
FlyClient: Super-Light Clients for Cryptocurrencies

Benedikt Bünz1∗†, Lucianna Kiffer2∗†, Loi Luu3∗, and Mahdi Zamani4

1Stanford University, 2Northeastern University, 3Kyber Network, 4Visa Research

June 22, 2019

Abstract

To validate transactions, cryptocurrencies such as Bitcoin and Ethereum require nodes to verify that
a blockchain is valid. Unfortunately, this entails downloading and verifying all transaction blocks, taking
days and requiring gigabytes of bandwidth and storage. As a result, clients with limited resources such
as mobile phones cannot verify transactions independently without trusting full nodes. As a solution
to this, Bitcoin and Ethereum offer light clients known as simplified payment verification (SPV) clients,
that can verify the chain by downloading only the block headers which have significantly-smaller size
than the full blocks. Unfortunately, the storage and bandwidth requirements of SPV clients still increase
linearly with the chain length. In Ethereum, for example, an SPV client needs to download and store
more than 3.6 GB of data.

Recently, Kiayias et al. proposed a solution, known as non-interactive proof of proof-of-work
(NIPoPoW), that requires a light client to download and store only a polylogarithmic number of block
headers. Unfortunately, NIPoPoWs suffer from several drawbacks: they are succinct only as long as no
adversary influences the honest chain. A proof that a transaction happened is large in practice even
when no adversary is present. For realistic parameters it’s roughly 1 MB. Furthermore, they can only be
used for proof-of-work chains that have a fixed block difficulty, which is not the case in most cryptocur-
rencies, including Bitcoin and Ethereum, that require adjusting block difficulty frequently according to
the network hashrate.

In this paper, we introduce FlyClient, a novel transaction verification protocol for light clients that
is efficient both asymptotically and practically. Our protocol requires to download only a logarithmic
number of block headers to synchronize and verify transactions while storing only a single block header
between executions. We formally prove that FlyClient is optimal for this class of protocols. For
Ethereum, our protocol achieves a synchronization proof size of less than 500 KB. After synchronization
a FlyClient node only requires a small constant amount of storage and transaction inclusion proofs
are just 1.5KB for Ethereum. FlyClient achieves this by utilizing a design based on Merkle mountain
range (MMR) commitments and a probabilistic block sampling protocol. FlyClient overcomes the
limitations of NIPoPoWs and generates shorter proofs over all measured parameters. We also discuss
how FlyClient can be deployed via an uncontentious velvet fork.

1 Introduction

Today, many financial service providers can deliver digital payment services on low-capacity clients such as
phones, wearable devices (e.g., smartwatches and fitness trackers), and Internet-of-things (IoT) devices for
added convenience and security [10, 9, 12]. Such clients are characterized by their limited access to storage,
bandwidth, and computation while still requiring instant confirmation latency.

While traditional financial services provide efficiency and strong security guarantees for mobile clients,
they rely on centralized payment systems, and are generally inapplicable to decentralized cryptocurrency
networks such as Bitcoin [45] and Ethereum [19], where the security is enforced through cryptographic
protocols and game theoretic incentives. On the other hand, current solutions for verifying transactions
made over most cryptocurrency networks do not suit low-capacity devices. This is typically due to the large

∗This work was done by the author as part of an internship at Visa Research.
†Both authors contributed equally.

1



amounts of storage, computation, and bandwidth required by decentralized protocols to verify transactions
on decentralized ledgers. These ledgers rely on state-machine replication across many untrusted nodes in the
network. One option for low-capacity clients is to rely on a powerful trusted party who can verify payments
on behalf of the client. The existence of such a trusted entity, however, greatly opposes the decentralized
nature of cryptocurrency networks.

Proof-of-Work Blockchains. Most cryptocurrencies, including Bitcoin and Ethereum, maintain an
append-only ledger, known as a blockchain, which stores a sequence of blocks of transactions chained together
using cryptographic hashes. These blocks are created and appended to the blockchain via a mining process,
where the participating nodes, known as miners, compete to become the next block proposer typically by
solving a computationally-intensive puzzle, known as a proof of work (PoW) [24], with sufficient difficulty.
Through a gossip protocol (e.g., [36]) initiated by the block proposer, every miner receives each block in-
cluding a PoW solution and appends the block to their local copies of the blockchain if the solution is valid.
Since this process is not coordinated by any central party (nor by any traditional consensus protocol such
as [20]), the blockchain may fork into multiple chains; e.g., due to multiple solutions found for the same
puzzle by different miners, or even due to malicious behaviors. To agree on the same chain consistently with
other miners, each miner downloads and verifies all blocks in every chain and picks and follows the one with
the largest total difficulty. Using this most difficult chain principle, it is shown that, in the long run, the
network will agree on a single chain [29, 47, 41], known as the honest (valid) chain. This chain consists of n
valid blocks, where each block contains a cryptographic proof ensuring that the block creator has spent (or
locked) a certain amount of a resource (e.g., computation or space) uniquely for this block.

To verify that a blockchain is valid without participating in the mining process, a client may choose to
download every block from a miner or a full node who holds a complete copy of the entire chain. Currently,
downloading and verifying all blocks in Bitcoin and Ethereum requires a node to download more than 190 GB
of data respectively [4, 5], taking days to synchronize the node’s local blockchain [3, 1]. Such a requirement
causes a long delay for regular clients and makes it nearly impossible for storage-limited clients to quickly
verify transactions.

Light Clients. The original Bitcoin design [45] describes a faster synchronization mechanism, known as the
simplified payment verification (SPV) that allows lightweight verification of transactions on the blockchain
by what is typically referred to as an SPV client (also known as a light client [37]).

Instead of downloading all blocks from a full node, an SPV client downloads only the headers of each
block that amounts to a much smaller synchronization overhead than the full blocks (80 bytes versus 1 MB
per block in Bitcoin). The block headers are linked together through hashes and include the PoW solutions.
This allows an SPV client to verify which chain has the most PoW solutions. Note that light clients do
not know whether all transactions are valid and all consensus rules are being followed. Light clients rather
operate under the assumption that the chain with the most PoW solutions follows all rules of the network.
This implies that all transactions in this chain are valid. Also it means that the majority of computation
power supports the same valid chain.

Assumption 1 (SPV assumption). The chain with the most PoW solutions follows the rules of the network
and will eventually be accepted by the majority of nodes.

Fortunately, previous work [29, 47, 41] shows that this assumption holds as long as each miner is rational
and holds only a minority share of the computation power.

Under these SPV assumptions, light clients can also verify the inclusion of specific transactions in the
ledger. This is done by utilizing a Merkle tree commitment to all transactions in a block which is stored in
the block header. A full node provides an SPV proof along with a transaction-inclusion proof which consists
of the transaction itself as well as the Merkle path to the transaction Merkle root stored in the header.

Besides being useful for lightweight verification of transactions, light clients also enable various appli-
cations to a broad class of users who need to verify a log of past events recorded on a blockchain. For
example, SPV proofs can be used for efficient verification of cross-chain transactions that rely on funds or
states recorded on another chain. Such transactions happen when, for example, exchanging cryptocurren-
cies [35, 6] or transferring assets to sidechains [16, 38, 40]. For example, blockchain-based notary services
have been recently developed [8, 11] that allow lightweight verification of the correctness and the integrity
of documents uploaded on a blockchain.

2



Although relying only on block headers reduces the verification overhead of SPV clients significantly,
it still incurs a large overhead on resource-limited clients, especially when considering the fact that this
overhead increases linearly with the number of blocks. For example, this has already become a major concern
in Ethereum due to its significantly-shorter block intervals than Bitcoin (∼15 seconds vs. ∼10 minutes) and
significantly-larger block headers (528 bytes vs 80 bytes). Given that the Ethereum blockchain contains more
than 7 million blocks (as of late 2018 [5]), an SPV client wishing to verify Ethereum transactions would have
to download and store more than 3.6 GB of data (or 7.3 MB per day). The client has to either download
a fresh copy of the data every time it wants to verify a transaction or keep a local copy in its storage and
only download the changes since the last synchronization. In either case, this puts a large burden on the
client. The problem is further amplified for users that run clients for multiple blockchains or systems that
use sidechains [38].1

Sublinear Light Clients. One may wonder if it is possible for a client to verify any event on a blockchain
of length n by downloading and/or storing only a sublinear (in n) amount of information. In fact, such a
performance gain comes with an important security challenge: Since such a client cannot verify every PoW
in the received blockchain, it can be tricked into accepting an invalid chain by a malicious prover who can
precompute a sufficiently-long chain using its limited computational power.

Proposals for sublinear light clients were initially discussed in Bitcoin forums and mailing lists as early
as 2012 [51, 28]. Most of them relied on the notion of superblocks, blocks that solve a more difficult PoW
puzzle than the current target puzzle. Since they appear randomly at a certain rate on an honest chain, the
number of superblocks in a chain is a good indicator for the total number of valid blocks, if miners behave
honestly. Recently, Kiayias et al. [37] introduced and formalized an interactive proof mechanism, known as
proofs of proof of work (PoPoW). PoPoWs are based on superblocks and allow a prover to convince a verifier
with high probability in sublinear time and communication that a chain has a sufficient amount of work.
The protocol replaces the SPV client’s synchronization.

In a later work [38], Kiayias et al. provide an attack against the PoPoW protocol and propose a non-
interactive, yet-sublinear alternative solution known as non-interactive PoPoW (NIPoPoW). Unfortunately,
both PoPoW and NIPoPoW have several drawbacks as follows: Both solutions work only if a fixed difficulty
is assumed for all blocks. Unfortunately, this is not a realistic assumption in practice due the variable
combined hashing power of miners in most PoW-based cryptocurrency networks. For example, the block
difficulty in Bitcoin has shown exponential growth over the network’s lifetime in the past decade [13].

Moreover, the reliance on superblocks makes the protocol susceptible to bribing [18] and selfish mining [26]
attacks. These attacks work by bribing miners to discard superblocks: Rational miners accept this if they
are paid more than the block reward as superblocks do not yield any extra block reward. The NIPoPoW
protocol defends against this attack but only by reverting to the standard (and expensive) SPV protocol.
The proofs are therefore only succinct if no adversarial influence exists. FlyClient, on the other hand,
does not rely on superblocks and distinguishes blocks only by their position (or height) in the chain. Finally,
NIPoPoW’s transaction inclusion proofs are fairly large, even in the optimistic case. This is because such
proofs consist of roughly log(n) block headers. In some cryptocurrencies such as Ethereum, block headers are
quite large, thus resulting in large NIPoPoW transaction inclusion proofs, e.g., roughly 15 KB in Ethereum.

Our Contribution. We propose FlyClient, a new blockchain verification protocol for light clients in
cryptocurrencies such as Bitcoin and Ethereum. Unlike regular SPV clients that use a linear amount of
bandwidth and storage in the length of the chain, FlyClient is required to download only a logarithmic
number of block headers to verify the validity of the chain. Once the chain is verified, the client needs to store
only a single block to efficiently verify the inclusion of any transaction on the chain. The FlyClient protocol
is a non-interactive proof of proof of work but overcomes the limitations of the superblock-based NIPoPoW
protocol2. FlyClient works for variable difficulty chains and provides asymptotically and practically-
succinct proofs even in the presence of an adversary controlling at most a c fraction of the honest mining
power. Further, FlyClient requires short transaction-inclusion proofs that consist of only log(n) hashes.

1Ethereum also has a fastsync synchronization option which allows a full node to sync to the current chain via SPV [7].
Using this, nodes can start verifying all incoming transactions. Unfortunately, even fastsync can take up to 10 hours to receive
all headers from the network, likely due to throttling by individual peers.

2NIPoPoW refers to both a primitive and a protocol (that implements the primitive). Both were introduced by Ki-
ayias et al. [38]. Unless clarified otherwise, we generally use the term NiPoPoW to refer to the superblock-based protocol.

3



Block Height 10 K 100 K 1,000 K 7,000 K

SPV 4,961 49,609 496,094 3,472,656

FlyClient 154 261 389 484

Table 1: Comparison of proof sizes (in KB) for SPV clients and FlyClient in the Ethereum blockchain at
various block heights assuming an adversary that has a hash power of at most c = 1/2 of the honest hash
power and succeeds with probability less than 2−50.

In Ethereum, this results in transaction-inclusion proofs that are as small as 1.5KB which is roughly a factor
of 10 smaller than NIPoPoWs.

Our protocol is parameterized by c ∈ [0, 1) and λ ∈ N such that an adversary controlling at most a c
fraction of the honest mining power succeeds with probability at most 2−λ. This corresponds to a slightly
stronger assumption than the SPV assumption. No adversary controls even a c

1−c fraction of the total mining
power. We show in Section 6.1 that FlyClient is efficient even at high values of c such as c = 0.9. Finally,
we demonstrate FlyClient’s concrete efficiency on Ethereum (see Table 1).
FlyClient achieves this by employing the following techniques:

• Probabilistic Sampling with Variable Difficulty: We introduce a protocol to randomly sample
O(log n) block headers from a remote blockchain with variable block difficulty. We formally prove the
security of our protocol as long as the computational power of the adversary is a c < 1 fraction of that
of honest nodes.

• Efficient Chain Commitments: We formalize and use the notion of a Merkle mountain
range (MMR) [52], an efficiently-updatable commitment mechanism that allows provers to commit to
an entire blockchain with a small (constant-size) commitment while offering logarithmic block inclusion
proofs with position binding guarantees.

• Non-Interactive and Transferable Proofs: We introduce a non-interactive variant of FlyClient
using the Fiat-Shamir heuristic [27] that allows both the light client and the full node to forward the
proof to other light clients without the need to recalculate the proof.

1.1 Overview of FlyClient

Consider a blockchain network that is growing a valid (or honest) chain C based on the most difficult chain
principle, and a client (or verifier) who wants to verify that a given transaction tx is recorded on the chain.
The valid chain is characterized as the chain with the highest cumulative computational difficulty created
so far by the network. Any other chain is considered an invalid chain. The light client assumes that the
valid chain follows all other rules of the network, such as containing only valid state transitions. For ease of
explanation, we first assume that each block has the same level of difficulty. In this model, the valid chain
is the one with the highest length (i.e., number of blocks). We will later formalize the problem using the
variable block difficulty model to be consistent with most cryptocurrencies, including Bitcoin and Ethereum.

The client is connected to a set of full nodes (or provers) at least one of which is honest (i.e., holds a copy
of the valid chain), but the client does not know which one is honest. The client and the provers participate
in the FlyClient protocol to convince the client that tx is included in some valid block B on the honest
chain. As a first step all provers send the last block or head of the chain to the client along with a claim of
how many blocks are included in the chain.

Two Provers and a Verifier. We consider the case where the client is connected to only two provers one
of which is honest. Both provers claim the same length n for their chains. 1 If both provers present the
same head of the chain and the same block B, then the client is convinced and the protocol ends. Otherwise,
one of the provers holds an invalid chain. In this case, the client challenges both provers with a probabilistic
sampling protocol to find out which one holds the honest chain. Assuming that the combined hash power
of all malicious miners is a c < 1 fraction of the honest miners, the probability that the adversary can mine

1Kiayias et al. [38] present a generic verifier that extends the two-prover case to multiple provers.

4



…

𝑡𝑥′

MMR at block 𝐵%

MMR root 𝑀%

Prev.
hash Nonce Time-

stamp

Merkle root 𝑴𝟏

Prev.
hash Nonce Time-

stamp

Merkle root 𝑴𝒏*𝟏

𝑡𝑥

TX
Merkle tree

TX
Merkle tree

𝐵+ 𝐵%*+

Figure 1: MMR chain commitments

the same number of blocks as the honest miners reduces exponentially as the honest chain grows. Thus,
the adversary has to insert a sufficient number of invalid (or fake) blocks to make its chain as long, or more
accurately, as difficult as the honest chain.

Probabilistic Sampling. Our probabilistic sampling protocol samples a logarithmic number of block head-
ers from both chains using a probability density function g(x) that specifies, for every height x in each chain,
the likelihood that the block located at x is sampled. Some blocks near the head of the chain are sampled
with probability 1, i.e., are always part of the proof. Using differential analysis, we find the optimal g(x)
that maximizes the probability of catching the invalid chain given the adversary’s optimal strategy. There-
fore, we can give a minimum probability that the verifier catches the adversary with only a single query,
independent of the adversary’s forking strategy. This allows us to reduce the adversary’s success probability
to a negligible value by repeatedly sampling blocks according to g(x).

Chain Commitments. So far, we still allow a malicious prover to deceive the verifier with an invalid chain.
Namely, since the verifier downloads only a small number of block headers that are not necessarily chained
together, the malicious prover can choose to only (or mostly) return correctly-mined blocks from arbitrary
positions on the honest chain in response to the verifier’s request. This, unfortunately, can significantly
decrease the success probability of our probabilistic sampling protocol. One way to protect against such a
strategy is to have the prover “commit” to its entire chain before the protocol starts, hence ensuring that it
returns the blocks at the expected positions on the chain.

To commit to the entire chain of blocks, FlyClient requires the prover to maintain a Merkle tree variant
known as a Merkle mountain range (MMR) over all blocks added to the blockchain so far. In addition to being
a Merkle tree, an MMR allows efficient appends at the prover side and efficient block inclusion verifications
at the verifier side. Further, it enables efficient subtree proofs, i.e., a proof that two MMRs agree on the
first k leaves. At every block height i, the prover appends the hash of the previous block, Bi−1, to the most
recent MMR and records the new MMR root, Mi, in the header of Bi (see Figure 1). As a result, each MMR
root stored at every block height can be seen as a commitment to the entire blockchain up to that height.

Putting Things Together. With MMR commitments in block headers, each prover begins by sending the
header of the last block in its chain, i.e., the header of block Bn that includes the MMR root Mn. Next, the
verifier samples a number of random blocks from the prover according to the probability distribution g(x).
For every sampled block, the prover provides the corresponding block header and an MMR proof that the
block is located at the correct height of the chain committed by Bn. Additionally, the verifier checks that
the MMR root stored in every sampled block commits to a subtree of Mn. If the PoW solution or the MMR
proofs of any of the sampled blocks is invalid, then the verifier rejects the proof. Otherwise, it accepts Bn
as the last block of the honest chain. To ensure that tx is included in some block on the honest chain, the
client first receives an MMR inclusion proof that Bn commits to the block B. The verifier checks this proof
using Mn. Then just as for a regular SPV proof the prover provides a Merkle proof that tx occurred in B.
The verifier verifies the SPV proof using the transaction commitment in B’s header.

The Variable-Difficulty Model. To adapt FlyClient to the case where blocks have different difficulties,
we use the same sampling distribution g(x) but x now denotes the relative aggregate difficulty. For example,

5



x = 1/2 refers to a point on the chain where half of the difficulty has been amassed, and g(1/2) is the
probability that the block at that point is sampled by FlyClient. To ensure that the full node returns
the correct blocks according to the difficulty distribution, we slightly modify the MMR commitments such
that each node in the Merkle tree now additionally contains the aggregate difficulty of all nodes below it.
This means that each block header is now committing to not only the sequence of all blocks up to the given
block but also to the total difficulty amassed by the network up to that block. Therefore, a Merkle inclusion
proof, which is generated in a way similar to a standard Merkle tree proof, allows the client to verify that
the provided block is indeed located at the x-th percentile of the total difficulty.

Non-Interactive and Transferable FlyClient. To make our probabilistic sampling protocol non-
interactive, we apply the Fiat-Shamir heuristic [27] to the protocol described so far. The randomness is
generated from the hash of the head of the chain. The verifier now simply checks that the proof is correct
and that the randomness was derived correctly. The non-interactiveness makes FlyClient more practical
since (1) the full nodes can send the same proof to many light clients without any recalculation; and (2)
the client can forward the proof to other new light clients who can safely verify the correctness of the proof.
This reduces both the computation and the bandwidth overheads for both the provers and the verifier.

2 Model and Problem Definition

Network Model. We consider a PoW blockchain which uses the most most difficult chain principle. There
is a client which is connected to at least two full nodes at least one of which is honest (i.e., holds a copy
of the valid chain), but the client does not know which one is honest. Given a protocol for distinguishing
between the valid and the invalid chain, Kiayias et al. [38] present a generic verifier that can determine the
valid chain from a larger set of nodes. We, therefore, focus on the simpler case of two provers.

Threat Model. We consider an adaptive (or rushing) adversary who can choose which full nodes to corrupt
and which blocks to “fake” in the blockchain. However, the adversary’s mining power is always bounded by
a known fraction 0 < c < 1 of the combined mining power of honest nodes.

Our assumption that the client is connected to at least one honest node implies that the client is not
vulnerable to eclipse attacks [34]. Defending against such attacks is orthogonal to this work and has been
addressed by recent papers [34, 30]. We also assume that the adversary cannot drop or tamper the messages
between the client and the full nodes. The light client is not assumed to know any block or state in the
chain, except the genesis(i.e., the first) block.

Problem Definition. The full nodes want to convince the light client that they hold a copy of the valid
chain. The light client ultimately wants to verify that a transaction is included in the valid chain. An honest
node should always be able to succeed in convincing an honest verifier. An adversary with less than a c
fraction of the honest mining power should succeed with at most negligible probability.

3 Preliminaries

A key component of our protocol is a type of Merkle hash tree [44] which allows every block to commit to
all previous blocks. This enables efficient inclusion proofs that a particular block is part of the blockchain.
Similar to vector commitments [21], Merkle trees provide position binding, which is that a malicious prover
cannot open a commitment to two different values at the same position of a committed sequence. In
FlyClient, we use an MMR construction which is a Merkle tree with an efficient append functionality. An
MMR further allows a prover to efficiently convince a verifier that two MMRs share the same subtree (see
Figure 2). We will discuss these properties in Section 4.2.

Before defining the preliminaries, we establish our notation and terminology used throughout the paper.

Notation and Terminology. Let n denote the blockchain length which is the number of blocks in the
blockchain at the time of proof generation and verification. Also, let c denote the ratio of the computational
power of the adversary to the combined computational power of all honest miners. We say an event occurs

6



…

MMR root 𝑀"

𝑀#

𝐵#

MMR 
at block 𝐵%

𝑀& 𝑀%'#

MMR root 𝑀%

𝐵& 𝐵%'# 𝐵"'#

… 𝑀"'#

MMR 
at block 𝐵"

𝑀"

𝐵"

Figure 2: MMR subtree inclusion

with high probability if it occurs with probability 1−O(1/2λ), where λ is the security parameter. We say a
probability is negligible if it is O(1/2λ).

Definition 1 (Collision resistant hash function). A family of hash functions Hλ : {0, 1}∗ → {0, 1}λ is

collision resistant if for all efficient adversaries A the probability that x, y
?← A(1λ) and H(x) = H(y)∧x 6= y

is negligible in λ.

3.1 Merkle Mountain Ranges

A Merkle tree is a balanced binary tree where the value of each non-leaf node is the hash of its children.
Merkle trees commit to the leaf values and the position of each leaf node. They have succinct proofs that
a leaf is the ith leaf of the tree. The proof length is linear in the depth of the tree, i.e. logarithmic in the
total number of tree elements. We refer to Appendix A for a precise definition of Merkle tress and Merkle
proofs as well as their security guarantees.

MMRs are a special kind of Merkle tree that enables efficient appends and proofs that two trees agree on
the first k leafs. Todd [52] proposed MMRs as part of a distributed time-stamping service using Bitcoin. The
idea had been proposed before in the context of certificate transparency logs [15] to show that any particular
version of an append-only log is a superset of any previous version.

Let n be the total number of elements committed to in a Merkle tree. An MMR consists of at most
log(n), sub Merkle trees each of which has 2k leafs for some k. By definition, the subtrees are decreasing
in size. MMRs guarantee the tree is reasonably balanced even when new elements are appended, without
rebuilding the tree from scratch. Appending an MMR consists of creating a new leaf and then iteratively
merging neighboring subtrees if both have the same size. This takes at most log(n) operations and only
requires knowledge of the previous sub-trees roots of which there are less than log(n). Updates are therefore
both space and time efficient. We give an example of updating a MMR tree by appending new data entries
to the leaves in Figure 3. The append function of MMRs additionally give the ability to prove that an MMR

L0 L1 L1L2L0 L1 L0 L3L2

Append	 L2 Append	 L3r0

r1 r2

Figure 3: Example of updating a MMR tree when new data entries are appended as new leaves of the tree.
The grey nodes are either new nodes or nodes that are changed due to the new data entry. MMR guarantees
that for every update, only log n nodes are either created or modified.

is the previous version of another MMR with a short proof. That is, given the k-th MMR and the n-th MMR
the prover can give a proof of size O(log(n)) that convinces a verifier of this fact while the only previous

7



information the verifier has is k, n, and the root of the k-th and n-th MMRs. We formalize this important
property in Theorem 6 in Appendix B.

In FlyClient, we use MMRs to commit to previous blocks efficiently using a single hash value written
in every block header. The MMR leafs are the block headers of all previous blocks. Each block’s MMR is
build from the previous MMR. This construction ensures that the ith leaf, i.e. the ith block header contains
the root of the i− 1th MMR. In FlyClient, this allows a much more efficient update process resulting in
only a small overhead for full nodes when adding new blocks to the chain. Moreover, adding an MMR root
(e.g., a SHA-256 hash) to the block header requires only a small modification to the current Bitcoin and
Ethereum protocol. We discuss in Section 7.1 how this can be done through different upgrade mechanisms.

4 FlyClient Design

In proof-of-work cryptocurrencies like Bitcoin and Ethereum, the valid chain is the one that has the most
cumulative proof of work, i.e. was most difficult to create. While the most difficult chain rule is the accurate
way of determining which chain is the valid one, the notion of the longest chain, i.e. the one with the most
blocks, provides a simplified way that makes protocol analysis easier. Therefore in this section, we assume
that all blocks have the same difficulty. Later in Section 5.5, we extend our protocol to handle the more
realistic scenario where blocks have variable difficulty throughout the chain.

4.1 Design Components

FlyClient consists of three main building blocks. First, we leverage a new data structure called a Merkle
Mountain Range (MMR) to allow for verification of any previous block header with only the latest block
header. Once a block is verified, we can then verify any transaction included in that block with simple SPV
Merkle proofs.

Second, in order to reduce the number of block headers that light clients need to download to verify
the latest block header, FlyClient employs a probabilistic verification mechanism by which it randomly
samples only a logarithmic number of block headers; if these block headers are valid, then we show that the
latest block belongs to the longest chain with overwhelming probability. Which block headers to sample are
chosen by the light clients to prevent the adversary from avoiding sampling fake blocks. If an adversarial
prover is trying to convince the verifier that they know a chain that is the same length as the honest chain,
there is a maximal number of blocks in the adversary’s chain which are valid (i.e., have a valid PoW since
the adversary has limited computing power). Our probabilistic verification guarantees that after randomly
sampling enough number of blocks, we can detect at least one invalid block in the adversary’s chain with
overwhelming probability. In Section 5, we build up our sampling protocol by describing different straw-man
approaches the verifier can use to sample blocks, until finally we present our optimal sampling protocol in
Section 5.4. We outline our interactive protocol in Protocol 1.

Our third building block is using the Fiat-Shamir heuristic to remove the interaction between the light
clients and the full nodes. Instead of having the randomness be provided by the verifier, the random blocks
will be determined from the hash of the latest block. This allows a full node to figure out on its own which
random blocks it should send to the clients for the verification without any initial randomness from the light
client, yet the light client can verify the correctness of the proof and is guaranteed that the full node is not
cheating. We discuss in detail how to make FlyClient non-interactive in Section 5.6.

4.2 Block Inclusion Verification

As discussed before, the need to download all block headers is in part due to the need for verifying transac-
tions/ events in previous blocks. Assuming the longest chain has been verified and accepted with only some
of the block headers downloaded, i.e., the verifier knows some C is the last block header in the longest chain,
verification of a transaction in some previous block requires checking if the block actually belongs to a chain
ending in C. The naive approach is to download all intermediate block headers from the block to C, which
inherently requires downloading a linear number of block headers from the chain. Once the block is verified
to belong to the chain, the verifier needs only an SPV Merkle proof that a transaction is in that block.

8



Algorithm 1 FlyClient Protocol

A client (i.e., the verifier) performs the following steps speaking with two provers who want to convince the
verifier that they hold a valid chain of length n+ 1. At least one of the provers is honest. If the provers
claim different lengths for their chains then the longer chain is checked first. This is described in the
generic verifier for NiPoPoW[38].

1. Both provers send to the verifier their last block headers in their chains. Each header includes a
commitment value representing the root of an MMR created over the first n blocks of the
corresponding chain.

2. The verifier queries k random block headers from each prover based on the probabilistic sampling
algorithm described in Section 5.

3. For each queried block, Bi, located at position i of either chain C, the prover sends to the verifier the
header of Bi along with an MMR proof ΠBi∈C that Bi is the i-th block in C.

4. The verifier performs the following checks for each block Bi:

(a) Check PoW, i.e. check that H(Bi’s header) < target

(b) Check ΠBi∈C verifying that Bi is the ith block (see Algorithm 2 for details).

(c) Check that Mi−1 the MMR root contained in Mi.

5. If any of the checks fails, the verifier rejects the prover

6. If the prover has not been rejected, the verifier accepts C as the valid chain.

Algorithm 2 Prover/Verifier protocol for a single query

The verifier queries the prover for the header and MMR proof for a single block k in the prover’s chain of
n+ 1 blocks.

Verifier

1: Has the root of the MMR of n blocks stored in the n+ 1 block’s header
2: Queries prover for the header of block k and for Πk∈n
3: Verifies the hashes of Πk∈n hash up to the root of MMRn

4: Calculates the root of the MMR of k − 1 blocks from Πk∈n by calling Get Root( Πk∈n, n, k)
5: Compares the calculated root with the root in the header of block k
6: If everything checks out, accepts block proof

Prover

1: Has chain of n+ 1 blocks and the MMR of the first n blocks
2: Receives query for block k from verifier
3: Calculates Πk∈n from MMRn by calling MMR Proof( MMRn, n, k)
4: Sends header of k and Πk∈n to verifier

Our goal is to allow the verification of any block (i.e., obtain πrec(tx)) with only the latest
block header in the chain. There exist simple solutions to achieving the same goal. For example, one can
build a global Merkle tree on all transactions in the blockchain and update this Merkle tree after every block.
However, such a solution requires miners to maintain all transactions on the chain, which they often do not
do for performance reasons. The block verification also requires full nodes to obtain all transactions and to
reconstruct the Merkle tree from scratch (to keep the tree balanced). Thus, such solutions are expensive and
not practical for a real-world deployment.

Our solution leverages a Merkle tree variant, called Merkle mountain range (MMR) [52], to commit to all
previous block headers in the latest block. Having this commitment allows the verifier to efficiently validate
that a previous block belongs to the longest chain based on the latest block header of the chain. Thus, the
full node can prove that a transaction was included in the longest chain by just providing an
MMR proof (to prove that a block belongs to the longest chain) in addition to the current

9



transaction proof (which shows that the transaction is included in the said block). Protocol 2
describes how a verifier can query a prover for the validity of a single block.

Unstable blocks. Proof of work blockchains guarantee that honest nodes will eventually reach consensus.
This, however, does not prevent recent blocks to be unstable, i.e. potentially get removed from the eventual
chain. In particular the most recent block or head of the chain will often be replaced by other blocks. Despite
this it still possible to use the MMR root from this most recent block to perform the FlyClient protocol
and refer to old stable blocks and transactions. This is because the FlyClient protocol inherently checks
that all randomly sampled blocks have MMRs that are consistent with the head’s MMR. Even if the head
is maliciously created, its MMR cannot contain invalid blocks and it must contain all stable blocks of the
valid longest chain. It is still helpful for a client to store a recent, stable block to aid future synchronization
proofs.

New Block Header. Our new block header now contains one extra field namely the MMR root, i.e., the
root of the MMR tree that commits the headers of all previous blocks. The MMR root can replace the
previous block hash and thus not increase the block headers size. This requires a minimal change to the
current block structure of Bitcoin and Ethereum, and can be implemented as a soft fork in both of these
networks. We discuss this in more details in Section 7.1. A full node, upon receiving a new block, will
conduct only one additional check on the validity of the MMR root. This entails a negligible overhead on
the full node as we report in Section 6.

5 Proof of Honest Chain

Our goal is to have a protocol that allows an honest prover to convince the verifier of the validity of its
chain while a malicious prover cannot convince the verifier of a dishonest chain. In the previous section,
we outlined the basic FlyClient protocol, what is left to be determined is how the verifier samples blocks
from the prover. In this section, we describe some strawman approaches for our sampling protocol and build
up the properties we wish to satisfy. We start with a simple sampling protocol which gives us the desired
properties and show how to optimize our protocol to achieve smaller proof sizes.

5.1 Naive Approach

One approach is for the verifier to request a uniformly-random set of multiple blocks from each prover. Since
the malicious prover has only a limited computation power, it can at best correctly mine a subset of all the
blocks. Thus, the verifier needs to sample enough blocks to ensure that at least one of them is invalid, i.e.,
an incorrectly-mined block. The protocol begins with each prover giving the verifier the header of the last
block in its chain, where this header contains the root of an MMR tree built over all blocks in the chain.
Whenever the verifier requests a block from each prover, the prover must also provide a Merkle proof that
the block is a leaf in the MMR of the last block. From the MMR inclusion proof, the verifier can recreate the
MMR root for that block and verify that it is the same root in the header of the block (therefore included
in the proof of work for the block).

As shown in Corollary 2, once a malicious prover forks off from the honest chain, it cannot include any
of the later honest blocks in its chain because the MMR root in those blocks would not match the chain.
With this setup, if the verifier makes enough queries, it will eventually ask the malicious prover for a block
it has not mined (i.e., an invalid block).

To determine how many blocks the verifier must query to achieve a desired probability of success in
catching a malicious prover, we bound the malicious computing power to a c fraction of the honest computing
power. After the adversary forks from the honest chain, it can correctly mine up to only a c fraction of the
blocks in the rest of the chain. So, if we know that the adversary forked at some block Ba, then for each
random block the verifier requests after Ba, there is a probability of (1− c) that the sampled block is invalid
(i.e., incorrectly mined) as the adversary has to “lengthen” its fork to have a chain of equal length to the
honest chain. Thus, with k queries after the fork point, the verifier has a success probability of 1 − ck in
catching the malicious prover. Unfortunately the verifier does not know how where the fork point is and as
such what the value of k or the success probability is.

Solution Limitation. Since the verifier does not know where in the chain the adversary started the fork,

10



the verifier has to sample a large number of blocks to increase its chance of catching the malicious prover,
especially if the fork point is located near the end of the chain (i.e., the fork is short). Can the verifier
sample a smaller number of blocks in such a way that it can find the fork point a?

5.2 Binary Search Approach

Since the verifier knows at least one of the provers is honest, it can search for the fork point by querying
both provers at the same time to find the first block at which they disagree. The verifier can do this by
performing a binary search over the entire chain as follows. The verifier starts by asking each of the two
provers to send the block in the middle of its chain. If the two middle blocks are the same, then the verifier
recurses on the second half (i.e., the one with higher block numbers), otherwise it recurses on the first half.
This is repeated until the verifier finds the fork point which is the smallest block number where the two
provers disagree. Once the verifier finds the fork point, it samples blocks randomly from both provers after
the fork point, with each sample having a probability of (1 − c) in catching the dishonest prover in a lie.
Thus, the verifier must sample 2 log n blocks to find the fork point (n being the chain length) plus 2k blocks
to have a probability of 1− ck in determining which of the two provers is dishonest, if one is.

Solution Limitation. This approach is inherently interactive, i.e., requires multiple rounds of communi-
cation between the verifier and the provers, resulting in higher verification latencies. Can we find the fork
point by sampling blocks from each prover in a single shot while still achieve a high probability of success?

5.3 Bounding the Fork Point

Finding the exact location of the fork point by sampling a small number of blocks in only one shot is
challenging. We instead relax this requirement and allow the verifier to only “bound” the proximity where
the fork point is located while still sampling in one shot. Our goal is to ensure that the verifier makes
sufficient queries after the fork point. Instead of searching for the fork point, the verifier can iterate through
intervals from which it sample blocks. If in at least one of the intervals the verifier has a sufficiently-high
probability of catching the malicious prover, then the verifier succeeds with high probability in the whole
protocol.

For each prover, the new sampling protocol first samples k random blocks from the entire chain. Then, it
successively splits the chain (or the current interval) in half and queries another random k blocks from the last
half, i.e., the interval always ends with the tip of the chain. More precisely, for every integer j ∈ [0, log2 n),
the verifier queries k blocks from the last n/2j blocks of the chain. This is repeated until the size of the
interval is at most k, i.e., all last k blocks are sampled.

We now show that the above strategy catches a cheating adversary with overwhelming probability. To
do this, we calculate the probability that the verifier samples at least one invalid block from the malicious
prover, based on the observation that the adversary has to insert a sufficient number of invalid blocks into
its fork to obtain an overall chain of equal length to the honest chain.

Lemma 1. The probability that the verifier fails to sample any invalid block is at most
(
1+c
2

)k
.

Proof. Let n denote the length of the chain (not counting block n+1 which the verifier has already sampled)
and c denote the fraction of the adversary’s computing power relative to the honest computing power. At

any interval j, the verifier samples from the interval between block (2j−1)n
2j and n. Let hj denote the number

of invalid blocks the adversary has inserted in the j-th interval. The probability that the verifier fails to
sample an invalid block in this interval is

Pj =

( n
2j − hj

n
2j

)k
=

(
n− 2jhj

n

)k
.

Thus, the probability that the verifier fails is
∏logn
j=0 Pj . Since Pj ≤ 1, if one Pj is sufficiently small, then

the total probability of failure is also sufficiently small.

Letting a denote the forking point, there is some integer j such that (2j−1)n
2j ≤ a < (2j+1−1)n

2j+1 . In other
words, there is some sampled interval of size n′ = n/2j in the protocol where the fork point lies between the

11



start and the middle of the interval. Let l denote the length from a till n, i.e., the length of the fork, l > n′

2 .

The number of invalid blocks in the interval is hj = (1 − c)l ≥ (1 − c)n
′

2 . Thus, the probability that the
verifier fails to catch the invalid chain is at most equal to the probability that the verifier fails at step j, i.e.,

Pr[fail] ≤ Pr[fail at j] ≤

(
n′ − (1− c)n

′

2

n′

)k
=

(
1 + c

2

)k
.

Note that if l ≤ k, the verifier will sample all of the adversary’s invalid blocks and Pr[fail] = 0.

Solution Limitation. In our analysis, we calculate the probability of success based on the likelihood of
success in at least one of the log n intervals. However, our protocol samples other blocks that we do not
consider in our analysis, but could increase the verifier’s success probability. Can we achieve a better bound
by further taking these blocks into account?

5.4 Distributional View

While we presented the protocol of Section 5.3 as an iterative protocol, it is important to note that all of
its steps are independent. That is the verifier’s samples do not depend on the prover’s responses to previous
queries. This implies that the order of samples can be altered to create an isomorphic protocol with the same
security and efficiency properties. We can further use this to examine the probability that a given block is
sampled.

The protocol of Section 5.3 samples later blocks with higher probability, i.e., the sampling probability
grows inversely with the relative distance of a block to the end of the chain (i.e., the most recent block).
We can use this property to find a probability distribution (as depicted in Figure 4 as s(x)) that the verifier
picks one of the intervals uniformly at random (from the protocol presented in Section 5.3) and samples a
block uniformly at random from this interval.

Consider a protocol that simply repeats the sampling steps q times. If the adversary is caught with
probability at least p given one sample, then they will be caught with probability at least 1− (1− p)q after
q independently and identically-distributed samples. This distributional approach enables a simple analysis
of the protocol as we only need to bound the success probability of a single query. Furthermore, it allows
us to optimize the protocol by finding a query distribution that maximizes p. As shown in Figure 4, the
distribution introduced by the protocol from Section 5.3 is not smooth. In the following, we show that a
different and smoother distribution performs better.

Optimizing the Sampling Distribution. We now find the optimal sampling distribution, that is the
sampling distribution over the blocks, which maximizes the probability of catching the adversary given
that it chooses the optimal strategy. We do this by finding the sampling distribution that maximizes the
probability of catching the adversary with only a single query. Given this probability, we can directly bound
the adversary’s success probability after q queries. As a simplifying assumption, we treat the number of
blocks as a continuous space between 0 and 1. That is, the block header is at 1 and the genesis block is at
0. We later show that this simplified analysis still produces a good distribution for the discrete case.

As a first step, we show that the probability density function (pdf) of the optimal sampling distribution
must be increasing. A pdf f defined over the continuous range [0, 1] is increasing if, for all a, b ∈ [0, 1],
b > a =⇒ f(b) ≥ f(a). For any distribution defined by a pdf that is not increasing, there exists a
distribution that results in an equal or greater probability of catching the adversary.

Lemma 2 (Non-increasing sampling distribution). A sampling distribution over the blocks defined by a non-
increasing pdf f is not uniquely optimal, i.e., there exists another distribution with equal or higher probability
of catching the adversary.

Proof. We prove the statement by contradiction. We show that given f , there exists another pdf f ′ that
with a single query succeeds in catching the adversary with slightly higher probability.

Given that f is non-increasing, there exist numbers x1, x2, d ∈ [0, 1] and intervals I1 = [x1, x1 + d] and
I2 = [x2, x2 + d] such that x1 + d ≤ x2 ≤ 1 − d and f(x) > f(x′), for all x ∈ I1 ∧ x′ ∈ I2. Any adversarial
strategy can be defined by a fork point a ∈ [0, 1] and by the ranges of blocks which are invalid after a. Note

12



0.0 0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

2.5

3.0

Querying distribution

f(x)

s(x)

Figure 4: s(x) defines the probability density function (pdf) for the protocol from Section 5.3. g(x) =
1

(x−1) ln(δ) is the optimized pdf. The integral
∫ 1+ac−c
a

g(x)dx for c = 1/2, δ = 2−10, a = 0 and a = 0.8

respectively is displayed.

that given a fork point, the adversary can freely decide which blocks, i.e., which intervals, to make invalid
and which ones to honestly mine. For any strategy which produces an invalid block in I1 but valid blocks
in I2 there exists a strategy which creates an additional invalid block in I2 and one more valid block in
I1 without changing any other part of the strategy. Note that the converse is not true. If the fork point
a > x1 then it may not be possible to move invalid blocks to the first interval. Given that the querying
probability of any point in I2 is lower than the probability of any point in I1 the adversary is always better
off by moving all possible invalid blocks to I2. I2 must therefore contain no less invalid blocks than I1 in
any strategy which is optimal for the adversary.

Consider the probability distribution f ′ which is equal to f on all points but x ∈ I1 ∪ I2. There exists
an ε > 0 such that for any point x ∈ I2, f ′(x) = f(x) + ε and for any point in I1, f ′(x) = f(x)− ε and the
following condition holds: For all adversaries, a single query drawn from the distribution defined by f ′ has
a slightly higher probability of querying an invalid block than a single query drawn from the distribution
defined by f . This is because f ′ queries with higher probability in I2 which must contain no less invalid
blocks than I1 for any optimal adversary.

Since all non-increasing distributions yield a non-unique optimal sampling distribution, we can focus our
search on sampling distributions defined by increasing pdfs that sample later blocks with higher probability
than earlier blocks. For such distributions, if the adversary forks off from the main chain at some point
0 ≤ a < 1, the adversary’s best strategy is to put all of its correctly-mined (i.e., valid) blocks at the end of
its chain so they are the most likely to be sampled. If the adversary has a c fraction of the honest mining
power, and 1− a is the length of the adversary’s fork, then the adversary can mine a (1− a)c fraction of the
chain. Thus, in its best strategy, the section of the adversary’s chain from a to 1− (1− a)c does not contain
valid blocks.

To catch the malicious prover, we must sample a block in this interval. Hence, the probability that we
catch an adversary who forks at some point a with one sample is∫ 1+ac−c

a
f(x)dx∫ 1

0
f(x)dx

,

where f(x) is proportional to the probability density function of the sampling distribution. Considering all
points where the adversary could fork from, the probability of success is

p = min
0≤a<1

∫ 1+ac−c
a

f(x)dx∫ 1

0
f(x)dx

.

13



0 1𝑎 1− 1−𝑎 𝑐

Valid blocksInvalid blocksValid blocks

Malicious Chain

Honest Chain

Sample enough random blocks from here s.t. at least one invalid block is selected 

Genesis
Block

Fork point

Figure 5: Distributional View Argument

In order to find the optimal protocol, we have to find the distribution that maximizes this quantity.
Intuitively, we want a sampling distribution which makes the adversary indifferent about which fork point
to use. Otherwise, queries would be wasted on blocks which an optimal adversary would not make invalid
anyway. Concretely, we find an f(x) that satisfies∫ 1−c

0

f(x)dx =

∫ 1+ac−c

a

f(x)dx.

In other words, if the adversary forked from the beginning of the chain or any other point, we have the same
probability of catching it. Through differential analysis, we find that

f(x) =
1− c

c(1− x)

satisfies this condition, i.e.,
∫ 1+ac−c
a

f(x)dx = (c−1) ln(c)
c . In Figure 4, f(x) and this property is displayed

visually.
We now analyze how close our f(x) is to the optimal sampling distribution. We first try to compute the

normalized probability density function by normalizing f(x) by an
∫ 1

0
f(x)dx factor. Unfortunately, f(x)

goes to infinity as x approaches 1 and
∫ 1

0
f(x)dx =∞. Luckily, we can restrict the sampling domain from 0

to 1 − δ and have the verifier always check the last δ fraction of the blocks directly. We will later find the
optimal value for δ. Let

g(x) =
f(x)∫ 1−δ

0
f(x)dx

=
1

(x− 1) ln(δ)
.

The probability of catching the adversary is equal to

p = min
0≤a≤ c−dc

∫ 1+ac−c

a

g(x)dx =

∫ 1−c

0

1

(x− 1) ln(δ)
dx = logδ(c).

This probability takes into account that all blocks in the last δ fraction of the chain are always verified by
the verifier. Any fork after c−d

c will contain at least a block from this δ region, and thus will be detected
with probability 1.

We will now show that g(x) defines an optimal sampling distribution by showing that no sampling
distribution can achieve a higher p value, i.e., a higher probability of catching the adversary with a single
query. Note that the sampling strategy is optimal for an optimal adversary. The optimal adversary can
choose the placement of its invalid blocks after learning the sampling strategy.

Theorem 1 (Optimal sampling distribution). Given that the last δ = ck ∈ (0, 1], c ∈ N fraction of the chain
contains only valid blocks and the adversary can at most create a c fraction of valid blocks after the fork
point a, the sampling distribution defined by the pdf g(x) = 1

(x−1) ln(δ) maximizes the probability of catching

any adversary that optimizes the placement of invalid blocks.

14



Proof. Let δ = ck, for some k ∈ N, we get that p = 1/k and that as k increases the success probability
decreases. Hence, the smaller δ is set, the fewer the blocks that are always checked near the tip of the chain
but the worse our probability of catching the adversary with a sample anywhere else. Therefore, a smaller
δ leads to more samples from the rest of the chain.

Say g∗(x) is the probability density function of the best sampling distribution. Note that given Lemma 2,
g∗(x) is increasing and therefore for an optimal adversary the success probability is denoted by

p∗ = min
a,0≤a≤ c−dc

∫ 1+ac−c

a

g∗(x)dx.

g∗(x), therefore, maximizes p∗. The optimality condition implies that
∫ 1−ci+1

1−ci g∗(x)dx ≥ p∗, for all integer

i ∈ [0, k], where a = 1 − ci is a possible forking point. Further we have that
∫ 1−ck

0
g∗(x)dx = 1 since g∗(x)

is a pdf. We have ∫ 1−ck

0

g∗(x)dx =

k∑
i=0

∫ 1−ci+1

1−ci
g∗(x)dx = 1 ≥ k · p∗.

This implies that p∗ ≤ 1/k. Note that g(x) as a candidate distribution achieves p = 1/k and is, therefore,
optimal.

Optimizing the Proof Size. Given g(x) and p, we can now define pm = (1 − 1
k )m as the probability

of failure, i.e., not catching the optimal adversary after m independent queries. Note that without loss of
generality, k ≥ 1 as otherwise δ > c, implying that a sufficient fraction of blocks are checked to catch any
adversary. If we want pm ≤ 2−λ, then

m ≥ λ

log1/2

(
1− 1

k

) .
Now, assuming that the verifier always checks the last L blocks of the chain, where L = δn = ckn. Thus,
k = logc

(
L
n

)
and

m ≥ λ

log1/2

(
1− 1

logc(
L
n )

) .
This means that m approximates λ logc(

1
2 ) ln(n), i.e.,

lim
n→∞

m

λ logc(
1
2 ) ln(n)

= 1.

As long as L is a constant, the number of queries is linear in the security parameter λ and logarithmic in
the chain length, n.

Despite the already-good asymptotics, we can further find the optimal L that minimizes the proof size.
Let B denote the number of hashes per block header. The proof size is approximately proportional to
|π| = m · (B + log2 n) + L · B (the average inclusion proof consists of log2 n hashes). We now want to find
L′ = arg minL |π|, i.e., the value of L for which |π| attains its minimum. While it is difficult to analytically
minimize m · (B+ log2 n) +L ·B, we can numerically find the optimal L. Alternatively, we can approximate
m · (B + log2 n) + L ·B. In particular, let

h(n) = λ(B ln 2 + lnn) logc

(
L

n

)
− 1

2
λ(B log 2 + log n)

+BL+
1

12
λ ln c.

Then, limn→∞(|π| − h(n)) = 0, i.e., in the limit h(n) perfectly approximates |π|. Since h(n) is analytically

simpler to minimize, we can find L′ = arg minL h(n) = l log 1
c
(2n

1
B ). Plugging L′ into |π|, we get that |π| =

Θ(−λ log(n) logc(n)).

15



Parameter Definition
n Chain length

c Fraction of malicious hash power to honest power

a Fork point
g Sampling probability distribution
f Normalized sampling probability distribution

δ
Fraction of blocks/weights queried from the tip
(i.e., end) of the chain

L Number of blocks queried at the tip of the chain
q Total number of queries

Table 2: List of parameters used throughout the paper

For realistic Ethereum values of λ = 50, n = 222, c = 1
2 , B = 16, this leads to a proof size of 660 KB. Note

that the real proof size for 4 million blocks in Ethereum is a bit smaller at less than 400 KB (See Section 6).
This is because not all blocks have the same difficulty and later blocks have higher difficulty leading to better
values for δ.

5.5 Handling Variable Difficulty

So far, we have only considered the simplistic case that all blocks have the same difficulty. The distributional
view analysis described in Section 5.4 allows us to also handle the variable-difficulty scenario in a simple
fashion. In the new model, we simply use the same sampling distribution

g(x) =
1

(x− 1) ln δ
,

but now x denotes the relative aggregate difficulty weight and δ denotes the relative difficulty weight of the
blocks which are sampled with probability 1. For example, x = 1/2 is the point in the chain where half of
the difficulty has been amassed, and g(1/2) is the probability that the block at that point is sampled by
FlyClient. Note that x = 1/2 may refer to a very recent block in the chain if the block difficulty grows
fast.

Given a variable difficulty, our goal is to find out if we can still provide meaningful bounds on the proof
size. The answer is yes. Note that each block contains at least 1/2λ of the total difficulty. This follows from
the total difficulty being bounded by 2λ and each block having at least difficulty 1. Even still the proof size
grows as λ2 logc(

1
2 )(B ln 2 + lnn) as λ→∞. For the same worst case conditions and Ethereum parameters

c = 0.5, n = 222, λ = 50, B = 16, the estimated proof size is still just 1.85 MB. This is an upper bound on the
proof size at these parameters showing that FlyClient is efficient even under the worst possible difficulty
distribution.

Sampling Based on Difficulty. We now discuss how FlyClient can quickly verify which block has what
total amassed difficulty. To do this, we slightly amend the MMR chain commitment as depicted in Figure 6.
Each node in the tree now additionally contains the combined difficulty weight of all nodes below it. The
root, therefore contains the total computational difficulty of the chain so far. Note that it is simple to check
whether an inclusion proof is internally consistent. For every node, the two children’s weights should sum
up to the node’s weight. In every Merkle tree inclusion proof, both children are provided for every internal
node. Each header already contains the total aggregated difficulty up to that block. The verifier checks that
the provided node is indeed at the x-th percentile of the total difficulty. The check is done as follows.

• Let Πi be the Merkle proof for the i-th node which is claimed to be at the x-th difficulty percentile.

• Let di be the difficulty of node i in the amended MMR tree.

• Ensure that node i indeed satisfies difficulty di.

• Verify the Merkle proof and ensure that each node’s difficulty is positive and the sum of its children’s
difficulty.

16



𝐻ABCDEFGH |36

𝐻ABCD|10

𝐻AB|3 𝐻CD|7

𝐻A|1

A|1

𝐻B|2

B|2

𝐻C|4

C|4

𝐻D|3

D|3

𝐻EFGH |26

𝐻EF|11 𝐻GH|15

𝐻E|5

E|5

𝐻F|6

F|6

𝐻G|8

G|8

𝐻H|7

H|7

Figure 6: A Merkle tree committing to blocks “A” through “H” (i.e., the leaves) with variable difficulties.
The inclusion proof for block “E” consists of nodes with dark background and shows that the block is located
at the 10-th percentile of the total difficulty t = 36 (i.e., x = 10/36). Here, the aggregate difficulty of the
left nodes in ΠE corresponds to the node HABCD and is d = 10.

• Let d be the total difficulty of all left nodes in Πi.

• Let t be the total difficulty indicated in the root

• Ensure that d/t ≤ x and that d+di
t > x.

Figure 6 shows an example Merkle tree with variable difficulties and an inclusion proof.

5.6 Non-Interactive FlyClient

Since our probabilistic verification relies on a randomness for the sampling, one trivial solution is to ask the
light client to send the randomness to the full node. The full node then uses the randomness to sample k
blocks and sends them back to the light client. This prevents the full node from biasing the sampled blocks
and avoiding the detection of invalid blocks. However, this mechanism requires interaction between the light
client and the full node. Moreover, the light client and the full node cannot forward the proof to other
light clients as they cannot prove that the randomness is actually random. In this section, we introduce
a mechanism to make FlyClient non-interactive by removing the randomness exchange step between the
light client and the full node.

Our FlyClient protocol described so far is an interactive public-coin protocol [32], since the verifier’s
messages are chosen randomly from some known probability distribution. Concretely, in FlyClient these
messages are block numbers in some predefined intervals. Fiat and Shamir [27], show that it possible to
turn any interactive public-coin protocol into a non-interactive protocol which is sound in the random oracle
model. To achieve this, every message of the verifier is replaced by the result of a query to a random
oracle H, which in practice, is represented by a hash function such as SHA-3. H is queried at the current
transcript and the oracle’s answer is mapped into the verifier’s message space. Concretely, the queries would
be computed by applying H to the block header.

The Fiat-Shamir heuristic turns the statistical soundness of Protocol 1 into computational soundness as
a prover can receive new samples by recomputing the final block header. On the other hand, recomputing
the final header requires solving a new PoW puzzle, which itself requires a high number of queries to the
hash function. In fact, our security assumption gives a concrete bound on the number of PoW puzzles the
adversary can solve, which is c · n. Let pm be the soundness of Protocol 1 and 2−λ be the desired failure
probability (e.g., 2−50). Using the union bound, we conclude that the non-interactive FlyClient is secure

as long as pm < 2−λ

c·n .

Transferable and Unique Proofs. A major benefit of the non-interactive proofs is that they are trans-

17



ferable. A single prover can produce a proof and other users can relay the proof without any additional
computation. The relayed proof is still convincing to a verifier. A full node, therefore, can create a proof
which many other clients can use. Moreover, by applying the Fiat-Shamir heuristic to the head of the chain
we enforce that there only exists a single valid non-interactive proof for a given chain. It therefore suffices
if a single party produces the proof for the valid chain and forwards it to all FlyClient nodes.

Subchain Proofs. Another benefit of the non-interactive proofs is that they allow clients to re-sync to a
chain that has grown since the last time they were given a proof for it, by only needing to download a shorter
proof for the section of the chain they have not seen. Once a FlyClient has received a proof for a chain of
n blocks (or D cumulative difficulty), they are convinced that at the point in time when they received the
proof for that chain it was the honest chain. Suppose that at a later point in time the chain has grown to n′

blocks (or D′ difficulty), the FlyClient needs only to verify that this new section is honest and thus only
a proof logarithmic in the size of the new section. We note that the prover must also provide a single MMR
proof that block n is in the MMR of block n′, meaning the previous chain is a prefix of the new chain.

Theorem 2 (Subchain proofs). A FlyClient that was given a valid proof for a chain of length n at a time
when the honest chain had length n, and when the honest chain has length n′ is given a subproof for the
subchain from n to n′ including a Merkle proof that block n is in the MMR of block n′, would not accept
another chain if they were instead given the full proof for a chain of length n′.

Proof. We consider two strategies the adversary may choose: (1) It forks from the honest chain after block
n, this is as if the genesis block were set to block n and the subproof from block n to n′ is a whole proof for
a chain of n′−n blocks. (2) The adversary forks from the honest chain before n, by the security of the proof
for the first n blocks, the FlyClient would not accept the adversary’s chain up to n so their subproof from
n to n′ would fail because the FlyClient’s block n is not in the MMR of the adversary’s new chain. The
FlyClient that receives the whole proof would also not accept the adversary’s proof based on the security
of a proof for n′ blocks.

We note that a subchain proof does not have to be created specifically for the subchain, a FlyClient
can take a proof for a chain of n′ blocks and only check the blocks after n. This allows for FlyClient to use
only the part of a transferable n′ chain proof which it has not yet verified. This is a convenient option for
FlyClient that may be running on cell phones or other data-limited devices and do not want to use data
re-checking sections chains they have already verified. Subchain proofs also introduce the option of select
checkpoint proofs, meaning that proofs can be created for select points in the chain and a FlyClient can
request the precomputed proof they need, minimizing the computation overhead for prover full nodes and
proofs will be more easily reused.

6 Evaluation

Experimental Setup. In order to measure FlyClient, we implemented the protocol and evaluated it
computationally in two different scenarios. Our comparisons are focused on the proof size but both creating
and verifying proofs is fast. Even in our unoptimized implementation, it takes less than a second over all
tested parameters.

First, we compare FlyClient with NIPoPoW in the unrealistic scenario that all blocks have the same dif-
ficulty. NIPoPoW cannot handle variable difficulty chains. We show that both NIPoPoWs and FlyClient’s
proofs are logarithmic in the chain length and that FlyClient outperforms NIPoPoW over all parameters.
Additionally, we show the performance of FlyClient on the actual Ethereum blockchain which has widely
varying difficulty. FlyClient significantly outperforms standard SPV clients especially for longer chains.
All evaluations assume a block header of size 508 bytes and a hash output of 32 bytes. Additionally, the
MMR nodes contain 8 bytes to store the difficulty.

Implementation and Optimizations. We implemented FlyClient as a proof-of-concept in Python. Our
implementation only supports the production and verification of FlyClient proofs and does not verify state
transitions. We assume a hard fork, i.e., that each block header contains the MMR root of all previous blocks.
We perform several optimizations to minimize the proof size. First, we optimize for the smallest proof size

18



by trying different values of δ. The security holds for arbitrary values of δ so a prover can choose a δ which
minimizes the proof size. Note that our analytical optimizations from Section 4 does not directly apply as
the difficulty is variable. However, it can still provide a good starting point for a numerical optimization of
proof size.

We also reduce the proof size by not duplicating overlapping MMR proof elements. Note that overlaps
are fairly common as our sampling distribution samples late blocks with significantly higher probability. The
verifier can easily detect which nodes in a proof are shared and therefore does not require the duplicated
information. The efficiency of this optimization is displayed in Figure 7. We can see that it reduces the proof
size by around 30%. Additionally the plot shows the number of manually checked blocks vs. the number of
randomly sampled blocks. Note that even at a chain length of 7 million, the protocol only inspects around
600 blocks. We also see that L the number of manually inspected blocks hardly grows with increased chain
length.

0

100

200

300

400

500

600

700

800

0

200

400

600

800

1000

1200

1400

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000

PR
O

O
F 

SI
ZE

 IN
 K

B

BL
O

CK
S 

Q
UE

RI
ED

Queries L Proof size Unoptimized Proof size

Figure 7: The plot shows the number of manually checked blocks L and the number of queried blocks for
the Ethereum blockchain and c = 0.5, λ = 50. Additionally on the secondary axes the plot shows the proof
size both without the MMR proof optimization and without.

6.1 Comparison with NIPoPoW

NIPoPoW like FlyClient promises short proofs of proof of work for light clients. We compare FlyClient
with NIPoPoW by analytically computing NIPoPoWs proof size. We match the security level of NIPoPoW
and FlyClient such that for security parameter λ an attacker who controls a c fraction of the main chain’s
mining power succeeds with probability 2−λ. Concretely, in NIPoPoW we set both the number of blocks
checked at the end of the chain (k) and the length of each super-chain m to log 1

c
(2)λ. The total NIPoPoW

proof size is
log 1

c
(2)λ · ((log2(n) + 1) ·B + log2(n) · dlog2(log2(n, 2), 2)e · |H|),

for B = 508 bytes being the size of each block and |H| = 32 bytes being the size of a hash. We compare the
two light client approaches in Figure 8. The evaluation uses a security parameter of λ = 50 and 3 different
parameterizations of c. c is a bound on the fraction of the honest mining power that an adversary controls.
c

1+c is the fraction of the total mining power that the adversary controls. For c = 0.9 this is 47.3%. We see
that both proofs are very efficient producing proofs under 6MB even for the largest parameters. FlyClient
outperforms NIPoPoW over all parameters but especially for large values of c, yielding an almost 40%
improvement in proof size. This validates the optimization approach for finding an optimal light client
design. Note that for n = 10 million, an SPV client would have required a 4.9GB proof over 1000 times
more than the corresponding FlyClient proof for c = 0.9.

19



0

1000

2000

3000

4000

5000

6000

0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000

Pr
oo

f s
iz

e 
in

 K
B

Blockchain length n

c=0.1 FlyClient c=0.1 NIPoPoW c=0.5 FlyClient
c=0.5 NIPoPoW c=0.9 FlyClient c=0.9 NIPoPoW

Figure 8: Comparison of FlyClient and NIPoPoW at varying difficulty levels and λ = 50.

6.2 Ethereum Implementation with Variable Difficulty

We implement FlyClient for the Ethereum blockchain and measure its performance at different chain
lengths,i.e., at different historic data points. Ethereum’s PoW difficulty is not constant but varies widely
and has historically been increasing. FlyClient is the first proof of proof-of-work design that achieves
succinct proof sizes for variable difficulty chains. We demonstrate the efficiency of FlyClient in Figure 9.
For c = 0.5, i.e., the adversary with less than a third of the total mining power the proofs are less than
1 MB even for 7, 000, 000 Ethereum blocks. This compares to a 3.4 GB SPV proof size for the same chain.
We additionally plot the mining difficulty in the same figure. Interestingly, the proof size decreases from 3
to 4 million blocks as the difficulty rapidly grows. This is because with high difficulty growth the manually
checked blocks contain a larger fraction of the overall difficulty. This reduces the number of blocks that
need to be sampled from the rest of the chain. From 3 to 4 million blocks, a so-called difficulty bomb [50]
resulted in a rapid increase of proof size. This “bomb” was removed at around 4.3 million blocks which led
to a drastic decrease in difficulty and accordingly a slightly higher proof size.

20



0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

0

500

1,000

1,500

2,000

2,500

3,000

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000

Pr
oo

f s
iz

e 
in

 K
B

Number of blocks n

0.1 0.2 0.33 0.5 0.7 0.9 Work

D
iff

ic
ul

ty
 in

 u
ni

ts
 o

f 𝟏
𝟎𝟏

𝟐

Figure 9: FlyClient for the Ethereum chain at varying chain lengths n and for different adversarial powers
c. Additionally we display the difficulty on the secondary axis.

7 Discussion

7.1 Deploying FlyClient

The only modification to the block structure of Bitcoin, Ethereum and similar blockchain protocols that is
required to implement FlyClient is to include the MMR root in every block. The MMR root can be added
to blocks in three different ways. The first way is a hard fork in which the MMR root is added to the header
of all blocks (both old and new). In this case, the MMR root can even replace the current hash pointers to
previous blocks. In some newer blockchain designs, such as the Mimblewimble [49]-based Grin and Beam
MW [46], this is already the case. These blockchains can directly deploy the FlyClient protocol.

Alternatively, a soft fork can be used such that new blocks contain the MMR root while old blocks do
not. In a soft fork, un-upgraded miners will not reject new blocks while upgraded miners may reject old
blocks belonging to the un-upgraded miners. A soft fork gets “activated” when a majority of nodes have
enforced the new protocol rules. Starting from the soft fork, new blocks would store the MMR root encoded
in a backwards compatible way. For example, the MMR root can be stored in a special transaction. In the
FlyClient protocol the miner would provide the block headers, as well as the special transaction and a
proof that the transaction is part of the block. The proof size would grow by a factor that is proportional to
log(|tx|), where |tx| is the number of transactions. Since old nodes do not contain the MMR roots, a light
client would still have to run the traditional, linear SPV verification. Alternatively the light client could
hard code the block at which the soft fork was activated and use the FlyClient protocol to verify the chain
since that block. A third deployment path is called a Velvet fork and was proposed by [38, 54]. In Velvet
forks blocks by outdated miners are not being rejected. Velvet forks are therefore backwards compatible
updates to blockchain protocols and rely on clients reinterpreting the blockchain data. For FlyClient
the velvet fork would lead to a constant fraction α of blocks containing an MMR root. Blocks created by
outdated nodes would not contain the root. The FlyClient protocol would simply treat multiple blocks
as one. Concretely, those blocks that do not contain an MMR root are viewed as part of the next upgraded
block. The miner will always download and check these joined blocks together. If in expectation 1/α blocks
are joined, the FlyClient proof would be at most 1/α large than for an equivalent fully upgraded chain.
Velvet forks, therefore, lead to less efficient proofs but provide an uncontentious deployment mechanism for
FlyClient.

21



7.2 FlyClient for Proof-of-X Protocols

For simplicity, in this paper we describe FlyClient in the context of Bitcoin and Ethereum, where the
blockchain grows based on a PoW mining process. Our protocol, however, is applicable to any proof-of-X
protocol [17], where a more energy-efficient alternative to PoW is used to build a chain based on the longest
chain rule, similar to Bitcoin and Ethereum. Examples of such alternatives are proof-of-stake [39], proof-
of-space [25], or proof-of-elapsed-time [2]. Such a protocol must allow any node to verify the validity of
each block individually ensuring that the block creator has spent (or burnt) a certain amount of a resource
uniquely for this block.

Proof-of-stake (PoS) protocols require a source of randomness that can reveal random strings in regular
intervals to pick leaders (i.e. block proposers) randomly with respect to the stake distribution. PoS protocols
typically extract this randomness from various sources such as previous blocks [23, 31] or multi-party coin
tossing [39]. Some of these protocols grow their chains based on the longest chain rule that can result in forks.
Some PoS protocols such as [31, 42], however, use a hybrid design to avoid forks. While FlyClient can be
used in the first type of PoS protocols with minimal changes to allow lightweight transaction verification, it
cannot be used as-is in the second type of PoS protocols for the reasons discussed in Section 7.3.

7.3 Light Clients for Hybrid Blockchains

Most hybrid blockchain protocols such as [48, 14, 42, 33, 53] that rely on classical Byzantine fault-
tolerant (BFT) consensus protocols such as [20], including hybrid proof-of-stake protocols such as [23, 31, 39],
create a special type of block, sometimes known as identity blocks, that store the identities of block validators,
usually referred to as a committee. Every identity block contains the list of members of a new committee,
signed by the previous committee, recording the transfer of custody from the previous committee to the
new one, starting from a trusted “genesis committee”. These committees are usually re-elected at a slower
rate than the rate transaction blocks are added to the blockchain. Therefore, the number of identity blocks
is usually much smaller than transaction blocks, possibly only a sublinear (in the length of the transaction
blocks) number of identity blocks.

To verify that a block belongs to the valid chain in a hybrid protocol, a client can download and verify
every identity block, and then verify the signature on the desired transaction block against the public keys of
the committee members who witnessed the addition of the block to the blockchain. Without verifying every
identity block, a malicious prover can deceive the client by providing a fake signature along with a fake set of
public keys that match the signature. Some BFT-based protocols such as Algorand [31] that are resilient to
a fully-adaptive adversary, choose a new committee for every transaction block resulting in a linear number
of identity blocks required to verify transactions. To reduce this overhead by a factor of, say k, the acting
committee can witness (i.e., sign) the election of k committees selected after it. This allows a light client to
download only one identity block per every k identity blocks.

7.4 Connection to Proof of Sequential Work

Cohen and Pietrzak [22] propose a simple proof of sequential work (PoSW) construction based on Merkle
trees with added edges. A PoSW [43] convinces a verifier that a significant amount of sequential work
was applied to a given input. In the construction of [22], the edges which are added to a full Merkle tree
connect the left siblings of a leaf’s path to the root with the leaf itself. The verifier simply queries random
leafs and checks that they are part of the tree and have the correct incoming edges. This construction is
almost1 identical to an iterative MMR construction, where every leaf is the root of the previous MMR.
FlyClient follows this design, storing the previous MMR root in every new block/leaf. It is easy to see
that constructing a FlyClient chain of length n takes θ(n) sequential steps. The verification algorithm
of [22] can be interpreted as our FlyClient protocol with a uniform querying distribution. A FlyClient
blockchain is, therefore, a PoSW, albeit an inefficient one. In a PoSW, a cheating prover will cheat on a
constant fraction of leafs in order to save a significant amount of sequential work. FlyClient’s security
guarantee is stronger, ensuring that, from no point on the chain, a constant (or more) fraction of leafs are
corrupted.

1In [22], a node can have more than two incoming edges.

22



References

[1] Blockchain takes way too long to sync · issue #2394 · ethereum/mist. https://github.com/ethereum/
mist/issues/2394, 2017. (Accessed on 11/29/2018).

[2] Intel sawtooth lake documentation, available at: https://intelledger.github.io, March 2017.

[3] Bitcoin wiki. https://en.bitcoin.it/wiki/Help:FAQ, 2018. (Accessed on 11/29/2018).

[4] Blockchain charts: Bitcoin’s blockchain size, July 2018. Available at https://blockchain.info/

charts/blocks-size.

[5] Ethereum blocks. https://etherscan.io/blocks, 12 2018. (Accessed on 12/21/2018).

[6] ethereum/btcrelay: Ethereum contract for bitcoin spv. https://github.com/ethereum/btcrelay,
2018. (Accessed on 12/14/2018).

[7] Getting deep into geth: Why syncing ethereum node is slow. https://hackernoon.com/

getting-deep-into-geth-why-syncing-ethereum-node-is-slow-1edb04f9dc5, July 2018.

[8] Open timestamps. https://opentimestamps.org/, 2018.

[9] Over 175 million europeans ready to pay with wearable devices
— global hub. https://newsroom.mastercard.com/press-releases/

over-175-million-europeans-ready-to-pay-with-wearable-devices/, 2018. (Accessed on
11/27/2018).

[10] Secure payments and internet-of-things — visa. https://usa.visa.com/visa-everywhere/

innovation/visa-brings-secure-payments-to-internet-of-things.html, 2018. (Accessed on
11/27/2018).

[11] Stampery. https://stampery.com/, 2018.

[12] Top 6 vendors in the wearable payment market from 2016 to 2020: Technavio
— business wire. https://www.businesswire.com/news/home/20161118005252/en/

Top-6-Vendors-Wearable-Payment-Market-2016, 2018. (Accessed on 11/27/2018).

[13] Difficulty - blockchain. https://www.blockchain.com/en/charts/difficulty, 2019. (Accessed on
01/17/2019).

[14] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solida: A
blockchain protocol based on reconfigurable byzantine consensus. In Proceedings of the 21st Inter-
national Conference on Principles of Distributed Systems, OPODIS ’17, 2017.

[15] E. Kasper B. Laurie, A. Langley. Rfc 6962 - certificate transparency. https://tools.ietf.org/html/
rfc6962#section-2.1, June 2013.

[16] Adam Back and Gregory Maxwell. Transferring ledger assets between blockchains via pegged sidechains,
Nov 2016. US Patent App. 15/150,032.

[17] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah Meiklejohn,
and George Danezis. Consensus in the age of blockchains. CoRR, abs/1711.03936, 2017.

[18] Joseph Bonneau. Why buy when you can rent? bribery attacks on bitcoin-style consensus. In Proceedings
of Financial Cryptography, 2016.

[19] Vitalik Buterin. Ethereum’s white paper. https://github.com/ethereum/wiki/wiki/White-Paper,
2014.

[20] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the Third
Symposium on Operating Systems Design and Implementation, OSDI ’99, pages 173–186, 1999.

23

https://github.com/ethereum/mist/issues/2394
https://github.com/ethereum/mist/issues/2394
https://intelledger.github.io
https://en.bitcoin.it/wiki/Help:FAQ
https://blockchain.info/charts/blocks-size
https://blockchain.info/charts/blocks-size
https://etherscan.io/blocks
https://github.com/ethereum/btcrelay
https://hackernoon.com/getting-deep-into-geth-why-syncing-ethereum-node-is-slow-1edb04f9dc5
https://hackernoon.com/getting-deep-into-geth-why-syncing-ethereum-node-is-slow-1edb04f9dc5
https://opentimestamps.org/
https://newsroom.mastercard.com/press-releases/over-175-million-europeans-ready-to-pay-with-wearable-devices/
https://newsroom.mastercard.com/press-releases/over-175-million-europeans-ready-to-pay-with-wearable-devices/
https://usa.visa.com/visa-everywhere/innovation/visa-brings-secure-payments-to-internet-of-things.html
https://usa.visa.com/visa-everywhere/innovation/visa-brings-secure-payments-to-internet-of-things.html
https://stampery.com/
https://www.businesswire.com/news/home/20161118005252/en/Top-6-Vendors-Wearable-Payment-Market-2016
https://www.businesswire.com/news/home/20161118005252/en/Top-6-Vendors-Wearable-Payment-Market-2016
https://www.blockchain.com/en/charts/difficulty
https://tools.ietf.org/html/rfc6962#section-2.1
https://tools.ietf.org/html/rfc6962#section-2.1
https://github.com/ethereum/wiki/wiki/White-Paper


[21] Dario Catalano and Dario Fiore. Vector commitments and their applications. In Kaoru Kurosawa
and Goichiro Hanaoka, editors, Public-Key Cryptography – PKC 2013, pages 55–72, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[22] Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 451–467. Springer, 2018.

[23] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake. Cryptology
ePrint Archive, Report 2016/919, 2016. https://eprint.iacr.org/2016/919.

[24] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Advances in Cryp-
tology — CRYPTO’ 92: 12th Annual International Cryptology Conference Santa Barbara, California,
USA August 16–20, 1992 Proceedings, pages 139–147. Springer Berlin Heidelberg, 1993.

[25] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak. Proofs of space.
Cryptology ePrint Archive, Report 2013/796, 2013. http://eprint.iacr.org/.

[26] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Nicolas Christin
and Reihaneh Safavi-Naini, editors, Financial Cryptography and Data Security: 18th International
Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised Selected Papers, pages 436–
454. Springer Berlin Heidelberg, 2014.

[27] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Conference on the Theory and Application of Cryptographic Techniques, pages 186–194.
Springer, 1986.

[28] M. Friedenbach. Compact spv proofs via block header commitments. https://www.mail-archive.

com/bitcoin-development@lists.sourceforge.net/msg04318.html, March 2014.

[29] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone protocol: Analysis and
applications. In Advances in Cryptology - EUROCRYPT 2015, pages 281–310, 2015.

[30] Arthur Gervais, Hubert Ritzdorf, Ghassan O. Karame, and Srdjan Capkun. Tampering with the delivery
of blocks and transactions in bitcoin. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, CCS ’15, pages 692–705. ACM, 2015.

[31] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 51–68. ACM, 2017.

[32] S Goldwasser and M Sipser. Private coins versus public coins in interactive proof systems. In Proceedings
of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, pages 59–68, New York,
NY, USA, 1986. ACM.

[33] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology overview series, con-
sensus system. CoRR, abs/1805.04548, 2018.

[34] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks on bitcoin’s peer-
to-peer network. In 24th USENIX Security Symposium (USENIX Security 15), pages 129–144. USENIX
Association, 2015.

[35] Maurice Herlihy. Atomic cross-chain swaps. arXiv preprint arXiv:1801.09515, 2018.

[36] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor spreading. In Proceedings
of the 41st Annual Symposium on Foundations of Computer Science, FOCS ’00, pages 565–. IEEE
Computer Society, 2000.

[37] Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. Proofs of Proofs of Work with
Sublinear Complexity, pages 61–78. Springer Berlin Heidelberg, 2016.

24

https://eprint.iacr.org/2016/919
http://eprint.iacr.org/
https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg04318.html
https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg04318.html


[38] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of proof-of-work. 2017.

[39] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably
secure proof-of-stake blockchain protocol. In Annual International Cryptology Conference, pages 357–
388. Springer, 2017.

[40] Aggelos Kiayias and Dionysis Zindros. Proof-of-work sidechains. Cryptology ePrint Archive, Report
2018/1048, 2018. https://eprint.iacr.org/2018/1048.

[41] Lucianna Kiffer, Rajmohan Rajaraman, and abhi shelat. A better method to analyze blockchain con-
sistency. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 729–744. ACM, 2018.

[42] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford.
OmniLedger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE Symposium on
Security and Privacy (S&P), pages 19–34, 2018.

[43] Mohammad Mahmoody, Tal Moran, and Salil Vadhan. Publicly verifiable proofs of sequential work.
In Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS ’13, pages
373–388, New York, NY, USA, 2013. ACM.

[44] Ralph C. Merkle. A digital signature based on a conventional encryption function. In A Conference
on the Theory and Applications of Cryptographic Techniques on Advances in Cryptology, CRYPTO ’87,
pages 369–378. Springer-Verlag, 1988.

[45] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. Available at https:

//bitcoin.org/bitcoin.pdf.

[46] Rachel Rose O’Leary. Grin and beam: A tale of two coins being built on mimblewimble. https:

//www.coindesk.com/grin-and-beam-a-tale-of-two-coins-being-built-on-mimblewimble, De-
cember 2018. (Accessed on 02/05/2019).

[47] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous net-
works. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EURO-
CRYPT 2017, pages 643–673. Springer International Publishing, 2017.

[48] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model. Cryp-
tology ePrint Archive, Report 2016/917, 2016. http://eprint.iacr.org/2016/917.

[49] Andrew Poelstra. Mimblewimble, 2016. https://scalingbitcoin.org/papers/mimblewimble.pdf.

[50] Rakesh Sharma. What is ethereum’s ”difficulty bomb”? https://www.investopedia.com/news/

what-ethereums-difficulty-bomb/, August 2018. (Accessed on 02/05/2019).

[51] socrates1024. The high-value-hash highway. https://bitcointalk.org/index.php?topic=98986.0,
2012.

[52] Peter Todd. Merkle mountain range. https://github.com/opentimestamps/

opentimestamps-server/blob/master/doc/merkle-mountain-range.md, 2012.

[53] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. RapidChain: Scaling blockchain via full
sharding. In 2018 ACM Conference on Computer and Communications Security (CCS), 2018.

[54] Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Edgar Weippl, and William J.
Knottenbelt. (short paper) a wild velvet fork appears! inclusive blockchain protocol changes in practice.
Cryptology ePrint Archive, Report 2018/087, 2018. https://eprint.iacr.org/2018/087.

25

https://eprint.iacr.org/2018/1048
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.coindesk.com/grin-and-beam-a-tale-of-two-coins-being-built-on-mimblewimble
https://www.coindesk.com/grin-and-beam-a-tale-of-two-coins-being-built-on-mimblewimble
http://eprint.iacr.org/2016/917
https://scalingbitcoin.org/papers/mimblewimble.pdf
https://www.investopedia.com/news/what-ethereums-difficulty-bomb/
https://www.investopedia.com/news/what-ethereums-difficulty-bomb/
https://bitcointalk.org/index.php?topic=98986.0
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://eprint.iacr.org/2018/087


Appendix

A Basic Merkle Tree

A Merkle tree is a balanced binary tree where the leafs hold some value, and each non-leaf node stores a
hash of both of its children. Such a structure allows proving the inclusion of any value in the tree with only
a logarithmic number of hashes, known as a Merkle proof. In Bitcoin, Merkle trees are used to aggregate the
hashes of transactions in a particular block so that the root becomes a binding commitment to all transactions
in that block. The root is then stored in the header of the block. An SPV proof of a transaction is the
Merkle proof that the hash of the transaction is a leaf in the Merkle tree. Though it is a commonly-used
data structure, we redefine a Merkle tree and the security of a Merkle proof in the following so we can extend
the definition to MMRs later.

Definition 2 (Merkle Tree). Given a list of values, a Merkle tree is a balanced binary tree, where each
leaf node stores some value, and each non-leaf node holds the value H(LeftChild||RightChild), where H is a
collision-resistant hash function. Balanced binary tree here means a tree with n leaves that has depth less
than or equal to dlog2 ne.

Definition 3. Given a Merkle tree, MT, with root r, a Merkle proof that x is the kth node in MT, Πk∈MT ,
are the siblings of each node on the path from x to r. Since MT has depth at most dlog2(n)e, the proof length
is at most log2(n) + 1 as each node in the path can be calculated from it’s two children so we only need the
siblings and the 2 leaf nodes.

Below, we define a prover-verifier model, where the verifier knows the root of a Merkle tree and the prover
wants to convince the verifier that a particular node exists in the tree.

Prover-Verifier Model.

1. Verifier has access to r = root of some Merkle tree, MT .

2. Prover has access to MT and generates a Merkle-Proof path of some x ∈ MT = Πk∈MT using
Protocol 3 and sends it to the verifier.

3. Verifier uses the proof and x to build up the path to r′ using Protocol 4, and checks that r′ = r.

4. If the checks pass, the Verifier accepts the proof, otherwise it rejects the proof.

Theorem 3. Given a Merkle tree, MT , a polynomial-time adversary cannot produce a valid proof Πk∈MT ,
for a k not in MT . [Soundness of Merkle-proofs]

Proof. Assume the adversary can produce a valid proof Πk∈MT . Let r be the root of MT , any proof must
start with r, otherwise the verifier will reject it. Since k 6∈ MT , the path the adversary gives must have
some initial depth i at which it differs from any true path in MT .
Let p′i be the node in the path at level i and s′i be its sibling, and let pi and si be the true nodes in a path
in MT where x = pi||si or x = si||pi s.t. H(x) = pi−1. In order for the verifier to accept Πk∈MT , x′ must
equal p′i||s′i or s′i||p′i s.t. pi−1 = H(x′). Since the sets {pi, si} and {p′i, s′i} differ by at least one value as
stated above, x 6= x′ therefore the adversary found a collision of H(⊥).

Theorem 4. Given a Merkle tree, MT, and a node k ∈MT , a polynomial-time adversary cannot generate
a proof Πk∈MT that is not a true path in MT. [Completeness of Merkle proofs].

Proof. Same as the proof of soundness, if there is some point in the path that differs from a true path in
MT , in order for it to be valid, the adversary must have found a hash collision.

26



Algorithm 3 Merkle Proof (Merkle root r, index k) → MMR Proof Πk for leaf k

1: if r.leaves = 0 then
2: return []
3: end if
4: if k ≤ r.left.leaves then
5: Π← Merkle Proof( r.left, k)
6: return Π||r.right.value
7: else
8: Π← Merkle Proof( r.right, k − r.left.leaves)
9: return Π||r.left.value

10: end if

Algorithm 4 Verify Merkle Proof ( Merkle tree root r, number of leaves in the Merkle tree n, index k,
element x, Merkle proof Πk∈n)

Note: This algorithm can be written recursively since every subtree of an MMR is also an MMR.

1: y ← H(x), k′ ← k − 1, n′ ← n− 1
2: if |Πk∈n| 6= dlog2(n′)e then
3: return reject
4: end if
5: for z ∈ Πk∈n do
6: if k′ mod 2 = 0 ∧ k′ + 1 ≤ n′ then
7: y ← H(y||z)
8: else
9: y ← H(z||y)

10: end if
11: k′ ← bk

′

2 c, n
′ ← bn

′

2 c
12: end for
13: if y = r then
14: return accept
15: else
16: return reject
17: end if

B Merkle Mountain Range

Definition 4. A Merkle Mountain Range, M, is defined as a tree with n leaves, root r, and the following
properties:

1. M is a binary hash tree.

2. M has depth dlog2 ne.

3. If n > 1, let n = 2i + j such that i = blog2(n− 1)c:
- r.left is an MMR with 2i leaves.
- r.right is an MMR with j leaves.

Note: M is a balanced binary hash tree, i.e., M is a Merkle tree. Therefore, for all nodes k ∈M , ∃ Πk∈M .

We define AppendLeaf in Protocol 5, the O(log n) algorithm used to append new nodes to an existing MMR
with n leaves. Below, we state a theorem that AppendLeaf returns an MMR as defined, and refer the proof
to Appendix B.

Theorem 5. Given an MMR, M, with root r and n leaves, AppendLeaf(r,x) will return an MMR, M’, with
n+1 leaves (the n leaves of M plus x added as the right-most leaf).

27



𝐻ABCDEFGH

𝐻ABCD

𝐻AB 𝐻CD

𝐻A

A

𝐻B

B

𝐻C

C

𝐻D

D

𝐻EFGH

𝐻EF 𝐻GH

𝐻E

E

𝐻F

F

𝐻G

G

𝐻H

H

Figure 10: A Merkle tree committing to blocks “A” through “H” (i.e., the leaves). The Merkle proof for
block “E”consists of the nodes marked with dark background, i.e., ΠE = (HF, HGH, HABCD). Here, H
represents a cryptographic hash function, Hx = H(x) for any block x, and HXY = H (HX||HY), for any
sequence of letters X and Y .

Algorithm 5 AppendLeaf(MMR root r, new leaf node x): Returns new MMR root r′

1: if r.leaves = 2i for i ≥ 0 ∈ Z then
2: Node r′

3: r′.left← r
4: r′.right← x
5: r′.value← H(r||x)
6: r′.leaves← r.leaves + 1
7: return r′

8: else
9: r.right← AppendLeaf(r.right, x)

10: r.value← H(r.left||r.right)
11: r.leaves← r.leaves + 1
12: return r
13: end if

Proof. We proof the statement through induction on n
Base case: (n = 1) M is a single node r with depth 0. r.children = 0, so AppendLeaf returns a new node
with left = r and right = x, and value = H(x||r). This is a balanced binary hash tree with 2 leaves and
depth 1 = log2 2.
Induction step: Assume theorem holds for all M with < n leaves. Let M be an MMR with n leaves and
root r, AppendLeaf(r,x) will return the following:

(i) if n = 2i for some i ∈ N, AppendLeaf returns a new node, r′, with left = r, right = x and value =
H(r||x). M ′ is the new tree with the 3 properties of an MMR.

1. Since M is a hash tree, so is M ′.

2. Since the depth of M = log2 n, the depth of M ′ = log2 n+ 1 = dlog2(n+ 1)e
3. n′ = 2i + 1
r′.left = M , a MMR with n = 2i leaves
r′.right = x, a MMR with 1 leaf

The leaves of M ′ are the leaves of M plus x added as the new right-most leaf.

(ii) Otherwise, ∃i, j ∈ N s.t. n = max
i

2i + j, AppendLeaf returns r with r.left the same, and r.right =

28



AppendLeaf(r.right, x), and value = H(r.left||r.right). M ′ is the new tree with the following MMR
conditions satisfied.
(1,3) r′.left is an MMR by definition with 2i leaves, r′.right is an MMR by the induction hypothesis
with j + 1 leaves, thus M ′ is a hash tree.
(2) M has depth log2 2i = i ≥ j, thus M ′ has depth i+ 1 = dlog2(n+ 1)e.
The leaves of M ′ are the leaves of r′.left =r.left, then the leaves of r′.right which by the induction
hypothesis will be the original leaves of r.right plus x on the right-most side.

Algorithm 6 Get Root(number of leaves in the MMR n, proof for block k Πk∈n): Given Πk∈n , the
algorithm returns the root for the MMR of the tree with k − 1 blocks, i.e., the root stored in the header of
block k

1: k′ ← k − 1, n′ ← n− 1, r = ⊥
2: for y ∈ Πk∈n do
3: if k′ mod 2 = 1 ∨ k′ + 1 > n′ then
4: if r = ⊥ then
5: r = Π[i]
6: else
7: r = H(y||r)
8: end if
9: end if

10: k′ ← bk
′

2 c, n
′ ← bn

′

2 c
11: end for
12: if y = r then
13: return 1
14: else
15: return 0
16: end if

We now define a set of MMRs M = {M1,M2, ...,Mn} created from some list [x1, x2, ..., xn], where M1 is
a single node with value x1 and ri is the root node of an i leaf MMR, Mi = AppendLeaf(ri−1, xi). A key
feature of the way MMRs are constructed is that, assuming all xi’s are unique, each Mi has an unique root
(otherwise there would be a hash collision), and given the Merkle proof Πxk∈Mn

that some xk is in Mn for
k ≤ n, a verifier can regenerate rk and therefore verify that Mk is an ancestor of Mn (i.e., Mn was created
from n− k appends to Mk). We state this in the following theorem and refer the proof to Appendix B, and
Protocol 6 describes the algorithm used to regenerate the root Mk.

Theorem 6. For k ≤ n, given Πxk∈Mn
, i.e., the Merkle proof that leaf xk is in Mn, a verifier can regenerate

rk, the root of Mk.

Proof. We proof the statement through induction on n.
Base case: (n = 1) M1 =Node(x1), Πx1∈M1

= [r1].
Induction step: Assume the theorem holds for all Mm, m < n and k ≤ m. Given Mn, any k and
Πk∈Mn = [rn, rn.left, rn.right, ...], if k = n then rk = rn. Otherwise, let i be the maximum integer s.t.
n = 2i + j where j > 0. We have 3 possibilities:

(i) k = 2i, rk = rn.left

(ii) k < 2i, thus xk is in the left subtree of Mn. Let n′ = 2i and rn′ = rn.left, we get that Πxk∈Mn′ =
Πxk∈Mn

− [rn, rn.right]. Since n′ < n, by the induction hypothesis we can get rk from Πxk∈Mn′ .

(iii) k > 2i, thus xk is in the right subtree of Mn. Since k < n and i is the maximum integer s.t. n = 2i + j
for some j > 0, i is also the maximum integer s.t. k = 2i + j′ for some j′ > 0. Thus rk.left = rn.left.
Note rn.right is the MMR Mj where k is the k′ = k − 2i = j′th leaf. Thus, rk.right = Mk′ and
Πxk′∈Mj

= Πxk∈Mn
− [rn, rn.left]. By the induction hypothesis we can extract rk′ from Πxk′∈Mj

. The
verifier hashes the left and right roots to get the value of rk.

29



Corollary 1. If x1, ..., xn are the hashes of blocks 1 through n of chain Cn, rn commits the first n blocks
to xn, and Πk∈Mn

for any k commits x1, ..., xk as the blocks of the chain Ck, where chain Ck is a prefix of
chain Cn.

Corollary 2. If an adversary changes any block i in the chain in any way, then it’s hash xi will also change,
so any MMR Mk for k ≥ i with root r′k that contains the new block x′i will have that r′k 6= rk.

Using the above constructions, we can now define terminology which we will use for the remainder of the
paper.

Definition 5. A valid block Bx for a chain ending in block Bn with MMR root Mn−1, is a header with
POW and for which a Πx∈Mn−1 exists.

Definition 6. An honest chain B0, B1, ..., Bn of length n, is an ordered list such that each Bi is valid.

Theorem 7. Given an MMR, M, with root r and n leaves, AppendLeaf(r,x) will return an MMR, M’, with
n+1 leaves (the n leaves of M plus x added as the right-most leaf).

Proof. Induction on n.
Base case: (n = 1) M1 =Node(x1), Πx1∈M1 = [r1].
Induction step: Assume the theorem holds for all Mm, m < n and k ≤ m. Given Mn, any k and
Πk∈Mn

= [rn, rn.left, rn.right, ...], if k = n then rk = rn. Otherwise, let i be the maximum integer s.t.
n = 2i + j where j > 0. We have 3 possibilities:

(i) k = 2i, rk = rn.left

(ii) k < 2i, thus xk is in the left subtree of Mn. Let n′ = 2i and rn′ = rn.left, we get that Πxk∈Mn′ =
Πxk∈Mn

− [rn, rn.right]. Since n′ < n, by the induction hypothesis we can get rk from Πxk∈Mn′ .

(iii) k > 2i, thus xk is in the right subtree of Mn. Since k < n and i is the maximum integer s.t. n = 2i + j
for some j > 0, i is also the maximum integer s.t. k = 2i + j′ for some j′ > 0. Thus rk.left = rn.left.
Note rn.right is the MMR Mj where k is the k′ = k − 2i = j′th leaf. Thus, rk.right = Mk′ and
Πxk′∈Mj

= Πxk∈Mn
− [rn, rn.left]. By the induction hypothesis we can extract rk′ from Πxk′∈Mj

. The
verifier hashes the left and right roots to get the value of rk.

30


	Introduction
	Overview of FlyClient

	Model and Problem Definition
	Preliminaries
	Merkle Mountain Ranges

	FlyClient Design
	Design Components
	Block Inclusion Verification

	Proof of Honest Chain
	Naive Approach
	Binary Search Approach
	Bounding the Fork Point
	Distributional View
	Handling Variable Difficulty
	Non-Interactive FlyClient

	Evaluation
	Comparison with NIPoPoW
	Ethereum Implementation with Variable Difficulty

	Discussion
	Deploying FlyClient
	FlyClient for Proof-of-X Protocols
	Light Clients for Hybrid Blockchains
	Connection to Proof of Sequential Work

	Appendices
	Basic Merkle Tree
	Merkle Mountain Range


