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Abstract. Side-channel attacks, especially differential power analysis
(DPA), pose a serious threat to cryptographic implementations deployed
in a malicious environment. One way to counter side-channel attacks is
to design cryptographic schemes to withstand them, an area that is cov-
ered amongst others by leakage resilient cryptography. So far, however,
leakage resilient cryptography has predominantly focused on block ci-
pher based designs, and insights in permutation based leakage resilient
cryptography are scarce. In this work, we consider leakage resilience of
the keyed duplex construction: we present a model for leakage resilient
duplexing, derive a fine-grained bound on the security of the keyed du-
plex in said model, and map it to ideas of Taha and Schaumont (HOST
2014) and Dobraunig et al. (ToSC 2017) in order to use the duplex in a
leakage resilient manner.
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1 Introduction

With the selection of Keccak [10] as SHA-3 [21], cryptography based on public
permutations has become more and more popular. This is especially caused by
the fact that the sponge [8] and the duplex [9] constructions provide a huge
flexibility by enabling various cryptographic tasks besides hashing, such as en-
cryption, authenticated encryption, and message authentication, by just relying
on a public permutation. Keyed versions of the sponge and duplex constructions
have been analyzed in a series of papers [2,9,11,13,16,22,26,30,30,31], however,
so far, this analysis has always been done in a black-box scenario, not consid-
ering the leakage of information that occurs in applications where side-channel
attacks are feasible.

Ever since the threat of side-channel attacks has become evident to the pub-
lic [27,28], finding suitable protection mechanisms against this attack vector has
become of increasing importance. One can identify two different ways to protect
against side-channel attacks. The first one deals with hardening the implemen-
tation of cryptographic schemes by means of countermeasures like hiding [15] or
masking [12,14,23,32,33]. The other one aims at developing dedicated schemes
that provide easier protection against side-channel attacks in the first place,
like fresh re-keying [29] or leakage resilient cryptography [19]. With respect to



the sponge and duplex constructions, there exist proposals of Taha and Schau-
mont [38] and Isap [17] that introduce dedicated algorithms that are claimed to
provide protection against side-channel attacks.

Unfortunately, a closer look at the field of leakage resilient symmetric cryp-
tography [7, 18, 20, 34–36, 41] reveals that the focus lies on constructions that
can be instantiated with block ciphers. As a matter of fact, there does not exist
any formal treatment on whether the keyed sponge, or more generally the keyed
duplex construction, can be considered to be leakage resilient. This particularly
means that proposals such as those of [17,38] lack formal support regarding their
leakage resilience.

1.1 Our Contribution

The contributions of this paper are manifold.
First, in Section 3, we describe a security model for leakage resilient duplex-

ing. To do so, we start from the “ideal equivalent” of the keyed duplex of Daemen
et al. [16], called an ideal extendable output function (IXIF), and present an ad-
justed version AIXIF. AIXIF is semantically equivalent to the IXIF if there is no
leakage, but it allows to properly model leakage resilience of the keyed duplex.
The model of leakage resilience of the duplex is now conceptually simple: as we
argue in detail in Section 3.4, we consider a scheme leakage resilient if no attacker
can distinguish a keyed duplex that leaks for every query from the random AIXIF.
Here, we focus on non-adaptive leakage, where the leakage function is fixed in
advance, akin to [18, 20, 35, 37, 41]. Yet, our approach is different and easier to
grasp than typical models: the typical approach is to give a distinguisher access
to a leaky version and a leak-free version of the cryptographic construction, and
it has to distinguish the latter from a random function. The reason that we
are able to argue with the simpler model is, in part, that the duplex is used
as building block for encryption, authenticated encryption, or different types of
functionalities, as we will show later on.

Second, in Section 5, we perform an in-depth and fine-grained analysis of the
keyed duplex in the newly developed model. We take inspiration from Daemen
et al. [16], who presented a detailed analysis of the keyed duplex in the black-box
scenario, but the proof is not quite the same. To the contrary, due to various
obstacles, it is not possible to argue similar to Daemen et al., nor to reduce
the leakage resilience of a keyed duplex to its black-box security. Instead, we
adopt ideas from the analysis of the NORX authenticated encryption scheme
of Jovanovic et al. [26], and reason about the security of the keyed duplex in
a sequential manner. One of the difficulties then is to determine the amount of
min-entropy of a state in the duplex construction, given that the distinguisher
may learn leakage from a duplex construction at different points in time. On
the way, in Section 4 we give a detailed and accessible rationale of how leakage
resilience proofs are performed in general and in our case.

Third, in Section 6, we interpret our results on the leakage resilience of the
keyed duplex in the context of the proposals of Taha and Schaumont [38] and
Isap [17]. In a nutshell, these proposals can be seen to consist of a sequential
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evaluation of two duplex constructions: one that “gains entropy” by absorbing
a nonce with small portions at a time, and one that “maintains entropy” in
the sense that after the nonce is absorbed any state that will be visited by the
duplex has high entropy and will be visited only once. We will then have a closer
look at one use case of such a keyed duplex, nonce-based stream encryption, in
Section 6.3. We build this scheme using aforementioned ideas, and prove that it
is leakage resilient in the conventional security model. The proof is hybrid and
reduces security of the stream cipher to that of the underlying duplex.

1.2 Notation

For b ∈ N, the set of b-bit strings is denoted {0, 1}b and the set of arbitrarily
length strings is denoted {0, 1}∗. We define by func(b) the set of all functions
f : {0, 1}b → {0, 1}b and by perm(b) the set of all permutations p : {0, 1}b →
{0, 1}b. By X ← Y we denote the assignment of the value Y to X, and by

X
$←− X we denote the uniformly random drawing of an element X from a finite

set X . For X ∈ {0, 1}b and for c ∈ N with c ≤ b, we denote by leftc(X) the c
leftmost bits of X and by rightc(X) the c rightmost bits of X. We denote by
rotc(X) the right-rotation of X by c bits.

A random variable S has min-entropy at least h, denoted H∞(S) ≥ h, if
maxs∈S Pr (S = s) ≤ 2−h. The conditional min-entropy is straightforward to
define: the probability term gets expanded by the condition.

2 Keyed Duplex Construction

Let b, c, r, k, u, α ∈ N, with c + r = b, k ≤ b, and α ≤ b − k. We describe the
keyed duplex construction KD in Algorithm 1. The keyed duplex construction
gets as input a key array

K = (K[1], . . . ,K[u]) ∈ ({0, 1}k)u

consisting of u keys, and it is instantiated using a b-bit permutation p ∈ perm(b).
The construction internally maintains a b-bit state S, and has two interfaces:
KD.init and KD.duplex.

The initialization interface gets as input a key index δ ∈ [1, u] and an ini-
tialization vector IV ∈ IV ⊆ {0, 1}b−k, and initializes the state with the δ-th
key and the initialization vector IV as S ← rotα(K[δ] ‖ IV ), followed by an
evaluation of the underlying permutation p on the state S. It outputs nothing.
Note that the constant α simply determines the bit positions where to place the
key. We will see different examples of the value α in Section 6.

The duplexing interface gets as input a flag flag ∈ {true, false} and a new
data block P ∈ {0, 1}b. The interface outputs an r-bit block Z ∈ {0, 1}r off the
internal state S, transforms the state using the new data block P , and finally
evaluates the underlying permutation p on the state. The flag flag describes how
absorption is done on the r leftmost bits of the state that are squeezed: those
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Algorithm 1 Keyed duplex construction KD[p]K

Interface: KD.init
Input: (δ, IV ) ∈ [1, u]× IV
Output: ∅
S ← rotα(K[δ] ‖ IV )
S ← p(S)
return ∅

Interface: KD.duplex
Input: (flag , P ) ∈ {true, false} × {0, 1}b
Output: Z ∈ {0, 1}r
Z ← leftr(S)
S ← S ⊕ [flag ] · (Z‖0b−r)⊕ P . if flag , overwrite outer part
S ← p(S)
return Z

p

K[δ]

IV

0

leftr(P )

rightc(P )

flagZ

r r
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Fig. 1: The duplexing interface of KD.

r bits are either overwritten (if flag = true) or XORed with r bits of the input
block P (if flag = false). See also Figure 1, where the duplex is depicted for key
offset α = 0.

This description is another rephasing of how the duplex construction can
be viewed compared to the original description used by Bertoni et al. [9], but
also differs from the rephased description of Daemen et al. [16]. Compared to
Daemen et al. the call of the underlying permutation is done at the end of the
duplexing call instead of the beginning. This way of describing the duplex eases
the proof in the leakage resilient setting, while at the same time empowers a
leakage-aware attacker to adaptively react to the leakage of the permutation be-
fore providing new inputs. However, it still reflects the usage of the duplex in
the same way as the description of Daemen et al. [16]. In particular, Daemen
et al. also already considered multi-user security by default, and likewise had
two different types of duplexing calls (for flag ∈ {true, false}) to allow imple-
mentation of SpongeWrap and variants using the duplex construction. Indeed,
whereas SpongeWrap encryption can be performed using KD.duplex(false, ·), the
decryption function must be performed using evaluations of KD.duplex(true, ·).
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3 Security Model

In this section, we will describe our leakage resilience security model for the
keyed duplex. We consider sampling of keys in Section 3.1. We settle the basic
notation of distinguishers in Section 3.2. For reference, the black-box duplex
security model of Daemen et al. [16] is treated in Section 3.3. We lift the model
to leakage resilience in Section 3.4.

3.1 Sampling of Keys

The duplex construction of Section 2 is based on an array of u k-bit keys. These

keys may be generated uniformly at random, as K
DK←−− ({0, 1}k)u. In our anal-

ysis of leakage resilience, however, we will require the scheme to be still secure
if the keys are not uniformly random but as long as they have sufficient min-
entropy. Henceforth, we will adopt the approach of Daemen et al. [16] to consider
keys sampled using a distribution DK , that distributes the key independently1

and with sufficient min-entropy, i.e., for which

H∞(DK) = min
δ∈[1,u]

H∞(K[δ])

is sufficiently high. Note that if DK is the random distribution, H∞(DK) = k.

3.2 Distinguishers

A distinguisher D is an algorithm that is given access to one or more oracles
O, denoted DO, and that outputs a bit b ∈ {0, 1} after interaction with O. If O
and P are oracles, we denote by ∆D (O ; P) the advantage of a distinguisher D in
distinguishing O from P. In our work, we will only be concerned with information-
theoretic distinguishers: these have unbounded computational power, and their
success probabilities are solely measured by the number of queries made to the
oracles.

3.3 Black-Box Security

Daemen et al. [16] described the ideal extendable output function (IXIF) as ideal
equivalent for the keyed duplex. We will also consider this function, modulo syn-
tactical changes based on the changes we made on the keyed duplex in Section 2.
The function is described in Algorithm 2.

The IXIF has the same interface as the keyed duplex, but instead of being
based on a key array K ∈ ({0, 1}k)u and being built on primitive p ∈ perm(b),
it is built on a random oracle ro : {0, 1}∗ × N → {0, 1}∞, that is defined as
follows. Let ro∞ : {0, 1}∗ → {0, 1}∞ be a random oracle in the sense of Bellare
and Rogaway [4]. For P ∈ {0, 1}∗, ro(P, r) outputs the first r bits of ro(P ). The

1 In Daemen et al. [16], the keys need not be mutually independent, but omitting this
conditions will give various tricky corner cases in the analysis of leakage resilience.
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Algorithm 2 Ideal extendable input function IXIF[ro]K

Interface: IXIF.init
Input: (δ, IV ) ∈ [1, u]× IV
Output: ∅

path ← encode[δ] ‖ IV
return ∅

Interface: IXIF.duplex
Input: (flag , P ) ∈ {true, false} × {0, 1}b
Output: Z ∈ {0, 1}r
Z ← ro(path, r)
path ← path ‖ ([flag ] · (Z‖0b−r)⊕ P ) . if flag , overwrite outer part
return Z

IXIF maintains a path path, in which it unambiguously stores all data input by
the user. It is initialized by encode[δ] ‖ IV for some suitable injective encoding
function encode : [1, u]→ {0, 1}k, and upon each duplexing call, the new message
block is appended to the path. Duplexing output is generated by evaluating the
random oracle on path.

Let b, c, r, k, u, α ∈ N, with c+ r = b, k ≤ b, and α ≤ b− k. Let p
$←− perm(b)

be a random transformation, ro be a random oracle, and K
DK←−− ({0, 1}k)u a

random array of keys. In the black-box security model, one considers a distin-
guisher that has access to either (KD[p]K , p

±) in the real world or (IXIF[ro], p±)
in the ideal world, where “±” stands for the fact that the distinguisher has
bi-directional query access:

Advbb
KD(D) = ∆D

(
KD[p]K , p

± ; IXIF[ro], p±
)
. (1)

This is the model explicitly considered by Daemen et al. [16].

3.4 Leakage Resilience

We consider non-adaptive leakage resilience of the keyed duplex construction.
Non-adaptive leakage has been considered before in [18, 20, 35, 37, 41], among
others, and we will use the description of L-resilience of Dodis and Pietrzak [18].
These models, however, consider the underlying primitive to be a block cipher
or weak PRF, whereas in our setting it is a public permutation. In addition,
the duplex has its characteristic property that it allows variable length input
and variable length output. A final, and technically more delicate difference (as
becomes clear below), is that the duplex consists of two oracles init and duplex,
which the distinguisher may call interchangeably at its own discretion. We will
assume that only computation leaks, i.e., only calls to init and duplex may leak
information.

Recall from (1) that in the black-box model, one compares (KD[p]K , p
±) with

(IXIF[ro], p±), where p
$←− perm(b) and ro is a random oracle. In order to prove
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Fig. 2: An evaluation of KD.duplex, with its previous state Sprev and next state
Snext are indicated. Intuitively, leakage occurs on both states, and the leakage
function L returns λ bits of leakage.

Algorithm 3 Adjusted ideal extendable input function AIXIF[ro]K

Interface: AIXIF.init
Input: (δ, IV ) ∈ [1, u]× IV
Output: ∅

path ← encode[δ] ‖ IV
S ← rotα(K[δ] ‖ IV )
S ← ro(path, b)
return ∅

Interface: AIXIF.duplex
Input: (flag , P ) ∈ {true, false} × {0, 1}b
Output: Z ∈ {0, 1}r
Z ← leftr(S)
path ← path ‖ ([flag ] · (Z‖0b−r)⊕ P ) . if flag , overwrite outer part
S ← ro(path, b)
return Z

leakage resilience of the construction, we have to demonstrate that “leakage
does not help”. For the real keyed duplex KD[p]K , modeling this is as simple
as giving the distinguisher the leakage value ` ← L(Sprev,flag , P, Snext), where
L : {0, 1}b × {true, false} × {0, 1}b × {0, 1}b → {0, 1}λ is the leakage function,
Sprev the state before the call, and Snext the state after the call. See also Figure 2.

For the ideal world IXIF[ro], there is no such thing as a state, and simply
generating random leakage allows for a trivial win for the distinguisher, as leaked
bits may happen to coincide with the actual squeezed bits. For example, if L is
defined as L(Sprev,flag , P, Snext) = leftλ(Snext), in the real world, any leakage
` satisfies ` = leftλ(Z), whereas in the ideal world this equation holds with
probability around 1/2λ, only. We resolve this by making a minor tweak to the
duplexing interface of IXIF: the oracle maintains a dummy state S, and instead
of Z ← ro(path, r), it gets Z from this dummy state Z ← leftr(S) and updates
the dummy state constantly by doing S ← ro(path, b). The dummy state is
initialized as in the normal duplex (Algorithm 1). The resulting adjusted IXIF
(AIXIF) is given in Algorithm 3.
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It is important to note that the change from IXIF to AIXIF is purely admin-
istrative, in that for any distinguisher D,

∆D (IXIF[ro] ; AIXIF[ro]K) = 0 .

The reason is that (i) an initialized state S = rotα(K[δ] ‖ IV ) is never used for
outputting data to the distinguisher, and (ii) later versions of the dummy state
are always updated with b bits of ro-output of which only r bits are squeezed a
single time. Therefore, the original black-box security model could just as well
be defined based on AIXIF. The good thing of AIXIF, now, is that it allows to
easily formalize security in the leakage resilience setting where each construction
call leaks.

Let b, c, r, k, u, α, λ ∈ N, with c+r = b, k ≤ b, α ≤ b−k, and λ ≤ 2b. Let p
$←−

perm(b) be a random permutation, ro be a random oracle, and K
DK←−− ({0, 1}k)u

a random array of keys. Let L = {L : {0, 1}b×{true, false}×{0, 1}b×{0, 1}b →
{0, 1}λ} be a class of leakage functions, and for any leakage function L ∈ L, define
by KD[p]LK (resp., AIXIF[ro]LK) the keyed duplex (resp., adjusted ideal extend-
able output function) that for each construction call leaks L(Sprev,flag , P, Snext),
where Sprev is the state before the call and Snext the state after the call. In the
leakage resilience security model, one considers a distinguisher that has access
to either (KD[p]LK , p

±) in the real world, and (AIXIF[ro]LK , p
±) in the ideal world,

maximized over all possible leakage functions L ∈ L:

AdvL-naLRKD (D) = max
L∈L

∆D

(
KD[p]LK , p

± ; AIXIF[ro]LK , p
±) . (2)

Note that we indeed consider non-adaptive leakage resilience, as we maximize
over all possible leakage functions L. Note furthermore that we do not consider
future computation: the keyed duplex construction is based on the random per-
mutation p and the set of allowed leakage functions is independent of p; the
functions simply operate on the state right before and right after the transfor-
mation that leaks.

Remark 1. It is important to observe that, in our model, any duplex call leaks.
In this way, our model conceptually simplifies over the established models of, e.g.,
[18,20,35,37,41]. At a high level, in these models, the distinguisher has access to
a leak-free version of the construction, which it has to distinguish from random,
and a leaky version of the construction, which it may use to gather information.
The intuition is that, whatever the distinguisher may learn from leakage, any new
evaluation of the construction still looks random. In comparison, in our model of
(2), we simply assume that the construction always leaks: the real construction
KD.duplex leaks actual data of the state, whereas AIXIF.duplex leaks random
data.

4 Proof Rationale

In this section, we outline the rationale of proving leakage resilience of the keyed
duplex. The section is extensive, but should give a high-level overview of how
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the security analysis is performed. First, in Section 4.1, we detail how typically
leakage resilience of sequential constructions is proven. Then, in Section 4.2, we
explain to what degree these approaches apply to permutation based cryptog-
raphy. In Section 4.3, we consider the keyed duplex construction in more detail,
and explain at a high level how the security proof is performed and how it relies
on existing research on the keyed duplex construction in the black-box model.
The discussion will form a stepping stone to the formal analysis of the keyed
duplex in Section 5 and of the application of the result in Section 6.

4.1 Proving Leakage Resilience

The rationale of leakage resilience security proofs is not straightforward, and
the main cause of this is the delicate selection of entropy measure for a leaky
state. First off, it is important to know that starting from the seminal work of
Dziembowski and Pietrzak [19], almost all leakage resilient PRGs and PRFs in
literature [6, 7, 18, 20, 34, 35, 40, 41] are sequential: they maintain a state, and
use a cryptographic primitive to evolve the state in a sequential manner and to
output a random stream. The cryptographic primitive is, in most of these cases,
a block cipher modeled as a weak PRF F : {0, 1}k × {0, 1}m → {0, 1}n.

A measure to identify the amount of randomness of a value is the min-entropy.
Informally, a value S has min-entropy H∞(S) ≥ h if the success probability of
guessing S is at most 1/2h. Unfortunately, the min-entropy is not fully suited
to deal with leakage in above-mentioned sequential constructions: each round,
certain information of a state leaks, and the min-entropy will only decrease with
the leakage over time. Dziembowski and Pietrzak [19] observed that one does not
strictly need the min-entropy of the state to be high enough: all that is needed is
that the state is computationally indistinguishable from a state with sufficiently
high min-entropy, in the eye of the computationally bounded distinguisher. This
is formalized by the HILL-pseudoentropy [24] (or formally the conditional HILL-
pseudoentropy [25], taking into account leakage data). The security proofs of
above constructions now all exist of an iterative execution of the following steps:

(1) If the input to the wPRF F has sufficiently high min-entropy, then with high
probability the output is an n-bit pseudorandom value S;

(2) If λ bits of the n-bit pseudorandom state S are leaked, then with high
probability the state has HILL-pseudoentropy at least n− 2λ;

(3) By definition of the HILL-pseudoentropy, the state is computationally indis-
tinguishable from a state with min-entropy at least n− 2λ;

(4) The resulting state will be (part of the) input to next round’s wPRF.

A formalization of the first three steps can be found in [35, Lemma 2], [35, Lemma
6], and [35, Definition 3]. We note that the original introduction of leakage
resilient cryptography of Dziembowski and Pietrzak [19] did not consider a weak
PRF but a (stronger) PRG.

It is clear that an iterative execution of above steps allows to prove security
of a sequential wPRF-based construction, provided that the state after step (4)
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has enough min-entropy to make the application of step (1) in next round go
through. The iterative execution allows to prove security of the construction,
with a security loss quantified by a sum of the individual losses in steps (1)-(3)
for each of the rounds. More importantly, the security proof stands under the
assumption that the block cipher is a weak PRF, or can be used to construct a
weak PRF (see also Standaert et al. [37]). At this point, it requires cryptanalysts
to investigate the weak PRF security of actual block ciphers.

4.2 Towards Permutation-Based Constructions

The focus in our work is on constructions based on cryptographic permutations.
In the black-box model, both the keyed sponge [2, 11, 13, 22, 26, 30, 31] and the
keyed duplex [9, 16,30] have received thorough investigation.

The security analyses are different from black-box analyses of block cipher
based constructions: whereas for the latter one argues security under the as-
sumption that the block cipher is a (strong) pseudorandom permutation, in the
former one assumes that the permutation is perfect and considers a distinguisher
that is computationally unbounded and whose complexity is only measured by
the online complexity (the amount of construction queries) and the offline com-
plexity (the amount of primitive queries).

The approach is well-established, and in our analysis of the leakage resilience
of the duplex, we adopt the approach. This gives two significant advantages in
the analysis. First off, we consider computationally unbounded adversaries, and
there is no need to make the HILL-detour. In other words, we can directly argue
that an n-bit pseudorandom state S has min-entropy at least n− λ after λ bits
are leaked. Second, there is no issue with repeated min-entropy degradation: the
state is transformed through a perfectly random permutation that outputs a
random value (bar repetition) for each new input.

These two advantages clearly simplify the rationale and simplicity of the
leakage resilience security analysis of the duplex, yet do not make the security
analysis a trivial extension of earlier leakage resilience analyses: in the new set-
ting, the amount of entropy of a state is not only dependent on the leakage,
but also on the primitive queries that the distinguisher makes, recalling that the
distinguisher has direct access to the primitive. Indeed, this is not the case in
ordinary wPRF-based security proofs.

There is another complication in the analysis of our construction: the dis-
tinguisher can re-initialize the state and start over. This is in line with the
particular application of the duplex: authenticated encryption, where different
authenticated encryptions may start from the same state and even have identical
first permutation calls. Even if we had the possibility to argue that the duplex
primitive is a weak PRF, repeated or mutually related states would invalidate
step (1) of above reasoning, as the query history would skew the distribution
of the weak PRF. In detail, step (1) requires the inputs to be close-to-random,
a condition that appears to be more delicate than one would expect (cf., [41]),
and that is false for repeated states in the duplex.
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In a nutshell, one can say that the main overlap in our leakage resilience
analysis compared with earlier approaches [6,7,18,20,34,35,40,41] is that we use
the min-entropy to express the amount of randomness that is left after leakage,
and we argue security based on the assumption that all state values in a keyed
duplex have enough entropy.

4.3 Proving Security of Duplex Construction

Our proof uses many ideas from the solid black-box research already performed
on keyed sponges and duplexes [2,9,11,13,16,22,26,30,31]. However, not all tech-
niques from this line of research are suited in the leakage resilience setting. Most
importantly, a notable technique [2,13,16,30] is to view the keyed sponge/duplex
as a mode based on an Even-Mansour construction on top of the permutation
p ∈ perm(b). The trick is to XOR two copies of a dummy key with the inner
part in-between every two evaluations of the permutation p. The change is purely
syntactical, and a distinguisher cannot note the difference. However, in the leak-
age resilience setting, the distinguisher may have chosen the leakage function L
so as to leak part of the state that is keyed, and XORing dummy keys turns
out to become tricky. In particular, adoption of the approach to the leakage re-
silience setting would require us to be able to “split” leakages into input leakages
and output leakages, but this is not always possible, depending on the leakage
function L.

Instead, the proof resembles much of the approach of Jovanovic et al. [26],
who performed a direct security proof of the NORX nonce-based authenticated
encryption scheme that also applied to other CAESAR candidates. At a high
level, the proof of Jovanovic et al. consists of observing that the output states
are always uniformly random (bar repetition, as a permutation is evaluated),
as long as no bad event occurs. A bad event, in turn, occurs if there are two
construction queries with colliding states or if there is a construction query and
a primitive query with colliding states. The absence of collisions is dealt with in
the first phase by replacing the permutation by a random function at the cost
of an RP-to-RF switch.

In our leakage resilience proofs, we follow the same approach. We also start
by replacing the permutation by a random function f (a special one, that has
two-sided oracle access). Then, as long as the state of the keyed duplex has
enough entropy, the result after applying f is random and also has enough en-
tropy. Clearly, the entropy of the state reduces with the amount of leakage that
occurs on the state, and consequently, bad events happen with a slightly larger
probability as before. This also shows that estimating (formally, lower bound-
ing) the amount of min-entropy of the states in the keyed duplex construction
is important for deriving a tight security bound.

Focus on the keyed duplex (KD) of Algorithm 1, based on a random function

f
$←− func(b), and consider a duplex state Sprev ∈ {0, 1}b. Assume that the

interface KD.duplex is evaluated on this state for R different inputs,

{(flag i, Pi)}Ri=1 .
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As the previous state Sprev is the direct output of a call to a random function
f, Sprev is a value with min-entropy b minus the leakage occurred on this function
call. Clearly, the R evaluations of the duplex in question are made for the same
state Sprev, and hence, in total they reduce the entropy of Sprev further by at
most R · λ bits due to the next function call. In addition, by regular squeezing,
the distinguisher learns r bits of the state. In total, Sprev has conditional min-
entropy at least

b− r − (R+ 1)λ .

If this entropy is sufficiently high, we get R new states Snext with min-entropy
b minus the leakage occurred from one function call. The main lesson learned
from this: a state that could be duplexed for different message blocks should
have small-rate absorption (as this bounds R), and a unique state can be used
for larger rates even up to full-state absorption.

5 Leakage Resilience of Keyed Duplex Construction

We will prove non-adaptive leakage resilience of the keyed duplex construction

based on a cryptographic permutation p
$←− perm(b) in the model of Section 3.4

(see (2)). Although the generic construction and the model are based on the
work of Daemen et al. [16], the security proof approach differs, as explained in
Section 4.3. We quantify distinguishers in Section 5.1. The main security result
is stated in Section 5.2, and an interpretation of it is given in Section 5.3. The
proof is given in Section 5.4.

5.1 Distinguisher’s Resources

We consider an information-theoretic distinguisher D that has access to either
the real world (KD[p]LK , p

±) or the ideal world (AIXIF[ro]LK , p
±), where p is some

permutation and L some leakage function. Two basic measures to quantify the
distinguisher’s resources are its online complexity M and offline complexity N :

– M : the number of distinct construction calls, either initialization or duplex-
ing calls;

– N : the number of distinct primitive queries.

For each construction call, we define a path path that “registers” the data that
got absorbed in the duplex up to the point that the cryptographic primitive (p
in the real world and ro in the ideal world) is evaluated. For an initialization call
(δ, IV ) 7→ ∅, the associated path is defined as path = encode[δ] ‖ IV . For each
duplexing call (flag , P ) 7→ Z, the value [flag ] · (Z‖0b−r)⊕M is appended to the
path of the previous construction query. Not surprisingly, the definition matches
the actual definition of path in the AIXIF[ro]K construction of Algorithm 3, but
defining the same thing for the real world will allow us to better reason about the
security of the keyed duplex. Note that the value path contains no information
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that is secret to the distinguisher. In order to reason about duplexing calls, we
will also define a subpath of a path, which is the path leading to the particular
duplexing call. In other words, for a path path, it subpath is simply path with
the last b bits removed.

In order to derive a detailed and versatile security bound, that in particular
well-specifies how leakage influences the bound, we further parameterize the
distinguisher as follows. For initialization calls:

– q: the number of initialization calls;
– qIV : the maximum number of initialization calls for a single IV ;
– qδ: the maximum number of initialization calls for a single δ.

For duplexing calls:

– Ω: the number of duplexing queries with flag = true;
– L: the number of duplexing calls with repeated subpath, i.e., M minus the

number of distinct subpaths;
– R: the maximum number of duplexing calls for a single non-empty subpath.

Note that these parameters can all be described as a function of the duplexing
calls and the related path’s, and the distinguisher can compute these values
based on the queries it made so far. The parametrization of the distinguisher
is roughly as that of Daemen et al. [16], but we have added parameter R: it
maximizes the number of occurrences of a path subpath for different inputs
(flag , P ). The parameter will be used to determine, factually upper bound, the
amount of leakage that the distinguisher learns on a state after the duplexing
call. Indeed, if a certain path subpath occurs R times, this means that these
R duplexing calls have the same input-state, and any evaluation of p in one of
these duplexing calls leaks information about that state. In total, this results in
a maximum amount of R+ 1 leakages. The parameter R is related to parameter
L, but it is not quite the same. The parameters Ω and L are, as in [16], used
to upper bound the number of duplexing calls for which the distinguisher may
have set the r leftmost bits of the input to the permutation in the duplexing call
to a certain value of its choice. This brings us to the last parameter:

– νfix: the maximum number of duplexing calls for which the adversary has set
the outer part to a single value leftr(T ).

Note that νfix ≤ L+ Ω, but it may be much smaller in specific use cases of the
duplex, for example, if overwrites only happen for unique values.

5.2 Main Result

We will use a notion from Daemen et al. [16], namely that of the multicollision
limit function.

Definition 1 (multicollision limit function). Let M, c, r ∈ N. Consider the
experiment of throwing M balls uniformly at random in 2r bins, and let µ be
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the maximum number of balls in a single bin. We define the multicollision limit
function νMr,c as the smallest natural number x that satisfies

Pr (µ > x) ≤ x

2c
.

We derive the following result on the keyed duplex under leakage.

Theorem 1. Let b, c, r, k, u, α, λ ∈ N, with c + r = b, k ≤ b, α ≤ b − k, and

λ ≤ 2b. Let p
$←− perm(b) be a random permutation, and K

DK←−− ({0, 1}k)u a
random array of keys. Let L = {L : {0, 1}b × {0, 1}b → {0, 1}λ} be a class of
leakage functions. For any distinguisher D quantified as in Section 5.1,

AdvL-naLRKD (D)

≤ νfixN

2c−(R+1)λ
+

2νMr,cN

2c−(R+1)λ
+

2νMr,c
2c

+
νMr,c(L+Ω) + νfix−1

2 (L+Ω)

2c−Rλ

+

(
M−L−q

2

)
+ (M − L− q)(L+Ω)

2b−λ
+

(
M+N

2

)
+
(
N
2

)
2b

+
q(M − q)

2H∞(DK)+min{c,max{b−α,c}−k}−(R+qδ)λ
+

qIVN

2H∞(DK)−qδλ
+

(
u
2

)
2H∞(DK)

.

In addition, the final output states have min-entropy b− λ.

The proof is given in Section 5.4; we first give an interpretation of the bound in
Section 5.3.

5.3 Interpretation

By rephasing the duplex and by going over the duplex in a sequential manner
(as [26]), and by only absorbing isolated concepts from Daemen et al. [16] (the
quantification and the multicollision limit function), the proof is intuitively sim-
pler to follow than the black-box variant. This is in part due to the fact that
we start the proof with an RP-to-RF switch. This simplifies the proof at various
aspects (for example, at the application of the multicollision limit function) but
is not for free, as it induces an extra term of around

(
M+N

2

)
/2b.

The proof is still fairly general, in part due to the presence of the term νMr,c.
A naive bounding akin to the derivation of Jovanovic et al. [26] would give a
bound

νMr,c ≤ max

{
r,

(
2eM2c

2r

)1/2
}
,

but the bound is loose, in particular for small r. Daemen et al. [16] gave a more
detailed analysis of the term, including two lemmas upper bounding it. Omitting
details, one can think of the multicollision limit function to behave as follows [16]:

νMr,c .

{
b/ log2

(
2r

M

)
, for M . 2r ,

b · M2r , for M & 2r .
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Beyond this multicollision term, the bound of Theorem 1 is complicated due to
the multivariate quantification of the distinguisher’s resources, and most impor-
tantly the terms L and Ω. In Section 6, we will consider how the duplex can be
used to create leakage resilient cryptographic schemes, and see how the bound
simplifies drastically for specific use cases.

5.4 Proof of Theorem 1

Let L ∈ L be any leakage function. Consider any information-theoretic distin-
guisher D. Our goal is to bound

∆D

(
KD[p]LK , p

± ; AIXIF[ro]LK , p
±) . (3)

The first step is to replace p with a random function f : {0, 1}b → {0, 1}b that
has the same interface as p. The function f maintains an initially empty list F of
input/output tuples (X,Y ). For a new query f(X) with (X, ·) /∈ F , it generates

Y
$←− {0, 1}b and returns this value. For a new query f−1(Y ) with (·, Y ) /∈ F , it

generates X
$←− {0, 1}b and returns this value. In both cases, the primitive adds

(X,Y ) to F , and it aborts if this addition yields a collision in X or in Y . Clearly,
as long as f does not abort, the function is perfectly indistinguishable from p,
and by a classical RP-RF switch [1, 5, 26],

∆D

(
KD[p]LK , p

± ; KD[f]LK , f
±) ≤ (M+N

2

)
2b

,

∆D

(
AIXIF[ro]LK , p

± ; AIXIF[ro]LK , f
±) ≤ (N2 )

2b
,

as in the former there are M + N evaluations of p and in the latter there are
N . Note that this is a purely probabilistic case, and the switch does not in-
volve/concern any leakage. From (3) we get

∆D

(
KD[p]LK , p

± ; AIXIF[ro]LK , p
±) ≤

∆D

(
KD[f]LK , f

± ; AIXIF[ro]LK , f
±)+

(
M+N

2

)
+
(
N
2

)
2b

. (4)

We proceed with the remaining distance of (4).
The distinguisher makes M construction calls, each of which is either an

initialization call (δi, IV i) 7→ (∅, `i) or a duplexing call (flag i, Pi) 7→ (Zi, `i),
where `i is the λ bits of leakages obtained in this i-th construction call. In
addition, associated to each call is a path pathi as described in Section 5.1. Noting
that for an initialization call, δi and IV i are implicit in pathi = encode[δi] ‖ IV i,
we can unify the description as follows. For any initialization call, we define
(flag i, Pi, Zi) := (0, 0b, 0r); all M construction calls – either initialization or
duplex – can be summarized in a transcript

Qc := ((pathi,flag i, Pi, Zi, `i))
M
i=1 . (5)
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For each construction call, we define a triplet of states (Si, Ti, Ui). The state
Si is the previous or incoming state. For initialization queries it is defined as
rotα(K[δi] ‖ IV i). The state Ui is the next or outgoing state. These are properly
defined for both the real and ideal world. The state Ti is an intermediate state,
which is defined as Ti := Si⊕ [flag i] · (Zi‖0b−r)⊕Pi. Note that the intermediate
state is only meaningful for the real world, but the value we add to it is known
to the adversary. Without loss of generality, each leakage satisfies `i = L(Ti, Ui).

Furthermore, the distinguisher makes N primitive calls that are summarized
in a transcript

Qp := ((Xj , Yj))
N
j=1 . (6)

We define the following two collisions events, one that captures collisions
between two construction calls and one that captures collisions between a con-
struction call and a primitive call:

colcc : ∃ i, i′ such that pathi 6= pathi′ ∧ Ti = Ti′ , (7)

colcp : ∃ i, j such that Ti = Xj ∨ Ui = Yj . (8)

We write col = colcc ∨ colcp. The bad events are comparable with those of Dae-
men et al. [16], but they are not the same. One notable difference: Daemen et
al. consider (in our terminology) colcc for both input and output collisions. We
do not need to do so, thanks to the RP-RF switch made before.

In Lemma 1 below, we will prove that (KD[f]LK , f
±) and (AIXIF[ro]LK , f

±) are
identical until col is triggered in the real world. Lemma 2 subsequently derives
an upper bound on the event that col is triggered in the real world. These two
results, together with (4) above, complete the proof of Theorem 1. Note that
from the result of Lemma 1, we can particularly conclude that the final states of
the keyed duplex, i.e., all states before re-initializations, have min-entropy b−λ.

Lemma 1. As long as DKD[f]LK ,f
±

does not set col, the worlds (KD[f]LK , f
±) and

(AIXIF[ro]LK , f
±) are identical, or formally,

∆D

(
KD[f]LK , f

± ; AIXIF[ro]LK , f
±) ≤ Pr

(
DKD[f]LK ,f

±
sets col

)
. (9)

Proof. By the fundamental lemma of game playing [5], it suffices to prove that,
as long as the real world (KD[f]LK , f

±) does not set col, the real and ideal world
are indistinguishable.

Clearly, in the ideal world (AIXIF[ro]LK , f
±), the construction oracle is in-

dependent of the primitive oracle f±. Also in the real world, the construction
oracle KD[f]LK is independent of f±, by exclusion of duplex-primitive collisions
colcp and as each new query to f± is replied with a uniformly generated value.
Therefore, we can drop the primitive oracle, and focus on proving that KD[f]LK
is indistinguishable from AIXIF[ro]LK under the assumption that ¬colcc holds.

We will not only consider the output values (Zi, `i), but we will rather prove
a stronger result, namely that output states are identically distributed in both
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worlds. Note that in the real world, the output state is computed as Ui ← p(Ti),
whereas in the ideal world, it is computed as Ui ← ro(pathi, b). Consider the
i-th construction call. Clearly, pathi 6= pathi′ , as otherwise the query would be
a repeated call. By ¬colcc, also Ti 6= Ti′ for all i′ < i. This means that in both
worlds, Ui is a uniformly randomly generated value from {0, 1}b. ut

Lemma 2. The probability that DKD[f]LK ,f
±

sets col satisfies:

Pr
(
DKD[f]LK ,f

±
sets col

)
≤ νfixN

2c−(R+1)λ
+

2νMr,cN

2c−(R+1)λ
+

2νMr,c
2c

+
νMr,c(L+Ω) + νfix−1

2 (L+Ω)

2c−Rλ

+

(
M−L−q

2

)
+ (M − L− q)(L+Ω)

2b−λ

+
q(M − q)

2H∞(DK)+min{c,max{b−α,c}−k}−(R+qδ)λ
+

qIVN

2H∞(DK)−qδλ
+

(
u
2

)
2H∞(DK)

.

Proof. Consider any distinguisher D that has query access to (KD[f]LK , f
±), and

is bound to the parameters (M,N, q, qIV , qδ, Ω, L,R, νfix) listed in Section 5.1.
Our goal is to bound

Pr (col) := Pr
(
DKD[f]LK ,f

±
sets col

)
. (10)

Additional Notation. One can consider duplexing-calls to occur in a tree
fashion, as long as colcc never happens. To proper reasoning about the probability
that col is set, we will have to define parents, siblings, and children of a duplex
call. Consider any construction query (pathi,flag i, Pi, Zi, `i).

The parent of this construction query, parent(i) ∈ {⊥, 1, . . . , i − 1}, is de-
fined as follows: if i corresponds to an initialization call, so if |pathi| = b, then
parent(i) = ⊥; otherwise, parent(i) is the index of the unique duplexing call that
satisfies

pathi = pathparent(i) ‖ ([flagparent(i)] · (Zparent(i)‖0b−r)⊕ Pparent(i)) . (11)

If the i-th query is not an initialization call, its siblings sibling(i) ⊆ {1, . . . , i}
are the set of queries up to the i-th one (later siblings have yet to be born) with
the same parent:

sibling(i) =
{
l ∈ {1, . . . , i} | pathparent(l) = pathparent(i)

}
. (12)

Note that we have |sibling(i)| ≤ R for any i ∈ {1, . . . ,M}. The children of the
i-th query are the set of all queries that have i as parent:

child(i) = {l ∈ {i+ 1, . . . ,M} | parent(l) = i} . (13)
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We define the type typei of a construction query (pathi,flag i, Pi, Zi, `i):

typei =


init , if |pathi| = b ,

full , if |pathi| > b ∧ (|sibling(i)| = 1 ∧ flag i = false) ,

fix , if |pathi| > b ∧ (|sibling(i)| > 1 ∨ flag i = true) .

(14)

Note that we have q queries of type init . Type full corresponds to duplex calls of
which the input state Si is a random value from {0, 1}b of which the adversary
may have learned the outer r bits, but it had no possibility to set the outer part
to a certain value of its choice. By definition, there are at most M−L−q queries
of type full . Finally, type fix corresponds to duplex calls of which distinguisher
might have set the outer part to a certain value of its choice; this happens if the
preceding duplex call had siblings, or if the adversary has turned flag i = true,
i.e., enabled the overwrite functionality in the duplex. There are at most L+Ω
queries of type fix .

Analyzing Bad Events. We define three additional collision events. The first
two correspond to multicollisions among the construction queries exceeding an
threshold ν := νMr,c, and the third one corresponds to plain key collisions in the
key array K:

mcin : ∃ distinct i1, . . . , iν+1 with typeij = full such that

leftr(Ti1) = · · · = leftr(Tiν+1
) , (15)

mcout : ∃ distinct i1, . . . , iν+1 such that leftr(Ui1) = · · · = leftr(Uiν+1
) , (16)

key : ∃ distinct δ, δ′ such that K[δ] = K[δ′] . (17)

We define mc = mcin ∨mcout. By basic probability theory,

Pr (col) = Pr (colcc ∨ colcp) ≤ Pr (colcc ∨ colcp | ¬(mc ∨ key)) + Pr (mc ∨ key) .

Note that key is an event independent of the number of queries, whereas colcc,
colcp, and mc are. The distinguisher can make M +N queries, which it makes in
a certain order. For l ∈ {1, . . . ,M + N}, denote by colcc(l), colcp(l), and mc(l)
the event that the l-th query sets the respective event. For brevity of notation,
write col(l) = colcc(l) ∨ colcp(l). By basic probability theory,

Pr (col) ≤
M+N∑
l=1

Pr (colcc(l) | ¬col(1 . . . l − 1) ∧ ¬mc(1 . . . l) ∧ ¬key) (18a)

+

M+N∑
l=1

Pr (colcp(l) | ¬col(1 . . . l − 1) ∧ ¬mc(1 . . . l) ∧ ¬key) (18b)

+ Pr (mc) (18c)

+ Pr (key) . (18d)

Based on this, we will proceed as follows. We will consider any query made by
the distinguisher and consider the probability that this query sets either of the
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events colcc, colcp, and mc under the assumption that no earlier query set the
event. Note that colcc and mc may only be set by a construction query; colcp

may be set by a construction or a primitive query.

Probability of colcc of Eq. (18a). The event can only be set in duplex queries.
Consider any two i 6= i′, and assume that at the point that the latest of the two
queries is made, the events col, mc, and key are still false. We will make a
distinction depending on the type of queries of i and i′.

– typei = typei′ = init . Note that Ti = rotα(K[δi] ‖ IV i), where δi and IV i

can be deduced from pathi, and Ti′ = rotα(K[δi′ ] ‖ IV i′), where δi′ and IV i′

can be deduced from pathi′ . As pathi 6= path ′i, a collision Ti = Ti′ implies
that necessarily δi 6= δi′ and K[δi] = K[δi′ ]. This is impossible under the
assumption that ¬key holds;

– typei = init and typei′ 6= init . Note that Ti = rotα(K[δi] ‖ IV i), where
δi and IV i can be deduced from pathi. Also, Ti′ = Uparent(i′) ⊕ [flag i′ ] ·
(Zi′‖0b−r)⊕ Pi′ .
• i < i′. The conditional min-entropy of bits α . . . α + k of Ti is at least
H∞(DK) − qδλ and the conditional min-entropy of rightc(Ti′) is at
least c − |sibling(i′)|λ. The value Ti hits Ti′ with probability at most
1/2H∞(DK)+min{c,max{b−α,c}−k}−(|sibling(i′)|+qδ)λ;
• i′ < i. The conditional min-entropy of bits α . . . α + k of Ti is at least
H∞(DK) − (qδ − 1)λ and the conditional min-entropy of rightc(Ti′) is
at least c− (|sibling(i′)|+ 1)λ. The value Ti hits Ti′ with probability at
most 1/2H∞(DK)+min{c,max{b−α,c}−k}−(|sibling(i′)|+qδ)λ.

Note that |sibling(i′)| ≤ R. There are at most q queries i with typei = init ,
and at most M−q with typei′ 6= init . By the union bound, colcc is set in this
case with probability at most q(M−q)/2H∞(DK)+min{c,max{b−α,c}−k}−(R+qδ)λ;

– typei 6= init and typei′ 6= init . We will argue based on the randomness

generated in any query l, which generates a random output state Ul
$←−

{0, 1}b. The probability bound will follow through a union bound, as any
query i with typei 6= init is the child any such query.
• Consider any i ∈ child(l) with typei = full . So far, the distinguisher

learned λ bits of leakage on state Si in query l. Thus, Ti has conditional
min-entropy at least b−λ. It hits any other Ti′ with probability at most
1/2b−λ. There are at most M − L− q queries i, i′ with typei = typei′ =
full , and furthermore, there are at most L+Ω queries i′ with typei′ = fix .
By the union bound, omitting duplicate counting:(

M−L−q
2

)
+ (M − L− q)(L+Ω)

2b−λ
;

• Consider any i ∈ child(l) with typei = fix . So far, the distinguisher
learned λ bits of leakage on state Si in query l, and (|sibling(i)|−1)λ bits
of leakage on state Si from its sibling queries. Thus, Ti has conditional
min-entropy at least c−|sibling(l)|λ ≥ c−Rλ. It hits any other Ti′ with
probability at most 1/2c−Rλ.
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There are at most L + Ω queries i with typei = fix . By ¬mcin, there
are at most ν out of at most M − L − q queries i′ with typei′ = full
whose outer part equals leftr(Tl). There are at most νfix − 1 queries i′

with typei′ = fix whose outer part equals leftr(Tl). By the union bound,
omitting duplicate counting:

ν(L+Ω) + νfix−1
2 (L+Ω)

2c−Rλ
.

colcc is set in this case with probability the sum of above two bounds.

By the union bound,

(18a) ≤ q(M − q)
2H∞(DK)+min{c,max{b−α,c}−k}−(R+qδ)λ

+

(
M−L−q

2

)
+ (M − L− q)(L+Ω)

2b−λ
+
ν(L+Ω) + νfix−1

2 (L+Ω)

2c−Rλ
. (19)

Probability of colcp of Eq. (18b). The event can be set in duplex and in
primitive queries. Consider any duplex query i or any primitive query j, and
assume that at the point of querying, the events col, mc, and key are still false.
Note that the bad event consists of two parts, namely input collisions Ti =
Xj and output collisions Ui = Yj . For both cases, we will make a distinction
depending on the type of query of i.

– Event Ti = Xj .

• typei = init . Note that Ti = rotα(K[δi] ‖ IV i), where δi and IV i can
be deduced from pathi. For fixed primitive query, regardless of whether
it is in forward or inverse direction, there are at most qIV possible du-
plexing calls with matching rightmost b − k bits, i.e., for which IV i =
rightb−k(Xj). In addition, the conditional min-entropy of K[δi] is at
least H∞(DK)− qδλ, and a collision Ti = Xj happens with probability
at most 1/2H∞(DK)−qδλ. Summing over all queries, colcp is set in this
case with probability at most qIVN/2

H∞(DK)−qδλ;

• typei = full . As query i is of the type full , its preceding duplexing call
parent(i) generated Uparent(i) = Si uniformly at random from {0, 1}b.
However, the distinguisher has learned leftr(Ti), where Ti = Si⊕ [flag i] ·
(Zi‖0b−r) ⊕ Pi, and it may have learned leakage on the other part. For
fixed primitive query, regardless of whether it is in forward or inverse
direction, by ¬mcin there are at most ν possible duplexing calls with
matching leftmost r bits, i.e., for which leftr(Ti) = leftr(Xj). In addi-
tion, the conditional min-entropy of rightc(Ti) is at least c − (R + 1)λ,
and a collision Ti = Xj happens with probability at most 1/2c−(R+1)λ.
Summing over all queries, colcp is set in this case with probability at
most νN/2c−(R+1)λ;
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• typei = fix . As query i is of the type fix , the earliest sibling of its pre-
ceding duplex call min(sibling(parent(i))) generated Tmin(sibling(parent(i)))

uniformly at random from {0, 1}b, but in duplexing call i the distin-
guisher might have set the outer part to a certain value of its choice, and
the distinguisher may have learned leakage on the other part. For fixed
primitive query, regardless of whether it is in forward or inverse direction,
there are at most νfix possible duplexing calls with matching leftmost r
bits, i.e., for which leftr(Ti) = leftr(Xj). In addition, the conditional
min-entropy of rightc(Ti) is at least c− (R+1)λ, and a collision Ti = Xj

happens with probability at most 1/2c−(R+1)λ. Summing over all queries,
colcp is set in this case with probability at most νfixN/2

c−(R+1)λ;

– Event Ui = Yj . The duplex call generates Ui uniformly at random from
{0, 1}b. However, the distinguisher may have learned leftr(Ui) in any subse-
quent call in child(i), and it may have learned leakage on the other part. For
fixed primitive query, regardless of whether it is in forward or inverse direc-
tion, by ¬mcout there are at most ν possible duplexing calls with matching
leftmost r bits, i.e., for which leftr(Ui) = leftr(Yj). In addition, the con-
ditional min-entropy of rightc(Ui) is at least c − (R + 1)λ, and a collision
Ui = Yj happens with probability at most 1/2c−(R+1)λ. Summing over all
queries, colcp is set in this case with probability at most νN/2c−(R+1)λ;

By the union bound,

(18b) ≤ qIVN

2H∞(DK)−qδλ
+

2νN

2c−(R+1)λ
+

νfixN

2c−(R+1)λ
. (20)

Probability of mc of Eq. (18c). For mcin, note that the state values Ti are
randomly generated using a random function f and M − L − q drawings are
made (we only consider queries of the type full). For mcout, the state values Ui
are randomly generated using a random function f and M drawings are made.
The event mcin is thus identical to a balls-and-bins experiment with M − L− q
balls that are uniformly randomly thrown into 2r bins, and the event is set if
there is a bin with more than ν balls. The event mcout is the same experiment
but with M balls. By definition of ν := νMr,c (see Definition 1), any of the two
happens with probability at most

(18c) ≤ 2ν

2c
. (21)

Probability of key of Eq. (18d). This is a simple birthday bound colli-

sion event for u randomly drawn k-bit values, as K = (K[1], . . . ,K[u])
DK←−−

({0, 1}k)u. As the keys are mutually independent, we obtain:

(18d) ≤
(
u
2

)
2H∞(DK)

. (22)
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Conclusion. The proof is completed by plugging the individual bounds (19),
(20), (21), and (22) into main inequality (18). ut

6 Limiting Leakage of Keyed Duplex Construction

As it can be seen in Theorem 5.2, the advantage that an attacker can gain from
the leakage rises by an increase of either the maximum number of duplexing
calls for a single path R, or the maximum number of different initialization calls
qδ for a single key. Taha and Schaumont [38] and the developers of Isap [17]
presented ways to limit R and qδ. Their usage of the keyed duplex, generalized
to our description of the keyed duplex, is shown in Figure 3.

The limit on qδ is simply put by limiting the number of different IV ’s to a
small number, typically to one or two different IV ’s. The role of the IV is then
emulated by a value Y , which is typically a nonce in the case of encryption. Y
is absorbed directly after the initialization in a-bit portions, where a ≤ r. Then,
duplexing is performed the normal way, starting from the final state obtained
after absorption of Y .

As becomes clear from Figure 3, this approach splits the construction into
two different keyed duplex constructions, KD1 and KD2, that use two different
random permutations (p1 and p2) as well as different rate (a and r). The first
part KD1 is responsible for “gaining entropy”, where the resulting output states
are sufficiently random and mutually independent as long as no two values Y are
the same. In the second part KD2, entropy is “maintained” and used to perform
cryptographic operations. In this separation, the last block Ys is considered to
be absorbed in KD2.

The use of different permutations p1 and p2 may seem artificial, and to a
certain extent it is: we will rely on mutual independence of the two permutations
for easier composability. But also in practical scenarios different permutations
for p1 and p2 would be used, yet, p1 would often just be a permutation with a
very small number of rounds and it could in a strict sense not be considered to
be cryptographically strong.

p1

K[δ]

IV

Ys

a

p2
0

leftr(P1)

rightc(P1)

flagZ1

r r

c

p2

. . .

. . .

Y1

a

p1

. . .

. . .b − a b − a

Gaining Entropy Maintaining Entropy

k

b − k

Fig. 3: The duplex construction as used by Taha and Schaumont [38] and
Isap [17].
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In what follows, we will apply our general result of Theorem 1 to the con-
struction of Figure 3. For simplicity of reasoning, we will restrict our focus to
the case of a = 1, where two different uniformly randomly generated keys are
possible (so u ≤ 2), and where two different IV ’s are possible (so |IV| ≤ 2). This
matches the description of Isap [17]. We will consider a distinguisher that makes
Q evaluations, each consisting of a unique s-bit Y and an arbitrary amount of
duplexing calls in the second part. The distinguisher makes N offline evaluations
of p1 and N offline evaluations of p2. The remaining parameters of Section 5.1
will be bounded by the specific use case of the two duplexes in the construction
of Figure 3.

6.1 Gaining Entropy

The keyed duplex construction KD1 matches the construction of Section 2 with
capacity c = b−1, rate r = 1, and key offset α = 0. The number of initialization
calls is at most q ≤ 4, as there are at most two keys and two IV ’s. Likewise,
qIV , qδ ≤ 2. The number of overwrites satisfiesΩ = 0. For the number of repeated
paths, note that if a query Y is made, and Y ′ is an older query with the longest
common prefix, then the new query will add one new repeated path, namely
the one that ends at the absorption of the bit where Y and Y ′ differ. In other
words, L ≤ Q, and thus also νfix ≤ Q. The total number of duplexing calls is
at most M ≤ q + Q · s, noting that each query consists of an initialization and
s duplexing calls. We adopt a non-tight νM1,b−1 ≤ M for simplicity. Finally, as
the absorbed bits Yi can be considered as b-bit blocks Pi where b − 1 bits are
zero-padded, we obtain that R, the maximum number of duplexing calls for a
single non-empty subpath, is at most 2.

We obtain the following corollary from Theorem 1, where we have simplified
the bound by gathering some fractions with leakage in the denominator. Here,
we have also assumed that there is at least 1 bit of leakage, and at least 3 bits
of input, and at least 2 queries.

Corollary 1. Let b, k, s, λ ∈ N, with k ≤ b, s ≥ 3, and 1 ≤ λ ≤ 2b. Let

p1
$←− perm(b) be a random permutation, and K

$←− ({0, 1}k1)2 a random array
of keys. Let L = {L : {0, 1}b×{0, 1}b → {0, 1}λ} be a class of leakage functions.
For any distinguisher D making Q ≥ 2 queries of length at most s bits, and
making N primitive queries,

AdvL-naLRKD1
(D) ≤ 4sQN + s2Q2

2b−4λ
+

(
4+sQ+N

2

)
+
(
N
2

)
2b

+
2N

2k−2λ
+

1

2k
.

In addition, all output states after absorption of the values Y have min-entropy
b− λ.

6.2 Maintaining Entropy

For the keyed duplex construction KD2, we consider Ys to be not yet absorbed
by KD1, but instead, it forms the IV for KD2. More detailed, KD2 matches the
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construction of Section 2 with arbitrary c, r such that c+ r = b, with k = b− 1,
and key offset α = 1 meaning that the key is in the bottom b − 1 bits. Note
that, in fact, Ys is XORed to the leftmost bit of the state, but for simplicity of
reasoning, we simply consider it to overwrite it, making the key to KD2 of size
b − 1 bits. The number of initialization calls is Q, all of which may potentially
be under different keys (so u ≤ Q and q = Q), one for every Y ∈ {0, 1}s that
goes through KD1. The keys are not uniformly distributed, yet by Corollary 1
they are independent and all have min-entropy b− 1−λ. The number of IV ’s is
bounded by 2 (it corresponds to the single bit Ys), so qδ ≤ 2, but each IV may
appear up to Q times, so qIV ≤ q = Q. The value R, the maximum number of
duplexing calls for a single non-empty subpath, as it most the maximum number
of repetitions of Y , so R = 1. There are no repeating paths, hence L = 0. As we
make no a priori restriction on the choice of the flag ’s, Ω is yet undetermined
and νfix ≤ Ω.

We obtain the following corollary from Theorem 1, where we have simplified
the bound by gathering some fractions with leakage in the denominator. Here,
we have also assumed that there is at least 1 bit of leakage.

Corollary 2. Let b, c, r, λ ∈ N, with c+r = b and 1 ≤ λ ≤ 2b. Let p2
$←− perm(b)

be a random permutation, and K
DK←−− ({0, 1}b)Q a random array of keys each

with min-entropy at least b − 1 − λ. Let L = {L : {0, 1}b × {0, 1}b → {0, 1}λ}
be a class of leakage functions. For any distinguisher D making M construction
queries, of which Q initialization calls, and N primitive queries,

AdvL-naLRKD2
(D) ≤

2νMr,c(N + 1)

2c−2λ
+
QN + 2M2

2b−4λ
+

(
M+N

2

)
+
(
N
2

)
2b

+
(νMr,c +N +Ω)Ω

2c−2λ
+

(M −Q)Ω

2b−λ
.

The bound clearly reveals the impact of overwriting: if the distinguisher may
make all its M duplexing calls with flag = true, the dominating term becomes
MN/2c−2λ.

6.3 Application to Encryption

We will put the results in practice, and show how Corollaries 1 and 2 guaran-
tee leakage resilient nonce-based stream encryption in a modular manner. Let
b, c, r, k ∈ N with c + r = b and k ≤ b. Consider the stream cipher encryption
scheme E of Figure 4, that gets as input a key K of k bits, a public nonce ℵ
of k bits, and an arbitrarily large plaintext P , and it outputs a ciphertext C.
The ciphertext C is computed by adding |P | bits of key stream generated by the
duplex to P . The IV is a fixed constant.

Security of Stream Encryption. We consider security of E in the random

permutation model. Let p1, p2
$←− perm(b) be two random permutations, and
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Fig. 4: Leakage-resilient stream encryption using the duplex.

K
$←− {0, 1}k. Let $ be a function that for each (ℵ, P ) outputs a string of

length |P | bits (noting that a nonce should never be repeated). In the black-
box security model, one would consider a distinguisher that has access to either
(E [p1, p2]K , p

±
1 , p

±
2 ) in the real world or ($, p±1 , p

±
2 ) in the ideal world, where

again “±” stands for bi-directional query access:

Advbb-cpa
E (D) = ∆D

(
E [p1, p2]K , p

±
1 , p

±
2 ; $, p±1 , p

±
2

)
.

In case of leakage resilience, we will stick to non-adaptive L-resilience of
Dodis and Pietrzak [18], as we did in Section 3.4. In the current case, however,
we cannot simply consider any evaluation of the construction to leak, as this
would allow for a trivial break of the scheme. Instead, we adopt the conventional
approach of, e.g., [18,20,35,37,41], where the distinguisher has access to a leak-
free version of the construction, which it has to distinguish from random, and
a leaky version, which it may use to gather information. Formally, we obtain
the following model, which follows Barwell et al. [3] with the difference that we
consider security in the ideal permutation model. Let p1, p2,K, $ be as above.
Let L = {L : {0, 1}b × {true, false} × {0, 1}b × {0, 1}b → {0, 1}λ} be a class
of leakage functions, and for any leakage function L ∈ L, define by E [p1, p2]LK
encryption such that for each call leaks L(Sprev,flag , P, Snext), where Sprev is the
state before the call and Snext the state after the call. In the leakage resilience
security model, one considers a distinguisher that in addition to the oracles in
the black-box model has access to E [p1, p2]LK :

AdvL-naLR-cpa
E (D) =

max
L∈L

∆D

(
E [p1, p2]LK , E [p1, p2]K , p

±
1 , p

±
2 ; E [p1, p2]LK , $ , p±1 , p

±
2

)
. (23)

The distinguisher is not allowed to make an encryption query (to the leaky or
leak-free oracle) under a repeated nonce.

Security of E. We will demonstrate that the stream cipher encryption is leakage
resilient, by relying on Corollaries 1 and 2.
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Algorithm 4 Equivalent description of E [p1, p2]

Interface: E [KD1[p1],KD2[p2]]
Input: (K,N,P ) ∈ {0, 1}k × {0, 1}k × {0, 1}∗
Output: C ∈ {0, 1}|P |

KD1.init(1, IV ) . only one key K, only one IV
ℵ1‖ . . . ‖ℵk ← ℵ
for i = 1, . . . , k − 1 do

Z ← KD1.duplex(false,ℵi‖0n−1) . discard output

K?[encode(ℵ1 . . .ℵk−1)]← rightb−1(S) . store state of KD1 in key array of KD2

KD2.init(encode(ℵ1 . . .ℵk−1),ℵk) . KD2 has key offset α = 1
Z ← ∅
`← d|P |/re
for i = 1, . . . , ` do

Z ← Z ‖ KD2.duplex(false, 0b)

return left|P |(P ⊕ Z)

Theorem 2. Let b, c, r, k, λ ∈ N, with c+ r = b, 4 ≤ k ≤ b, and 1 ≤ λ ≤ 2b. Let

p1, p2
$←− perm(b) be two random permutations, and K

$←− {0, 1}k a random key.
Let L = {L : {0, 1}b×{0, 1}b → {0, 1}λ} be a class of leakage functions. For any
distinguisher making Q ≥ 2 queries with unique nonces, with a total amount of
M plaintext blocks, N primitive queries to p1 and N primitive queries to p2,

AdvL-naLR-cpa
E (D)

≤ 2(4k + 1)QN + 4M2 + 2k2Q2

2b−4λ
+

2
(
4+kQ+N

2

)
+ 2
(
M+N

2

)
+ 4
(
N
2

)
2b

+
4νMr,c(N + 1)

2c−2λ
+

4N

2k−2λ
+

2

2k
.

Proof. Let KD1[p1] and KD2[p2] be the two duplexes described in Sections 6.1
and 6.2, with the difference that flag = false and no data is absorbed for all
calls to KD2[p2]. One can equivalently describe E [p1, p2]K based on KD1[p1]K
and KD2[p2]K? as in Algorithm 4, where K? is defined as the output states of
KD1[p1]K (we use the ? to remind of this fact). Let AIXIF1[ro1] be an AIXIF with
the same parameter setting as KD1[p1], and similarly for AIXIF2[ro2]. Let L ∈ L
be any leakage and D be any distinguisher. By a simple hybrid argument:

∆D

(
E [p1, p2]LK , E [p1, p2]K , p

±
1 , p

±
2 ; E [p1, p2]LK , $ , p±1 , p

±
2

)
= ∆D

(
E [KD1[p1]LK ,KD2[p2]LK? ] , E [KD1[p1]K ,KD2[p2]K? ] , p±1 , p

±
2 ;

E [KD1[p1]LK ,KD2[p2]LK? ] , $ , p±1 , p
±
2

)
≤ ∆D

(
E [AIXIF1[ro1]LK ,KD2[p2]LK? ] , E [AIXIF1[ro1]K ,KD2[p2]K? ] , p±2 ;

E [AIXIF1[ro1]LK ,KD2[p2]LK? ] , $ , p±2
)

+ 2 ·∆D′
(
KD1[p1]LK , p

±
1 ; AIXIF1[ro1]LK , p

±
1

)
, (24)
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where D′ is some distinguisher making Q queries of length k−1 bits, and making
N primitive queries. The second distance of (24) can be bounded directly by
Corollary 1:

∆D′
(
KD1[p1]LK , p

±
1 ; AIXIF1[ro1]LK , p

±
1

)
≤

4kQN + k2Q2

2b−4λ
+

(
4+kQ+N

2

)
+
(
N
2

)
2b

+
2N

2k−2λ
+

1

2k
. (25)

We particularly have that the output states of AIXIF1[ro1]K have min-entropy
b − λ. Hence, for the remaining term of (24), we can indistinguishably replace

K? by a dummy K
DK←−− ({0, 1}b)Q consisting of keys with min-entropy b−1−λ.

We henceforth proceed:

∆D

(
E [AIXIF1[ro1]LK ,KD2[p2]LK? ] , E [AIXIF1[ro1]K ,KD2[p2]K? ] , p±2 ;

E [AIXIF1[ro1]LK ,KD2[p2]LK? ] , $ , p±2
)

= ∆D

(
E [AIXIF1[ro1]LK ,KD2[p2]LK ] , E [AIXIF1[ro1]K ,KD2[p2]K ] , p±2 ;

E [AIXIF1[ro1]LK ,KD2[p2]LK ] , $ , p±2
)

≤ ∆D

(
E [AIXIF1[ro1]LK ,AIXIF2[ro2]LK ] , E [AIXIF1[ro1]K ,AIXIF2[ro2]K ] ;

E [AIXIF1[ro1]LK ,AIXIF2[ro2]LK ] , $
)

+ 2 ·∆D′′
(
KD2[p2]LK , p

±
2 ; AIXIF2[ro2]LK , p

±
2

)
, (26)

where D′′ is some distinguisher making M construction queries, of which Q
initialization calls, and N primitive queries. The second distance of (24) can be
bounded directly by Corollary 2 for Ω = 0:

∆D′′
(
KD2[p2]LK , p

±
2 ; AIXIF2[ro2]LK , p

±
2

)
≤

2νMr,c(N + 1)

2c−2λ
+
QN + 2M2

2b−4λ
+

(
M+N

2

)
+
(
N
2

)
2b

. (27)

It remains to consider the first distance of (26). As the adversary may never
query its oracle (leaky nor leak-free) for the same nonce, the leaky and leak-free
oracles are mutually independent, and we obtain:

∆D

(
E [AIXIF1[ro1]LK ,AIXIF2[ro2]LK ] , E [AIXIF1[ro1]K ,AIXIF2[ro2]K ] ;

E [AIXIF1[ro1]LK ,AIXIF2[ro2]LK ] , $
)

= ∆D (E [AIXIF1[ro1]K ,AIXIF2[ro2]K ] ; $) = 0 . (28)

The proof is completed by combining (24)-(28). ut

Towards Authentication. The stream cipher encryption construction consid-
ered in this section can be extended to cover authentication as well. One way of
doing so is by absorbing the plaintext blocks Pi during streaming and outputting
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a tag at the end; another approach is by evaluating a MAC function (with a dif-
ferent key and IV, noting that Corollary 1 supports two keys and two IV ’s) after
encryption has taken place. Note that in the first case, authenticated decryption
would require to turn flag = true (see Section 2). In either case, one must take
care of the fact that, upon decryption, nonces may get reused. In terms of the
general picture of Figure 3, this means that a same nonce can be “tried” for
different blocks Pi, leading to repeating paths (hence L > 0) and to a higher
leakage per evaluation of p2 (hence R > 1). An authenticated encryption scheme
that prohibits such “trial” of the same nonce with different inputs is Isap [17].

7 Conclusion

We have shown that duplex based constructions can be leakage resilient con-
sidering bounded leakage per permutation call. However, as it is often the case
in symmetric cryptography, our proofs build upon an ideal building block. In
our case, we rely on a random permutation and allow λ-bit leakage of the state
before and after the call of the random permutation. So what does this mean for
real implementations?

Clearly, for real implementations, an attacker is not restricted to the leakage
before and after the permutation call, and can gather knowledge throughout the
whole permutation call. However, if we consider practical side-channel attacks
on duplex based constructions, the goal of an attacker is always to gather and
combine leakage to get some information about the secret state. Due to fact that
the duplex construction relies on the use of unkeyed cryptographic permutations,
gathering information about the internal state at any point during the processing
of an implementation of a permutation empowers the attacker in a similar way as
gathering information about the internal state before or after this permutation
call, which is accounted by our model.

As a consequence, this first leakage resilient proof for duplex constructions
can back the suitability of sponge and duplex constructions for side-channel se-
cure applications as already conjectured by Taha and Schaumont [38] and the
developers of Isap [17]. Amongst others, our results provide additional evidence
that decreasing the rate during the initialization as used by Taha and Schau-
mont [38] and Isap [17] are a viable strategy to transform a keyed sponge or
keyed duplex into a leakage resilient cryptographic scheme, while increasing the
capacity for subsequent calls of the permutations as proposed in Isap [17] also
allows the construction to cope with more leakage.
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