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Abstract

In 2005, [2] Philippe Guillot presented a new construction of Boolean
functions using linear codes as an extension of Maiorana-McFarland’s con-
struction of bent functions. In this paper, we study a new family of
Boolean functions with cryptographically strong properties such as non-
linearity, propagation criterion, resiliency and balance. The construction
of cryptographically strong boolean functions is a daunting task and there
is currently a wide range of algebraic techniques and heuristics for con-
structing such functions , however these methods can be complex, com-
putationally difficult to implement and not always produce a sufficient
variety of functions. We present in this paper a construction of Boolean
functions using algebraic codes following Guillot’s work.

1 Introduction

Here we follow [1]. Let Fn
2 be the binary vector space of dimension n over

the Galois Field of two elements F2. Given two vectors a,b ∈ Fn
2 , we define

the scalar product
a · b = (a1b1 ⊕ . . .⊕ anbn)

and the sum as
a⊕ b = (a1 ⊕ b1, . . . , an ⊕ bn),

where the product and sum ⊕ (also called XOR) are over F2.
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A n-variable boolean function f is a mapping

f : Fn
2 −→ F2.

We will denote by Bn the set of all Boolean functions of n variables. The
set Bn is a vector space over F2 with the addition ⊕ defined by

(f ⊕ g)(x) = f(x)⊕ g(x),

for any f, g ∈ Bn and any x ∈ Fn
2 . The polar form f̂ : Fn

2 −→ R, or sign
function, of a boolean function f ∈ Bn, is defined by

f̂(x) = (−1)f(x) .

The support f , denoted by Supp(f), is the set of vectors in Fn
2 whose

image under f is 1. That is

Supp(f) = {x ∈ Fn
2 | f(x) = 1}.

The weight of a boolean function f ∈ Bn, denoted by w(f), is the car-
dinality of its support, that is w(f) = |Supp(f)|. We will say that a
function f ∈ Bn is balanced if w(f) = 2n−1, that is, the truth table of
f contains the same number of 0 and 1. This property is desirable in a
Boolean function to resist differential attacks such as those introduced by
A. Shamir against the DES algorithm.

A boolean function f ∈ Bn is called affine if we can write it as

f(x) = 〈a, x〉 ⊕ b

for some a ∈ Fn
2 and b ∈ F2. If b = 0, we say that f is linear function.

The set of affine functions will be denoted by An. Let f, g ∈ Bn. The
distance, d(f, g), between f and g, is the weight of the function f ⊕ g,
i.e.,

d(f, g) = w(f ⊕ g).

The nonlinearity of a boolean function f ∈ Bn, denoted by Nf , is the
minimum distance between f and the set of affine functions An, i.e.,

Nf = min{d(f, ϕ) | ϕ ∈ An}.

A high nonlinearity is desired to reduce the effect of linear cryptanalysis
attacks.

The Truth Table of a Boolean function f is the vector, indexed by
the elements of Fn

2 (in lexicographical order),

(f(0̄), f(1̄), . . . , f(2n − 1))

where 0̄ = (0, . . . , 0, 0), 1̄ = (0, . . . , 0, 1), . . . , 2n − 1 = (1, . . . , 1, 1). The
polar truth table of f is the (1,−1) sequence defined by(

(−1)f(0̄) , . . . , (−1)f(2n−1)
)
.

A Boolean function in Fn
2 can be expressed uniquely as a polynomial in

F2 [x1, . . . , xn] /
(
x2

1 ⊕ x1, . . . , x
2
n ⊕ xn

)
2



through its Algebraic Normal Form (ANF)

f(x) =
∑
a∈Fn2

cax
a1
1 · · ·x

an
n , (1)

where ca ∈ F2 and a = (a1, . . . , an), with ca =
∑

x≤a f(x), where x ≤ a
means that xi ≤ ai, for all 1 ≤ i ≤ n. That is, ca = g(a1, . . . , an), and
g is a function in Bn called the Möbius Transform of f , denoted by
g = µ(f). The Algebraic Degree of a boolean function f is the degree
of its ANF. It follows that the algebraic degree of f ∈ Bn does not exceed
n− 1.

The Walsh-Hadamard Transform of a function f in Fn
2 is the map-

ping H(f) : Fn
2 → R, defined by:

H(f)(h) =
∑
x∈Fn2

f(x)(−1)h·x, (2)

Let f ∈ Bn be a boolean function, let S be an arbitrary subspace of
Fn

2 and S⊥ the dual(annihilator) of S, i.e.,

S⊥ = {x ∈ Fn
2 : x · s = 0, ∀s ∈ S}

then, ∑
u∈S

H(f)(u) = 2dimS
∑

u∈S⊥

f(u). (3)

From the definition of the Walsh-Hadamard Transform, it follows that
H(f̂)(u) equals the number of zeros minus the number of ones in the
binary vector f ⊕ lu(lu ∈ An, or, lu(v) =

∑n
i=1 uivi) and such that

H(f̂)(u) = 2n − 2d(f,

n∑
i=1

uivi) (4)

d(f,

n∑
i=1

uivi) =
1

2
(2n −H(f̂)(u)) (5)

d(f, 1⊕
n∑

i=1

uivi) =
1

2
(2n +H(f̂)(u)) (6)

We summarize these earlier results in the following theorem

Theorem 1.1. The nonlinearity f is determined by the Walsh-Hadamard
Transform of f , i.e.

Nf = 2n−1 − 1

2
max
u∈Fn2

|H(f̂)(u)|. (7)

In what follows we summarize some factors which are important in the
design of Boolean functions with good cryptographic properties [3]:

A n-variable boolean function is said to have Correlation immunity
of order m if and only if H(f̂)(u) = 0, with 1 ≤ w(u) ≤ m. A Boolean
function with Correlation Immunity of order m and balanced is called m-
resilient. The fundamental relationship between the number of variables
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n, algebraic degree d and order of correlation immunity m of a boolean
function is

m+ d ≤ n.
The autocorrelation function rf̂ (s) for a Boolean function f is de-

fined from its polar representation as

rf̂ (s) =
∑
x∈Fn2

f̂(x)f̂(x⊕ s).

This value is proportional to the imbalance of all the first-order derivatives
of the Boolean function. Small autocorrelation values are desirable while
boolean functions having larger values are considered weak.

We say that a Boolean function has Propagation Criteria of order l,
denoted by PC(l) if f(x)⊕f(x⊕u) is balanced for all u with 1 ≤ w(u) ≤ l.

The Strict Avalanche Criterion (SAC), refers to the effect of
changing all input bits. A boolean function f is said to satisfy SAC if
f(x)⊕ f(x⊕ u) is balanced for all u with w(u) = 1.

Let q = 2m, and let Fq be the finite field with q elements. An Fq−linear
error correcting code C of length n is an Fq−linear subspace of Fn

q .
The elements of C are called words. The weight wt(x) of a word x in
C is the number of its non-zero coordinates. The minimum weight d of
the code C is defined as the minimum of the weights among all non-zero
words occurring in C. For x, y ∈ C, we define the Hamming distance
d(x, y) between x and y as wt(x− y). The minimum distance of a code
C is defined as

d = min{d(x, y)|x, y ∈ C, x 6= y}.
If k is the dimension of C as a vector space over Fq, then we say that C
is a

[n, k, d]q

error correcting code. The Singleton bound states that the parameters of
a code C must satisfy

n+ 1 ≥ k + d.

A code satisfying the previous inequality with equality is called a maxi-
mum distance separable code, or simply a MDS-Code.

For q ≥ 2, h ≥ 1. Let Q = qh. Consider two codes which we call outer
code and inner code. Let C be outer code with parameters [N,K,D]Q and
let I be inner code with parameters [n, h, d]q. The concatenation method
constructs a code F over Fq out of a code over FQ. The first step is to fix
any isomorphism ϕ : FQ −→ I ⊆ Fn

q . Then

F := {(ϕ(c1)), . . . , ϕ(xN ))|(x1, . . . , xN ) ∈ C}.

The code F has parameters

[N · n,K · h,D · d]q.
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2 Maiorana-McFarland-Guillot’s construc-
tion

The Maiorana-McFarland construction was originally designed to obtain
bent functions. It has been extended to construct resilient functions [2].

For n ≥ 2 an integer and Fn
2 = E ⊕ F a decomposition into two

complementary subspaces: E of dimension p y F of dimension q = n− p.
For any application π : E −→ Fn

2 and any application h : E −→ F2

the Maiorana-McFarland(MM) construction defines a Boolean function f
as follows:

f : E ⊕ F −→ F2

x+ y 7→ π(x) · y + h(x),

The application π is defined on Fn
2 , but since π(x) is wrapped by an in-

ternal product with an element of F , the value of f it is invariant when
π(x) is moved by a vector of F⊥. So, π can be considered to be defined
over the space Fn

2 /F
⊥ ∼= E⊥, so π : E −→ E⊥.

One of the properties we are interested in from a Boolean function is
the Propagation Criteria, in [2] it is shown that for a Boolean function to
have Propagation Criteria of order k it is enough that the coset x0 + F ,
with x0 ∈ E, has w(x0 + F ) > k. Therefore, to find a Boolean function
with PC(k−1) it is enough to select an appropriate x0 in the complement
of F , such that the lateral class x0 + F has weight ≥ k.

3 Reed-Solomon Codes

The class of Reed-Solomon Codes is considered of great importance in
coding theory. They are members of the family of algebraic codes. Recall
one of the standard descriptions of an extended Reed-Solomon code over
Fq( [4]). Let Fq = {0, 1, α, α2, · · · , αq−2}. Consider the set

L = {f(x) ∈ Fq [q] | degree(f(x)) < r}.

The code Reed-Solomon code RS(r, q) of length n = q is defined by

RS(r, q) := {c = (f(0), f(1), f(α), f(α2), · · · , f(αq−2)) | f(x) ∈ L}

Because a polynomial of degree l has at most l zeros in Fq, we see that
RS(r, q) has minimum distance d = q − r + 1, which is the best possible,
i.e., RS(r, q) is a maximum distance separable(MDS) code [4]. The code
RS(r, q) has parameters

[q, r, q − r + 1]q .

In this paper we will assume that q = 2m, then RS(r, q) has parameters

[2m, r, 2m − r + 1]2m
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4 Boolean functions from RS(r, 2m)

For our construction of boolean functions we will use a concatenated Reed-
Solomon code. Let C = RS(r, 2m), this is our outer code. Let I be the
all even weight codewords, then with parameters [m+ 1,m, 2]2. After
concatenation we obtain a code F with parameters

[(m+ 1)2m,m · r, 2(2m − r + 1)]2 .

We will use our code F as the main ingredient to the Maiorana-McFarland
construction. Obtaining a new family of Boolean functions, in n = (m+
1)2m variables. The dimension of the complementary vector space E is

therefore b = (m+ 1)2m −m · r. And F(m+1)2m

2 = E ⊕ F .
We focus now in the lateral class x0 +F . As F is constructed by eval-

uating all polynomials of degree less than r over F2m [x], we can assume
that x0 is also constructed by evaluating a polynomial L(x) over F2m [x].
A polynomial L(x) can be obtained using Lagrange interpolation whose
evaluation produces a suitable concatenated x0.

Let a1, ..., ar be a set of information coordinates for the codeRS(r, 2m),
by Lagrange interpolation, we can obtain a polynomial L(x) of degree r
such that L(ai) = 0 for i = 1, ..., r and L(b) 6= 0 for all b ∈ F−{a1, . . . , ar}.
The vector ev(L) is a vector in the complement of RS(r, 2m) as a vector
space over F2m , and the lateral class ev(L) + RS(r, 2m) has minimum
weight ≥ 2m − r. Let x0 be the image of ev(L) under concatenation,
it follows that x0 is a vector in the complement of F as a binary vector
space and, by construction, the minimum weight of the lateral class x0+F
is ≥ 2(2m − r). Thus, by using our proposed F and x0 in Guillot’s
construction, we obtain a boolean function satisfying PC(2m+1− 2r− 1).

5 Example

Suppose we want to build a 12 variable boolean function. As the main
ingredient we use the Reed-Solomon code C = RS(3, 4) over F4 with
parameters [4, 3, 2]
A generator matrix for C is

G =

 1 1 1 1
0 α α+ 1 1
0 α+ 1 α 1

 .

Where α2 + α + 1 = 0. We now obtain a binary code from C by
concatenation with the even weight code I = {000, 101, 011, 110} with
parameters [3, 2, 2]. Any other 2-dimensional binary code will serve as
an inner code. The next step is to choose any homomorphism ν be-
tween F4 and I as vector spaces over F2. For our example we choose
0 7→ 000, 1 7→ 101, α 7→ 011, α + 1 7→ 110. After concatenation we obtain
a binary code F with parameters [12, 6, 4]. A systematic generator matrix
for F is given by
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GF =


1 0 0 0 0 0 1 0 0 1 0 1
0 1 0 0 0 0 1 0 0 0 1 1
0 0 1 0 0 0 0 1 0 1 0 1
0 0 0 1 0 0 0 1 0 0 1 1
0 0 0 0 1 0 0 0 1 1 0 1
0 0 0 0 0 1 0 0 1 0 1 1


The row span of GF is the binary vector space F in the MM construction.
As GF is systematic, that is, the first 6 columns are the information
coordinates of code F , we may easily describe the complementary space
E with generator matrix

GE =


0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


In this example we have n = 12, p = 6, q = 6, so we will build a

two to one function π. The next step is to build x0 ∈ E by concate-
nation of the evaluation vector of L(x) = x2 + x. We obtain x0 =
{0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0} ∈ E. For each lateral class u + F⊥ with
u ∈ E⊥ we construct the sets

E0 = {v ∈ u+ F⊥ : v · x0 = 0}

and
E1 = {v ∈ u+ F⊥ : v · x0 = 1}.

Let d0 = d(E0), d1(E1) be the minimum distances of E0 and E1 respec-
tively, and let dj = max{d0, d1}. Next we store in an array the pairs
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(u, j). In this example the array is given by

(u, 0/1) =



u hu

{0, 0, 1, 0, 1, 1} 0
{0, 0, 1, 1, 0, 1} 0
{0, 0, 1, 1, 1, 0} 0
{0, 1, 0, 0, 1, 1} 0
{0, 1, 0, 1, 1, 0} 0
{0, 1, 0, 1, 1, 1} 1
{0, 1, 1, 0, 0, 1} 0
{0, 1, 1, 0, 1, 0} 1
{0, 1, 1, 0, 1, 1} 0
{0, 1, 1, 1, 0, 0} 0
{0, 1, 1, 1, 0, 1} 1
{0, 1, 1, 1, 1, 0} 0
{0, 1, 1, 1, 1, 1} 1
{1, 0, 0, 0, 1, 1} 0
{1, 0, 0, 1, 0, 1} 0
{1, 0, 0, 1, 1, 0} 1
{1, 0, 0, 1, 1, 1} 0
{1, 0, 1, 0, 0, 1} 1
{1, 0, 1, 0, 1, 1} 0
{1, 0, 1, 1, 0, 0} 0
{1, 0, 1, 1, 0, 1} 0
{1, 0, 1, 1, 1, 0} 0
{1, 0, 1, 1, 1, 1} 1
{1, 1, 0, 0, 0, 1} 0
{1, 1, 0, 0, 1, 0} 0
{1, 1, 0, 1, 0, 0} 0
{1, 1, 0, 1, 0, 1} 1
{1, 1, 0, 1, 1, 0} 0
{1, 1, 0, 1, 1, 1} 1
{1, 1, 1, 0, 0, 0} 0
{1, 1, 1, 0, 0, 1} 0
{1, 1, 1, 0, 1, 0} 0


As you may have noticed all u in the previous array have weight ≥ 3, as

expected from Guillot’s results, so the boolean function we will construct
will have resilience order 2. For x ∈ E we define π(x) = π(x + x0) ∈ F2

at random, and define h(x) = hu and h(x+X0) = hu + ht where ht is a
random value in F2.

By using π and h defined above in the Maoirana-McFarland construc-
tion the following cryptographic paramenters for the boolean function f
were checked using sage:

• Balanced

• Non linearity: 1984

• Algebraic Immunity of order 5

• Propagation criteria of order 3

• Resilience of order 2
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