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Abstract

Genome-Wide Association Studies (GWAS) refer to observational studies of a genome-wide set of genetic
variants across many individuals to see if any genetic variants are associated with a certain trait. A typical GWAS
analysis of a disease phenotype involves iterative logistic regression of a case/control phenotype on a single-
neuclotide polymorphism (SNP) with quantitative covariates. GWAS have been a highly successful approach for
identifying genetic-variant associations with many poorly-understood diseases. However, a major limitation of
GWAS is the dependence on individual-level genotype/phenotype data and the corresponding privacy concerns.

We present a solution for secure GWAS using homomorphic encryption (HE) that keeps all individual data
encrypted throughout the association study. Our solution is based on an optimized semi-parallel GWAS compute
model, a new Residue-Number-System (RNS) variant of the Cheon-Kim-Kim-Song (CKKS) HE scheme, novel
techniques to switch between data encodings, and more than a dozen crypto-engineering optimizations. Our
prototype can perform the full GWAS computation for 1,000 individuals, 131,071 SNPs, and 3 covariates in
about 10 minutes on a modern server computing node (with 28 cores). Our solution for a smaller dataset was
awarded the first place in iDASH’18 Track 2: “Secure Parallel Genome Wide Association Studies using HE”.

Many of the HE optimizations presented in our paper are general-purpose, and can be used in solving
challenging problems with large datasets in other application domains.
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I. BACKGROUND

Genome-Wide Association Studies (GWAS) refer to observational studies of a genome-wide set of
genetic variants across many individuals to see if any genetic variants are associated with a certain
trait. When applied to human data, GWAS typically focus on associations between single-nucleotide
polymorhisms (SNPs) and a quantitative or dichotomous disease outcome, as well as a number of
quantitative covariates. However, the reliance on full genotype and phenotype data across thousands of
samples raises major privacy concerns for GWAS, and has limited their applicability.

Recent work has focused on secure multi-party computation algorithms to facilitate privacy-preserving
GWAS, but this approach requires resource-heavy, continuous interactions between users which is im-
practical for GWAS studies that are aggregated over months or years. To motivate the cryptographic
community, the iDASH’18 Organizing Committee ran a special competition track “Secure Parallel Genome
Wide Association Studies using Homomorphic Encryption (HE)” to advance the state of the art in GWAS
using HE, which is a non-interactive approach to secure computing.

This paper presents our HE-based solution to GWAS. Our solution is based on an optimized GWAS
compute model, a new Residue-Number-System (RNS) variant of the Cheon-Kim-Kim-Song (CKKS) HE
scheme, novel techniques to switch between data encodings, and more than a dozen crypto-engineering
optimizations. The solution can perform the full GWAS computation for 1,000 individuals, 131,071 SNPs,
and 3 covariates in about 10 minutes on a modern server computing node (with 28 cores).

A. Related Work
Several other RNS variants of the CKKS HE scheme were independently proposed in 2018. These

include the work by Cheon et al. [2], the implementation in Microsoft SEAL 3.0 (released in October
2018), and the variants developed by other teams who submitted their GWAS solutions to the iDASH’18
competition, including UCSD and IBM Research.

II. METHODS

A. Semi-Parallel Approach of Sikorska et al. [1]
Logistic regression is widely used to model binary response data in GWAS. For instance, it can be used

to examine the relationship between disease status (control versus real cases) with respect to phenotypes
(age, weight, height, etc.) and genotypes (such as SNP variations). Let yi denote the disease status for the
ith individual in a sample of size N (yi = 1 if the individual is a disease case, and yi = 0 otherwise), and
(x′i, si) be the corresponding predictor, where x′i ∈ RK corresponds to the phenotypes and si ∈ {0, 1, 2}M
to the genotypes of individual i for a set of K phenotypes and M SNPs. The logistic regression model
expresses the relationship between yi and the predictor set (x′i, si) in terms of the conditional probability
Pr(Y = yi|x′i, si) of disease, as:

Pr(yi|x′i, si) = σ((2yi − 1)(θ′0 + x′i · θ′ + si · β)) ,

where σ is the logistic function, σ(x) = 1
1+exp (−x) ; θ

′
0 ∈ R, θ′ ∈ RK and β ∈ RM are the K + M + 1

parameters to be determined. For the sake of simplicity, we adopt the canonical notation, that is, θ ≡
(θ′0,θ

′) ∈ RK+1 and xi ≡ (1,x′i) ∈ RK+1 for i = 1, . . . , N .
Assuming that the effect of each SNP is independent of each other, it is possible to formulate it as a set

of M independent equations, i.e., decompose the computation into M independent logistic regression cases
for K + 1 parameters. Sikorska et al. [1] proposed a “semi-parallel” approach to speed up the logistic
regression in the above scenario. The goal is to avoid looping over each SNP by using a vectorized
formulation, which includes optimized vector and matrix operations, that allows performing multiple
identical actions over different data in a single operation.

The method relies on the assumption that the covariant parameters θ are nearly the same for all SNPs.
This assumption allows the reformulation of fitting N vectors in RK+1, followed by a one-step calculation
for M SNPs at once. Therefore Sikorska’s semi-parallel logistic regression consists of 2 stages:
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1) Estimate the coefficients of the clinical covariates, θ ∈ RK+1;
2) For each of the M SNPs, estimate the corresponding coefficients β̂ and p-value p ∈ RM .
The first stage, the estimation of θ, θ̂, was widely addressed in the literature, in particular in the

iDASH’17 secure genome analysis competition [3], [4], [5], [6], [7].
The second stage, the estimation of the SNP-coefficients β̂, approximates the optimization problem by

a single Newton-Raphson iteration, leading to

β̂ = H−1 X W ζ,

where X is a matrix in RN×(K+1) whose rows are the vectors xi, i = 1, . . . , N ; W ∈ RN×N is a diagonal
matrix with ωii = ρi(1 − ρi) and ρi = σ(xi · θ̂(t)) for i = 1, . . . , N ; H = X> W X in R(K+1)×(K+1);
ζi = log( ρi

1−ρi ) + yi−ρi
ωii

, i = 1, . . . , N .

Finally, the z-value for each parameter βj , for j = 1, . . . ,M , is given by zj =
β̂j
εj

, where εj =
√

(C−1)jj

is the error associated to β̂j and C = S>W(S−XH−1(X>WS)). A more compact expression of it is

zj =
1

detH

∑n
i wiiζ

∗
i s
∗
ij√∑n

i wiis
∗
ij
2

j = 1, . . . ,m,

with

ζ∗ = detH ζ −XH†X>W ζ,

S∗ = detH S−XH†X>W S.

where H† denotes the adjoint of H.

B. Our Approximations
To optimize the efficiency of our HE solution, we introduced several approximations to the semi-parallel

method of Sikorska et al. [1].
1) Logistic Regression: We found that the gradient descent method is adequate for estimating θ. Starting

from an initial θ(0), the gradient descent method at each iteration t updates the estimation of the regression
parameters

θ̂(t+1) ← θ̂(t) + αtX(y + ρ),

where αt is the learning rate at the t-th iteration. Our numerical experiments suggest that a single iteration
of the gradient descent procedure with α0 = 0.015 and θ(0) = 0 provides adequate accuracy. For simplicity,
we denote α0 as α in the rest of the paper.

2) Logistic function approximation: We used Chebyshev polynomials to approximate the logistic
function. From the analysis we performed, we found that a degree-1 approximation σ(x) = 0.5+0.15625x
provides results with high accuracy.

3) Approximation of ζ: In order to approximate ζ, we considered a Talyor series expansion around
p = 1

2
:

ζ(p, y) ≈(−2 + 4y)+

(−8 + 16y)(p− 1

2
)2 − 32

3
(p− 1

2
)3+

(−32 + 64y)(p− 1

2
)4 − 256

5
(p− 1

2
)5+

(−128 + 256y)(p− 1

2
)6 − 1536

7
(p− 1

2
)7+

(−512 + 1024y)(p− 1

2
)8.
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4) Matrix Inversion and Division: Instead of calculating the inverse of the matrix H, Cramer’s rule
was used: H−1 = adj(H)

det(H)
, where adj(H) is the adjoint of matrix H and det(H) is its determinant. As the

division is an expensive operation, it was deferred to a later stage (after decryption).
5) p-value calculation: After computing the z-values on the server, the p-value computation is per-

formed on the client as depicted in Algorithm 2.
6) Full Procedure: The approximations described above were used to create an optimized procedure

for the server computation (Algorithm 1). Note that line 2 of Algorithm 1 is the closed form for ρ that
incorporates the parameter estimation of the logistic regression. Therefore θ̂ does not appear explicitly in
Algorithm 1.

The annotated encrypted procedure is presented in Algorithm 3. It will be referenced throughout the
rest of this section.

C. CKKS Scheme
Our solution is based an optimized variant of the Cheon-Kim-Kim-Song scheme [8]. We have developed

a Double-Chinese Remainder Theorem (CRT), a.k.a, Residue Number System (RNS), variant of the
original scheme. Our variant is based on the same security assumptions as the original scheme, but relies
on native 64-bit integer arithmetic instead of multiprecision integer arithmetic for better performance and
parallelization.

The original CKKS scheme is formulated for cyclotomic polynomial rings R = Z[x]/ 〈xn + 1〉, where
n is a ring dimension that is a power of two 1. The current ciphertext modulus is typically defined as
Q` = 2`, i.e., the scheme works with residue rings R` = R/Q`R = Z2` [x]/ 〈xn + 1〉. The algorithms
are [8]:
• SETUP(1λ). For an integer L that coresponds to the largest ciphertext modulus level, given the security

parameter λ, output the ring dimension n. Set the small distributions χkey, χerr, and χenc over R for
secret, error, and encryption, respectively.

• KEYGEN. Sample a secret s ← χkey, a random a → RL, and error e ← χerr. Set the secret key
sk← (1, s) and public key pk← (b, a) ∈ R2

L, where b← −as+ e (modQL).
• KSGENsk(s′). For s′ ∈ R, sample a random a′ ← R2·L and error e′ ← χerr. Output the switching

key as swk ← (b′, a′) ∈ R2
2L, where b′ ← −a′s′ + e′ + QLs

′ (modQ2L). Set evk ← KSGENsk(s2).
Set rk(κ) ← KSGENsk(s(κ)).

1CKKS also supports general cyclotomic rings but they are typically less efficient.

Algorithm 1 Approximated Semi-Parallel Procedure: Server Computations
1: α← 0.015

2: ρ← 0.15625α ·X(X> (y − 0.5)) + 0.5

3: W← ρ ? (1− ρ)

4: ζ ← ZEXPAND (ρ,y)

5: H← (X>W)X

6: B← ADJOINT (H)

7: d← DETERMINANT (H)

8: ζ∗ ← d · ζ − (XH)((X>W)ζ)

9: S∗ ← d · S−X((B(X>W))S)

10: z2den ← (d · d ·W) (S∗ ? S∗)

11: znum ← (Wζ∗)> S∗

? denotes element-wide multiplication
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Algorithm 2 Approximated Semi-Parallel Procedure: Client Post-Processing

1: z← znum ?/
√

z2den
2: p← 2 PNORM(−ABS(z)))

?/ denotes element-wise division

• ENCpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output ct← v·pk+(m+ e0, e1) (modQL).
• DECsk(ct). For ct = (c0, c1) ∈ R2

` , output m̃ = c0 + c1 · s (modQ`).
• CADD(ct, c). For ct = (b, a) ∈ R2

` and c ∈ R, output ctcadd ← (b+ c, a) (modQ`).
• ADD(ct1, ct2). For ct1, ct2 ∈ R2

` , output ctadd ← ct1 + ct2 (modQ`).
• CMULT(ct, c). For ct ∈ R2

` and c ∈ R, output ctcmult ← c · ct (modQ`).
• MULTevk(ct1, ct2). For cti = (bi, ai) ∈ R2

` , let (d0, d1, d2) = (b1b2, a1b2 + a2b1, a1a2) (modQ`).
Output ctmult ← (d0, d1) + bQ−1L · d2 · evke (modQ`).

• ROTATErk(κ)(ct, κ). For ct = (b, a) ∈ R2
` and rotation index κ, output ctrotate ← (b(κ), 0)+bQ−1L ·a(κ) ·

rk(κ)e (modQ`).
• RESCALE (ct, p). For a ciphertext ct ∈ R2

` and an integer p, output ct′ ← b2−p · cte (mod(Q`/2
p)).

The CKKS scheme supports an efficient packing of r (up to n/2) real numbers into a single ciphertext.
The encoding and decoding operations are defined as follows:
• ENCODE (w, p). For w ∈ Rr, output the polynomial m← bφ(2p ·w)e ∈ R.
• DECODE (m, p). For a plaintext m ∈ R, output the polynomial w← φ−1(m/2p) ∈ Rr.
Here, φ(x) is a certain complex canonical embedding map, which is similar conceptually to inverse

Fourier transform.

D. Our RNS variant of the CKKS scheme
Our CKKS variant performs all operations in RNS. In other words, the power-of-two modulus Q` = 2`

is replaced with
∏`

i=1 qi, where qi are same-size prime moduli satisfying qi ≡ 1 mod 2n (for efficient
number theoretic transforms (NTT) that convert native-integer polynomials w.r.t. each CRT modulus from
coefficient representation to the evaluation one, and vice versa). The primes are chosen to be as close to
2p as possible to minimize the error introduced by rescaling.

The two major changes in our variant compared to the original CKKS scheme deal with rescaling
and key switching. We also made two other minor changes. First, we use the ternary random discrete
distribution for χkey and χenc instead of the sparse distributions as the lattice attacks for this case are
better studied, and the ternary distribution is included in the HE standard [9]. Second, we do additional
scaling of plaintexts and ciphertexts to support the use of RNS (only native integer arithmetic) during
encoding/decoding.

1) Rescaling in RNS: To efficiently perform rescaling in RNS from Q` to Q`−1, we replace the scaling
down by 2p with scaling down by q`. We choose all qi, where i ∈ [L], such that 2p/qi is in the range
(1− 2−ε, 1 + 2−ε), where ε is kept as small as possible. To minimize the cumulative approximation error
growth in deeper computations, we also alternate qi w.r.t. 2p. For instance, if q1 < 2p, then q2 > 2p and
q3 < 2p, etc.

The new rescaling operation to scale down by one level is defined as
• RESCALERNS (ct). For a ciphertext ct ∈ R2

` , output ct′ ← bq−1` · cte (modQ`−1).
We derive the procedure for computing bq−1` ·cte (modQ`−1) using the CRT scaling technique proposed

in [10]. Consider the following CRT representation of a multiprecision integer x ∈ ZQ`:

x =
∑̀
i=1

xi · q̃i · q∗i − υ′ · q for some υ′ ∈ Z, (1)

4



where
q∗i = Q`/qi ∈ Z and q̃i = q∗i

−1 (mod qi) ∈ Zqi .

Then we can write

x

q`
=

1

q`

( `−1∑
i=1

xiq̃iq
∗
i + x`q̃`q

∗
` − υ′Q`

)
.

After rounding and applying the modulo reduction, the last term is removed yielding⌊
x

q`

⌉
≡

`−1∑
i=1

xi ·
q̃iq
∗
i

q`
+

⌊
x` ·

q̃`q
∗
`

q`

⌉
(modQ`−1) . (2)

The first term can be directly computed in RNS by summing up the products of xi and q−1` (modqi). For
the second term, we precompute the residues of

⌊
q̃`q

∗
`

q`

⌋
and multiply them by the corresponding residues

of x` during rescaling. Then we add the fractional part, which has the residue of bx`/q`e, i.e., 0 or 1, for
each CRT modulus qi. Note that the fractional part is negligibly small and hence can be excluded from
the implementation.

The computational complexity of rescaling is determined by the computation in the second term of (2).
We first need to run one native inverse NTT for residues w.r.t. q` and then `−1 native NTTs to go back to
the evaluation representation. All the computations in the first term of (2) are done directly in evaluation
representation. Therefore, each rescaling operation requires ` native-integer NTTs.

The maximum approximation error introduced by rescaling from ` to ` − 1 is
∣∣q−1` ·m− 2−p ·m

∣∣ ≤
2−ε · |2−p ·m|.

This procedure can be easily generalized to support scaling down by multiple CRT moduli. This case
is similar to the first stage of complex scaling in CRT representation described in Section 2.4 of [10].

2) Key Switching: For key switching, we use the CRT decomposition key switching algorithm that
was originally proposed in [11] and improved in [10] for the Brakerski/Fan-Vercauteren (BFV) scheme.
The advantages of this technique vs. the one used in the original CKKS scheme (initially proposed for
the Brakerski-Gentry-Vaikuntanathan scheme in [12]) are that this technique has lower computational
complexity for relatively small numbers of levels (up to 8 or so), and does not require an approximately
two-fold increase in the ring dimension to support the appropriate lattice security level. Both of these
benefits were important for our solution.

The operations of the CKKS scheme that are modified by the key switching procedure are rewritten as:
• KSGENRNSsk(s′). For s′ ∈ R, sample a random a′i ← RL and error e′i ← χerr. Output the switching

key as swk ← {(b′i, a′i)}i∈[L] ∈ R
2×L
L , where b′i ← −a′is′ + e′i + q̃i · q∗i · s′ (modQL). Set evk ←

KSGENRNSsk(s2). Set rk(κ) ← KSGENRNSsk(s(κ)).
• MULTRNSevk(ct1, ct2). For cti = (bi, ai) ∈ R2

` , let (d0, d1, d2) = (b1b2, a1b2 + a2b1, a1a2) (modQ`).
Decompose d2 into its CRT components [d2]qi and output

ctmult ← (d0, d1) +
∑̀
i=1

[d2]qi · evki (modQ`) .

• ROTATERNSrk(κ)(ct, κ). For ct = (b, a) ∈ R2
` , output

ctrotate ← (b(κ), 0) +
∑̀
i=1

[a(κ)]qi · rk(κ)
i (modQ`) ,

where [a(κ)]qi are CRT components of a(κ).
Each key-switching operation requires one inverse NTT (` native-integer NTTs) to switch d2 (or a(κ)

for rotation) from evaluation to coefficient representation and then ` NTTs (`2 − ` native-integer NTTs)
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to go back to evaluation representation for each CRT component. Hence, the total complexity in terms of
native-integer NTTs is `2.

This key switching procedure also supports a second level of decomposition by extracting base-w digits
in each residue using the procedure described in Appendix B.1 of [11].

3) Noise Estimates: We present here heuristic noise estimates for the RNS variant of CKKS using the
canonical embedding norm, which corresponds to the infinity norm for the evaluation of a polynomial R
at 2n complex roots of unity. For more details on the canonical embedding mapping and norm, the reader
is referred to [8]. The main differences between our expressions and those in [8] are due to the use of
ternary uniform distribution and a different key switching technique.
• Encoding and Encryption. The bound for fresh encryption Bclean = 6σ

(
4
√

3n+
√
n
)
, where σ is

the standard deviation for error distribution. The decoding is correct as long as 2p > n+ 2Bclean.
• Addition. The bound for homomorphic addition Badd = B1 + B2, where Bi is the noise bound for
i-th ciphertext.

• Rescaling. The noise bound for rescaling is Brescale = q−1` · B + Bscale, where B is the input noise
and Bscale =

√
3 (12n+

√
n).

• Rotation. The noise bound for rotation (key switching) is Bksw = 8√
3
· nσw dlogw q`e.

• Multiplication. If we have two ciphertexts ct1 and ct2 with ‖m1‖can
∞ < ν1, noise bound B1 and

‖m2‖can
∞ < ν2, noise bound B2, respectively, the noise bound Bmult = ν1B2 + ν2B1 +B1B2 +Bksw.

In most cases, the parameter selection is determined by the multiplicative depth and the approximation
error in rescaling. The approximation error (with about ε bits being “erased” by rescaling) dominates
the noise growth of other operations and should be done last (after a multiplication). The only practical
exception is when rotations are performed before any multiplications. In this case, the key switching noise
may be high if the w-base is large, e.g., comparable to 2p as in the case of CRT decomposition without
further digit decomposition of each residue.

E. Plaintext encoding
Our solution uses two kinds of plaintext encoding. Initially, X and y are packed in single ciphertexts

similar to how it was done in [7]. We denote this as packed-matrix encoding. All matrix products in steps
2 through 8 of Algorithm 3 use the rotation-based SUMROWVEC and SUMCOLVEC procedures from [4].
Later in the algorithm (starting from step 9), the solution switches to single-integer ciphertexts for X and
the vectors and matrices derived from X and y. We call the latter encoding as packed-integer encoding.
As a result of this, our matrix operations with the SNPs data (first appearing in step 9) involve only
cheap SIMD multiplications and additions of packed-integer and packed-row-vector ciphertexts, and do
not involve any expensive rotations. All operations before computing on the SNPs data are performed
using packed-matrix (single) ciphertexts.

1) Packed-matrix encoding: The packed-matrix encoding packs a full matrix or vector into a single
ciphertext, cloning as many entries as needed to support matrix-matrix and matrix-vector products. The
cloning makes it possible to minimize the number of computationally expensive rotations in matrix-matrix
(vector) products.

We encode/encrypt both X and X> to avoid calling transposition in the encrypted domain. We pack
X ∈ RN×k in a row-wise order, cloning each row k − 1 times before going to the next row. Here, we
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introduce k = K + 1 for brevity.

X =



X11 X12 . . . X1k

X11 X12 . . . X1k
...

...
...

...
X21 X22 . . . X2k

X21 X22 . . . X2k
...

...
...

...
XN1 XN2 . . . XNk

XN1 XN2 . . . XNk


We pack X> ∈ Rk×N by taking each element of matrix X (marshalling it in the row-wise order) and
cloning it to form a complete row.

X> =



X11 X11 . . . X11

X12 X12 . . . X12
...

...
...

...
X1k X1k . . . X1k

...
...

...
...

XN1 XN1 . . . XN1

XN2 XN2 . . . XN2
...

...
...

...
XNk XNk . . . XNk


Both matrices require N · k2 slots.

We pack y ∈ RN column-wise by cloning y k2 − 1 times to the right. That is, we have

y =


y1 y1 . . . y1
y2 y2 . . . y2
...

...
...

...
yN yN . . . yN


︸ ︷︷ ︸

k2 cloned values

The resulting vector ρ is represented the same way as y. Both use N · k2 slots.
The diagonal matrix W is represented as a vector by extracting the diagonal, and the resulting vector

is packed in the same format as ρ.
The SNPs matrix S is encoded either as an array of ciphertexts (when M > n/2) or a single ciphertext

(when M ≤ n/2) without any cloning, i.e., the classical SIMD packing of vectors is used.
Matrices and vectors, such as X and y, can be encoded in a single ciphertext as long as N ·k2 ≤ n/2. If

this condition does not hold, the packing can be trivially extended to multiple ciphertexts per matrix/vector.
2) Packed-integer encoding: To support efficient matrix multiplication without rotations, we also encode

X as N ·k single-integer ciphertexts. In this case, each entry of X is cloned to all slots of a single ciphertext.
We denote such packing of X as X1.

F. Conversion from packed-matrix to packed-integer encoding
The main bottleneck of our solution is the conversion of vectors from a packed-matrix ciphertext to

multiple packed-integer ciphertexts. We have developed and implemented three different methods for
performing this conversion. Based on the requirements for performance and scalability, we chose one of
these methods for our prototype.
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Algorithm 3 Annotated HE Solution
1: α← 0.015 . plaintext constant
2: ρ← 0.15625α ·X(X> (y − 0.5)) + 0.5 ∈ RN . adds 3 levels (taking into account the summation

depth increase); we use the packed X here instead of X>; D=3.
3: W← ρ ? (1− ρ) ∈ RN . ? denotes SIMD multiplication; adds 1 level; D=4.
4: ζ ← ZEXPAND (ρ,y) ∈ RN . Polynomial evaluation; 8-in-series product; depth 4 w.r.t. ρ; D=7.
5: H← (X>W)X ∈ Rk×k . depth 2 w.r.t. W; first product is a SIMD multiplication. D=6.
6: B← ADJOINT (H) ∈ Rk×k . 2-in-series products; depth-2 HM + depth 1 for bit mask

multiplication; adds 2 levels; 2k2 rotations; convert B into k2 packed-integer ciphertexts, denoted as
B1; D=9 for B; D=10 for B1.

7: d1 ← DETERMINANT (H) ∈ R . 3-in-series products; depth-2 HMs + depth 1 for bit mask
multiplication; no depth increase; D=9.

8: ζ∗ ← d1 · ζ − (XB)((X>W)ζ) ∈ RN . Adds 2 HMs + 2 bit mask multiplications to depth = 4
levels; D=13.

9: S∗ ← d1 · S−X1(B1(X
>
1 (W1S))) ∈ RN×m . Adds 1 to

depth; most expensive matrix multiplication costing roughly 2Nk ciphertext multiplications; need to
convert 1 ciphertext W into N W1 ciphertexts; D=14.

10: z2den ← ((d1 · d1) ·W>
1 ) (S∗ ? S∗) ∈ R1×m . SIMD squaring in computing S∗ ? S∗; adds 2 levels;

D=16.
11: znum ← (Wζ∗)1

>S∗ ∈ R1×m . first product is SIMD multiplication; we use the index 1 here to
denote the conversion of the packed-matrix ciphertext into N packed-integer ciphertexts; D=16.

NOTE: HM is homomorphic multiplication; D is current depth; subscript 1 denotes packed-integer
encoding.

To illustrate the problem and its solutions, we consider the task of converting the packed-matrix single-
ciphertext encryption of y into N packed-integer ciphertexts. A similar task has to be executed twice in
our algorithm for secure GWAS.

1) Method 1: NdlogNe rotations: Our first solution can be summarized as follows:
1. Fill all n/2 slots of y by cloning existing N ·k2 slots. This requires log

(
n/
(
2N̄ · k2

))
rotations and

additions. The cloning procedure is described in [7]. Here, N̄ = 2dlogNe.
2. Run N bit mask multiplications to form N ciphertexts each containing n/(2N̄) cloned values for

each component of y. All other slots are zeroed out.
3. Clone existing n/(2N̄) non-zero values to all slots in each of the N ciphertexts. This operation

requires NdlogNe rotations and additions, and is the main bottleneck of the computation.
2) Method 2: N̄ rotations and dlogNe depth increase: The idea of our second solution is to represent

the conversion as a binary tree. At each level i of the tree we perform i rotations, 4 · i bit mask
multiplications, and 2 · i additions, getting two output ciphertexts from each input ciphertext. Although
this recursive method requires only N̄ rotations, 4N̄ bit mask multiplications, and 2N̄ additions, there is
a dlogNe depth increase due to bit mask multiplications at each level of the binary tree.

To illustrate this approach, consider a simpler case (the logic would stay the same when we clone yi
any number of times):

[y1y2y3 · · · yN−2yN−1yN ].

First rotate by -1 and get
Rot1(y) = [yNy1y2 · · · yN−3yN−2yN−1].

Then multiply both y and Rot1(y) by M1 = [101010 · · · 10] and M2 = [010101 · · · 01], and sum up two
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possible combinations, yielding

y1,1 = y ? M1 +Rot1(y) ? M2 = [y1y1y3y3 · · · yN−1yN−1],

y1,2 = y ? M2 +Rot1(y) ? M1 = [yNy2y2 · · · yN−2yN−2yN ].

Next compute Rot2(y1,1) and Rot2(y1,2), multiply y1,1 and y1,2 and their rotations by [110011 · · · 1100]
and [001100 · · · 0011] for each pair, and sum up four possible combinations. Now there are 4 y2,i items.

We recursively execute this procedure until the end.
3) Method 3: N̄2 bit mask multiplications and N̄ rotations: Another approach achieving N rotations

can be summarized as follows:
1. Fill all n/2 slots of y by cloning existing N · k2 slots.
2. Compute N̄ − 1 cheap rotations of the original ciphertext using the hoisting procedure from [13].
3. For each component of y, do N̄ bit mask multiplications (one per rotation) that would extract the

component and zero out all other slots.
4. For each component of y, do N̄ − 1 additions of masked ciphertexts.
Although this procedure requires only roughly N̄ cheap rotations, it involves N̄2 bit mask multiplications

and additions, which now become the main bottleneck for relatively large values of N .
4) Comparison of the methods: We implemented all three methods, and carried out both complexity

and practical performance comparison.
As N is relatively large (at least 245), N̄2 bit mask multiplications in Method 3 resulted in computation

runtimes that are at least 2x-3x larger than Method 1 with NdlogNe rotations. However, Method 3 would
be faster for smaller N , e.g., less than 100.

Method 2 is a good option only when the depth increase can be incorporated in the existing circuit
without increasing the overall circuit depth. But the scalability of this approach is questionable. The depth
increase of dlogNe = 8 could not be integrated in the circuit of our solution, and thus we chose Method
1 for our implementation.

Note that in our implementation the depth cost of bit mask multiplication is the same as for homomorphic
multiplication, which implies there is room for improvement. Therefore, a more depth-efficient bit mask
multiplication procedure may result in a significantly better performance for Method 2, possibly superior
to that of Method 1.

G. Minimizing the number of key switching operations
One of the optimization goals for our solution is to reduce the number of key switching operations, which

are used both for rotation and relinearization (after homomorphic multiplication). Each such operation has
a high computational complexity, i.e., requires `2 native-integer NTTs. We have optimized our algorithm
to minimize the number of key switching operations. For instance, all computations involving encrypted
SNPs data require only 16 (k2) key switching operations in total. A great majority of the computations
involving encrypted SNPs data use only “cheap” SIMD multiplications and additions, and sparingly
rescaling operations.

1) Multiplications with lazy or no relinearization: In steps 9 through 11 of Algorithm 3, our procedure
calls only 16 (k2) relinearizations. In other words, all large-dimension SIMD products are performed
without relinearization (the ciphertext size is allowed to grow). The procedure calls the relinearization
procedure only when multiplying by B1 in step 9, which works with the smallest dimension (k) in the
chained matrix product. We refer to this deferred relinearization as “lazy” relinearization. Any homomor-
phic multiplications after this product are performed without a single relinearization, which significantly
reduces the runtime of computation.

2) Use of additions instead of rotations: The packed-integer encoding is introduced in steps 9 through
11 of Algorithm 3 to replace any rotation-based summations over rows/columns with SIMD homomorphic
additions. The only places where the rotations are used are to homomorphically convert B, W, and
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(Wζ∗) from packed-matrix encoding to the packed-integer one. The use of rotation-based summation in
the chained product of step 9 would require a substantially larger number of rotations as compared to the
conversion of two vectors of size N and one matrix of size k × k.

H. Minimizing the number of NTTs
Besides key switching, NTTs are used for rescaling. In some cases, expensive rotations can be replaced

with hoisted automorphisms from [13], reducing the number of NTTs for multiple rotations of the same
ciphertext to the NTT cost of a single rotation. Our solution minimizes the number of rescaling operations
and uses hoisted automorphisms where applicable.

1) Use rescaling sparingly: We use the following techniques to minimize the number of rescaling
operations:
• When there are homomorphic multiplications followed by aggregation of ciphertexts, such as addition

of multiple ciphertexts, we apply rescaling after the aggregation, i.e., we call it once rather than for
every homomorphic multiplication.

• If there is a benefit in lazy rescaling, e.g., when the number of ciphertexts at the following level is
much smaller, we defer rescaling until later. In this case, we have to make sure the depth requirement
is not increased, which is true when one of the multiplicands is scaled w.r.t. 2p rather a power of it.

• The rescaling operations are not called at the end of computation if skipping them does not increase
the multiplicative depth of the circuit.

2) Hoisted automorphisms: Hoisted automorphisms are useful when multiple rotations of the same
ciphertext need to be computed [13]. Our solution encounters this scenario when computing the matrix
inversion of H in steps 6 and 7 of Algorithm 3, and hence the hoisted automorphisms are used there in
favor of regular rotations.

I. Minimizing the noise growth and ciphertext modulus
We minimized the noise growth/ciphertext modulus of the computation circuit using the following

techniques:
• Binary tree multiplication was employed for any chained products of ciphertexts.
• Closed-form expressions (such as in step 2 of Algorithm 3) were derived to get the maximum benefit

from binary tree multiplication.
• Binary tree addition for any summation of a large number of ciphertexts was employed to achieve a
O(logN) noise growth.

• To guarantee that the end result of the computation requires only one native-integer polynomials, we
multiplied both numerator and denominator by estimated scaling factors (different from 2p). These
factors were introduced during bit mask multiplications to avoid any extra depth increase due to this
additional scaling.

• The maintenance operations of HE, such as key switching and rescaling, were properly ordered
to minimize the noise growth. For instance, rescaling was done after the rotations following a
multiplication (not before).

J. Harnessing the CRT ladder
As the circuit evaluation progresses, the number of CRT limbs, i.e., native polynomials in the Double-

CRT structure, gets reduced due to rescaling. For instance, at level ` the number of CRT limbs is reduced
by L− ` as compared to fresh ciphertexts. This provides a speedup in CKKS compared to scale-invariant
schemes, such as BFV. We can further take advantage of the decreasing CRT “ladder” by encrypting
plaintexts at the level they are first used and by compressing evaluation keys as the computation progresses.
This reduces storage requirements. We also minimize the number of CRT limbs by finding the minimum
number of limbs needed for correct result (starting from the end of the computation circuit). Below we
provide some examples of how these techniques are applied in our solution.
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1) Encrypt ciphertexts at the level first used: As the SNPs matrix S is first used in step 9 of Algorithm 3
(after 10 levels of computation), we encrypt it using 7 CRT limbs rather than 17 corresponding to the
initial ciphertext modulus. This reduces the storage requirements for the SNPs matrix by a factor of 2.4x.

2) Compress evaluation keys as needed: Same rotation keys are used multiple times throughout the
computation. Whenever they are no longer required below a certain level, we compress them to the current
level, thus reducing the number of CRT limbs. Note that the rotation keys consume most of the space
utilized by public keys in our solution.

3) Use the lowest number of CRT limbs for ciphertexts: Once the lowest multiplicative depth for the
circuit is determined, we choose the actual level for ciphertexts by counting from the end of the circuit
(not from the beginning) up to the specific computation. This minimizes the number of CRT limbs used,
thus reducing both runtime and storage requirements.

Consider the example of S. If we were to count the level from the beginning of the circuit, we would
choose level 8 (to match the level of B1). But we choose 10 instead because the maximum depth of
computations from S in step 9 to the end of the circuit is 6. This gives more than 1.5x runtime improvement
for the rotations in the conversion from W to W1, which is done immediately before computing W1S.
The storage requirement for S is also reduced by roughly a factor of 1.3x.

K. Matrix inversion
As pointed out earlier, we use Cramer’s rule to compute the matrix inverse of H. The numerator is

the adjoint of H while the denominator is the determinant of H. To extract specific components of H,
we use cheap rotations (hoisted automorphisms) followed by bit mask multiplications to clear out the
values that are not used. As both numerator and denominator contain a lot of common products of the
rotations for H, we wrote both of them down in the closed form and compute common products only
once. The closed form for the determinant also allows the direct application of binary tree multiplication
(3-in-series products require a binary depth of 2). The depth cost of these steps is 3 (2 for homomorphic
multiplications and 1 for bit mask multiplication).

When computing the determinant and k2 components in the adjoint, all homomorphic multiplications are
performed without relinearization, and the relinearization is applied at the very end (for each component)
after all additions and subtractions are done. This significantly reduces the number of expensive key
switching operations when computing the matrix adjoint and determinant.

The procedure for computing the adjoint and determinat also prepares the packed-matrix variant of B
for computing ζ∗ in step 8 and the packed-integer variant B, i.e., B1, for computing S∗ in step 9 by
performing appropriate rotations and additions. The final rescaling for the components in the adjoint and
determinant is done after all rotations are computed. Otherwise the noise growth in rotations would lead
to incorrect results after decryption.

L. Order of products in matrix chain multiplication
The order of matrix products in matrix chain multiplications has a major effect on the performance

of our solution. The two most complex and costly chained matrix products in Algorithm 3 are step 8
(computation of ζ∗) and step 9 (computation of S∗). Typically the matrix chain multiplication problem is
an optimization problem that can be solved using dynamic programming. In the case of regular plaintext
computations, the goal is usually to minimize the number of element multiplications. In the encrypted
solution, additional constraints are introduced, and these constraints can be different depending on the
plaintext encoding used, as illustrated below.

In step 8, we work with a chain of single ciphertexts (packed matrix encoding). The constraints for
this case can be summarized as follows:
• Make sure the outcome of each intermediate product is a single ciphertext. For instance, we cannot

have a product where outer dimensions are both N .
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• The costs of SUMROWVEC and SUMCOLVEC are different. The latter requires a bit mask multiplica-
tion, and the number of rotations corresponds either to row or column size. The possible constraints
are to minimize the number of rotations and/or minimize the depth of bit mask multiplications.

• Minimize the depth of the overall circuit. In other words, the term at highest level should be given
special attention. The binary tree multiplication technique should also be properly applied.

In step 9, we work with products of many packed-integer ciphertexts and N SIMD-packed ciphertexts
(for each row of matrix S). The guidelines for optimization in this case can be summarized as follows:
• Minimize the total number of SIMD multiplications.
• Minimize the depth of the overall circuit. In other words, the term at highest level should be given

special attention. The binary tree multiplication technique should also be properly applied.
In our solution, the decisions regarding the order of matrix chain multiplication were done by hand. But

in a more general case, where the computation circuit is built automatically, one would have to include
algorithms for finding the optimal order by solving the appropriate dynamic optimization problem.

M. Loop parallelization
To benefit from multi-core CPU environments, our solution applies loop parallelization at various levels.
At the encryption stage, the parallelization is done for the loop iterating over all individuals (size N ,

which is at least 245). This implies the encryption runtime should decrease almost linearly with the number
of physical cores.

In the computation stage, the following loop parallelizations are applied:
• All matrix products in X1(B1(X

>
1 (W1S))) at step 9 of Algorithm 3 are parallelized over inner

dimensions (N or k, depending on the product).
• All SIMD products in steps 10 and 11 of Algorithm 3 are parallelized over N .
• In matrix inversion, the extraction of k2 components of H is parallelized over k2.
• In the homomorphic encoding conversion routine of Method 1, the parallelization is applied to the

main loop over N .
• Loop parallelization is also applied in many places at the level of CKKS and lower-lever ring

operations. In the case of NTTs for polynomials in Double-CRT representation, the parallelization is
done over `. In the case of RNS subroutines, the parallelization is applied at the level of polynomial
coefficients (dimension n).

III. RESULTS

A. Dataset
Our experiments were performed using the training dataset provided by the iDASH 2018 organizers.

The training data were extracted from the Personal Genome Project2. The dataset includes 245 individuals,
10,643 SNPs, and 3 covariates. We also generated larger datasets for scalability analysis by re-sampling
the original dataset.

B. Software implementation
We implemented our solution in PALISADE v1.2 [14]. We added our own implementation for the RNS

variant of the CKKS scheme to PALISADE. For loop parallelization, we used OpenMP.

2https://www.personalgenomes.org/us
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C. Parameter selection
The parameters used are summarized below. According to [9], our parameters correspond to at least

128 bits of security for classical computers.
• The size of ciphertext modulus QL for fresh ciphertexts is 850 bits.
• The ring dimension n is 215 = 32, 768.
• The number of CRT limbs in the fresh ciphertext modulus is 17 (L = 17), which corresponds to 16

levels in the computation circuit. Each CRT modulus is 50 bits long.
• Number of bits p in the plaintext scaling factor of CKKS scheme is 50. For this value of p, the

approximation error introduced by each rescaling typically affected up to 25 least significant bits of
the encrypted data.

• The key switching window matches the size of CRT moduli, i.e., 50 bits.
• We use the ternary secret key distribution, i.e., random integers between -1 and 1, as commonly done

for BFV.
• The error distribution parameter σ is 3.19.

TABLE I
MAXIMUM STORAGE REQUIREMENTS FOR N = 245; M = 10, 643; K = 3.

Ciphertexts [GB] Evaluation Keys [GB]
X X> y S X1 Rotation Relinearization

0.0085 0.0085 0.0085 0.84 2.87 3.65 0.42

TABLE II
RUNTIMES AND PEAK RAM UTILIZATION ON A UTHEALTH ITS VM (4 CORES, 16 GB RAM, 200 GB HARD DRIVE, AWS T2 XLARGE

EQUIVALENT, OFFICIAL IDASH’18 EVALUATION ENVIRONMENT) AND A SERVER NODE WITH 2 X 14 CORES OF INTEL(R) XEON(R)
CPU E5-2680 V4 AT 2.40GHZ (500 GB RAM AND 2 TB HARD DRIVE).

System N M KeyGen Enc Eval Dec Peak RAM
[min] [min] [min] [s] [GB]

UTHealth ITS VM (iDASH) 245 14,841 0.35 0.34 3.46 0.06 9.99
28-core server node 245 10,643 0.12 0.059 1.45 0.06 12.2
28-core server node 300 20,000 0.12 0.088 1.88 0.11 16.2
28-core server node 1,000 131,071 0.12 0.72 10.44 0.4 116

D. Performance results
1) Storage requirements: The maximum (initial) storage requirements for the case of N = 245; M =

10, 643; K = 3 are summarized in Table I. The storage requirements take into account that S and X1

are first used at ` = 7 and ` = 6, respectively. The rotation key size is computed as a sum of space
requirements for 16 keys at ` = 17, 13 at ` = 12, and 12 at ` = 9. The relinearization keys are used from
the start of the computation (` = 17). The sizes of public and secret keys are relatively small: 4.7 and 8.5
MB, respectively.

The encryption storage requirements in practical settings can be reduced by converting homomorphically
the encrypted packed-matrix ciphertext X to N packed-integer ciphertexts, i.e., X1, on demand. This can
be done as an offline operation, resulting in an approximately 4x reduction in fresh ciphertext size.

2) Execution time and peak memory utilization: Table II reports the runtimes and peak RAM utilization
observed for the official iDASH evaluation environment and a 28-core server node. The results suggest
that it takes about 3.5 minutes and about 10 GB of RAM (all ciphertexts and keys are stored in memory)
to evaluate homomorphically the GWAS procedure for 245 individuals, 14,841 SNPs, and 3 covariates
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on a 4-core Amazon instance. The runtime and storage requirements for the case of 1,000 individuals,
131,071 SNPs, and 3 covariates for a modern server computing node (2 x 14 cores) are about 10 minutes
and 116 GB, respectively.

TABLE III
RUNTIME PROFILING ON THE 28-CORE NODE; TIME IN SECONDS; NUMBERS IN HEADER ROW DENOTE STEP #’S IN ALGORITHM 3;

NUMBERS IN PARENTHESES ARE FOR THE SINGLE-THREADED EXPERIMENT;→ DENOTES THE CONVERSION FROM PACKED-MATRIX TO
PACKED-INTEGER ENCODING.

N M 1–5 6–7 + B→ B1 8 W→W1 9 10 Wζ∗ → (Wζ∗)1 11

245 10, 643
13.3

(27.4)
23.4

(40.2)
4.6

(6.5)
27.4
(419)

10.4
(59.3)

1.8
(12.0)

5.5
(84.1)

0.62
(1.64)

300 20, 000 13.1 23.5 4.6 33.2 25.7 3.8 7.3 1.5
1, 000 131, 071 12.7 22.9 4.2 132.8 360.6 47.2 25.0 21.0

3) Accuracy analysis: We compared the accuracy of the p-values computed using our HE prototype
with a plaintext reference implementation of the semi-parallel method proposed by Sikorska et al. [1].
The results for the case of N = 245 and M = 10, 643 are summarized in Figure 1. The graphs visualize
the confusion table when choosing 0.01 as a threshold to classify SNPs as significant or not (depicted as
the red lines). It is a log-log plot of the p-values obtained by the two different approaches. The vertical
axes correspond to the semi-parallel logistic regression and horizontal axes to the p-values obtained by
the HE computation. The diagonal blue line depicts the case when the two classifiers provide exactly the
same p-value for each input data.

Fig. 1. Accuracy of our encrypted computing prototype w.r.t the plaintext reference implementation [1]

Each quadrant corresponds to one of possible outcomes: true positive (both classify a SNP as significant),
false positive (the semi-parallel model as not significant and the HE computation as significant), true
negative (both classify a SNP as significant) and false negative (the semi-parallel model as significant
and the HE computation as not significant). The graph shows the true positive rate (TPR), false positive
rate (FPR), true negative rate (TPR) and false negative rate (FNR). We use F1 score as a single index
to summarize the performance. The graph suggests that the error introduced by our approximation is
negligibly small (F1 score of 0.991).

4) Profiling: Table III reports the breakdown of runtimes for three different cases. The results for
N = 245, M = 10, 643 suggest that the conversion of vectors from the packed-matrix to packed-integer
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encoding is the bottleneck for the single-threaded case. However, the conversion procedure parallelizes
better (improving by a factor of 15.3x on a 28-core machine) than most of the other operations, effec-
tively reducing its contribution from 77% in the single-threaded experiment to 38% for the 28-threaded
experiment. The experiments for larger numbers of SNPs imply that the contribution of the conversion
procedure further declines as its computational complexity does not depend on M .

As the maximum size of individuals did not exceed 1,024 in our experiments, all operations in Steps
1–8 of Algorithm 3 worked with single ciphertexts, and the runtime of these steps stayed approximately
the same for all experiments. At the same time, the contribution of the matrix products involving S (steps
9 through 11) significantly increased (from 15% for N = 245, M = 10, 643 to 68% for N = 1, 000, M
= 131,071).

IV. DISCUSSION

The solution presented in this work was awarded the first place (along with another solution from
UCSD) in the iDASH’18 competition (Track 2: Secure Parallel Genome Wide Association Studies using
Homomorphic Encryption). Hence it represents the state of the art in secure GWAS using homomorphic
encryption.

The main limitations of our solution are (1) the need to know the computation and parameters of the
semi-parallel procedure in advance and (2) the hand-tuned nature of many optimizations applied to our
solution. The first problem can be solved once the bootstrapping for the CKKS scheme becomes more
practical. The second challenge can be tackled once automated compilers for homomorphic encryption
are developed. Both are open research problems.

V. CONCLUSIONS

The results demonstrate that our solution is able to perform the full GWAS computation homomor-
phically for 1,000 individuals, 131,071 SNPs, and 3 covariates in about 10 minutes on a modern server
computing node. Many of the optimizations presented in our paper are general-purpose and can be applied
to solving challenging problems dealing with large datasets in other application domains. The major
general-purpose optimizations include a new RNS variant of the CKKS scheme and multiple methods of
homomorphic switching between data encodings.
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