}
i∈[n],k∈[BOT]

to S

3. Round 3 (Πrec
4,S ,Π

rec
4,R):

S does the following:

– For i ∈ [n], k ∈ [BOT], computes oti,k3,S := OT3,S

(
oti,k1,R, oti,k2,R; rS

)
and sends

{
oti,k3,S

}
i∈[n],k∈[BOT]

to R

R does the following:

– Compute n additive shares of b. Specifically, ∀j ∈ [n − 1] bj←$ {0, 1}, and set bn :=
b
⊕n−1

j=1 bj .

– ∀i ∈ [n], σi←$ [BOT].

– For i ∈ [n], compute oti,σi3,R ← OT3,R

(
bi, oti,σi1,S , oti,σi1,S ; rR

)
and send

{
oti,σi3,R, σi

}
i∈[n]

to S

for the OTs picked by σi.

4. Round 4 (Πrec
4,S ,Π

rec
4,R): S does the following:

– Compute the garbled circuits containing s0, s1. Specifically,(
C̃ot, lab

)
:= Garble (Cot [s0, s1] ; rgc,i)

– For i ∈ [n], computes oti,σi4,S := OT4,S

(
labi,0, labi,1, oti,σi1,R, oti,σi2,R, oti,σi3,R; rS

)
and sends

{
oti,σi4,S

}
i∈[n]

to R.
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5. Evaluation (OTEval′): R does the following:

– For i ∈ [n], compute

l̃abi := OTEval
(
bi, oti,σi1,S , oti,σi2,S , oti,σi3,S , oti,σi4,S ; rR

)
– Output s′ := Eval

(
C̃ot,

{
l̃abi
}
i∈[n]

)
Security. We prove security of our constructed protocol below.

Lemma 2. Assuming receiver indistinguishability of OT against malicious senders, the receiver
input in Πrec remains indistinguishable under BOT-rewinds.

Proof. Suppose in experiment 0, the receiver uses inputs b0[1], · · · , b0[BOT] and in experiment 1,
the receiver uses inputs b1[1], · · · , b1[BOT]. Where b[j] is the receiver input in the j-th rewind. Then
we want to show that an adversarial rewinding sender’s view is indistinguishable in both cases.

Suppose there is an adversarial sender A that can distinguish the two cases, then we construct
an adversary AOT that breaks the indistinguishability security of OT. We now describe the working
of AOT. Sample i∗ randomly from [n]. If we consider the BOT tuple corresponding to index i∗ in
the first round, with noticeable probability the σji∗ picked for each rewind j will be distinct. This
follows from the fact that there are BOT distinct values that are picked BOT times with BOT being
a constant. We will expose all the OTs in this tuple to an external OT receiver.

Specifically, on receiving BOT independent ot1 message from the external challenger denoted by
otj1. Set the appropriate first round messages. This is done by setting ∀j ∈ [BOT], oti

∗,j
1,R = otj1. All

other oti,k1,R messages are computed honestly using fresh randomness by AOT. These messages are

sent to A. A responds with
{

oti,k2,S

}
i∈[n],k∈[BOT]

where the relevant messages are forwarded to the

external challenger. When the challenger sends its second round messages, we set appropriately as

above and send to A who responds with
{

oti,k,j2,S

}
i∈[n],k∈[BOT],j∈[BOT]

.

∀i ∈ [n], j ∈ [BOT], sample σji ←$ [BOT]. If for i∗,
{
σji∗
}
j∈[BOT]

are not distinct, we sample again.

Sample bi,j as follows: ∀i ∈ [n]\{i∗} , j ∈ [BOT] sample bi,j←$ {0, 1}. Set the following: ∀j ∈ [BOT],

b0i∗,j = b0[j]
n⊕
i=1
i 6=i∗

bi,j

b1i∗,j = b1[j]

n⊕
i=1
i 6=i∗

bi,j

Forward
{

oti
∗,j,j

3

}
j∈[BOT]

as corresponding responses to the messages. Send this along with this the

challenges
{(
b0i∗,j , b

1
i∗,j

)}
j∈[BOT]

. The challenger picks a bit c and uses bci∗,j for all j. Depending on

the value of c picked by the challenger, we’re in either experiment 0 or 1. Thus, if A can distinguish
the two experiments with non-negligible probability ε, AOT wins the challenge with probability
ε · 1

m where 1
m is the probability that σji∗ were all distinct. Here m is a constant since BOT is a

constant. Therefore AOT wins the challenge with non-negligible probability.
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Remark 3. We note that correctness is not guaranteed against a malicious sender since it might
compute the garbled circuit incorrectly. In our applications, we will therefore have to prove that the
messages of the protocol were in fact computed correctly.

4.2 Rewind Secure Oblivious Transfer

We describe below the protocol Π′ which achieves rewind security. The Sender S’s input is s0, s1 ∈
{0, 1} while the receiver R’s input is b ∈ {0, 1}.

Components. For the constructed protocol, we only require n · BOT instantiations of the above
constructed Πrec protocol.

Protocol. The idea is to use Πrec in a black-box manner such that security against malicious
senders is maintained from Πrec and we additionally get the strong notion of simulation security
against a malicious rewinding receiver. We use a similar idea as the previous construction, but now
the sender shares its input across multiple executions of OT, which are going to be implemented
via Πrec. Here, we rely on the fact that unless the receiver used the same bit in all executions of
the OT, it cannot recover the correct output. Unlike the previous case, we don’t require the use of
garbled circuits.

1. Round 1 (OT′1):

S does the following:

– For i ∈ [n], k ∈ [BOT], computes πi,k1,S := Πrec
1,S

(
1λ; rS

)
and send

{
πi,k1,S

}
i∈[n],k∈[BOT]

to R

R does the following:

– For i ∈ [n], k ∈ [BOT], computes πi,k1,R ← Πrec
1,R

(
1λ; rR

)
and send

{
πi,k1,R

}
i∈[n],k∈[BOT]

to S

2. Round 2 (OT′2):

S does the following:

– For i ∈ [n], k ∈ [BOT], computes πi,k2,S := Πrec
2,S

(
πi,k1,R; rS

)
and sends

{
πi,k2,S

}
i∈[n],k∈[BOT]

to

R

R does the following:

– For i ∈ [n], k ∈ [BOT], computes πi,k2,R ← Πrec
2,R

(
πi,k1,S ; rR

)
and send

{
πi,k2,R

}
i∈[n],k∈[BOT]

to

S

3. Round 3 (OT′3):

S does the following:

– ∀i ∈ [n], ρi←$ [BOT].

– For i ∈ [n], computes πi,ρi3,S := Πrec
3,S

(
πi,ρi1,R, π

i,ρi
2,R; rS

)
and sends

{
πi,ρi3,S , ρi

}
i∈[n]

to R

R does the following:

– For i ∈ [n], k ∈ [BOT], compute πi,k3,R ← Πrec
3,R

(
b, πi,k1,S , π

i,k
1,S ; rR

)
and send

{
oti,k3,R

}
i∈[n],k∈[BOT]

to S for the OTs picked by σi.
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4. Round 4 (OT′4): S does the following:

– Compute n additive shares of s0, s1. Specifically, ∀j ∈ [n − 1] s0,j , s1,j←$ {0, 1}, set
s0,n := s0

⊕n−1
j=1 s0,j and s1,n := s1

⊕n−1
j=1 s1,j .

– For i ∈ [n], computes oti,σi4,S := Πrec
4,S

(
si,0, si,1, π

i,σi
1,R , π

i,σi
2,R , π

i,σi
3,R ; rS

)
and sends

{
πi,σi4,S

}
i∈[n]

to R.

5. Evaluation (OTEval′): R does the following:

– For i ∈ [n], compute

s′i := OTEval
(
b, πi,σi1,S , π

i,σi
2,S , π

i,σi
3,S , π

i,σi
4,S ; rR

)
– Output s′ :=

⊕n
i=1 s

′
i

Security. We now prove security of our construction.

Lemma 3. Assuming that Πrec is secure against malicious sender up to BOT rewinds, so is our
above constructed protocol.

Proof. Suppose the receiver uses inputs b0 in all BOT ·n executions of BOT and in experiment 1, the
receiver uses inputs b1 in all BOT · n executions of Πrec. Then we want to show that an adversarial
rewinding sender’s view is indistinguishable in both cases. We do this by making a change in each
of BOT · n Πrec one at a time and relying on the rewind security of a single execution of Πrec.

Specifically, let Hybi denote the hybrid that where we make a change in the i-th execution of
Πrec. Changing the receiver input from b0 to b1. We expose the i-th Πrec execution to the external
receiver with challenge bits b0 and b1. All other Πrec executions are computed honestly. i.e. for
j < i, we compute the Πrec execution with input b1 and for j > i the Πrec executions are with
receiver input b0.

When the sender attempts to rewind, we forwards its queries in the i-th Πrec execution to the
external challenger. Other challenges are responded to internally. If the external challenger picks b0,
we’re in Hybi−1 else we’re in Hybi. Thus, if the sender’s view is distinguishable by some adversary
D, we directly use D’s output to break the rewind security of the underlying Πrec.

Since each hybrid is indistinguishable except with negligible probability, the views generated in
the two experiments are indistinguishable.

Claim 55. Our constructed protocol achieves simulation security against a malicious rewinding
receiver.

Proof. To prove this we construct a simulator as below. The simulator SS−OT against a malicious
receiver R behaves in the following manner. It internally uses the simulator against malicious
(non-rewinding)

1. Pick i∗←$ [n]. Sample the Πrec index picked in each rewind j. For all j ∈ [BOT]

ρi∗ [j]←$ [BOT]

Since BOT is a constant, with noticeable probability the sample ρi∗ [j] are all distinct. If
not, we redo the process with fresh randomness, until we have such a set of distinct values
{ρi∗ [j]}j∈[BOT]. We will expose all of the OTs in the tuple i∗ to the underlying simulator Srec.
Likewise, all messages in that tuple are passed from the underlying simulator to R.
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2. The remaining Πrec messages are generated honestly, and any queries by R will be answered
honestly, as in the rewinds.

3. Since the rewind threads are only executed until the 3rd round, we don’t care about the
sender’s inputs in these threads since the senders’ inputs are decided only in the fourth
round.

4. Except for the i∗-th position, we sample shares for every other position to be used in the
fourth round. i.e. ∀j 6= i∗ pick s0

j ←$ {0, 1}, s1
j ←$ {0, 1}.

5. When R completes its third round, use Srec to extract the receiver input in the i-th tuple.
This may rewind R. In such a case, behave honestly in all honestly computed instances of
Πrec. The i∗-tuple responses are handled by Srec.

6. On completing the extraction, let Srec make a query b̃ to the ideal functionality. This cor-
responds to the input of R in the i∗-th tuple. We take note, and pass this to the ideal
functionality.

7. Let s̃ be the value returned by the ideal functionality.

8. Set sb̃i∗ := s̃
⊕n

i=1
i 6=i∗

sb̃i and send sb̃i∗ to Srec. The final message generated by Srec for tuple i∗

is forwarded to R along with honestly computed Πrec messages using inputs
(
sb̃i , s

1−b̃
i

)
with

the order potentially being switched if b̃ = 1.
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A Delayed-Input Rewind SecureWitness Indistinguishable Proofs
from [GR19]

For completeness, we discuss the rewind secure delay-input witness indistinguishable proofs from
the unpublished work of Goyal and Richelson [GR19]. This section is taken verbatim from their
paper. Throughout, we let λ denote the security parameter, and we write negl(λ) for functions
which tend to zero faster than λ−c for any constant c.

A.1 Preliminaries

MPC-in-the-Head [IKOS07]. As in [BGJ+18], we make black-box use of a 3-round zero
knowledge protocol (non delayed-input) with bounded rewinding security. The soundness error of
the protocol would depend upon the rewinding parameter B.

Definition 12 (3-Round ZK with Bounded Rewinding Security). [BGJ+18] Fix a pos-
itive integer B. A delayed-input 3-round interactive argument (as defined in Definition 7) for
an NP language L, with an NP relation RL is said to have B-Rewinding Security if there exists
a simulator Sim such that for every non-uniform PPT interactive Turing Machine V ∗, it holds
that {REALV

∗
(1λ)}λ and {IDEALV

∗
(1λ)}λ are computationally indistinguishable, where the random

variable REALV
∗
(1λ) is defined via the following experiment. In what follows we denote by P1 the

prover’s algorithm in the first round, and similarly we denote by P3 his algorithm in the third round.

Experiment REALV
∗
(1λ) is defined as follows:

1. Run P1(1λ, x, w; r) and obtain output rwi1 to be sent to the verifier.
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2. Run the verifier V ∗(1λ, rwi1) and interpret its output as message rwi2.

3. Run P3(1λ, rwi2, x, w; r), where P3 is the (honest) prover’s algorithm for generating the third
message of the WI protocol, and send its output rwi3 to V ∗.

4. Set a counter i = 0.

5. If i < B, then set i = i + 1, and V ∗ (given all the information so far) generates another
message rwii2, and receives the (honest) prover’s message P3(rwii2, x, w; r). Repeat this step
until i = B.

6. The output of the experiment is the view of V ∗.

Experiment IDEALV
∗
(1λ) is the output of the experiment SimV ∗(1λ, x; r).

Imported Theorem 2. [IKOS07, BGJ+18] Assume the existence of injective one-way functions.
Then, for any (polynomial) rewinding parameter B, there exists a 3-round zero-knowledge protocol
for proving NP statements that is simulatable under B-bounded rewinding according to 12.

If B is a constant, the soundness error of the above protocol will be a constant. If B = poly(λ),
the soundness error ε ≤ 1− q(λ) where q is also a polynomial.

A.2 The Construction

Building Blocks. Our construction will make use of two crucial building blocks: the 3-round
delayed-input WI protocol in [LS90], and, the bounded rewinding secure 3-round “MPC in the
head” based 3-round protocol of [IKOS07].

Theorem 5. Assuming injective one-way functions, for every (polynomial) rewinding parameter
B, there exists a three round delayed-input witness-indistinguishable proof system RWI with B-
rewinding security.

The soundness of our protocol depends upon the rewinding parameter B and can be amplified
via parallel repetition while preserving the WI property. Our protocol RWI will consists of 4
algorithms (SWI1,SWI2, SWI3, SWI4) where the first 3 denote the algorithms used by the prover
and verifier to send their messages and the last is the final verification algorithm. We use the
protocol from [IKOS07]. We denote its algorithms by Head.ZK = (zk1, zk2, zk3, zk4), where the
first 3 denote the algorithms used by the prover and verifier to generate their messages, and the
last is the final verification algorithm. The simulator of the protocol Head.ZK is denoted by Szk.
We will also use the delayed-input WI protocol from [LS90] and denote its algorithms by DIWI =
(DWI1,DWI2,DWI3,DWI4), where the first 3 denote the algorithms used by the prover and verifier
to generate their messages, and the last is the final verification algorithm.

Let λ be the statistical security parameter. We define parameter N = B2λ4.
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Inputs: At the beginning of the third round, the prover P gets as input (x,w); V gets only x.

1. Round 1: Prover message:

– P prepares and sends commitments c1, . . . , cN where ci = Com(0) for all i.

– P also prepares and sends a first round message hzkP→V1 for a single instance of
Head.ZK, using zk1. The statement for Head.ZK is that each ci, i ∈ [N ] is indeed
a commitment to 0; P uses the commitment openings as its witness.

– P also prepares and sends first round messages {dwiP→V1,i }i∈[N ] for N separate instances
of DIWI. The statements for these DIWI instances will come in the third round.

2. Round 2: Verifier message:

– The verifier samples a challenge bit ch and sends it to P .

– If ch = 0, V in addition executes zk2 to sample hzkV→P2 and sends it to V .

– If ch = 1, V executes DWI2 on {dwiP→V1,i }i∈[N ] to get {dwiV→P2,i }i∈[N ] and sends to P .

3. Round 3: Prover message:

If ch = 0, P generates hzkP→V3 by running zk3 and sends it to P . If ch = 1, P proceeds as
follows:

– Following [IKOS07], emulate an MPC computation of the circuit representing the wit-
ness relation with λ players. The input of each player will be a share of the witness w.
Let the view of the i-th player be Vi. For i ∈ [λ], compute cvi = Com(Vi) and send it
to V .

– Select a set of λ(λ − 1) distinct random indices {ki,j ∈ [N ]}i 6=j,i∈[λ],j∈[λ]. Represent
these set of indices by SI and send them to V .

– Use {dwiP→V1,i , dwiV→P2,i }i∈SI and the algorithm DWI3 to generate {dwiP→V3,i }i∈SI and

send them to V . For each ki,j ∈ SI, the message dwiP→V3,ki,j
prove that either (a) cki,j

is a commitment to 1, or, (b) the views (Vi, Vj) are honest and “consistent” with each
other. That is, there exist input (wi, ri) (resp (wj , rj)) s.t. Vi (resp. Vj) is computed
and committed honestly using (wi, ri) (resp (wj , rj)). Furthermore, each outgoing
message sent to the j-th player in Vi is consistent with each incoming message from the
i-th player in Vj , and, vice-versa. The honest prover P uses the witness corresponding
to (b) to compute dwiP→V3,ki,j

.

4. Verifier Output:

– If ch = 0, compute the output of the algorithm zk4 on (hzkP→V1 , hzkV→P2 , hzkP→V3 ) and
the private randomness of V . Output whatever zk4 outputs.

– If ch = 1, for each i ∈ SI, execute the algorithm DWI4 on (dwiP→V1,i , dwiV→P2,i , dwiP→V3,i ).
If all executions of DWI4 accept, then output accept and reject otherwise.

Figure 5: 3 round Bounded Rewinding Secure WI

A.3 Security Analysis

Proving Soundness. We prove that our protocol RWI has soundness δ/2 where δ is the soundness
parameter of the Head.ZK construction. Suppose x /∈ L. Consider the following two cases:
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1. Case 1: There exists i ∈ [N ] s.t. ci 6= Com(0). In this case, we claim that V will reject the
execution with probability at least δ/2. This is because with probability 1/2, the challenge
ch will be 0. If so, by the soundness of Head.ZK, V is guaranteed to reject the execution with
probability at least δ.

2. Case 2: For all i ∈ [N ], ci is indeed a commitment to 0. Assume that the verifier accepts all
λ(λ− 1) executions of the DIWIprotocol. Then w.h.p, the prepared views V1, . . . , Vλ are such
that each pair (Vi, Vj) is consistent. This follows from the soundness of the DIWI protocol
(which has negligible soundness error). Since the underlying MPC construction has perfect
correctness, it follows that x ∈ L which is a contradiction. Hence, w.h.p, the verifier must
reject at least one execution of the DIWI protocol.

Suppose the probability of Case 1 and Case 2 are p and 1 − p respectively. Then RWI has
soundness pδ/2 + (1− p) · (1− negl(λ) (λ)) ≥ δ/2.

Witness Indistinguishability under B rewinds: We will now prove that RWI satisfies wit-
ness indistinguishability under B rewinds where B is the rewinding parameter of the Head.ZK
construction. Consider the following sequence of hybrid experiments.

Hybrid H0: This hybrid experiment corresponds to the honest protocol execution where the
prover uses witnesses w1, . . . , wB0 to prove the statements x1, . . . , xB respectively in B rewound
executions.

Hybrid H1: In this hybrid experiment, the prover starts using the simulator Szk to simulate the
execution of the protocol Head.ZK across all executions. In more details, the prover runs Szk to
get the message hzkP→V1 . Prover then prepares the first message of the protocol honestly except
for using hzkP→V1 given by Szk and sends it to V ∗. In all the B execution, the prover handles the
messages of Head.ZK as follows. If ch = 0, prover forwards the verifier message of Head.ZK to Szk
and forwards the response back to V ∗. If ch = 1, the prover aborts this particular execution with
Szk since there will be no further message of Head.ZK in this execution. All messages other than
messages of Head.ZK are computed honestly as in H0.

By the zero-knowledge property of Head.ZK, it follows that the view produced by Szk across
the B executions will be indistinguishable from that in H0. Hence, the view of V ∗ in H1 is
indistinguishable from that in H0.

Hybrid H2: The prover now selects a random set of λ(λ− 1) distinct indices (from N indices) for
each of the B executions even before the protocol starts. Denote these sets by SI1, . . . , SIB. Define
a set SU which consists of all the indices which appear in more than 1 of these B sets SI1, . . . , SIB.
In hybrid H2, the prover is identical to that in H1 except that for each i /∈ SU , the prover sets
ci = Com(1). (The remaining commitments are commitments of 0 as before.)

The indistinguishability of this hybrid follows directly from the hiding property of Com. Observe
that in this experiment, the openings of the commitments c1, . . . , cN are not being used by the prover
in any of the B executions.

We also prove the following lemma.

Lemma 4. Suppose N = B2λ4. Except with negligible probability over the random tape of the
prover, |SU | ≤ λ

6 .

Proof. Define T = Bλ2. We consider the following experiment. First pick T independent and ran-
dom indices from the set N . The (multi)set of indices is denoted by ST and the indices themselves
are denoted by E1, . . . , ET . Since the indices are picked independently, it is possible that some
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of them maybe the same (and hence ST is a multiset rather than a set). We now construct sets
SI1, . . . , SIB from ST as follows. SI1 will simply consist of the first λ(λ − 1) mutually distinct
elements from ST (starting with element E1). SI2 will consist of the second λ(λ − 1) mutually
distinct elements from ST , and so on. Note that for all i, all elements within SIi must be dis-
tinct. However, two sets SIi and SIj with i 6= j may have non-zero intersection. To be able to
successfully construct SI1, . . . , SIB, it is sufficient (though not necessary) for ST to have at least
Bλ(λ−1) distinct elements. The distribution of sets SI1, . . . , SIB constructed using this algorithm
is identical to the distribution when SI1, . . . , SIB are picked one at a time by randomly picking
λ(λ− 1) distinct indices out of N . We now prove that, in fact, most elements in ST are distinct.

Claim 56. Multiset ST has at least T − λ/6 distinct elements except with negligible probability.

Proof. Since all elements of ST are picked independently and uniformly, the probability that the
i-th element is identical to any other element in ST is at most T

N . Define random variable Xi s.t.
Xi = 1 if ∃j 6= i s.t. Ei = Ej , and, Xi = 0 otherwise. Clearly, the expectation E[Xi] ≤ T

N . Denote

X =
∑

iXi. By linearly of expectation, E[X] ≤ T 2

N = 1.

Denote E[X] by µ. Set δ = λ
7 . By Chernoff bounds, we have that Pr[X > (1+δ)µ] ≤ negl(λ) (λ).

Thus, Pr[X > λ
6 ] ≤ negl(λ) (λ).

If ST has T elements and at least T − λ/6 are distinct, at most λ/6 elements appear multiple
times in ST . This also means that at most λ/6 elements appear multiple times across the sets
SI1, . . . , SIB. Thus, |SU | ≤ λ

6 .

Hybrid H3: This hybrid is identical to the previous except in the way prover computes {dwiP→V3,i }i/∈SU
in the last round. Note that if i /∈ SU , ci = Com(1). Hence, the prover now has an alternative wit-
ness to prove the statement. The prover switches to using this witness to compute {dwiP→V3,i }i/∈SU
in all executions.

Now observe the following. By definition of SU , if i /∈ SU , then the message {dwiP→V3,i }i/∈SU is
actually required to be sent in at most one execution. That is, i /∈ SU , the i-th parallel instance
of DIWI is only executed at most once (without any rewinding). Hence, the indistinguishability of
the view of V ∗ between H2 and H3 follows from the witness indistinguishability of DIWI.

Hybrid H4: We now define a set Sleak ⊂ [λ] of the views as follows. Start with an empty Sleak.
For all ki,j ∈ SU , add i and j to Sleak. Clearly, since |SU | ≤ λ

6 , it follows that |Sleak| ≤ λ
3 .

This hybrid is identical to the previous except now for all i /∈ Sleak, the prover sets cvi to be
Com(0) as opposed to Com(Vi) (in all executions). Now observe that if i /∈ Sleak, the opening of
cvi was not being used as a witness in any DIWI execution. This is because any DIWI instance
which could have used Vi has already been switched to using the alternate witness. Thus, the
indistinguishability of the view of V ∗ between H3 and H4 directly follows from the hiding of the
commitment scheme Com.

Hybrid H5: This hybrid is identical to the previous one except in how the views are computed
by the prover in the last round. We note that in each rewound execution, the prover only needs to
construct a view Vi if i ∈ Sleak. However since |Sleak| ≤ λ

3 , the prover needs to construct at most λ
3

views. The prover stops using the supplied witness at this point and instead starts using the MPC
simulator to generate all the required views. Observe that we are using an MPC protocol with per-
fect correct and perfect security which is capable to simulating the view of up to λ

3 players. Thus,
the indistinguishability of the view of V ∗ between H4 and H5 follows from indistinguishability of
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real and simulated views in the underlying MPC construction.

We now observe that in hybrid H5, our prover is no longer using the supplied witnesses in any
of the B execution. Hence, our construction RWI is, in fact, zero-knowledge under B rewinds. This
in particular implies that our construction satisfies the notion of WI with bounded rewind security.
We also note that although not necessary in our application, the parallel repetition of RWI can also
be shown to have the proof of knowledge property.
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