
Tight Quantum Security Bound of the 4-Round
Luby-Rackoff Construction

Akinori Hosoyamada1,2 and Tetsu Iwata2

1 NTT Secure Platform Laboratories, Tokyo, Japan,
hosoyamada.akinori@lab.ntt.co.jp
2 Nagoya University, Nagoya, Japan,

{hosoyamada.akinori,tetsu.iwata}@nagoya-u.jp

Abstract. The Luby-Rackoff construction, or the Feistel construction,
is one of the most important approaches to construct secure block ciphers
from secure pseudorandom functions. The 3-round and 4-round Luby-
Rackoff constructions are proven to be secure against chosen-plaintext at-
tacks (CPAs) and chosen-ciphertext attacks (CCAs), respectively, in the
classical setting. However, Kuwakado and Morii showed that a quantum
superposed chosen-plaintext attack (qCPA) can distinguish the 3-round
Luby-Rackoff construction from a random permutation in polynomial
time. In addition, a recent work by Ito et al. showed a quantum super-
posed chosen-ciphertext attack (qCCA) that distinguishes the 4-round
Luby-Rackoff construction. Since Kuwakado and Morii showed the result,
it has been a problem of much interest how many rounds are sufficient
to achieve the provable security against quantum query attacks. This
paper shows the answer to this fundamental question by showing that
4-rounds suffice against qCPAs. Concretely, we prove that the 4-round
Luby-Rackoff construction is secure up to O(2n/6) quantum queries. We
also show that our bound is tight by giving a distinguishing qCPA with
O(2n/6) quantum queries. Our result is the first one that shows security
of a typical block-cipher construction against quantum query attacks,
without any algebraic assumptions. To give security proofs, we intro-
duce a proof technique which is a modification of Zhandry’s compressed
oracle technique.

Keywords: symmetric-key cryptography · post-quantum cryptography
· provable security · quantum security · quantum chosen plaintext attacks
· Luby-Rackoff constructions.

1 Introduction

Post-quantum public-key cryptography has been one of the most active research
areas in cryptography research community since Shor developed the polynomial-
time integer factoring quantum algorithm [29]. NIST is working on a standardiza-
tion process for post-quantum public-key schemes such as public-key encryption,
key-establishment, and digital signature schemes [26].

On the other hand, for symmetric key cryptography, it has been said that
the security of symmetric-key schemes would not be much affected by quantum
computers. However, a series of recent results has shown that some of them
are also broken in polynomial time by using Simon’s algorithm [30] if quan-
tum adversaries have access to quantum circuits that implement keyed prim-
itives [17,19,9,7,20,28,13,12,11,16], though they are proven or assumed to be
secure in the classical setting. Now it is also important to study post-quantum
security of symmetric-key schemes.

While many quantum query attacks on symmetric-key schemes have been
proposed, the development on post-quantum provable security of symmetric-
key schemes is limited. There are two possible post-quantum security notions
for symmetric-key schemes: standard security and quantum security [32]. The
standard security is the one that assumes adversaries have quantum computers,
but have access to keyed oracles in a classical manner. On the other hand, the
quantum security is the one that assumes adversaries can make queries to keyed
primitives in quantum superpositions. If a scheme is proven to have quantum
security, then it will remain secure even in a far future where all computations
and communications are done in quantum superpositions. Therefore, it is a prob-
lem of much interest whether a classically secure symmetric-key scheme also has
quantum security, and if it does, it would also be an interesting question to study
the tight quantum security bound of it.

The Luby-Rackoff construction. The Luby-Rackoff construction, or the Feis-
tel construction, is one of the most important approaches to construct efficient
and secure block ciphers, which are pseudorandom permutations (PRPs), from
efficient and secure pseudorandom functions (PRFs). A significant number of
block ciphers including popular ones such as DES [24] and Camellia [4] were
designed based on this construction.

For families of functions fi := {fi,k : {0, 1}n/2 → {0, 1}n/2}k∈K that are
parameterized by k in a key space K (1 ≤ i ≤ r), the r-round Luby-Rackoff
construction LRr(f1, . . . , fr) is defined as follows: First, keys k1, . . . , kr are chosen
independently and uniformly at random from K. For each input x0 = x0L‖x0R,
where x0L, x0R ∈ {0, 1}n/2, the state is updated as

x(i−1)L‖x(i−1)R 7→ xiL‖xiR := x(i−1)R ⊕ fi,ki(x(i−1)L)‖x(i−1)L (1)

for i = 1, . . . , r in a sequential order (see Fig. 1). The output is the final state
xr = xrL‖xrR. Then the resulting function becomes a keyed permutation over
{0, 1}n with keys in (K)4.

In the classical setting, if each fi is a secure PRF, LRr becomes a secure PRP
against chosen-plaintext attacks (CPAs) for r ≥ 3 and a secure PRP against
chosen-ciphertext attacks (CCAs) for r ≥ 4 [22], i.e., LRr becomes a strong
PRP. However, in the quantum setting, Kuwakado and Morii showed that LR3

can be distinguished in polynomial time from a truly random permutation by

2

Fig. 1. The i-th round state update.

a quantum superposed chosen-plaintext attack [19] (qCPA). 3 Moreover, the
recent work by Ito et al. showed that LR4 can be distinguished in polynomial
time by a quantum superposed chosen-ciphertext attack (qCCA) [16]. On the
other hand, for any r, no post-quantum security proof of LRr is known. A very
natural question is then whether such a proof is feasible for some r, and if so,
to determine the minimum number of r so that we can prove the post-quantum
security of LRr.

1.1 Our Contributions

As the first step to giving post-quantum security proofs for the Luby-Rackoff
constructions, this paper shows that the 4-round Luby-Rackoff construction LR4

is secure against qCPAs. In particular, we give a security bound of LR4 against
qCPAs in the case that all round functions are truly random functions, and show
that the bound is tight, i.e., we give a matching attack. Concretely, we show the
following theorems.

Theorem 1 (Lower bound and matching attack, informal). If all round
functions are truly random functions, then the following claims hold.

1. LR4 cannot be distinguished from a truly random permutation by qCPAs up
to O(2n/6) quantum queries.

2. There exists a quantum algorithm that distinguishes LR4 from a truly random
permutation with a constant probability by making O(2n/6) quantum chosen-
plaintext queries.

Theorem 2 (Construction of PRP from PRF, informal). Suppose that
each fi is a secure PRF against efficient quantum query attacks, for 1 ≤ i ≤ 4.
Then LR4(f1, f2, f3, f4) is a secure PRP against efficient qCPAs.

3 Strictly speaking, the attack by Kuwakado and Morii works only for the case that all
round functions are keyed permutations. Kaplan et al. [17] showed that the attack
works for more general cases.

3

Attack
setting

Classical
CPA

Classical
CCA

Quantum
CPA

Quantum
CCA

Security
proof

Secure up to

O(2n/4) queries
[22]

Secure up to

O(2n/4) queries
[22]

Secure up to

O(2n/6) queries
[Ours] (Section 4)

No proofs
(Insecure)

Distinguishing
attack

O(2n/4) queries
[27]

O(2n/4) queries
[27]

O(2n/6) queries
[Ours] (Section 5)

O(n) queries
[16]

Table 1. Comparison of security proofs and attacks for the 4-round Luby-Rackoff
construction LR4 in the case that all round functions are truly random. In the quantum
CPA/CCA settings, adversaries can make quantum superposed queries.

Technical details. To give a quantum security proof for LR4 in the case that
all round functions are truly random, we introduce a technique that we call com-
pressed oracle technique with errors, which is a modification of the compressed
oracle technique developed by Zhandry [36].

One of the challenging obstacles to give security proofs against quantum
superposed query adversaries is that we cannot record transcripts of quantum
queries and answers. While it is trivial that we can store query-answer records in
the classical setting, it is highly non-trivial to store them in the quantum setting,
since measuring or copying (parts of) quantum states will lead to perturbing
them, which may be detected by adversaries.

Zhandry’s compressed oracle technique enables us to overcome the obstacle
in the case when oracles are truly random functions. The technique is so powerful
that it can be used to show quantum indifferentiability of the Merkle-Damg̊ard
domain extender and quantum security for the Fujisaki-Okamoto transforma-
tion [36], in addition to the (tight) lower bounds for the multicollision-finding
problems [21]. His crucial observation is that we can record queries and answers
without affecting quantum states by appropriately forgetting previous records.
To check if a previous record is the one that should be forgot, we have to do a
“test and forget” procedure after each query.

The compressed oracle technique is a powerful tool, while we see that the
“test and forget” procedure is not intuitively and mathematically clear, which
would be problematic when we apply it to complex schemes such as the Luby-
Rackoff construction. To overcome this issue, we scrutinized the compressed ora-
cle technique, and observed that we can re-formalize the technique without “test
and forget” procedures by introducing some errors. This modification enables us
to describe properties and behaviors of oracles in an intuitively clear manner.
We also explicitly describe error terms, which enables us to give mathemati-
cally rigorous proofs. We name the modified version compressed oracle technique
with errors. We believe that our modified technique would be useful for other
applications. See Section 3 for details on the technique.

By making heavy use of our compressed oracle technique with errors, we
complete the security proof of LR4 against quantum superposed query attacks,

4

taking advantage of classical proof intuitions to some extent. First, we consider
LR3, the 3-round Luby-Rackoff construction, which is easy to be distinguished
from a truly random permutation, and a slightly modified version of it, where
the last-round state update of LR3 is modified. Our observation is that it seems
hard even for quantum (chosen-plaintext) query adversaries to notice the modi-
fication, and we are actually able to show that this is indeed the case. Intuitively,
the proof is possible since it is infeasible even for quantum query adversaries to
produce collisions on the input of the third round. Second, we prove that a fam-
ily of random permutations (i.e., a function P : {0, 1}n/2×{0, 1}n/2 → {0, 1}n/2
such that P (x, ·) is a truly random permutation over {0, 1}n/2 for each x) is hard
to distinguish from a truly random function. Once we prove these two hardness
results, the rest of the proof can be done easily without any argument that is
specific to the quantum setting. Our proof is much more complex than the clas-
sical one, though, we give rigorous and careful analyses. See Section 4 for details
on the security proof of LR4.

In contrast to the high complexity of the provable security result, our match-
ing attack is a simple quantum polynomial speed-up of existing classical attacks.
See Section 5 for details on the matching attack.

1.2 Related Works

With respect to security proofs against quantum query adversaries for symmet-
ric key schemes other than the ones we introduced above, there is a proof for
standard modes of operations by Targhi et al. [3], one for the Carter-Wegman
MACs by Boneh and Zhandry [6], one for NMAC by Song and Yun [31], and
one for Davies-Meyer and Merkle-Damg̊ard constructions by Hosoyamada and
Yasuda [15]. Zhandry showed the PRP-PRF switching lemma in the quantum
setting [34], and that quantum-secure PRPs can be constructed from quantum-
secure PRFs by using a technique of format preserving encryption [35]. Cza-
jkowski et al. showed that the sponge construction is collapsing (collapsing is
a quantum extension of the classical notion of collision-resistance) when round
functions are one-way random permutations or functions [10].4 Alagic and Rus-
sell proved that polynomial time attacks against symmetric-key schemes that
make use of Simon’s algorithm can be prevented by replacing XOR operations
with modular additions based on an algebraic hardness assumption [1], however,
Bonnetain and Naya-Plasecia showed that the countermeasure is not practi-
cal [8]. Regarding standard security proofs (against quantum adversaries that
make only classical queries) for symmetric-schemes, Mennink and Szepieniec
proved security for XOR of PRPs [23].

4 Note that the condition that the round function of the sponge construction is one-
way is unusual in the context of classical symmetric-key provable security.

5

2 Preliminaries

This section describes notations and definitions. In this paper, any algorithm
(or adversary) is supposed to be a quantum algorithm, and makes quantum
superposed queries to oracles.

For any finite sets X and Y , let Func(X,Y) denote the set of all functions
from X to Y . For any n-bit string x, we denote the left half n/2-bits of x by xL
and the right half n/2-bits by xR, respectively. We identify the set {0, 1}m with
the set of the integers {0, 1, . . . , 2m − 1}.

2.1 Quantum Computation

Throughout this paper, we assume that readers have basic knowledge about
quantum computation and finite dimensional linear algebra (see textbooks such
as [25,18] for an introduction). We use the computational model of quantum cir-
cuits. We measure complexity of quantum algorithms by the number of queries,
and the number of basic gates in addition to oracle gates. In this paper, by basic
gates we denote the gates in the standard basis of quantum circuits Q [18]. Let
‖ · ‖ and ‖ · ‖tr denote the norm of vectors and the trace norm of operators,
respectively. In addition, let td(·, ·) denote the trace distance. For Hermitian
operators ρ, σ on a Hilbert space H, td(ρ, σ) = 1

2‖ρ − σ‖tr holds. For a mixed
state ρ of a joint quantum system HA ⊗ HB , let trB(ρ) (resp., trA(ρ)) denote
the partial trace of ρ over HB (resp., HA). Moreover, for a pure state |ψ〉 of
the joint quantum system HA ⊗HB , we write trB(|ψ〉) (resp., trA(|ψ〉)) instead
of trB(|ψ〉 〈ψ|) (resp., trA(|ψ〉 〈ψ|)), for simplicity. Similarly, for a pure state |ψ〉
and a mixed state ρ of a quantum system H, we write td(|ψ〉 , ρ) and td(ρ, |ψ〉)
instead of td(|ψ〉 〈ψ| , ρ) and td(ρ, |ψ〉 〈ψ|), respectively. For an integer n ≥ 1, by
In and H⊗n we denote the identity operator on n-qubit systems and the n-qubit
Hadamard operator, respectively. If n is clear from the context, we just write
I instead of In, for short. By abuse of notation, for an operator V , we some-
times use the same notation V to denote V ⊗ I or I ⊗ V for simplicity, when it
will cause no confusion. In addition, for a vector |φ〉 and a positive integer m,
we sometimes use the same notation |φ〉 to denote |φ〉 ⊗ |0m〉 or |0m〉 ⊗ |φ〉 for
simplicity, when it will cause no confusion.

Quantum oracle query algorithms. Following previous works (see [5], for
example), any quantum oracle query algorithm A that makes at most q queries
to oracles is modeled as a sequence of unitary operators (U0, . . . , Uq), where each
Ui is a unitary operator on an `-qubit quantum system, for some integer `. Here,
U0 can be regarded as the initialization process, and for 1 ≤ i ≤ q − 1, Ui is the
process after the i-th query. Uq can be regarded as the finalization process. We
only consider quantum algorithms that take no inputs, and we assume that the
initial state of A is |0`〉.

6

Stateless oracles. For a function f : {0, 1}m → {0, 1}n, the quantum oracle of
f is defined as the unitary operator Of : |x, y〉 7→ |x, y ⊕ f(x)〉 . When we run
A relative to the oracle Of , the unitary operators U0, Of , . . . , Uq−1, Of , Uq act
in a sequential order on the initial state |0`〉. (We consider that Of acts on the
first (m+ n)-qubits of A’s quantum register.) Finally, A measures the resulting
quantum state UqOfUq−1 · · ·OfU0 |0`〉, and returns the measurement result as
the output. f may be chosen according to a distribution at the beginning of each
game. Let us denote the event that A runs relative to the oracle Of and returns
an output α by α← AOf () or by AOf ()→ α.

Stateful oracles. In this paper, we also consider more general cases that quan-
tum oracles are stateful, i.e., oracles have `′-qubit quantum states for an integer
`′ ≥ 0.5 In these cases, an oracle O is modeled as a sequence of unitary opera-
tors (O1, . . . ,Oq) that acts on the first (m + n)-qubits of A’s quantum register
in addition to O’s quantum register. When we run A relative to the oracle O,
the unitary operators U0 ⊗ I`′ ,O1, . . . , (Uq−1 ⊗ I`′),Oq, (Uq ⊗ I`′) act in a se-
quential order on the initial state |0`〉 ⊗ |initO〉, where |initO〉 is the initial state
of O. Finally, A measures the resulting quantum state (Uq ⊗ I`′)Oq(Uq−1 ⊗
I`′) · · · O1(U0⊗I`′) |0`〉⊗|initO〉, and returns the measurement result as the out-
put. If O has no state and Oi = Of holds for each i, the behavior of A relative
to O precisely matches that of A relative to the stateless oracle Of . Thus, our
model of stateful oracles is an extension of the typical model of stateless oracles
described above. O may be chosen according to a distribution at the beginning
of each game. We denote the event that A runs relative to the oracle O and
returns an output α by α← AO() or by AO()→ α.

Quantum distinguishing advantages. Let A be a quantum algorithm that
makes at most q queries, outputs 0 or 1 as the final output, and let O1 and O2

be some oracles. We consider the situation that O1 and O2 are chosen randomly
according to some distributions. We define the quantum distinguishing advantage
of A by

Advdist
O1,O2

(A) :=

∣∣∣∣Pr
O1

[
AO1()→ 1

]
− Pr
O2

[
AO2()→ 1

]∣∣∣∣ . (2)

When we are interested only in the number of queries and do not consider
other complexities such as the number of gates (i.e., we focus on information
theoretic adversaries), we use the notation

Advdist
O1,O2

(q) := max
A

{
Advdist

O1,O2
(A)
}
, (3)

where the maximum is taken over all quantum algorithms that make at most q
quantum queries.

5 Here we do not mean that our model captures all reasonable stateful quantum ora-
cles. We use our model of stateful quantum oracles just for intermediate arguments
to prove our main results, and the claims of the main results are described in the
typical model of stateless oracles.

7

Quantum PRF advantages. By RF we denote the quantum oracle of random
functions, i.e., the oracle such that a function f ∈ Func({0, 1}m, {0, 1}n) is chosen
uniformly at random, and an oracle access to Of is given to adversaries.

Let F = {Fk : {0, 1}m → {0, 1}n}k∈K be a family of functions. Let us use
the same symbol F to denote the oracle such that k is chosen uniformly at
random, and an oracle access to OFk

is given to adversaries. In addition, let A
be an oracle query algorithm that outputs 0 or 1. Then we define the quantum
pseudorandom-function (qPRF) advantage by AdvqPRF

F (A) := Advdist
F,RF(A).

Similarly, we define AdvqPRF
F (q) by AdvqPRF

F (q) := maxA

{
AdvqPRF

F (A)
}
,

where the maximum is taken over all quantum algorithms A that make at most
q quantum queries.

Quantum PRP advantages. By RP we denote the quantum oracle of random
permutations, i.e., the oracle such that a permutation P ∈ Perm({0, 1}n) is
chosen uniformly at random, and an oracle access to OP is given to adversaries.

Let P = {Pk : {0, 1}n → {0, 1}n}k∈K be a family of permutations. We use
the same symbol P to denote the oracle such that k is chosen uniformly at ran-
dom, and an oracle access to OPk

is given to adversaries. Let A be an oracle
query algorithm that outputs 0 or 1, and we define the quantum pseudorandom-
permutation (qPRP) advantage by AdvqPRP

P (A) := Advdist
P,RP(A). Similarly, we

define AdvqPRP
P (q) by AdvqPRP

P (q) := maxA

{
AdvqPRP

P (A)
}
, where the max-

imum is taken over all quantum algorithms A that make at most q quantum
queries.

Security against efficient adversaries. An algorithm A is called efficient if
it can be realized as a quantum circuit of which the number of basic gates and
oracle gates is polynomial in n. A set of functions F (resp., a set of permutations
P) is a quantumly secure PRF (resp., a quantumly secure PRP) if the following
properties are satisfied:

1. Uniform sampling f
$←− F (resp., P

$←− P) and evaluation of each f (resp.,
each P) can be implemented on quantum circuits of which the number of
basic gates is polynomial in n.

2. AdvqPRF
F (A) (resp., AdvqPRP

P (A)) is negligible (i.e., for any positive integer
c, it is upper bounded by n−c for all sufficiently large n) for any efficient
algorithm A.

2.2 The Luby-Rackoff Constructions

The Luby-Rackoff construction [22] is a construction of n-bit permutations from
n/2-bit functions by using the Feistel network.

Fix r ≥ 1, and for 1 ≤ i ≤ r, let fi := {fi,k : {0, 1}n/2 → {0, 1}n/2}k∈K be a
family of functions parameterized by key k in a key space K. Then, the Luby-
Rackoff construction for f1, . . . , fr is defined as a family of n-bit permutations

8

LRr(f1, . . . , fr) := {LRr(f1,k1 , . . . , fr,kr)}k1,...,kr∈K with the key space (K)r. For

each fixed key (k1, . . . , kr), LRr(f1,k1 , . . . , fr,kr) is defined by the following pro-
cedure: First, given an input x0 ∈ {0, 1}n, divide it into n/2-bit strings x0L and
x0R. Second, iteratively update n-bit states as

(x(i−1)L, x(i−1)R) 7→ (xiL, xiR) := (x(i−1)R ⊕ fi,ki(x(i−1)L), x(i−1)L) (4)

for 1 ≤ i ≤ r. Finally, return the final state xr := xrL‖xrR as the output (see
Fig. 2).

𝑓1

𝑓2

𝑓3

Fig. 2. The 3-round Luby-Rackoff construction.

The resulting function LRr(f1,k1 , . . . , fr,kr) : x0 7→ xr becomes an n-bit per-
mutation owing to the property of the Feistel network. Each fi,ki is called the
i-th round function. When we say that an adversary is given an oracle access
to LRr(f1, . . . , fr), we consider the situation that keys k1, . . . , kr are first chosen
independently and uniformly at random, and then the adversary runs relative to
the stateless oracleOLRr(f1,k1

,...,fr,kr)
: |x〉 |y〉 7→ |x〉 |y ⊕ LRr(f1,k1 , . . . , fr,kr)(x)〉.

When each round function is chosen from Func({0, 1}n/2, {0, 1}n/2) uniformly at
random (i.e., each fi is the set of all functions Func({0, 1}n/2, {0, 1}n/2) for all
i), we use the notation LRr for short.

3 Compressed Oracle Technique with Errors

In many security proofs in the classical random oracle model (ROM), they im-
plicitly rely on the fact that transcripts of queries and answers can be recorded.
However, such proofs do not necessarily work in the quantum random oracle
model (QROM) [5], since recording transcripts may significantly perturb quan-
tum states, which might be detected by adversaries. To solve this issue, Zhandry
introduced the “compressed oracle technique” [36] to enable us to record tran-
scripts of queries and answers even in QROM.

Zhandry’s technique was originally developed for QROM in which adversaries
can make direct queries to random functions, but it can also be applied to the
case that adversaries can make queries to random functions only indirectly. In

9

particular, one may think that the technique is applicable to giving a security
proof for the Luby-Rackoff constructions for the cases that all round functions
are truly random.

However, there is an issue with the technique when we apply it to complex
schemes such as the Luby-Rackoff construction. In this section, we scrutinize the
technique and study how we can modify and re-formalize it to avoid the issue.
We name our modified version the compressed oracle technique with errors. In
later sections, we apply our modified technique to showing the security of the
4-round Luby-Rackoff construction.

In Section 3.1 we give an overview of the original technique by Zhandry, and
describe which part of it can be improved. Then, in Section 3.2 we describe our
modified technique.

3.1 An Overview of the Original Technique

First, Zhandry observed that the oracle Of can be implemented with an encoding
of f and an operator stO that is independent of f . In this subsection, we consider
that each function f : {0, 1}m → {0, 1}n is encoded into the (n2m)-qubit state
|f〉 = |f(0)‖f(1)‖ · · · ‖f(2m − 1)〉. The operator stO is the unitary operator that
acts on (n+m+ n2m)-qubit states defined as

stO : |x〉 |y〉 ⊗ |α0〉 · · · |α2m−1〉 7→ |x〉 |y ⊕ αx〉 ⊗ |α0〉 · · · |α2m−1〉 , (5)

where αx ∈ {0, 1}n for each 0 ≤ x ≤ 2m − 1. We can easily confirm that
stO |x〉 |y〉 |f〉 = |x〉 |y ⊕ f(x)〉 |f〉 holds. Here, we consider that |x〉 |y〉 corre-
sponds to the first (m+ n)-qubits of adversaries’ registers.

When f is chosen uniformly at random and A runs relative to stO and |f〉
(i.e., A runs relative to the quantum oracle of a random function), the whole
quantum state before A makes the (i+ 1)-st quantum query becomes

|φf,i+1〉 = (Ui ⊗ I)stO(Ui−1 ⊗ I)stO · · · stO(U0 ⊗ I) |0`〉 |f〉 (6)

with probability 1/2n2
m

. Here, we assume that A has `-qubit quantum states.
Random choice of f can be implemented by first making the uniform super-

position of functions
∑
f

1√
2n2m

|f〉 = H⊗n2
m |0n2m〉 and then measure the state

with the computational basis. So far we have considered that a random function
f is chosen at the beginning of games, but the output distribution of A will not
be changed even if we measure the |f〉 register at the same time as we measure
A’s register. Thus, below we consider that all quantum registers including those
of functions are measured only once at the end of each game.

Then the whole quantum state before A makes the (i+ 1)-st quantum query
becomes

|φi+1〉 =
∑
f

|φf,i+1〉 = (Ui ⊗ I)stO · · · stO(U0 ⊗ I)

|0`〉 ⊗∑
f

1√
2n2m

|f〉

 .

(7)

10

Next, we change the basis of the y register and αi registers in (5) from the
standard computational basis {|u〉}u∈{0,1}n to the one {H⊗n |u〉}u∈{0,1}n , which
is called Fourier basis6 by Zhandry [36]. In what follows, we use the symbol “ ̂ ”
to denote the encoding of classical bit strings into quantum states by using the
Fourier basis instead of the computational basis, and we ambiguously denote
H⊗n |u〉 by |û〉 for each u ∈ {0, 1}n. Then, it can be easily confirmed that

stO |x〉 |ŷ〉 ⊗ |α̂0〉 · · · |α̂2m−1〉 = |x〉 |ŷ〉 ⊗ |α̂0〉 · · · |α̂x ⊕ y〉 · · · |α̂2m−1〉 (8)

holds. Intuitively, the direction of data writing changes when we change the
basis: When we use the standard computational basis, data is written from the
function registers to adversaries’ registers as in (5). On the other hand, when we
use the Fourier basis, data is written in the opposite direction as in (8). With
the Fourier basis, |φi+1〉 can be written as

|φi+1〉 = (Ui ⊗ I)stO(Ui−1 ⊗ I)stO · · · stO(U0 ⊗ I)
(
|0`〉 ⊗ |0̂n2m〉

)
. (9)

Here, note that
∑
f |f〉 = H⊗n2

m |0n2m〉 = |0̂n2m〉 holds. In particular, the reg-

ister of the functions are initially set as |0̂n2m〉, and at most one data is written
(in superpositions) when an adversary makes a query. Thus

|φi+1〉 =
∑
xyzD̂

a′
xyzD̂

|xyz〉 ⊗ |D̂〉 (10)

holds for some complex numbers a′
xyzD̂

such that
∑
xyzD̂ |a

′
xyzD̂

|2 = 1, where

each x is an m-bit string that corresponds to A’s query register, y is an n-bit
string that corresponds to A’s answer register, z corresponds to A’s remaining
register, and D̂ = α̂0‖ · · · ‖α̂2m−1 is a concatenation of 2m many n-bit strings.

Zhandry’s key observation is that, since stO adds at most one data to the
D̂-register in each query, α̂x 6= 0n holds for at most i many x, and thus D̂ can
be “compressed” to a database with at most i many entries. (Note that D̂ may
contain less than i entries. For example, if a state |x〉 |ŷ〉 is successively queried
to stO twice, then the database will remain unchanged since stO · stO = I.) We

use the same notation D̂ for the compressed database, and call it compressed
Fourier database since now we are using the Fourier basis for D̂. Each entry of
D̂ has the form (x, α̂x), where x ∈ {0, 1}m, α̂x ∈ {0, 1}n, and α̂x 6= 0n.

Intuitively, if the compressed Fourier database D̂ contains an entry (x, α̂x), it
means that A has queried x to a random function f and holds some information
about the value f(x). Hence D̂ can be seen as a record of transcripts for queries
and answers. However, it is still not clear what kind of information A has about
the value f(x), since we are now using the Fourier basis. To make it clear, let

the Hadamard operator H⊗n act on each α̂x in D̂ and obtain another (superpo-
sition of) database D. Then, intuitively, D satisfies the condition “(x, αx) ∈ D
6 Note that the Hadamard operator H⊗n corresponds to the Fourier transformation

over the group (Z/2Z)⊕n.

11

corresponds to the condition that A has queried x to the oracle and gotten the
value αx in response”. We call D a compressed standard database.

In summary, Zhandry observed that the quantum random oracle can be de-
scribed as a stateful quantum oracle CstO. The whole quantum state of an ad-
versary A and the oracle just before the (i+ 1)-st query is

|φi+1〉 =
∑
xyzD

axyzD |xyz〉 ⊗ |D〉 , (11)

where each D is a compressed standard database which contains at most i en-
tries. Initially, the database D is empty. In [36], Zhandry describes that, when
A makes a query |x, y〉 to the oracle, CstO does the following procedures. 7

The three procedures of CstO.

1. Look for a tuple (x, αx) ∈ D. If one is found, respond with |x, y ⊕ αx〉.
2. If no tuple is found, create new registers initialized to the state 1√

2n

∑
αx
|αx〉.

Add the registers (x, αx) to D. Then respond with |x, y ⊕ αx〉.
3. Finally, regardless of whether the tuple was found or added, there is now a

tuple (x, αx) in D, which may have to be removed. To do so, test whether
the registers containing αx contain 0n in the Fourier basis. If so, remove the
tuple from D. Otherwise, leave the tuple in D.

Intuitively, the first and second steps correspond to the classical lazy sam-
pling, which do the following procedures: When an adversary makes a query x to
the oracle, look for a tuple (x, αx) in the database. If one is found, respond with
αx (this part corresponds to the first procedure of CstO). If no tuple is found,
choose αx uniformly at random from {0, 1}n (this part corresponds to creating
the superposition 1√

2n

∑
αx
|αx〉 in the second procedure of CstO), respond with

αx, and add (x, αx) to the database.
The third “test and forget” step is crucial and specific to the quantum set-

ting. Intuitively, the third step forgets data which is no longer used by the
adversary from the database. By appropriately forgetting information, we can
record transcripts of queries and answers without perturbing quantum states.

An issue. The above technique by Zhandry is so clever and insightful, but
there is a point that can be improved. The third “test and forget” step is crucial
to avoid perturbing quantum states, but hard to capture intuitively, and its
mathematically explicit description as a unitary operation is not given in the
original paper [36]. 8 This would be problematic if we apply the technique to
showing security of complex schemes that are composed of multiple random
functions. If we apply the technique to such schemes, quantum entanglements

7 We remark that these three-step precedures are a verbatim quotation from the orig-
inal paper [36] of version 20180814:183812, except that the symbol y′ and 0 are used
instead of αx and 0n, respectively, in the original one.

8 Again, here we consider the original paper of version 20180814:183812.

12

among multiple compressed databases will be extremely complex, where it will
be very hard to appropriately operate the “test and forget” procedure to each
database. Since unexpected properties often hold in the quantum setting, it is
more important to give mathematically rigorous proofs than in the classical
setting. Moreover, if we could apply the technique without caring about such
procedures, we can give quantum proofs with classical intuitions to a greater
extent.

With the above in mind, in the next subsection, we modify Zhandry’s tech-
nique so that we can intuitively capture properties of oracles without “test and
forget” procedures, while keeping mathematically clear descriptions. Instead of
getting rid of the “test and forget” procedure, we introduce some errors when
we describe properties of the oracles.

3.2 Our Modified Technique

From now on, we represent each function f : {0, 1}m → {0, 1}n as (n+ 1)2m-bit
strings (0‖f(0))‖(0‖f(1))‖ · · · ‖(0‖f(2m − 1)).

Remember that the whole quantum state before A makes the (i+1)-st query
is described as

|φi+1〉 = (Ui⊗I)stO(Ui−1⊗I)stO · · · stO(U0⊗I)

|0`〉 ⊗∑
f

1√
2n2m

|f〉

 . (12)

At each query, unlike the original technique that adds/deletes at most one entry
to/from each database, we first “decode” superpositions of databases to super-
positions of functions when an adversary makes a query, secondly respond to the
adversary, and finally “encode” again superpositions of functions to superposi-
tions of databases. Below we describe our encoding.

Encoding functions to databases: Intuitive descriptions. Modifying the
idea of Zhandry, we apply the following operations to the |f〉-register of |φi+1〉.

1. Let the Hadamard operator H⊗n act on the f(x) register for all x. Now the
state becomes ∑

xyzD̃

a′
xyzD̃

|xyz〉 ⊗ |D̃〉 (13)

for some complex numbers a′
xyzD̃

, where each D̃ = (0‖α̂0)‖ · · · ‖(0‖α̂2m−1) is

a concatenation of 2m many (n+1)-bit strings, and α̂x 6= 0n at most i-many
x.

2. For each x, if α̂x 6= 0n, flip the bit just before α̂x. Now each D̃ changes to
the bit strings (b0‖α̂0)‖ · · · ‖(b2m−1‖α̂2m−1), where bx ∈ {0, 1}, and bx = 1 if
and only if α̂x 6= 0n.

13

3. For each x ∈ {0, 1}n, let the n-bit Hadamard transformation H⊗n act on
|α̂x〉 if and only if bx = 1. Then the quantum state becomes

|ψi+1〉 :=
∑
xyzD

axyzD |xyz〉 ⊗ |D〉 (14)

for some complex numbers axyzD, where each D is a concatenation of 2m

many (n+ 1)-bit strings (b0‖α0)‖ · · · ‖(b2m−1‖α2m−1) such that bx 6= 0 holds
for at most i many x, and intuitively bx 6= 0 means that A has queried x to
a random function f and has information that f(x) = αx.

Encoding functions to databases: Formal descriptions. The above three
operations can be formally realized as actions of unitary operators on |f〉-registers.
The first one is realized as IH := (I1 ⊗H⊗n)⊗2

m

. The second one is realized as
Utoggle := (I1 ⊗ |0n〉 〈0n| + X ⊗ (In − |0n〉 〈0n|))⊗2

m

, where X is the 1-qubit
operator such that X |0〉 = |1〉 and X |1〉 = |0〉. The third one is realized by the
operator CH := (CH⊗n)⊗2

m

, where CH := |0〉 〈0| ⊗ In + |1〉 〈1| ⊗H⊗n.
We call the action of unitary operator Uenc := CH·Utoggle·IH and its conjugate

U∗enc encoding and decoding, respectively. 9 By using our encoding and decoding,
the compressed standard oracle with errors is defined as follows.

Definition 1 (Compressed standard oracle with errors). The compressed
standard oracle with errors is the stateful quantum oracle such that queries are
processed with the unitary operator CstOE defined by CstOE := (I ⊗ Uenc) · stO ·
(I ⊗ U∗enc).

Note that |ψi+1〉 = (Ui ⊗ I)CstOE(Ui−1 ⊗ I)CstOE · · ·CstOE(U0 ⊗ I)(|0`〉 ⊗
|0(n+1)2m〉) and |φi+1〉 = (I ⊗ U∗enc) |ψi+1〉 hold for each i.

Next, we introduce some notations related to our compressed standard oracle
with errors, which are required to describe properties of CstOE.

Notations related to CstOE. We call a bit string D = (b0‖α0)‖ · · · ‖
(b2m−1‖α2m−1), where bx ∈ {0, 1} and αx ∈ {0, 1}n for each x ∈ {0, 1}m, is
a valid database if αx 6= 0n holds only if bx 6= 0. We call D an invalid database
if it is not a valid database. Note that, in a valid database, bx can be 0 or 1 if
αx = 0n. We identify a valid database D with the partially defined function from
{0, 1}m to {0, 1}n of which value on x ∈ {0, 1}m is defined to be y if and only if
bx 6= 0 and αx = y. We use the same notation D for this function. Moreover, we
identify D with the set {(x,D(x))}x∈dom(D) ⊂ {0, 1}m×{0, 1}n. We say that an
entry of x is in D if (x, y) ∈ D for some y. Unless otherwise noted, we always
assume that D is valid.

We say that a valid database D is compatible with a function f : {0, 1}m →
{0, 1}n if D(x) = f(x) holds for each x in the domain of D. For each valid

9 Actually the idea of toggle is noted by Zhandry in the original paper [36], but
there is no formalization about it. Moreover, it was described with “test and forget”
procedures and without any errors.

14

database D, let comp(D) denote the set of functions that are compatible with
D.

If ‖ |ψ〉 − |ψ′〉 ‖ is in O(ε) for two vectors |ψ〉 , |ψ′〉, and some parameter ε
(which will be a function of n in later applications), then we say that |ψ〉 is
equal to |ψ′〉 with an error in O(ε), or just write |ψ〉 = |ψ′〉 with an error in
O(ε).

The following proposition describes the core properties of CstOE.

Proposition 1 (Core Properties). Let D be a valid database. Then, the fol-
lowing properties hold.

1. Suppose that |D| ≤ i holds. Then

U∗enc |D〉 =
∑

f∈comp(D)

√
1

|comp(D)|
|f〉 (15)

holds with an error in O(
√
i2/2n).

2. Suppose that there is no entry of x in D. Then, for any y,

CstOE |x〉 |y〉 ⊗ |D ∪ (x, α)〉 = |x〉 |y ⊕ α〉 ⊗ |D ∪ (x, α)〉

with an error in O(1/
√

2n). More precisely,

CstOE |x, y〉 ⊗ |D ∪ (x, α)〉
= |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉

+
1√
2n
|x, y ⊕ α〉

|D〉 −
 ∑
γ∈{0,1}n

1√
2n
|D ∪ (x, γ)〉

− 1√

2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗

(
|D ∪ (x, γ)〉 − |Dinvalid

γ 〉
)

+
1

2n
|x〉 |0̂n〉 ⊗

2
∑

δ∈{0,1}n

1√
2n
|D ∪ (x, δ)〉 − |D〉

 (16)

holds, where |Dinvalid
γ 〉 is a superposition of invalid databases for each γ, and

|0̂n〉 = H⊗n |0n〉.
3. Suppose that there is no entry of x in D. Then, for any y,

CstOE |x〉 |y〉 ⊗ |D〉 =
∑

α∈{0,1}n

1√
2n
|x〉 |y ⊕ α〉 ⊗ |D ∪ (x, α)〉

with an error in O(1/
√

2n). To be more precise,

CstOE |x〉 |y〉 ⊗ |D〉 =
∑

α∈{0,1}n

1√
2n
|x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉

15

+
1√
2n
|x〉 |0̂n〉 ⊗

|D〉 − ∑
γ∈{0,1}n

1√
2n
|D ∪ (x, γ)〉

(17)

holds, where |0̂n〉 = H⊗n |0n〉.

Proposition 1 can be shown by straightforward calculations. For completeness,
a proof of Proposition 1 is given in Section A in the appendix.

An intuitive interpretation of Proposition 1. The first property is a sub-
sidiary one, which would be useful in later applications. When we ignore error
terms, the second and third properties correspond to the first and second proce-
dures of CstO, respectively: When an adversary makes a query x to the oracle,
CstOE looks for a tuple (x, α) in the database. If one is found, respond with α
(the second property in the above proposition). If no tuple is found, create the
superposition 1√

2n

∑
αx
|αx〉, respond with αx, and add (x, αx) to the database

(the third property in the above proposition).

Note that we do not need any “test and forget” procedure to describe the sec-
ond and third properties in Proposition 1. Thus we can intuitively capture time
evolutions of databases with only the (classical) lazy-sampling-like arguments.
When we apply the original technique, we have to strictly care the three proce-
dures of CstO since, while they give the properties of CstO, they also describe the
definition of CstO. On the other hand, the definition of CstOE is clearly given as
a unitary operator (Definition 1), and it is not mandatory to use the properties
in Proposition 1.

To get rid of the “test and forget” procedure, we have to introduce some
errors. The error increases as the number of adversaries’ queries q increases, but
it remains negligible as long as q � 2n/2. Thus the error will not be problematic
when we focus on the situation q � 2n/2, which is the case for showing the
(tight) security bound of the 4-round Luby-Rackoff construction.

In later applications, similarly to classical proofs, we introduce good and
bad transcripts. The explicit formulas of the second and third properties will
be used to show that, intuitively, adversaries cannot distinguish two oracles if
transcripts are “good”. Moreover, the first property and the descriptions with
errors of the second and third properties will be used to show that the probability
that transcripts become “bad” is negligible.

4 Security Proofs

The goal of this section is to show the following theorem, which gives the quan-
tum query lower bound for the problem of distinguishing the 4-round Luby-
Rackoff construction LR4 from random permutations RP, in the case that all
round functions are truly random functions.

16

Theorem 3. Let q be a positive integer. Let A be an adversary that makes at
most q quantum queries. Then,

AdvqPRP
LR4

(A) ≤ O

(√
q3

2n/2

)
(18)

holds.

Since we can efficiently simulate truly random functions against efficient
quantum algorithms [33], the following corollary follows from Theorem 3.

Corollary 1. Let fi be a quantumly secure PRF for each 1 ≤ i ≤ 4. Then,
the 4-round Luby-Rackoff construction LR4(f1, f2, f3, f4) is a quantumly secure
PRP.

To the end of this section, we assume that all round functions in the Luby-
Rackoff constructions are truly random functions, and we focus on the number
of queries when we consider computational resources of adversaries. To have
a good intuition on our proof in the quantum setting, it would be better to
intuitively capture how LR3 is proven to be secure against classical CPAs, how
the quantum attack on LR3 works, and what problem will be hard even for
quantum adversaries. Thus, before giving a formal proof for the above theorem,
in what follows we give some observations about these things, and then explain
where to start.

An overview of a classical security proof for LR3. Here we give an overview
of a classical proof for the security of LR3 against chosen plaintext attacks in
the classical setting. For simplicity, we consider a proof for PRF security of LR3.

Let bad2 be the event that an adversary makes two distinct plaintext queries
(x0L, x0R) 6= (x′0L, x

′
0R) to the real oracle LR3 such that the corresponding inputs

x1L and x′1L to the second round function f2 are equal, i.e., inputs to f2 collide.
In addition, let bad3 be the event that inputs to f3 collide, and define bad :=
bad2 ∨ bad3.

If bad2 (resp., bad3) does not occur, then the right-half (resp., left-half) n/2
bits of LR3’s outputs cannot be distinguished from truly random n/2-bit strings.
Thus, unless the event bad occurs, adversaries cannot distinguish LR3 from ran-
dom functions.

If the number of queries of an adversary A is at most q, we can show that the
probability that the event bad occurs when A runs relative to the oracle LR3 is
in O(q2/2n/2). Thus we can deduce that LR3 is indistinguishable from a random
function up to O(2n/4) queries.

Quantum chosen plaintext attack on LR3. Next, we give an overview of
the quantum chosen plaintext attack on LR3 by Kuwakado and Morii [19]. Note
that we consider the setting that adversaries can make quantum superposition
queries. The attack distinguishes LR3 from a random permutation with only
O(n) queries.

17

Fix α0 6= α1 ∈ {0, 1}n/2 and for i = 0, 1, define gi : {0, 1}n/2 → {0, 1}n/2
by gi(x) = (LR3(αi, x))R ⊕ αi, where (LR3(αi, x))R denote the right half n/2-
bits of LR3(αi, x). In addition, define G : {0, 1} × {0, 1}n/2 → {0, 1}n/2 by
G(b, x) = gb(x). Then, it can be easily confirmed that g0(x) = g1(x ⊕ s) holds
for any x ∈ {0, 1}n/2, where s = f1(α0)⊕f1(α1). Thus G(b, x) = G((b, x)⊕(1, s))
holds for any b and x, i.e., the function G has the period (1, s).

If we can make quantum superposed queries to G, then we can find the period
(1, s) by using Simon’s period finding algorithm [30], making O(n) queries to G.
In fact G can be implemented on an oracle-querying quantum circuit CLR3 by
making O(1) queries to LR3. 10

Roughly speaking, Simon’s algorithm outputs the periods with a high prob-
ability by making O(n) queries if applied to periodic functions, and outputs the
result that “this function is not periodic” if applied to functions without periods.

If we are given the oracle of a random permutation RP, the circuit CRP

will implement an almost random function, which does not have any period
with a high probability. Thus, if we run Simon’s algorithm on CRP, with a high
probability, it does not output any period. Therefore, we can distinguish LR3

from RP by checking if Simon’s period finding algorithm outputs a period.

Observation: Why the classical proof does not work? Here we give an
observation about the reason why quantum adversaries can distinguish LR3 from
random permutations even though LR3 is proven to be indistinguishable from a
random permutation in the classical setting.

We observe that quantum adversaries can make the event bad2 occur: Once
we find the period 1‖s = 1‖f1(α0)⊕f2(α1) given the real oracle LR3, we can force
collisions on the input of f2. Concretely, take x ∈ {0, 1}n/2 arbitrarily and set
(x0L, x0R) := (α0, x), (x′0L, x

′
0R) := (α1, x ⊕ s). Then the corresponding inputs

to f2 become f1(α0)⊕ x for both plaintexts. Thus the classical proof idea does
not work in the quantum setting.

Quantum security proof for LR4: The idea. As we explained above, the
essence of the quantum attack on LR3 is finding collisions for inputs to the second
round function f2. On the other hand, it seems difficult to make collisions for
inputs to the third round function f3 even for quantum (chosen-plaintext) query
adversaries.

Having these observations, our idea is that it would be hard even for quan-
tum adversaries to notice that the third state update (x2L, x2R) 7→ (x2R ⊕
f3(x2L), x2L) of LR3 is modified as (x2L, x2R) 7→ (F (x2L, x2R), x2L), where
F : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2 is a random function. We denote this
modified function by LR′3 (see Fig. 3), and begin with showing that it is hard to
distinguish LR′3 from LR3.

10 Here we have to implement truncation of outputs of O without destroying quantum
states, which is pointed out to be non-trivial in the quantum setting [17]. However,
it has been shown that this “truncation” issue can be overcome by using a technique
observed in [14].

18

𝑓1

𝑓2

𝐹

Fig. 3. LR′3

We will show it by combining the classical proof idea and our compressed
oracle technique with errors. Roughly speaking, we define “bad” databases to be
the ones that contain “collisions at inputs to the third round function”. Then
we show that the probability that we measure bad databases is very small, and
that adversaries cannot distinguish LR′3 from LR3 when databases are not bad.

Next, let FamP({0, 1}n/2) be the set of functions F : {0, 1}n/2 × {0, 1}n/2 →
{0, 1}n/2 such that F (x, ·) is a permutation for each x. If P is chosen uniformly at
random from FamP({0, 1}n/2), we say that P is a family of random permutations,
or shortly FRP. Then, we intuitively see that it is hard to distinguish FRP from
a random function RF from {0, 1}n to {0, 1}n/2 (i.e., an optimal strategy would
be finding a kind of collision for RF, which requires ≈ (2n/2)1/3 = 2n/6 queries
for quantum adversaries).

Once we show the above two properties, i.e.,

1. LR′3 is hard to distinguish from LR3, and
2. FRP is hard to distinguish from RF,

we can prove Theorem 3 with simple and easy arguments. In other words, show-
ing those two properties are technically the most difficult parts in our proof for
Theorem 3.

Organization of the rest of Section 4. Section 4.1 shows that LR′3 is hard to
distinguish from LR3. Section 4.2 shows that FRP is hard to distinguish from RF.
Section 4.3 proves Theorem 3 by combining the results in Sections 4.1 and 4.2.

4.1 Hardness of Distinguishing LR′
3 from LR3

Here we show the following proposition.

Proposition 2. Let q be a positive integer. Let A be an adversary that makes
at most q quantum queries. Then,

Advdist
LR3,LR′3

(A) ≤ O

(√
q3

2n/2

)
(19)

holds.

First, let us discuss the behavior of the quantum oracles of LR3 and LR′3.

19

Quantum oracle of LR3. Let Ofi denote the quantum oracle of each round
function fi. In addition, let us define the unitary operator OUP.i that computes
the state update of the i-th round by

OUP.i : |x(i−1)L, x(i−1)R〉 |yL, yR〉
7→ |x(i−1)L, x(i−1)R〉 |(yL, yR)⊕ (fi(x(i−1)L)⊕ x(i−1)R, x(i−1)L)〉 .

OUP.i can be implemented by making one query to fi (see Fig. 4).

𝑓𝑖
|𝑦𝐿 ⊕ 𝑓𝑖(𝑥 𝑖−1 𝐿) ⊕ 𝑥 𝑖−1 𝑅⟩

|𝑥 𝑖−1 𝐿⟩ |𝑥 𝑖−1 𝐿⟩

|𝑥 𝑖−1 𝑅⟩ |𝑥 𝑖−1 𝑅⟩

|𝑦𝐿⟩

|𝑦𝑅⟩ |𝑦𝑅 ⊕𝑥 𝑖−1 𝐿⟩

Fig. 4. Implementation of OUP.i. fi will be implemented by using the compressed
standard oracle with errors.

Now OLR3 can be implemented as follows by using {OUP.i}1≤i≤3:

1. Take |x〉 |y〉 = |x0L, x0R〉 |yL, yR〉 as an input.
2. Compute the state (x1L, x1R) by querying |x0L, x0R〉 |0n〉 to OUp.1, and ob-

tain
|x0L, x0R〉 |yL, yR〉 ⊗ |x1L, x1R〉 . (20)

3. Compute the state (x2L, x2R) by querying |x1L, x1R〉 |0n〉 to OUp.2, and ob-
tain

|x0L, x0R〉 |yL, yR〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 . (21)

4. Query |x2L, x2R〉 |yL, yR〉 to OUp.3, and obtain

|x〉 |y ⊕ LR3(x)〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 . (22)

5. Uncompute Steps 2 and 3 to obtain

|x〉 |y ⊕ LR3(x)〉 . (23)

6. Return |x〉 |y ⊕ LR3(x)〉.

The above implementation is illustrated in Fig. 5.

Quantum oracle of LR′
3. The quantum oracle of LR′3 is implemented in the

same way as LR3, except that the third round state update oracle OUP.3 is
replaced with another oracle O′UP.3 defined as

O′UP.3 : |x2L, x2R〉 |yL, yR〉 7→ |x2L, x2R〉 |(yL, yR)⊕ (F (x2L, x2R)⊕ x2R, x2L)〉 .

20

𝑂UP.1
|0⟩

|𝑥⟩

|0⟩

|𝑦⟩

|0⟩

|𝑥⟩

|0⟩

|𝑦 ⊕ 𝐿𝑅3 𝑥 ⟩

𝑂UP.2

𝑂UP.3

𝑂UP.2

𝑂UP.1

Fig. 5. Implementation of LR3.

𝐹

𝑦𝐿 ⊕𝐹 𝑥2𝐿 , 𝑥2𝑅

|𝑥2𝐿⟩ |𝑥2𝐿⟩

|𝑥2𝑅⟩ |𝑥2𝑅⟩

|𝑦𝐿⟩

|𝑦𝑅⟩ |𝑦𝑅 ⊕𝑥2𝐿⟩

Fig. 6. Implementation of O′UP.3. F will be implemented by using the compressed
standard oracle with errors.

O′UP.3 is implemented by making one query to OF , i.e., the quantum oracle of
F (see Fig. 6).

Below, we show the claim of the proposition by applying the compressed
oracle technique with errors to f1, f2, f3, and F . We consider that the oracles of
these functions are implemented as the compressed standard oracles with errors,
and we use D1, D2, D3, and DF to denote (valid) databases for f1, f2, f3, and F ,
respectively. In particular, after the i-th query of an adversary to LR3, the joint
quantum states of the adversary and functions can be described as∑

xyzD1D2D3

axyzD1D2D3 |xyz〉 ⊗ |D1〉 |D2〉 |D3〉 (24)

for some complex numbers axyzD1D2D3
such that

∑
xyzD1D2D3

|axyzD1D2D3
|2 =

1. Here, x, y, and z correspond to the adversary’s query, answer, and output
registers, respectively. (If the oracle is LR′3, then the registers |D3〉, which corre-
sponds to f3, are replaced with |DF 〉, which corresponds to F .)

Next, we define good and bad databases for LR3 and LR′3. Intuitively, we
say that a tuple (D1, D2, D3) (resp., (D1, D2, DF)) for LR3 (resp., LR′3) is bad
if and only if it contains the information that some inputs to f3 (resp., the left
halves of some inputs to F) collide. Roughly speaking, we define good and bad
databases in such a way that there exists a one-to-one correspondence between
good databases for LR3 and those for LR′3, so that adversaries will not be able
to distinguish LR′3 from LR3 as long as databases are good.

Good and bad databases for LR3. Here we introduce the notion of good
and bad for each tuple (D1, D2, D3) of valid database for LR3. We say that

21

(D1, D2, D3) is good if, for each entry (x2L, γ) ∈ D3, there exists exactly one
pair ((x0L, α), (x1L, β)) ∈ D1 × D2 such that β ⊕ x0L = x2L. We say that
(D1, D2, D3) is bad if it is not good.

Good and bad databases for LR′
3. Next we introduce the notion of good and

bad for each tuple (D1, D2, DF) of valid database for LR′3. We say that a valid
database DF is without overlap if each pair of distinct entries (x2L, x2R, γ) and
(x′2L, x

′
2R, γ

′) in DF satisfies x2L 6= x′2L. We say that (D1, D2, DF) is good if DF

is without overlap, and for each entry (x2L, x2R, γ) ∈ DF , there exists exactly
one pair ((x0L, α), (x1L, β)) ∈ D1×D2 such that β⊕x0L = x2L and x2R = x1L.
We say that (D1, D2, DF) is bad if it is not good.

Compatibility of DF with D3. Let DF be a valid database for F without
overlap, and D3 be a valid database for f3. We say that DF is compatible with
D3 if the following conditions are satisfied:

1. If (x2L, x2R, γ) ∈ DF , then (x2L, x2R ⊕ γ) ∈ D3.

2. If (x2L, γ) ∈ D3, there is a unique x2R and (x2L, x2R, x2R ⊕ γ) ∈ DF .

For each valid DF without overlap, there exists the unique valid database for
f3, which we denote by [DF]3.

Remark 1. For each good database (D1, D2, D3) for LR3, there exists a unique
DF without overlap such that [DF]3 = D3 and (D1, D2, DF) is a good database
for LR′3, by definition of good databases. Similarly, for each good database
(D1, D2, DF) for LR′3, (D1, D2, [DF]3) becomes a good database for LR3.

Next we define regular and irregular quantum states for the oracles OLR3
and

OLR′3
. Roughly speaking, we will treat irregular states as some small error terms,

and focus on regular states.

Regular and irregular states of oracles. Recall that, in addition to database
registers, the quantum oracle OLR3

uses ancillary 2n-qubit registers to compute
intermediate state after the first and second rounds (see (21) and (22)). We say
that a state vector |D1〉 |D2〉 |D3〉 ⊗ |x1〉 ⊗ |x2〉 for OLR3 , where |x1〉 ⊗ |x2〉 is the
ancillary 2n qubits, is irregular if x1 6= 0n ∨x2 6= 0n holds, or at least one of the
three databases, D1, D2, or D3, is invalid. We say that the state vector is reg-
ular if it is not irregular. We define regular and irregular states for OLR′3

similarly.

Next we define some modified versions of LR3 and LR′3, which we denote by
LR3-det and LR′3-det, respectively (“det” is an abbreviation of “detection of bad
database”).

22

The oracles LR3-det and LR′
3-det. The oracle LR3-det is defined in the same

way as LR3, except that the oracle checks whether the database is bad (or the
state of the oracle is irregular) after each query, and writes the result to an
additional qubit. Note that we define regular and irregular states for LR3-det in
the same way as for LR3. Additional qubits are prepared before an adversary A
runs (q additional qubits are sufficient if A is a q query adversary). If i 6= j, the
results of “detection of bad database” for the i-th and j-th queries are written
in distinct qubits.

Intuitively, LR3-det behaves as follows when A makes the i-th query:

1. Check if the j-th additional qubit is 1 for 1 ≤ j ≤ i − 1 (i.e., check if the
database has been bad before the i-th query). If so, do nothing. If not, go to
the next step.

2. Make a query to OLR3 .
3. Check if the database is bad, or the quantum state of OLR3

is irregular. If
so, flip the i-th additional qubit.

Next, we formally explain how the above procedures can be realized as a
unitary operator. Let Πbad be the projection to the space spanned by the vectors

of bad databases, and irregular state vectors. In addition, let Π
[i−1]
flipped be the

projection onto the space spanned by the vectors such that the j-th additional
qubit is 1 for some 1 ≤ j ≤ i− 1, and irregular state vectors.

Formally, for the i-th query, the behavior of the quantum oracle of LR3-det
is described by the unitary operator

OLR3-det := (Πbad ⊗ Ii−1 ⊗X + (I −Πbad)⊗ Ii−1 ⊗ I1)

· (OLR3
⊗ Ii−1 ⊗ I1) · ((I −Π [i−1]

flipped)⊗ I1)

+Π
[i−1]
flipped ⊗ I1, (25)

where Ii−1 is the identity operator which acts on the first (i−1) additional qubits,
in addition that I1 and X are the identity operator and the operator such that
X |0〉 = |1〉 and X |1〉 = |0〉, respectively, which act on the i-th additional qubit.

LR′3-det is constructed from LR′3 in the same way as LR3-det is constructed
from LR3-det as above. The behaviors of the oracles of LR′3-det and LR3-det
depend on i, though for simplicity, we always use the notations OLR′3-det

and
OLR3-det without i.

Below we first show that LR3-det is hard to distinguish from LR′3-det, and
second show that LR3-det (resp., LR′3-det) is hard to distinguish from LR3 (resp.,
LR′3).

Hardness of distinguishing LR3-det from LR′
3-det. Let |ψi〉 and |ψ′i〉 be the

state just before the i-th query to LR3-det and LR′3-det, respectively. By abuse of
notation, we let |ψ(q+1)〉 , |ψ′(q+1)〉 denote the quantum states (Uq⊗I)OLR3-det |ψq〉
and (Uq ⊗ I)OLR′3-det

|ψ′q〉, respectively.
We need the following lemma. Intuitively, the lemma claims that any adver-

sary cannot distinguish LR3-det from LR′3-det if databases are “good”.

23

Lemma 1. For each j, let |ψgood
j 〉 and |ψ

′good
j 〉 denote (I − Π

[i−1]
flipped) |ψj〉 and

(I − Π
[i−1]
flipped) |ψ′j〉, respectively. Let trD123

and trD12F
denote the partial trace

over databases and additional qubits for LR3-det and LR′3-det, respectively. Then,

trD123

(
|ψgood
i 〉

)
= trD12F

(
|ψ
′good
i 〉

)
holds for 1 ≤ i ≤ q + 1.

Proof intuition. Lemma 1 can be shown by straightforward algebraic calculations
using the strict formulas of the second and third properties in Proposition 1. The
equality holds owing to the one-to-one correspondences between good databases
for LR3 and those for LR′3 (see Remark 1). A complete proof of Lemma 1 is given
in Section B in the appendix.

We also need the following lemma, which intuitively claims that “good” states
change to “bad” states only with a negligible probability.

Lemma 2. For for each j,
∥∥∥Πbad ·OLR3

|ψgood
j 〉

∥∥∥ and
∥∥∥Πbad ·OLR′3

|ψ
′good
j 〉

∥∥∥ are

in O(
√
j/2n/2).

Proof intuition. Here we give a proof intuition for LR3. Owing to the second
and third properties of Proposition 1 with errors, we can use classical lazy-
sampling intuition (see explanations below Proposition 1). Roughly speaking,
good databases change to bad if and only if a fresh query is made to f1 or
f2, and the corresponding input to f3 collides with some existing record in the
database for f3.

Since each database of |ψgood
j 〉 has at most (j − 1) entries and outputs of

f1 and f2 are (n/2)-bits, the input to f3 that corresponds to a fresh input to
f1 or f2 collides with one of the existing records in D3 with a probability at

most O(j/2n/2). This corresponds to the claim that
∥∥∥Πbad ·OLR3 |ψ

good
j 〉

∥∥∥2 ≤
O(j/2n/2) holds. This argument actually ignores some errors, but the errors will

be in O(
√

1/2n/2) due to Proposition 1. The claim for LR′3 can be shown in a
similar way. A complete proof of Lemma 2 is given in Section C in the appendix.

The following proposition guarantees that it is hard to distinguish LR3-det
from LR′3-det.

Proposition 3. Advdist
LR3-det,LR′3-det

(A) is in O
(√

q3/2n/2
)

.

Proof intuition. Due to Lemma 1, A cannot distinguish LR3-det from LR′3-det
as long as databases are good. Thus, intuitively, the distinguishing advantage
is upper bounded by the square root of the probability that databases become
bad while A makes q queries, which is further upper bounded by

∑
1≤j≤q ‖Πbad ·

OLR3-det |ψ
good
j 〉 ‖+

∑
1≤j≤q ‖Πbad ·OLR′3-det

|ψ
′good
j 〉 ‖. From Lemma 2, this can be

upper bounded by
∑

1≤j≤q O(
√
j/2n/2)+

∑
1≤j≤q O(

√
j/2n/2) = O(

√
q3/2n/2).

A complete proof of Proposition 3 is given in Section D in the appendix.

24

Hardness of distinguishing LR3-det and LR′
3-det from LR3 and LR′

3.
The following proposition guarantees that it is hard to distinguish LR3-det and
LR′3-det from LR3 and LR′3, respectively.

Proposition 4. Advdist
LR3,LR3-det (A) and Advdist

LR′3,LR′3-det
(A) are in O

(√
q3/2n/2

)
.

Proof intuition. We give a proof intuition for LR3-det and LR3. Since the databases
of round functions for LR3-det are the same as those for LR3,A cannot distinguish
LR3-det from LR′3-det as long as databases are good. Thus, roughly speaking, the
distinguishing advantage is upper bounded by the square root of the probability
that databases become bad while A makes q queries. Owing to Lemma 2, we
can show the claim in the same way as the proof intuition for Proposition 3. The
claim for LR′3-det and LR′3 can be shown in a similar way. A proof of Proposition 4
is given in Section E in the appendix.

Proof of Proposition 2. Finally, we show Proposition 2.

Proof (of Proposition 2). Advdist
LR3,LR′3

(A) is upper bounded by Advdist
LR3,LR3-det(A)

+ Advdist
LR3-det,LR′3-det

(A) + Advdist
LR′3-det,LR′3

(A). Thus, the claim of Proposition 2
follows from Proposition 3 and Proposition 4. ut

4.2 Hardness of Distinguishing FRP from RF

Recall that FamP({0, 1}n/2) is the set of functions F : {0, 1}n/2 × {0, 1}n/2 →
{0, 1}n/2 such that F (x, ·) is a permutation for each x, and if P is chosen uni-
formly at random from FamP({0, 1}n/2), we say that P is a family of random
permutations, or shortly FRP.

The following proposition claims that it is hard to distinguish FRP from RF.

Proposition 5. For any quantum adversary A that makes at most q quantum
queries, Advdist

FRP,RF(A) ≤ O
(
q3/2n/2

)
holds.

Proof intuition. Suppose that we are given an oracle access to F , which is either
of FRP or RF. If we find (xL, xR) and (x′L, x

′
R) such that xL = x′L ∧ xR 6=

x′R ∧ F (xL, xR) = F (x′L, x
′
R), then we can tell that F is RF. Thus it suffices to

show that finding such a pair ((xL, xR), (x′L, x
′
R)) for RF is difficult. Below we

call such a pair half-collision of F . We call a database for F is bad if it contains
a half-collision. Roughly speaking, we show that (1) a database becomes bad
with a probability at most O(q3/2n/2), and (2) if databases are good, then the
probability that A finds a half-collision of F is negligible. 11

11 Our arguments for the claim (1) is the same as those to prove hardness of finding
(multi)collisions of random functions in [36] and [21]. However, these two previous
works only show that the probability that we measure “bad” databases are small, and
do not care about claims like our second claim (2). On the other hand, in Section F
we also rigorously prove the claim (2).

25

For the claim (1), first we show that “a good database changes to a bad
database at the j-th query with probability at most O(j/2n/2)”, in the same
way as we showed Lemma 2. Then we can deduce that, roughly speaking, the
square root of the probability that databases becomes bad while making q queries
is upper bounded by

∑
1≤j≤q O(

√
j/2n/2) = O(q

√
q/2n/2) = O(

√
q3/2n/2). The

claim (2) can be shown by using the first property of Proposition 1.
A thorough proof of Proposition 5 is given in Section F in the appendix.

4.3 Proof of Theorem 3

This subsection finishes our proof of Theorem 3, by using the results given in
Sections 4.1 and 4.2.

Proof (of Theorem 3). First, let us modify LR4 in such a way that the state
updates of the third and fourth rounds are replaced with

(x2L, x2R) 7→ (x3L, x3R) := (F (x2L, x2R), x2L)

and
(x3L, x3R) 7→ (x4L, x4R) := (F ′(x3L, x3R), x3L),

respectively, where F, F ′ : {0, 1}n/2×{0, 1}n/2 → {0, 1}n/2 are random functions.
Let us denote the modified function by LR′′4 . In addition, by LR′′2(F, F ′) we denote
the function defined by (xL, xR) 7→ (F ′(F (xL, xR), xL), F (xL, xR)) (see Fig. 7).

𝑓1

𝑓2

𝐹

𝐹′

𝐹

𝐹′

Fig. 7. LR′′4 and LR′′2 (F, F ′).

Then, by applying Proposition 2 twice we can show that

Advdist
LR4,LR′′4

(q) ≤ O

(√
q3

2n/2

)
(26)

holds.
Let us modify LR′′2(F, F ′) in such a way that F is replaced with a family of

random permutations P , and denote the resulting function by LR′′2(P, F ′). Then,

26

from Proposition 5 it follows that Advdist
LR′′2 (F,F

′),LR′′2 (P,F
′)(q) ≤ O(

√
q3/2n/2)

holds. Next, let us define a function G by G(xL, xR) = F ′(xL, xR)‖P (xL, xR),
where F ′ is a random function and P is a family of random permutations (see
Fig. 8). Then, the function distribution of LR′′2(P, F ′) is the same as that of G.

𝑃

𝐹′

𝑃

𝐹′

Fig. 8. LR′′2 (P, F ′) and G.

(Note that P (xL, xR) 6= P (xL, x
′
R) always holds if xR 6= x′R. Thus, if (xL, xR) 6=

(x′L, x
′
R), the corresponding inputs to F ′ will be distinct.) Therefore we have

that Advdist
LR′′2 (P,F

′),G(q) = 0 holds. Moreover, from Proposition 5 Advdist
RF,G(q) ≤

O
(√

q3/2n/2
)

holds. Therefore Advdist
LR′′2 (P,F

′),RF(q) ≤ O
(√

q3/2n/2
)

follows,

which implies that

Advdist
LR′′4 ,RF(q) ≤ O

(√
q3

2n/2

)
(27)

holds.
Hence, from (26) and (27), it follows that Advdist

LR4,RF(A) ≤ O
(√

q3/2n/2
)

holds for any quantum adversary A that makes at most q quantum queries. In
addition, Advdist

RP,RF(A) ≤ O(q3/2n) holds by the quantum version of the PRP-
PRF switching lemma [34, Thm. 2]. Therefore

Advdist
LR4,RP(A) ≤ O

(√
q3

2n/2

)
(28)

follows, for any quantum adversary A that makes at most q quantum queries,
which completes the proof of the theorem. ut
Remark 2. In the above proof, we went back and forth between random func-
tions and (families of) random permutations, which may seem unnatural. Our
proof strategy was motivated to avoid complex arguments that are specific to
the quantum setting as much as possible. For example, it may be possible to
prove the hardness of distinguishing RF′′2(F, F ′) from RF directly by using the
compressed oracle technique with errors, but such a direct proof would be much
more complex than the proof of the hardness of distinguishing FRP from RF
(Proposition 5): We would have to treat quantum entanglements of two inde-
pendent compressed database registers when we apply the compressed oracle
technique with errors to RF′′2(F, F ′), while the proof of Proposition 5 requires
only one compressed database register.

27

5 A Matching Attack

We show that the bound given in the previous section is tight by showing that
there exists a matching attack. Again, we consider the case that all round func-
tions of LR4 are truly random functions, and show the following theorem.

Theorem 4. There exists a quantum algorithm A that makes O(2n/6) quantum

queries and satisfies AdvqPRP
LR4

(A) = Ω(1).

Proof intuition. Intuitively, our distinguishing attack is just a quantum version
of a classical collision-finding-based distinguishing attack [27]. Classical attack
distinguishes LR4 from a random permutation by finding a collision of a func-
tion that takes values in {0, 1}n/2, which requires O(

√
2n/2) = O(2n/4) queries

in the quantum setting. However, finding a collision of the function requires only
O(

3
√

2n/2) = O(2n/6) queries in the quantum setting, which enables us to make a
O(2n/6)-query quantum distinguisher. (Note that, in general, we can find a col-

lision of random functions from {0, 1}n/2 to {0, 1}n/2 with O(
3
√

2n/2) = O(2n/6)
quantum queries [34].) A complete proof is given in Section G in the appendix.

6 Concluding Remarks

This paper showed that Ω(2n/6) quantum queries are required to distinguish
the (n-bit block) 4-round Luby-Rackoff construction from a random permuta-
tion by qCPAs. In particular, the 4-round Luby-Rackoff construction becomes a
quantumly secure PRP against qCPAs if round functions are quantumly secure
PRFs. We also showed the bound is tight, i.e., we gave a qCPA that distinguishes
the 4-round Luby-Rackoff construction with O(2n/6) quantum queries. To give
security proofs, we modified the compressed oracle technique by Zhandry and
applied it.

It would be interesting to see if the provable security bound improves when we
increase the number of rounds. Also, analyzing the security of the Luby-Rackoff
constructions against qCCAs is left as an interesting open question. It would
be a challenging problem since we have to treat inverse (decryption) queries to
quantum oracles. Oracles that allow inverse quantum queries are usually much
harder to deal with than the ones that allow only forward quantum queries, and
some entirely new techniques would be required for the analysis.

References

1. Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography based on
hidden shifts. In: Advances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Proceedings, Part III. pp. 65–93 (2017)

2. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput.
37(1), 210–239 (2007)

28

3. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of
the CBC, CFB, OFB, CTR, and XTS modes of operation. In: Post-Quantum
Cryptography - 7th International Workshop, PQCrypto 2016, Proceedings. pp.
44–63 (2016)

4. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-bit block cipher suitable for multiple platforms - design and
analysis. In: Selected Areas in Cryptography, 7th Annual International Workshop,
SAC 2000, Proceedings. pp. 39–56 (2000)

5. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Proceedings. Lecture Notes
in Computer Science, vol. 7073, pp. 41–69. Springer (2011)

6. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Ad-
vances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Proceedings. pp.
592–608 (2013)

7. Bonnetain, X.: Quantum key-recovery on full AEZ. In: Selected Areas in Cryptog-
raphy - SAC 2017 - 24th International Conference, Revised Selected Papers. pp.
394–406 (2017)

8. Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and im-
plications. In: Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information Security,
Proceedings, Part I. pp. 560–592 (2018)

9. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks.
IACR Cryptology ePrint Archive 2018, 1067 (2018)

10. Czajkowski, J., Bruinderink, L.G., Hülsing, A., Schaffner, C., Unruh, D.: Post-
quantum security of the sponge construction. In: Post-Quantum Cryptography -
9th International Conference, PQCrypto 2018, Proceedings. pp. 185–204 (2018)

11. Dong, X., Dong, B., Wang, X.: Quantum attacks on some Feistel block ciphers.
IACR Cryptology ePrint Archive 2018, 504 (2018)

12. Dong, X., Li, Z., Wang, X.: Quantum cryptanalysis on some generalized Feistel
schemes. IACR Cryptology ePrint Archive 2017, 1249 (2017)

13. Dong, X., Wang, X.: Quantum key-recovery attack on Feistel structures. SCIENCE
CHINA Information Sciences 61(10), 102501:1–102501:7 (2018)

14. Hosoyamada, A., Sasaki, Y.: Quantum demiric-selçuk meet-in-the-middle attacks:
Applications to 6-round generic Feistel constructions. In: Security and Cryptog-
raphy for Networks - 11th International Conference, SCN 2018, Proceedings. pp.
386–403 (2018)

15. Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block ci-
phers: Davies-meyer and Merkle-Damg̊ard constructions. In: Advances in Cryp-
tology - ASIACRYPT 2018 - 24th International Conference on the Theory and
Application of Cryptology and Information Security, Proceedings, Part I. pp. 275–
304 (2018)

16. Ito, G., Hosoyamada, A., Matsumoto, R., Sasaki, Y., Iwata, T.: Quantum chosen-
ciphertext attacks against Feistel ciphers. To appear at CT-RSA 2019

17. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmet-
ric cryptosystems using quantum period finding. In: Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Proceedings,
Part II. pp. 207–237 (2016)

29

18. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation.
American Mathematical Society, Boston, MA, USA (2002)

19. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel ci-
pher and the random permutation. In: IEEE International Symposium on Infor-
mation Theory, ISIT 2010, Proceedings. pp. 2682–2685 (2010)

20. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher.
In: Proceedings of the International Symposium on Information Theory and its
Applications, ISITA 2012. pp. 312–316 (2012)

21. Liu, Q., Zhandry, M.: On finding quantum multi-collisions. IACR Cryptology
ePrint Archive 2018, 1096 (2018)

22. Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-
random functions (abstract). In: Advances in Cryptology - CRYPTO ’85, Proceed-
ings. p. 447 (1985)

23. Mennink, B., Szepieniec, A.: XOR of PRPs in a quantum world. In: Post-Quantum
Cryptography - 8th International Workshop, PQCrypto 2017, Proceedings. pp.
367–383 (2017)

24. National Bureau of Standards: Data encryption standard. FIPS 46 (January 1977)
25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:

10th Anniversary Edition (2010)
26. NIST: Announcing request for nominations for public-key post-quantum crypto-

graphic algorithms. National Institute of Standards and Technology (2016)
27. Patarin, J.: New results on pseudorandom permutation generators based on the

DES scheme. In: Advances in Cryptology - CRYPTO ’91, 11th Annual Interna-
tional Cryptology Conference, Proceedings. pp. 301–312 (1991)

28. Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key crypto-
graphic primitives. Quantum Information & Computation 17(1&2), 65–78 (2017)

29. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Proceed-
ings. pp. 124–134 (1994)

30. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

31. Song, F., Yun, A.: Quantum security of NMAC and related constructions - PRF
domain extension against quantum attacks. In: Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Proceedings, Part II. pp.
283–309 (2017)

32. Zhandry, M.: How to construct quantum random functions. In: 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, Proceedings. pp.
679–687 (2012)

33. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Proceedings. pp. 758–775 (2012)

34. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Information & Computation 15(7&8), 557–567 (2015)

35. Zhandry, M.: A note on quantum-secure prps. IACR Cryptology ePrint Archive
2016, 1076 (2016)

36. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. IACR Cryptology ePrint Archive 2018, 276 (2018)

A Proof of Proposition 1

This section gives a proof of Proposition 1.

30

Proof (of Proposition 1). Recall that CstOE is decomposed as

CstOE = (I⊗CH)·(I⊗Utoggle)·(I⊗IH)stO(I⊗IH∗)·(I⊗U∗toggle)·(I⊗CH
∗), (29)

and that each D is described as a bit string (b0‖α0)‖ · · · ‖(b2m−1‖α2m−1), where
bx ∈ {0, 1} and αx ∈ {0, 1}n for each x ∈ {0, 1}m.

We begin with showing the first property. Let α be an n-bit string, and
Utoggle1 := (I1 ⊗ |0n〉 〈0n|+X ⊗ (In − |0n〉 〈0n|)). Then

(I1 ⊗H⊗n) · Utoggle1 · CH |1‖α〉

= (I1 ⊗H⊗n) · Utoggle1

 ∑
u∈{0,1}n

(−1)α·u√
2n

|1‖u〉

= (I1 ⊗H⊗n)

 ∑
u∈{0,1}n

(−1)α·u√
2n

|0‖u〉

+ (I1 ⊗H⊗n)

(
1√
2n

(|1‖0n〉 − |0‖0n〉)
)

= |0‖α〉+ |ε〉 (30)

holds, where |ε〉 := (I1 ⊗H⊗n)
(

1√
2n

(|1‖0n〉 − |0‖0n〉)
)

, and

(I1 ⊗H⊗n) · Utoggle1 · CH |0‖0n〉 =
∑

y∈{0,1}n

√
1

2n
|0‖y〉 (31)

holds. Since U∗enc = ((I1 ⊗H⊗n) · Utoggle1 · CH)
⊗2m

holds by definition of U∗enc,
we have that

U∗enc |D〉 =

2m−1⊗
j=0

|ηj〉 (32)

holds, where

|ηj〉 =

{
|0‖αj〉+ |ε〉 if bj = 1,∑
y∈{0,1}n

√
1
2n |0‖y〉 if bj = 0.

Without loss of generality, we assume that bj = 1 for 0 ≤ j ≤ i − 1 and bj = 0

for j ≥ i. Let us define |η〉 :=
⊗2m−1

j=i

(∑
y∈{0,1}n

√
1/2n |0‖y〉

)
. Then we have

U∗enc |D〉 =

i−1⊗
j=0

(|0‖αj〉+ |ε〉)⊗ |η〉

=

i−1⊗
j=0

|0‖αj〉 ⊗ |η〉

31

+
∑

0≤k≤i−1

 k⊗
j=0

|0‖αj〉

⊗ |ε〉 ⊗
 i−1⊗
j=k+2

(|0‖αj〉+ |ε〉)

⊗ |η〉
=

∑
f∈comp(D)

√
1

|comp(D)|
|f〉+ |ε′〉 , (33)

where |ε′〉 =
∑

0≤k≤i−1(
⊗k

j=0 |0‖αj〉)⊗|ε〉⊗(
⊗i−1

j=k+2(|0‖αj〉+|ε〉))⊗|η〉. Because

‖ |ε〉 ‖ =
√

1/2n−1, ‖ |ε′〉 ‖ is in O(i
√

1/2n) = O(
√
i2/2n). Thus the first property

holds.
Next, we show the second property. Since now the operator CstOE does not

affect the registers of entry of x′ in D for x′ 6= x, it suffices to show that the
claim holds for the case that D is empty. In addition, without loss of generality,
we can assume that x = 0m. Now D ∪ (x, α) corresponds to the bit string
(1‖α)‖(0‖0n)‖ · · · ‖(0‖0n). We have that U∗enc = IH∗U∗toggleCH

∗ = IHUtoggleCH
and

U∗enc |D ∪ (x, α)〉 = IHUtoggle

 ∑
u∈{0,1}n

(−1)α·u√
2n

|1‖u〉

⊗(2m−1⊗
i=1

|0‖0n〉

)

= IH

 ∑
u∈{0,1}n

(−1)α·u√
2n

|0‖u〉

⊗(2m−1⊗
i=1

|0‖0n〉

)

+ IH

(
1√
2n

(|1‖0n〉 − |0‖0n〉)
)
⊗

(
2m−1⊗
i=1

|0‖0n〉

)

= |0‖α〉 ⊗

(
2m−1⊗
i=1

|0〉 |0̂n〉

)
+ |ε1〉 , (34)

where |0̂n〉 := H⊗n |0n〉 and |ε1〉 = 1√
2n

(|1〉 − |0〉) |0̂n〉 ⊗
(⊗2m−1

i=1 |0〉 |0̂n〉
)

. Thus

we have that

stO (I ⊗ U∗enc) |x, y〉 ⊗ |D ∪ (x, α)〉

= |x, y ⊕ α〉 ⊗ |0‖α〉 ⊗

(
2m−1⊗
i=1

|0〉 |0̂n〉

)
+ stO(|x, y〉 ⊗ |ε1〉). (35)

Note that, from (34) it follows that

Uenc

(
|0‖α〉 ⊗

(
2m−1⊗
i=1

|0〉 |0̂n〉

)
+ |ε1〉

)
= |D ∪ (x, α)〉 . (36)

Therefore

(I ⊗ Uenc) stO (I ⊗ U∗enc) |x, y〉 ⊗ |D ∪ (x, α)〉

32

= (I ⊗ Uenc)

(
|x, y ⊕ α〉 ⊗ |0‖α〉 ⊗

(
2m−1⊗
i=1

|0〉 |0̂n〉

)
+ stO(|x, y〉 ⊗ |ε1〉)

)

= (I ⊗ Uenc)

(
|x, y ⊕ α〉 ⊗ |0‖α〉 ⊗

(
2m−1⊗
i=1

|0〉 |0̂n〉

)
+ |x, y ⊕ α〉 ⊗ |ε1〉

)
− (I ⊗ Uenc) (|x, y ⊕ α〉 ⊗ |ε1〉) + (I ⊗ Uenc)stO(|x, y〉 ⊗ |ε1〉)

= |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉+ |ε2〉 (37)

holds, where |ε2〉 = − (I ⊗ Uenc) (|x, y ⊕ α〉 ⊗ |ε1〉) + (I ⊗Uenc)stO(|x, y〉 ⊗ |ε1〉).
Now we have that

(I ⊗ Uenc)stO(|x, y〉 ⊗ |ε1〉)

= (I ⊗ CH · Utoggle · IH)
1√
2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗ (|1〉 − |0〉)

⊗ |γ〉 ⊗

(
2m−1⊗
i=1

|0〉 |0̂n〉

)

= (I ⊗ CH · Utoggle)
1√
2n

∑
γ,δ

(−1)γ·δ

2n
|x, y ⊕ γ〉 ⊗ (|1〉 − |0〉)

⊗ |δ〉 ⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

= (I ⊗ CH)
1√
2n

∑
γ,δ

(−1)γ·δ

2n
|x, y ⊕ γ〉 ⊗ (|0〉 − |1〉)⊗ |δ〉 ⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

+ (I ⊗ CH)
2√
2n

∑
γ

1

2n
|x, y ⊕ γ〉 ⊗ (|1〉 − |0〉)⊗ |0n〉 ⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

=
1√
2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗

(
|0〉 ⊗

(
H⊗n |γ〉

)
− |1〉 ⊗ |γ〉

)
⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

+
2√
2n

∑
γ

1

2n
|x, y ⊕ γ〉 ⊗

(
|1〉 ⊗

(
H⊗n |0n〉

)
− |0〉 ⊗ |0n〉

)
⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

=
1√
2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗ |0〉 ⊗

(
H⊗n |γ〉

)
⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

− 1√
2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗ |1〉 ⊗ |γ〉 ⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

+
2√
2n

∑
γ

1

2n
|x, y ⊕ γ〉 ⊗

(∑
δ

1√
2n
|D ∪ (x, δ)〉 − |D〉

)

33

=
1√
2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗ |0〉 ⊗

(∑
δ

(−1)γ·δ√
2n
|δ〉

)
⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

− 1√
2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗ |1〉 ⊗ |γ〉 ⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

+
2

2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗

(∑
δ

1√
2n
|D ∪ (x, δ)〉 − |D〉

)

=
1√
2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗ |0〉 ⊗

∑
δ 6=0n

(−1)γ·δ√
2n
|δ〉

⊗(2m−1⊗
i=1

|0〉 |0n〉

)

+
1√
2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗ |0〉 ⊗

(
1√
2n
|0n〉

)
⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

− 1√
2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗ |1〉 ⊗ |γ〉 ⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

+
2

2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗

(∑
δ

1√
2n
|D ∪ (x, δ)〉 − |D〉

)

=
1√
2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗ |Dinvalid

γ 〉

+
1

2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗ |D〉

− 1√
2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗ |D ∪ (x, γ)〉

+
2

2n
|x〉 |0̂n〉 ⊗

(∑
δ

1√
2n
|D ∪ (x, δ)〉 − |D〉

)

= − 1√
2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗

(
|D ∪ (x, γ)〉 − |Dinvalid

γ 〉
)

+
1

2n
|x〉 |0̂n〉 ⊗

(
2
∑
δ

1√
2n
|D ∪ (x, δ)〉 − |D〉

)
, (38)

where |Dinvalid
γ 〉 is a superposition of invalid databases for each γ.

In addition, we have that

Uenc |ε1〉 = (CHUtoggleIH)
1√
2n

(|1〉 − |0〉) |0̂n〉 ⊗

(
2m−1⊗
i=1

|0〉 |0̂n〉

)

= CH
1√
2n

(|1〉 − |0〉) |0n〉 ⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

34

=
1√
2n

(|1〉 |0̂n〉 − |0〉 |0n〉)⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

=
1√
2n

∑
γ

1√
2n
|D ∪ (x, γ)〉 − 1√

2n
|D〉 (39)

holds. Thus

(I ⊗ Uenc) |x, y ⊕ α〉 ⊗ |ε1〉 =
1√
2n
|x, y ⊕ α〉

((∑
γ

1√
2n
|D ∪ (x, γ)〉

)
− |D〉

)
(40)

holds. Therefore

CstOE |x, y〉 ⊗ |D ∪ (x, α)〉
= |x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉

+
1√
2n
|x, y ⊕ α〉

(
|D〉 −

(∑
γ

1√
2n
|D ∪ (x, γ)〉

))

− 1√
2n

∑
γ

1√
2n
|x, y ⊕ γ〉 ⊗

(
|D ∪ (x, γ)〉 − |Dinvalid

γ 〉
)

+
1

2n
|x〉 |0̂n〉 ⊗

(
2
∑
δ

1√
2n
|D ∪ (x, δ)〉 − |D〉

)
(41)

holds, and this proves the second property.
Finally, we show the third property. Since now the operator CstOE does

not affect the registers of entry of x′ in D for x′ 6= x, it suffices to show that
the claim holds for the case that D has no entry. In addition, we can without
loss of generality assume that x = 0m. Now D corresponds to the bit string
(0‖0n)‖(0‖0n)‖ · · · ‖(0‖0n), and we have that

U∗enc |D〉 = IHUtoggleCH |D〉

=

 ∑
α∈{0,1}n

1√
2n
|0〉 |α〉

⊗(2m−1⊗
i=1

|0〉 |0̂n〉

)
. (42)

Hence it holds that

stO(I ⊗ U∗enc) |x, y〉 ⊗ |D〉 =
∑

α∈{0,1}n

1√
2n
|x, y ⊕ α〉 ⊗ |0〉 |α〉 ⊗

(
2m−1⊗
i=1

|0〉 |0̂n〉

)
.

(43)
In addition, we have that

(I ⊗ Uenc)stO(I ⊗ U∗enc) |x, y〉 ⊗ |D〉

35

= (I ⊗ (CHUtoggleIH))

 ∑
α∈{0,1}n

1√
2n
|x, y ⊕ α〉 ⊗ |0〉 |α〉 ⊗

(
2m−1⊗
i=1

|0〉 |0̂n〉

)
= (I ⊗ (CHUtoggle))

 ∑
α∈{0,1}n

1√
2n
|x, y ⊕ α〉

⊗

 ∑
u∈{0,1}n

(−1)α·u√
2n

|0‖u〉

⊗(2m−1⊗
i=1

|0〉 |0n〉

)
= (I ⊗ CH)

 ∑
α∈{0,1}n

1√
2n
|x, y ⊕ α〉

⊗

 ∑
u∈{0,1}n

(−1)α·u√
2n

|1〉 |u〉

⊗(2m−1⊗
i=1

|0〉 |0n〉

)
+ (I ⊗ CH)

 ∑
α∈{0,1}n

1√
2n
|x, y ⊕ α〉

⊗
(

1√
2n

(|0〉 − |1〉)⊗ |0n〉
)
⊗

(
2m−1⊗
i=1

|0〉 |0n〉

))

=
∑

α∈{0,1}n

1√
2n
|x, y ⊕ α〉 ⊗ |1〉 |α〉 ⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

+
∑

α∈{0,1}n

1√
2n
|x, y ⊕ α〉 ⊗

(
1√
2n

(|0〉 |0n〉 − |1〉 |0̂n〉)
)
⊗

(
2m−1⊗
i=1

|0〉 |0n〉

)

=
∑

α∈{0,1}n

1√
2n
|x, y ⊕ α〉 ⊗ |D ∪ (x, α)〉

+
1√
2n
|x〉 |0̂n〉 ⊗

(
|D〉 −

∑
γ

1√
2n
|D ∪ (x, γ)〉

)
(44)

holds. Therefore the third property also holds. ut

B Proof of Lemma 1

This section proves Lemma 1. First we show the following lemma, which shows
that the behavior ofO′UP.3 forDF without overlap is the same as that ofOUP.3 for
[DF]3. In this section we omit writing the additional q qubits that are introduced
to write detection results for LR3-det and LR′3-det, and the 2n ancillary qubits
that are used to compute the intermediate states after the first and second rounds
(see (21) and (22)), as long as they are |0q〉 and |02n〉, respectively, for short.

36

Lemma 3. It holds that

〈x′2L, x′2R, y′L, y′R| ⊗ 〈D′F |O′UP.3 |x2L, x2R, yL, yR〉 ⊗ |DF 〉
= 〈x′2L, x′2R, y′L, y′R| ⊗ 〈[D′F]3|OUP.3 |x2L, x2R, yL, yR〉 ⊗ |[DF]3〉 (45)

for any x2L, x2R, yL, yR, x
′
2L, x

′
2R, y

′
L, y
′
R ∈ {0, 1}n/2 and any valid databases DF

and D′F without overlap.

Proof. It suffices to consider the case that x′2L = x2L, x′2R = x2R, and y′R = yR.
Since the database O′UP.3 affects only the entry of (x2L, x2R) in DF when it acts
on |x2L, x2R, yL, yR〉 ⊗ |DF 〉, it suffices to show the claim for the cases that (1)
DF has only a single entry (x2L, x2R, α), or (2) DF has no entry.

First we show the claim for the first case that DF = {(x2L, x2R, α)}. In this
case, by Proposition 1 we have that

O′UP.3 |x2L, x2R, yL, yR〉 ⊗ |DF 〉
= |x2L, x2R, yL ⊕ α, yR ⊕ x2L〉 ⊗ |(x2L, x2R, α)〉

+
1√
2n
|x2L, x2R, yL ⊕ α, yR ⊕ x2L〉

(
|∅〉 −

(∑
γ

1√
2n
|(x2L, x2R, γ)〉

))

− 1√
2n

∑
γ

1√
2n
|x2L, x2R, yL ⊕ γ, yR ⊕ x2L〉 ⊗ |(x2L, x2R, γ)〉

+
1

2n
|x2L, x2R〉 |0̂n〉 |yR ⊕ x2L〉 ⊗

(
2
∑
δ

1√
2n
|(x2L, x2R, δ)〉 − |∅〉

)
+ |invalid〉 (46)

holds, where ∅ is the empty database and |invalid〉 is a vector containing invalid
databases. In addition, we have that [DF]3 = {(x2L, α⊕ x2R)}, and

OUP.3 |x2L, x2R, yL, yR〉 ⊗ |[DF]3〉
= |x2L, x2R, yL ⊕ α, yR ⊕ x2L〉 ⊗ |(x2L, α⊕ x2R)〉

+
1√
2n
|x2L, x2R, yL ⊕ α, yR ⊕ x2L〉

(
|∅〉 −

(∑
γ

1√
2n
|(x2L, γ)〉

))

− 1√
2n

∑
γ

1√
2n
|x2L, x2R, yL ⊕ γ ⊕ x2R, yR ⊕ x2L〉 ⊗ |(x2L, γ)〉

+
1

2n
|x2L, x2R〉 |0̂n〉 |yR ⊕ x2L〉 ⊗

(
2
∑
δ

1√
2n
|(x2L, δ)〉 − |∅〉

)
+ |invalid′〉

= |x2L, x2R, yL ⊕ α, yR ⊕ x2L〉 ⊗ |[(x2L, x2R, α)]3〉

+
1√
2n
|x2L, x2R, yL ⊕ α, yR ⊕ x2L〉

(
|∅〉 −

(∑
γ

1√
2n
|[(x2L, x2R, γ ⊕ x2R)]3〉

))

37

− 1√
2n

∑
γ

1√
2n
|x2L, x2R, yL ⊕ γ ⊕ x2R, yR ⊕ x2L〉 ⊗ |[(x2L, x2R, γ ⊕ x2R)]3〉

+
1

2n
|x2L, x2R〉 |0̂n〉 |yR ⊕ x2L〉 ⊗

(
2
∑
δ

1√
2n
|[(x2L, x2R, δ ⊕ x2R)]〉 − |∅〉

)
+ |invalid′〉

= |x2L, x2R, yL ⊕ α, yR ⊕ x2L〉 ⊗ |[(x2L, x2R, α)]3〉

+
1√
2n
|x2L, x2R, yL ⊕ α, yR ⊕ x2L〉

(
|∅〉 −

(∑
γ

1√
2n
|[(x2L, x2R, γ)]3〉

))

− 1√
2n

∑
γ

1√
2n
|x2L, x2R, yL ⊕ γ, yR ⊕ x2L〉 ⊗ |[(x2L, x2R, γ)]3〉

+
1

2n
|x2L, x2R〉 |0̂n〉 |yR ⊕ x2L〉 ⊗

(
2
∑
δ

1√
2n
|[(x2L, x2R, δ)]3〉 − |∅〉

)
+ |invalid′〉 , (47)

where |invalid′〉 is a vector containing invalid databases. From (46) and (47), the
claim immediately follows for the first case that DF = {(x2L, x2R, α)}.

We can similarly show that the claim holds for the second case that DF is
empty by straightforward calculations using the third property of Proposition 1.

ut

Next we show the following lemma, which shows that the behavior of LR′3 for
good databases is the same as that of LR3.

Lemma 4. It holds that

〈x′0L, x′0R, y′L, y′R| ⊗ 〈D′1, D′2, D′F |OLR′3
|x0L, x0R, yL, yR〉 ⊗ |D1, D2, DF 〉

= 〈x′0L, x′0R, y′L, y′R| ⊗ 〈D′1, D′2, [D′F]3|OLR3 |x0L, x0R, yL, yR〉 ⊗ |D1, D2, [DF]3〉
(48)

for any x0L, x0R, yL, yR, x
′
0L, x

′
0R, y

′
L, y
′
R ∈ {0, 1}n/2 and any valid and good

databases (D1, D2, DF) and (D′1, D
′
2, D

′
F) for LR′3.

Proof. Note that OUP.i = O∗UP.i for i = 1, 2, and recall that

OLR3
= (OUP.2OUP.1)∗OUP.3(OUP.2OUP.1)

and

OLR′3
= (OUP.2OUP.1)∗O′UP.3(OUP.2OUP.1)

hold (see Fig. 6). Since OUP.1 and OUP.2 do not affect the D3 and DF registers,
the claim follows from Lemma 3. ut

Next we show Lemma 1. Actually we prove a stronger claim below.

38

Lemma 5. For each i, there exists a complex number a
(i)
xyzD1D2DF

for each tuple
(x, y, z) (here x and y correspond to the query and answer registers of A, and z
corresponds to the remaining register of A), such that∑

x,y,z
(D1,D2,DF):good

|a(i)xyzD1D2DF
|2 ≤ 1

holds, in addition that

|ψ
′good
i 〉 =

∑
xyz

(D1,D2,DF):good

a
(i)
xyzD1D2DF

|x, y, z〉 ⊗ |D1〉 |D2〉 |DF 〉 (49)

and

|ψgood
i 〉 =

∑
xyz

(D1,D2,DF):good

a
(i)
xyzD1D2DF

|x, y, z〉 ⊗ |D1〉 |D2〉 |[DF]3〉 (50)

hold. In particular,

trD123

(
|ψgood
i 〉

)
= trD12F

(
|ψ
′good
i 〉

)
(51)

holds for 1 ≤ i ≤ q + 1.

Proof. We show the claim by induction. Since all databases are empty before
the first query, the claim holds for i = 2 (i.e., the claim holds for |ψgood

1 〉 and

|ψ
′good
1 〉). Assume that the claim holds for i. We show the claim also holds for

(i+ 1).
Recall that for each good database (D1, D2, D3) for LR3, there exists a

unique DF without overlap such that [DF]3 = D3 and (D1, D2, DF) is a good
database for LR′3, by definition of good databases. Similarly, for each good
database (D1, D2, DF) for LR′3, (D1, D2, [DF]3) becomes a good database for

LR3. Thus, there exists a
(i+1)
xyzD1D2DF

and b
(i+1)
xyzD1D2DF

for each tuple (x, y, z) and
good (D1, D2, DF) such that∑

x,y,z
(D1,D2,DF):good

|a(i+1)
xyzD1D2DF

|2,
∑
x,y,z

(D1,D2,DF):good

|b(i+1)
xyzD1D2DF

|2 ≤ 1.

holds, in addition that

|ψ
′good
i+1 〉 =

∑
xyz

(D1,D2,DF):good

a
(i+1)
xyzD1D2DF

|x, y, z〉 ⊗ |D1〉 |D2〉 |DF 〉 (52)

and

|ψgood
i+1 〉 =

∑
xyz

(D1,D2,DF):good

b
(i+1)
xyzD1D2DF

|x, y, z〉 ⊗ |D1〉 |D2〉 |[DF]3〉 (53)

39

hold.
Since |ψ

′good
i+1 〉 = (I −Πbad) ·OLR′3

|ψ
′good
i 〉 holds, we have that

a
(i+1)
xyzD1D2DF

= 〈x, y, z| 〈D1, D2, DF | (I −Πbad) ·OLR′3
|ψ
′good
i 〉

=
∑
x′y′z′

(D′1,D
′
2,D
′
F):good

a
(i)
x′y′z′D′1D

′
2D
′
F
〈x, y, z| 〈D1, D2, DF |OLR′3

|x′, y′, z′〉 |D′1, D′2, D′F 〉

(54)

holds for good (D1, D2, DF). In addition, since |ψgood
i+1 〉 = (I −Πbad)·OLR3 |ψ

good
i 〉

holds, we have that

b
(i+1)
xyzD1D2DF

= 〈x, y, z| 〈D1, D2, [DF]3| (I −Πbad) ·OLR3
|ψgood
i−1 〉

=
∑
x′y′z′

(D′1,D
′
2,D
′
F):good

a
(i)
x′y′z′D′1D

′
2D
′
F
〈x, y, z| 〈D1, D2, [DF]3|OLR′3

|x′, y′, z′〉 |D′1, D′2, [D′F]3〉

(55)

holds for good (D1, D2, DF).
From Lemma 4, the right hand side of (54) is equal to that of (55). Thus

b
(i+1)
xyzD1D2DF

= a
(i+1)
xyzD1D2DF

holds for each x, y, z and each good (D1, D2, DF).
Therefore the claim also holds for (i+ 1), which completes the proof. ut

C Proof of Lemma 2

Proof (of Lemma 2). We show that the claim holds for LR3 and |ψgood
j 〉. The

claim for LR′3 and |ψ
′good
j 〉 can be shown in a similar way. In this proof we omit

writing the additional q qubits that are introduced to write detection results
for LR3-det and LR′3-det, and the 2n ancillary qubits that are used to compute
the intermediate states after the first and second rounds (see (21) and (22)),
as long as they are |0q〉 and |02n〉, respectively, for short. Remember that the
oracle of LR3 is decomposed as OLR3

= OUP.1 · OUP.2 · OUP.3 · OUP.2 · OUP.1.
Since the computational basis is the orthonormal basis, it suffices to show that
the claim holds for the case |ψgood

j 〉 = |x0, y, z〉 ⊗ |D1〉 |D2〉 |D3〉 for each x =
x0L‖x0R, y = yL‖yR, z (x and y correspond to A’s first and second n-qubit
register, respectively, and z correspond to A’s remaining register), and each
good database (D1, D2, D3). Note that |D1|, |D2| ≤ 2(j − 1) and |D3| ≤ j − 1
hold, since each query to the compressed oracle with errors CstOE affects only
the qubits that correspond to a single entry of each database. Since OLR3 does
not affect the |z〉 register, for simplicity, we omit writing it in this proof.

We consider three separate cases I, II, and III, and study how the quantum
state will change when OUP.1, OUP.2, OUP.3, OUP.2, OUP.1, and Πbad act on

40

|ψgood
j 〉, in a sequential order. Case I is the one that (x0L, α) ∈ D1 and (x0R ⊕

α, β) ∈ D2 for some α and β. Case II is the one that (x0L, α) ∈ D1 for some α
and there is no entry of x0R⊕α in D2. Case III is the one that there is no entry
of x0L in D1.

Remark 3. Intuitively, Case I is the case that the queries to f1 and f2 are not
fresh. Case II is the one that the query to f1 is not fresh but the query to f2 is
fresh. Case III is the one that the query to f1 is fresh.

Case I: (x0L, α) ∈ D1 and (x0R ⊕ α, β) ∈ D2 for some α and β.
In this case, after the first query to OUP.2, by Proposition 1 the whole quantum
state becomes

|x0L, x0R, yL, yR〉 ⊗ |D1〉 |D2〉 |D3〉 ⊗ |x1L, x1R〉 ⊗ |x2L, x2R〉 , (56)

with an error in O(
√

1/2n/2). Here x1L = x0R ⊕ α, x1R = x0L, x2L = x1R ⊕ β,
and x2R = x1L. We further separate Case I into two sub-cases Case I-i and Case
I-ii.
Case I-i: (x2L, γ) ∈ D3 for some γ.
Let x3L := x2R ⊕ γ and x3R := x2L. Then, after the final query to OUP.1, by
Proposition 1 the whole quantum state becomes

|x0L, x0R, yL ⊕ x3L, yR ⊕ x3L〉 ⊗ |D1〉 |D2〉 |D3〉 (57)

with errors in O(
√

1/2n/2). In particular, the database remains good with an er-

ror inO(
√

1/2n/2). ThereforeΠbad·OLR3 |ψ
good
j 〉 = 0 with an error inO(

√
1/2n/2),

which implies that the claim holds for this Case I-i.
Case I-ii: There is no entry of x2L in D3.
In this case, after the query to OUP.3, by Proposition 1 the whole quantum state
becomes∑

γ

√
1

2n/2
|x0L, x0R, yL ⊕ (x2R ⊕ γ), yR ⊕ x2L〉

⊗ |D1〉 |D2〉 |D3 ∪ (x2L, γ)〉 ⊗ |x1L, x1R〉 |x2L, x2R〉 (58)

with an error in O(
√

1/2n/2). Thus, after the final query to OUP.1, each normal-
ized summand of (58) becomes

|x0L, x0R, yL ⊕ (x2R ⊕ γ), yR ⊕ x2L〉 ⊗ |D1〉 |D2〉 |D3 ∪ (x2L, γ)〉 (59)

with an error in O(
√

1/2n/2). In particular, the database of (59) remains good.

Therefore (59) becomes 0 with an error in O(
√

1/2n/2) after the operation of

Πbad, with an error in O(
√

1/2n/2). Since the summands of (58) are orthogonal

to each other, Πbad ·OLR3
|ψgood
j 〉 = 0 with an error in O(

√
1/2n/2), which implies

that the claim holds for this Case I-ii.

41

Case II: (x0L, α) ∈ D1 for some α and there is no entry of x0R⊕α in D2.
Again, let x1L := x0R ⊕ α and x1R := x0L. In this case, after the first query to
OUP.2, by Proposition 1 the whole quantum state becomes∑

β

√
1

2n/2
|x0L, x0R, yL, yR〉

⊗ |D1〉 |D2 ∪ (x1L, β)〉 |D3〉 ⊗ |x1L, x1R〉 |β ⊕ x1R, x2R〉

=
∑

β: ∃an entry of
β⊕x1R in D3

√
1

2n/2
|x0L, x0R, yL, yR〉

⊗ |D1〉 |D2 ∪ (x1L, β)〉 |D3〉 ⊗ |x1L, x1R〉 |β ⊕ x1R, x2R〉 (60)

+
∑

β: 6 ∃ an entry of
β⊕x1R in D3

√
1

2n/2
|x0L, x0R, yL, yR〉

⊗ |D1〉 |D2 ∪ (x1L, β)〉 |D3〉 ⊗ |x1L, x1R〉 |β ⊕ x1R, x2R〉 , (61)

where x2R = x1L, with an error in O(
√

1/2n/2). Below we further separate Case
II into sub-cases Case II-i and Case II-ii. Case II-i is the case that there exists an
entry of β⊕x1R in D3, which corresponds to the term (60). Case II-ii is the case
that there exists no entry of β⊕x1R in D3, which corresponds to the term (61).
Case II-i: (β ⊕ x1R, γ) ∈ D3 for some γ.
Let us denote the term (60) by |II-i〉. Then, since |D3| ≤ j − 1 holds,

|{β| ∃an entry of β ⊕ x1R in D3}| ≤ j − 1

follows. In addition, since the summands of (60) are orthogonal to each other,

‖ |II-i〉 ‖2 ≤ O(j/2n/2) holds. Therefore ‖ |II-i〉 ‖ ≤ O(
√
j/2n/2) follows.

Case II-ii: There is no entry of β ⊕ x1R in D3.
After the operation of OUP.3, by Proposition 1 each normalized summand of the
term (61) becomes

∑
γ

√
1

2n/2
|x0L, x0R, yL ⊕ (x2R ⊕ γ), yR ⊕ x2L〉

⊗ |D1〉 |D2 ∪ (x1L, β)〉 |D3 ∪ (x2L, γ)〉
⊗ |x1L, x1R〉 |x2L, x2R〉 (62)

with an error in O(
√

1/2n/2), where x2L = β ⊕ x1R. Thus, after the last opera-
tions of OUP.2 and OUP.1, each normalized summand of the term (62) becomes

|x0L, x0R, yL ⊕ (x2R ⊕ γ), yR ⊕ x2L〉 ⊗ |D1〉 |D2 ∪ (x1L, β)〉 |D3 ∪ (x2L, γ)〉
(63)

with an error in O(
√

1/2n/2). In particular, the database of the term (63) is good

with an error in O(
√

1/2n/2), which implies that the term (63) becomes 0 with

42

an error in O(
√

1/2n/2) after the operation of Πbad. Hence, due to orthogonality
of each summands, the term (62) will be 0 after the operations of OUP.2, OUP.1,

and Πbad, with an error in O(
√

1/2n/2). Therefore, due to orthogonality of each
summands, the term (61) will be 0 after the operations of OUP.3, OUP.2, OUP.1,

and Πbad, with an error in O(
√

1/2n/2).
Combining analyses of Cases II-i and II-ii,∥∥∥Πbad ·OLR3

|ψgood
j 〉

∥∥∥ ≤ O(√ j

2n/2

)
(64)

follows in Case II.
Case III: there is no entry of x0L in D1.
In this case, after the first query to OUP.1, by Proposition 1 the whole quantum
state becomes∑

α

√
1

2n/2
|x0L, x0R, yL, yR〉 ⊗ |D1 ∪ (x0L, α)〉 |D2〉 |D3〉 ⊗ |x0R ⊕ α, x0L〉

=
∑

α:∃(α⊕x0R)-entry in D2

√
1

2n/2
|x0L, x0R, yL, yR〉

⊗ |D1 ∪ (x0L, α)〉 |D2〉 |D3〉 ⊗ |x0R ⊕ α, x0L〉 (65)

+
∑

α:6∃(α⊕x0R)-entry in D2

√
1

2n/2
|x0L, x0R, yL, yR〉

⊗ |D1 ∪ (x0L, α)〉 |D2〉 |D3〉 ⊗ |x0R ⊕ α, x0L〉 (66)

with an error in O(
√

1/2n/2).
Below we further separate Case III into sub-cases Case III-i and Case III-

ii. Case III-i is the case that there exists an entry of α ⊕ x0R in D2, which
corresponds to the term (65). Case III-ii is the case that there exists no entry of
α⊕ x0R in D2, which corresponds to the term (66).
Case III-i: (α⊕ x0R, β) ∈ D2 for some β.
Since |D2| ≤ 2(j − 1), we have that∥∥∥∥∥∥

∑
α:∃(α⊕x0R)-entry in D2

√
1

2n/2
|x0L, x0R, yL, yR〉

⊗ |D1 ∪ (x0L, α)〉 |D2〉 |D3〉 ⊗ |x0R ⊕ α, x0L〉

∥∥∥∥∥
2

=
1

2n/2
· |{α|∃β s.t. (α⊕ x0R, β) ∈ D2}| ≤ O

(
j

2n/2

)
(67)

holds. Hence the norm of (65) is upper bounded by O(
√
j/2n/2).

43

Case III-ii: There is no entry of (α⊕ x0R) in D2.
Let x1L := x0R ⊕ α and x1R := x0L. After the operation of the OUP.2, each
normalized summand of (66) changes to

∑
β

√
1

2n/2
|x0L, x0R, yL, yR〉

⊗ |D1 ∪ (x0L, α)〉 |D2 ∪ (x1L, β)〉 |D3〉 ⊗ |x1L, x1R〉 |x1R ⊕ β, x1L〉

=
∑

β:∃(β⊕x1R)-entry in D3

√
1

2n/2
|x0L, x0R, yL, yR〉

⊗ |D1 ∪ (x0L, α)〉 |D2 ∪ (x1L, β)〉 |D3〉 ⊗ |x1L, x1R〉 |x1R ⊕ β, x1L〉
(68)

+
∑

β: 6∃(β⊕x1R)-entry in D3

√
1

2n/2
|x0L, x0R, yL, yR〉

⊗ |D1 ∪ (x0L, α)〉 |D2 ∪ (x1L, β)〉 |D3〉 ⊗ |x1L, x1R〉 |x1R ⊕ β, x1L〉 .
(69)

Since |D3| ≤ j − 1, we can show that the norm of (68) is in O(
√
j/2n/2), in the

same way as we showed the norm of (65) is in O(
√
j/2n/2).

Next we focus on the term (69). After the operation of OUP.3, each normalized
summand of (69) becomes

∑
γ

√
1

2n/2
|x0L, x0R, yL ⊕ (γ ⊕ x2R), yR ⊕ x2L〉

⊗ |D1 ∪ (x0L, α)〉 |D2 ∪ (x1L, β)〉 |D3 ∪ (x2L, γ)〉 ⊗ |x1L, x1R〉 |x2L, x2R〉 ,
(70)

where x2L = x1R ⊕ β and x2R = x1L. Note that the database of each summand
of (70) is good. Thus, after the operations of OUP.2, OUP.1, and Πbad, each

summand of (70) becomes 0 with an error in O(
√

1/2n/2), by Proposition 1.
Therefore, since the summands of (70) are orthogonal to each other, (70) be-

comes 0 with an error in O(
√

1/2n/2) after the operations of OUP.2, OUP.1, and

Πbad. Hence it follows that (69) becomes 0 with an error in O(
√

1/2n/2) after
the operations of OUP.3, OUP.2, OUP.1, and Πbad, since the summands of (69)
are orthogonal to each other.

From analyses of Cases III-i and III-ii, it follows that

∥∥∥Πbad ·OLR3
|ψgood
j 〉

∥∥∥ ≤ O(√ j

2n/2

)
(71)

also holds in Case III. ut

44

D Proof of Proposition 3

Proof (of Proposition 3). Recall that |ψi〉 and |ψ′i〉 are the states just before
the i-th query to LR3-det and LR′3-det, respectively. By abuse of notation, we
let |ψ(q+1)〉 , |ψ′(q+1)〉 denote the quantum states (Uq ⊗ I)OLR3-det |ψq〉 and (Uq ⊗
I)OLR′3-det

|ψ′q〉, respectively. Moreover, let |φ(q+1)〉 , |φ′(q+1)〉 be the states just
before the final measurements for the cases that the adversary A runs relative
to LR3-det and LR′3-det, respectively. Since now we are considering that the
random functions f1, f2, f3, F are implemented by the compressed standard
oracle with errors, there are unitary operators U123

FinDec and U12F
FinDec that acts

on database registers such that |φq+1〉 = (I ⊗ U123
FinDec) |ψq+1〉 and |φ′q+1〉 =

(I ⊗ U12F
FinDec) |ψ′q+1〉.

First, we have that

Advdist
LR3-det,LR′3-det

(A) ≤ td
(
trD123

(
|φ(q+1)〉

)
, trD12F

(
|φ′(q+1)〉

))
= td

(
trD123

(
|ψ(q+1)〉

)
, trD12F

(
|ψ′(q+1)〉

))
(72)

holds.
Now we show the following claim.

Claim. Let ρ be a mixed state of a joint quantum system HA ⊗ HB . Let Π :
HB → HB be an orthogonal projector and UA1, UA2 : HA → HA be unitary
operators. Define a unitary operator U : HA ⊗ HB → HA ⊗ HB by U :=
UA1 ⊗Π + UA2 ⊗ (I −Π). Then

trB (UρU∗) = trB ((UA1 ⊗Π)ρ(UA1 ⊗Π)∗)

+ trB ((UA2 ⊗ (I −Π))ρ(UA2 ⊗ (I −Π))∗) (73)

holds, where trB is the partial trace over HB . In particular,

trB(U |ψ〉) = trB((UA1 ⊗Π) |ψ〉) + trB((UA2 ⊗ (I −Π)) |ψ〉) (74)

holds for any pure state |ψ〉 of HA ⊗HB .

Proof. First, we have that

trB (UρU∗) = trB ((UA1 ⊗Π)ρ(UA1 ⊗Π)∗)

+ trB ((UA2 ⊗ (I −Π))ρ(UA2 ⊗ (I −Π))∗)

+ trB ((UA1 ⊗Π)ρ(UA2 ⊗ (I −Π))∗)

+ trB ((UA2 ⊗ (I −Π))ρ(UA1 ⊗Π)∗) (75)

holds. Moreover, since (UA1 ⊗Π)ρ(UA2 ⊗ (I −Π))∗ = (UA1 ⊗ I)(I ⊗Π)ρ(I ⊗
(I −Π))∗(UA2 ⊗ I)∗ holds, it follows that

trB ((UA1 ⊗Π)ρ(UA2 ⊗ (I −Π))∗) = UA1trB
(
(I ⊗Π) ρ (I ⊗ (I −Π))

∗)
U∗A2

= UA1trB
(
(I ⊗Π) (I ⊗ (I −Π))

∗
ρ
)
U∗A2

45

= UA1trB (I ⊗ (Π · (I −Π))ρ)U∗A2

= 0, (76)

and similarly we have that

trB ((UA2 ⊗ (I −Π))ρ(UA1 ⊗Π)∗) = 0. (77)

The claim follows from (75), (76), and (77). ut

Recall that (I − Π [i−1]
flipped) |ψi〉 and (I − Π [i−1]

flipped) |ψ′i〉 are denoted by |ψgood
i 〉 and

|ψ
′good
i 〉, respectively. In addition, let us denote Π

[i−1]
flipped |ψi〉 and Π

[i−1]
flipped |ψ′i〉 by

|ψbad
i 〉 and |ψ′bad

i 〉, respectively. Since |ψi〉 = Ui−1 ·OLR3-det |ψi−1〉 and

OLR3-det = (Πbad ⊗ Ii−1 ⊗X + (I −Πbad)⊗ Ii−1 ⊗ I1)

· (OLR3 ⊗ Ii−1 ⊗ I1) · ((I −Π [i−1]
flipped)⊗ I1)

+Π
[i−1]
flipped ⊗ I1 (78)

holds, from the above claim it follows that

trD123
(|ψi〉) = trD123

(
Ui−1 · (Πbad ⊗X + (I −Πbad)⊗ I1) ·OLR3

· |ψgood
i−1 〉

)
+ trD123

(
Ui−1 · |ψbad

i−1〉
)

= trD123

(
Ui−1 · (Πbad ⊗X) ·OLR3

· |ψgood
i−1 〉

)
trD123

(
Ui−1 · ((I −Πbad)⊗ I1) ·OLR3

· |ψgood
i−1 〉

)
+ trD123

(
Ui−1 · |ψbad

i−1〉
)

+ ρ+ ρ∗, (79)

where

ρ = trD123

(
Ui−1 · (Πbad ⊗X) ·OLR3 · |ψ

good
i−1 〉 〈ψ

good
i−1 |

·O∗LR3
· ((I −Πbad)⊗ I1)

∗ · U∗i−1
)
. (80)

Note that, for any Hilbert space L1 and L2, and any Hermite operator A on
L1⊗L2, ‖trL2(ρ)‖tr = ‖ρ‖tr holds. In addition, ‖ |ψ〉 〈φ| ‖tr ≤ ‖ |ψ〉 ‖ ·‖ |φ〉 ‖ holds
for any vectors |ψ〉 and |φ〉. Thus we have that

‖ρ‖tr

=
∥∥∥Ui−1 · (Πbad ⊗X) ·OLR3

· |ψgood
i−1 〉 〈ψ

good
i−1 | ·O

∗
LR3
· ((I −Πbad)⊗ I1)

∗ · U∗i−1
∥∥∥

tr

≤
∥∥∥(Πbad ⊗X) ·OLR3

· |ψgood
i−1 〉

∥∥∥ · ∥∥∥((I −Πbad)⊗ I1) ·OLR3
· |ψgood

i−1 〉
∥∥∥

≤
∥∥∥(Πbad ⊗X) ·OLR3

· |ψgood
i−1 〉

∥∥∥ ≤ O(√ i

2n/2

)
, (81)

where we used the claim of Lemma 2 for the last inequality.

46

Similarly, for |ψ′i〉 we have that

trD123
(|ψ′i〉) = trD123

(
Ui−1 · (Πbad ⊗X) ·OLR3

· |ψ
′good
i−1 〉

)
trD123

(
Ui−1 · ((I −Πbad)⊗ I1) ·OLR3

· |ψ
′good
i−1 〉

)
+ trD123

(
Ui−1 · |ψbad

i−1〉
)

+ ρ′ + ρ′
∗
, (82)

where

ρ′ = trD123

(
Ui−1 · (Πbad ⊗X) ·OLR3 · |ψ

′good
i−1 〉 〈ψ

′good
i−1 |

·O∗LR3
· ((I −Πbad)⊗ I1)

∗ · U∗i−1
)
, (83)

and

‖ρ′‖tr ≤ O

(√
i

2n/2

)
(84)

holds.
Now we have that

td (trD123 (|ψi〉) , trD12F
(|ψ′i〉))

≤ td
(
trD123

(
Ui−1 ((I −Πbad)⊗ I1) ·OLR3

|ψgood
i−1 〉

)
,

trD12F

(
Ui−1 ((I −Πbad)⊗ I1) ·OLR′3

|ψ
′good
i−1 〉

))
+ td

(
trD123

(
Ui−1 (Πbad ⊗X) ·OLR3

|ψgood
i−1 〉

)
,

trD12F

(
Ui−1 (Πbad ⊗X) ·OLR′3

|ψ
′good
i−1 〉

))
+ td

(
trD123

(
Ui−1 |ψbad

i−1〉
)
, trD12F

(
Ui−1 |ψ

′bad
i−1 〉

))
+ ‖ρ‖tr + ‖ρ∗‖tr + ‖ρ′‖tr + ‖ρ′∗‖tr. (85)

In addition, since Ui−1 affects only A’s register, and td is invariant under unitary
transformations, we have that

td (trD123
(|ψi〉) , trD12F

(|ψ′i〉))

≤ td
(
trD123

(
((I −Πbad)⊗ I1) ·OLR3 |ψ

good
i−1 〉

)
,

trD12F

(
((I −Πbad)⊗ I1) ·OLR′3

|ψ
′good
i−1 〉

))
+ td

(
trD123

(
(Πbad ⊗X) ·OLR3 |ψ

good
i−1 〉

)
,

trD12F

(
(Πbad ⊗X) ·OLR′3

|ψ
′good
i−1 〉

))
+ td

(
trD123

(
|ψbad
i−1〉

)
, trD12F

(
|ψ
′bad
i−1 〉

))
+O

(√
i

2n/2

)
(86)

47

holds.
From Lemma 1, it follows that

trD123

(
|ψgood
i 〉

)
= trD12F

(
|ψ
′good
i 〉

)
(87)

holds for any 1 ≤ i ≤ q + 1. Moreover, ((I −Πbad)⊗ I1) ·OLR3
|ψgood
i−1 〉 = |ψgood

i 〉
and ((I −Πbad)⊗ I1) ·OLR3

|ψ
′good
i−1 〉 = |ψ

′good
i 〉 hold. Thus

td
(
trD123

(
((I −Πbad)⊗ I1) ·OLR3 |ψ

good
i−1 〉

)
,

trD12F

(
((I −Πbad)⊗ I1) ·OLR′3

|ψ
′good
i−1 〉

))
= 0 (88)

holds. In addition, from the claim in p. 45 it follows that

trD123
(|ψi−1〉) = trD123

(
|ψgood
i−1 〉

)
+ trD123

(
|ψbad
i−1〉

)
and

trD12F

(
|ψ′i−1〉

)
= trD12F

(
|ψ
′good
i−1 〉

)
+ trD12F

(
|ψ
′bad
i−1 〉

)
hold, which implies that

td
(
trD123 (|ψi−1〉) , trD12F

(
|ψ′i−1〉

))
= td

(
trD123

(
|ψbad
i−1〉

)
, trD12F

(
|ψ
′bad
i−1 〉

))
(89)

holds.
From (86), (88), and (89), we can show that

td (trD123
(|ψi〉) , trD12F

(|ψ′i〉))

≤ td
(
trD123

(
(Πbad ⊗X) ·OLR3

|ψgood
i−1 〉

)
,

trD12F

(
(Πbad ⊗X) ·OLR′3

|ψ
′good
i−1 〉

))
+ td

(
trD123 (|ψi−1〉) , trD12F

(
|ψ′i−1〉

))
+O

(√
i

2n/2

)
≤
∥∥∥trD123

(
(Πbad ⊗X) ·OLR3 |ψ

good
i−1 〉

)∥∥∥
tr

+
∥∥∥trD12F

(
(Πbad ⊗X) ·OLR′3

|ψ
′good
i−1 〉

)∥∥∥
tr

+ td
(
trD123 (|ψi−1〉) , trD12F

(
|ψ′i−1〉

))
+O

(√
i

2n/2

)

≤ td
(
trD123 (|ψi−1〉) , trD12F

(
|ψ′i−1〉

))
+O

(√
i

2n/2

)
(90)

holds, where we used the claim of Lemma 2 again for the last inequality. There-
fore, by induction it follows that

td (trD123
(|ψi〉) , trD12F

(|ψ′i〉)) ≤
∑

1≤j≤i−1

O

(√
j

2n/2

)
≤ O

(√
i3

2n/2

)
(91)

48

for each 1 ≤ i ≤ q + 1. The claim of the proposition follows from (72) and (91).
ut

E Proof of Proposition 4

Proof (of Proposition 4). We give a proof for LR3 and LR3-det. The claim for
LR′3 and LR′3-det can be proven in the same way. Let |ηi〉 and |ψi〉 be the states
just before A makes the i-th query, when A runs relative to LR3 and LR3-det,
respectively. By abuse of notation, we let |η(q+1)〉 , |ψ(q+1)〉 denote the quantum
states (Uq ⊗ I)OLR3 |ηq〉 and (Uq ⊗ I)OLR3-det |ψq〉, respectively. Then we have
that |η1〉 = |ψ1〉. Moreover, let |ξ(q+1)〉 , |φ(q+1)〉 be the states just before the
final measurements for the cases that the adversary A runs relative to LR3 and
LR3-det, respectively. Since now we are considering that the random functions
f1, f2, and f3 are implemented by the compressed standard oracle with errors,
there is a unitary operator U123

FinDec that acts on database registers such that
|ξq+1〉 = (I ⊗ U123

FinDec) |ηq+1〉 and |φq+1〉 = (I ⊗ U123
FinDec) |ψq+1〉.

In addition, let us define an operator ÔLR3
by

ÔLR3
= (OLR3

⊗ Ii−1 ⊗ I1) · ((I −Π [i−1]
flipped)⊗ I1)

+Π
[i−1]
flipped ⊗ I1, (92)

where Ii−1 is the identity operator on the first (i− 1) additional qubits, and I1
is one on the i-th additional qubit. The definition of this operator depends on i,
but we use the same notation ÔLR3

for all i, for simplicity. (Intuitively, ÔLR3
is

an intermediate operator between OLR3
and OLR3-det: Similarly to OLR3-det, the

new operator ÔLR3
does nothing if one of the first (i− 1) additional qubits is 1.

However, unlike OLR3-det, ÔLR3 does not flip the i-th additional qubit even if the
database becomes bad, after each query.)

Assume that A has `-qubit states, and the database register has d-qubits in
total. Then, since the additional q qubits are set to 0 at the beginning, it holds
that

|ηi〉 = (Ui ⊗ I)ÔLR3
· · · ÔLR3

(U0 ⊗ I)(|0`〉 ⊗ |0d〉 ⊗ |0q〉) (93)

and

|ψi〉 = (Ui ⊗ I)OLR3-det · · ·OLR3-det(U0 ⊗ I)(|0`〉 ⊗ |0d〉 ⊗ |0q〉), (94)

for each i (we omit writing the 2n ancillary qubits that are used to compute the
intermediate states after the first and second rounds).

Now we have that

Advdist
LR3,LR3-det(A)

≤
∥∥|ξ(q+1)〉 − |φ(q+1)〉

∥∥
=
∥∥|η(q+1)〉 − |ψ(q+1)〉

∥∥
=
∥∥∥(Uq ⊗ I)ÔLR3

· · · ÔLR3
(U0 ⊗ I)(|0`〉 ⊗ |0d〉 ⊗ |0q〉)

49

− (Uq ⊗ I)OLR3-det · · ·OLR3-det(U0 ⊗ I)(|0`〉 ⊗ |0d〉 ⊗ |0q〉)
∥∥

≤
∑

1≤i≤q

∥∥∥(Uq ⊗ I)ÔLR3
· · · (Ui ⊗ I)ÔLR3

(Ui−1 ⊗ I)OLR3-det

· · ·OLR3-det(U0 ⊗ I)(|0`〉 ⊗ |0d〉 ⊗ |0q〉)
−(Uq ⊗ I)ÔLR3 · · · (Ui+1 ⊗ I)ÔLR3(Ui ⊗ I)OLR3-det (95)

· · ·OLR3-det(U0 ⊗ I)(|0`〉 ⊗ |0d〉 ⊗ |0q〉)
∥∥

=
∑

1≤i≤q

∥∥∥(Uq ⊗ I)ÔLR3
· · · (Ui ⊗ I)

(
ÔLR3

|ψi〉 −OLR3-det |ψi〉
)∥∥∥

=
∑

1≤i≤q

∥∥∥ÔLR3
|ψi〉 −OLR3-det |ψi〉

∥∥∥ (96)

holds.
Let us again denote Π

[i−1]
flipped |ψi〉 by |ψgood

i 〉. Since

OLR3-det = (Πbad ⊗ Ii−1 ⊗X + (I −Πbad)⊗ Ii−1 ⊗ I1)

· (OLR3
⊗ Ii−1 ⊗ I1) · ((I −Π [i−1]

flipped)⊗ I1)

+Π
[i−1]
flipped ⊗ I1 (97)

holds by definition of OLR3-det, and

ÔLR3
= (Πbad ⊗ Ii−1 ⊗ I1 + (I −Πbad)⊗ Ii−1 ⊗ I1)

· (OLR3
⊗ Ii−1 ⊗ I1) · ((I −Π [i−1]

flipped)⊗ I1)

+Π
[i−1]
flipped ⊗ I1 (98)

holds, we have that∥∥∥ÔLR3
|ψi〉 −OLR3-det |ψi〉

∥∥∥
=
∥∥∥(Πbad ⊗X)OLR3

|ψgood
i 〉 − (Πbad ⊗ I1)OLR3

|ψgood
i 〉

∥∥∥
≤ 2 ‖(Πbad ⊗ I1)OLR3

|ψi〉‖ . (99)

From (96), (99), and Lemma 2, it follows that

Advdist
LR3,LR3-det(A) ≤

∑
1≤j≤q

O

(√
j

2n/2

)
= O

(√
q3

2n/2

)
(100)

holds, which completes the proof. ut

F Proof of Proposition 5

This section proves Proposition 5. Suppose that we are given an oracle access
to F : {0, 1}n/2 × {0, 1}n/2 → {0, 1}n/2, which is either of FRP or RF. If we find

50

(xL, xR) and (x′L, x
′
R) such that xL = x′L ∧ xR 6= x′R ∧ F (xL, xR) = F (x′L, x

′
R),

then we can tell that F is RF. Thus, if we find such (xL, xR) and (x′L, x
′
R), we

can distinguish RF from FRP by making additional two queries. We call such a
pair a half-collision of F . For a quantum query adversary A, let us define

Advhalf-coll
RF (A) := Pr

[
F

$←− Func({0, 1}n/2 × {0, 1}n/2, {0, 1}n/2),

((xL, xR), (x′L, x
′
R))← AF () : xL = x′L ∧ xR 6= x′R

∧F (xL, xR) = F (x′L, x
′
R)] (101)

Then, it suffices to show that the following lemma holds to prove Proposition 5.

Lemma 6. For any quantum adversary A that makes at most q quantum queries,

Advhalf-coll
RF (A) ≤ O

(
q3

2n/2

)
(102)

holds.

Proof. For each i, let |φi〉 and |ψi〉 be the whole quantum states before A makes
the i-th query, where we consider that random functions are implemented by the
standard oracle and the compressed standard oracle with errors, respectively.
Then |φi〉 = (I ⊗ U∗enc) |ψi〉 holds for each i. By abuse of notation, let us denote
|φq+1〉 := (Uq ⊗ I) · stO |φq〉 and |ψq+1〉 := (Uq ⊗ I) · CstOE |ψq〉, respectively.

For simplicity, we consider that the first (n + n) qubits of the state before
the final measurement |φq+1〉 corresponds to the final output of A (e.g., when
we measure the first 2n-qubit of |φq+1〉, we will obtain the output of A). Let
Πcoll be the projection onto the space spanned by the set of vectors

{|(xL, xR), (x′L, x
′
R), z〉 ⊗ |F 〉 : xL = x′L ∧ xR 6= x′R ∧ F (xL, xR) = F (x′L, x

′
R)} ,

where xL, xR, x
′
L, x

′
R ∈ {0, 1}n/2 correspond to A’s output registers, z corre-

sponds to the remaining qubits ofA, and F is a function in Func({0, 1}n, {0, 1}n/2).
Then

Advhalf-coll
RF (A) = ‖Πcoll |φq+1〉 ‖2 (103)

holds. We say that a valid database D is bad if there are (xL, xR, y), (x′L, x
′
R, y

′) ∈
D such that xL = x′L ∧ xR 6= x′R ∧ y = y′, and good otherwise. Let Πbad be
the projector onto the space which is spanned by bad databases and invalid
databases. Then

‖Πcoll |φq+1〉 ‖ = ‖Πcoll (I ⊗ U∗enc) |ψq+1〉‖
≤ ‖Πcoll (I ⊗ U∗enc) (I −Πbad) |ψq+1〉‖+ ‖Πbad |ψq+1〉‖ (104)

holds.
Now we show the following claim. Intuitively, this claim shows that databases

become bad (i.e., databases have a half-collision of F) with only a negligible
probability.

51

Claim. For each 1 ≤ i ≤ q + 1, ‖Πbad |ψi〉‖ is in O(
√
i3/2n/2).

Proof. We have that

‖Πbad |ψi〉 ‖ = ‖Πbad(Ui−1 ⊗ I)CstOE |ψi−1〉 ‖
≤ ‖(Ui−1 ⊗Πbad)CstOE(I −Πbad) |ψi−1〉 ‖

+ ‖(Ui−1 ⊗Πbad)CstOEΠbad |ψi−1〉 ‖
≤ ‖ΠbadCstOE(I −Πbad) |ψi−1〉 ‖

+ ‖Πbad |ψi−1〉 ‖. (105)

Now, there are some complex numbers a(αL,αR)βγD such that

(I −Πbad) |ψi−1〉 =
∑

(αL,αR)βγ
D:good

a(αL,αR)βγD |(αL, αR), β, γ〉 ⊗ |D〉

=
∑

(αL,αR)βγ
D:good

6∃(αL,αR)-entry in D

a(αL,αR)βγD |(αL, αR), β, γ〉 ⊗ |D〉 (106)

+
∑

(αL,αR)βγ
D:good

∃(αL,αR)-entry in D

a(αL,αR)βγD |(αL, αR), β, γ〉 ⊗ |D〉 ,

(107)

where (αL, αR) ∈ {0, 1}n/2 × {0, 1}n/2, β ∈ {0, 1}n/2, and γ ∈ {0, 1}`−(3n/2)
corresponds to A’s query, answer, and the remaining registers, respectively (here
we assume that A has `-qubit states). In addition, each D satisfies |D| ≤ i− 2,
since each query to the compressed standard oracle with errors CstOE affects
only the qubits that correspond to a single entry of each database.

Then, after the operation of CstOE, each normalized summand of (107) be-
comes

|(αL, αR), β ⊕ y, γ〉 ⊗ |D〉 (108)

for some y with an error in O(
√

1/2n/2), from Proposition 1. In particular, the
database remains good. Thus, this term becomes 0 after the operation of Πbad,
with errors in O(

√
1/2n/2). Since the summands of (107) are orthogonal to each

other, it follows that

ΠbadCstOE

∑

(αL,αR)βγ
D:good

∃(αL,αR)-entry in D

a(αL,αR)βγD |(αL, αR), β, γ〉 ⊗ |D〉

 = 0 (109)

with an error in O(
√

1/2n/2).

52

Next, after the operation of CstOE, each normalized summand

|(αL, αR), β ⊕ y, γ〉 ⊗ |D〉

of (106) becomes

∑
δ

√
1

2n/2
|(αL, αR), β ⊕ δ, γ〉 ⊗ |D ∪ (αL, αR, δ)〉 (110)

with an error in O(
√

1/2n/2). In addition,

Πbad

(∑
δ

√
1

2n/2
|(αL, αR), β ⊕ δ, γ〉 ⊗ |D ∪ (αL, αR, δ)〉

)

=
∑

δ:∃xR s.t. (αL,xR,δ)∈D

√
1

2n/2
|(αL, αR), β ⊕ δ, γ〉 ⊗ |D ∪ (αL, αR, δ)〉 (111)

holds, which implies that∥∥∥∥∥Πbad

(∑
δ

√
1

2n/2
|(αL, αR), β ⊕ δ, γ〉 ⊗ |D ∪ (αL, αR, δ)〉

)∥∥∥∥∥
2

=
1

2n/2
|{δ|∃xR s.t. (αL, xR, δ) ∈ D}| ≤ O

(
i

2n/2

)
(112)

holds, since |D| ≤ i−2. Thus, for each normalized summand |(αL, αR), β ⊕ y, γ〉⊗
|D〉 of (106),

ΠbadCstOE (|(αL, αR), β ⊕ y, γ〉 ⊗ |D〉) = 0 (113)

with an error in O(
√
i/2n/2). Therefore, since the summands of (106) are or-

thogonal to each other,

ΠbadCstOE

∑

(αL,αR)βγ
D:good

6∃(αL,αR)-entry in D

a(αL,αR)βγD |(αL, αR), β, γ〉 ⊗ |D〉

 = 0 (114)

with an error in O(
√
i/2n/2) = O(

√
i/2n/2).

From (106), (107), (109), and (114), it follows that

‖ΠbadCstOE(I −Πbad) |φi−1〉 ‖ ≤ O

(√
i

2n/2

)
(115)

holds.

53

Hence, from (105) and (115) it follows that

‖Πbad |φi〉 ‖ ≤ ‖Πbad |φi−1〉 ‖+O

(√
i

2n/2

)
(116)

holds for each i. Thus

‖Πbad |φi〉 ‖ ≤
∑

1≤j≤i−1

O

(√
j

2n/2

)
= O

(√
i3

2n/2

)
(117)

holds, which completes the proof of the claim (note that Πbad |φ1〉 = 0 holds).
ut

From the above claim and (104), it follows that

‖Πcoll |φq+1〉 ‖ ≤ ‖Πcoll (I ⊗ U∗enc) (I −Πbad) |ψq+1〉‖

+O

(√
q3

2n/2

)
(118)

holds.
Now, let us define projectors Πfirst, Πsecond, Πboth, Πnone as the projection

onto the spaces spanned by the sets of vectors

{|(xL, xR), (x′L, x
′
R), z〉 ⊗ |D〉 : ∃(xL, xR)-entry in D∧ 6 ∃(x′L, x′R)-entry in D} ,

{|(xL, xR), (x′L, x
′
R), z〉 ⊗ |D〉 : 6 ∃(xL, xR)-entry in D ∧ ∃(x′L, x′R)-entry in D} ,

{|(xL, xR), (x′L, x
′
R), z〉 ⊗ |D〉 : ∃(xL, xR)-entry in D ∧ ∃(x′L, x′R)-entry in D} ,

{|(xL, xR), (x′L, x
′
R), z〉 ⊗ |D〉 : 6 ∃(xL, xR)-entry in D∧ 6 ∃(x′L, x′R)-entry in D} ,

(119)

respectively (note that we assume that all databases are good in these defini-
tions). Then we have that

‖Πcoll (I ⊗ U∗enc) (I −Πbad) |ψq+1〉 ‖
≤ ‖Πcoll (I ⊗ U∗enc)Πfirst(I −Πbad) |ψq+1〉‖
+ ‖Πcoll (I ⊗ U∗enc)Πsecond(I −Πbad) |ψq+1〉‖

+ ‖Πcoll (I ⊗ U∗enc)Πboth(I −Πbad) |ψq+1〉‖
+ ‖Πcoll (I ⊗ U∗enc)Πnone(I −Πbad) |ψq+1〉‖ (120)

holds.
Next we show the following claim. Intuitively, this claim shows that the

probability that A outputs a half-collision of F is negligible if databases do not
contain half-collisions of F .

Claim. It holds that ‖Πcoll (I ⊗ U∗enc)Πfirst(I −Πbad) |ψq+1〉‖, ‖Πcoll (I ⊗ U∗enc)
Πsecond(I − Πbad) |ψq+1〉 ‖, ‖Πcoll (I ⊗ U∗enc)Πboth(I −Πbad) |ψq+1〉‖, and ‖Πcoll

(I ⊗ U∗enc)Πnone(I −Πbad) |ψq+1〉 ‖ are all in O(
√
q2/2n/2).

54

Proof. First, we show that the claim holds for ‖Πcoll (I ⊗ U∗enc)Πfirst(I − Πbad)
|ψq+1〉 ‖. It suffices to show that the claim holds for the case that

|ψq+1〉 = |(xL, xR), (x′L, x
′
R), z〉 ⊗ |D〉 , (121)

where there is an (xL, xR)-entry in D and there is no (x′L, x
′
R)-entry in D. In

this case Πfirst(I −Πbad) |ψq+1〉 = |ψq+1〉 holds, and from Proposition 1

Πcoll (I ⊗ U∗enc) |ψq+1〉

= Πcoll

|(xL, xR), (x′L, x
′
R), z〉 ⊗

∑
F∈comp(D)

√
1

|comp(D)|
|F 〉

= |(xL, xR), (x′L, x

′
R), z〉 ⊗

∑
F∈comp(D)

F (xL,xR)=F (x′L,x
′
R)

√
1

|comp(D)|
|F 〉 (122)

holds with an error in O(
√
q2/2n/2). In addition,∥∥∥∥∥∥∥∥|(xL, xR), (x′L, x

′
R), z〉 ⊗

∑
F∈comp(D)

F (xL,xR)=F (x′L,x
′
R)

√
1

|comp(D)|
|F 〉

∥∥∥∥∥∥∥∥
2

=
1

|comp(D)|
|{F ∈ comp(D)|F (xL, xR) = F (x′L, x

′
R)}| = 1

2n/2
(123)

holds. Thus we have that

‖Πcoll (I ⊗ U∗enc)Πfirst(I −Πbad) |ψq+1〉 ‖ = ‖Πcoll (I ⊗ U∗enc) |ψq+1〉 ‖

≤ O

(√
q2

2n/2

)
+O

(√
1

2n/2

)
≤ O

(√
q2

2n/2

)

holds, which completes the proof of the claim for ‖Πcoll (I ⊗ U∗enc)Πfirst(I−Πbad)
|ψq+1〉 ‖.

The claim for ‖Πcoll (I ⊗ U∗enc)Πsecond(I−Πbad) |ψq+1〉 ‖ can be shown in the
same way.

Next we show the claim for ‖Πcoll (I ⊗ U∗enc)Πnone(I −Πbad) |ψq+1〉 ‖. It suf-
fices to show that the claim holds for the case that

|ψq+1〉 = |(xL, xR), (x′L, x
′
R), z〉 ⊗ |D〉 , (124)

where there is no (xL, xR)-entry and no (x′L, x
′
R)-entry in D. Similarly to the

proof for ‖Πcoll (I ⊗ U∗enc)Πfirst(I −Πbad) |ψq+1〉 ‖, we can show that

‖Πcoll (I ⊗ U∗enc)Πnone(I −Πbad) |ψq+1〉 ‖

55

=

∥∥∥∥∥∥∥∥|(xL, xR), (x′L, x
′
R), z〉 ⊗

∑
F∈comp(D)

F (xL,xR)=F (x′L,x
′
R)

√
1

|comp(D)|
|F 〉

∥∥∥∥∥∥∥∥
+O

(√
q2

2n/2

)

=

√
1

|comp(D)|
|{F ∈ comp(D)|F (xL, xR) = F (x′L, x

′
R)}|+O

(√
q2

2n/2

)

=

√
1

2n/2
+O

(√
q2

2n/2

)
≤ O

(√
q2

2n/2

)
(125)

holds. Thus the claim also holds for ‖Πcoll (I ⊗ U∗enc)Πnone(I −Πbad) |ψq+1〉 ‖.
Finally, for ‖Πcoll (I ⊗ U∗enc)Πboth(I −Πbad) |ψq+1〉 ‖, we have that

Πcoll (I ⊗ U∗enc)Πboth(I −Πbad) |ψq+1〉 = 0 (126)

holds, since good databases do not contain half-collisions. ut

From (118), (120), and the above claim it follows that

‖Πcoll |φq+1〉 ‖ ≤ O

(√
q2

2n/2

)
+O

(√
q3

2n/2

)
= O

(√
q3

2n/2

)
(127)

holds. Therefore

Advhalf-coll
RF (A) = ‖Πcoll |φq+1〉 ‖2 ≤ O

(
q3

2n/2

)
(128)

holds, which completes the proof of Lemma 6. ut

G Proof of Theorem 4

First, we describe an overview of a classical attack [27]. Let us denote the com-
position of two independent random functions from {0, 1}n/2 to {0, 1}n/2 by
RF ◦ RF.

An overview of a classical attack. Suppose that we are given an oracle access
to O, which is either the 4-round Luby-Rackoff construction LR4 or a random
permutation from {0, 1}n to {0, 1}n. Let us define a function GO : {0, 1}n/2 →
{0, 1}n/2 that depends on O by

GO(x) :=
(
O(0n/2, x)

)
R
⊕ x, (129)

56

where
(
O(0n/2, x)

)
R

is the right half n/2 bits of O(0n/2, x). We can implement

GO by making O(1) queries.
WhenO is the 4-round Luby-Rackoff construction LR4, we have thatGO(x) =

f3(f2(x⊕f1(0n/2)))⊕f1(0n/2) holds. Thus, if all round functions of LR4 are truly
random functions, the function distribution of GO will be the same as that of
the composition of two independent random functions RF ◦ RF. On the other
hand, when O is a random permutation from {0, 1}n to {0, 1}n, the function
distribution of GO will be almost the same as that of the truly random function
RF from {0, 1}n/2 to {0, 1}n/2.

Since RF ◦RF has twice as many collisions as RF has, we can distinguish LR4

from a truly random permutation by making O((2n/2)1/2) = O(2n/4) queries to
GO.

Conversion of the classical attack to a quantum attack. Next we ex-
plain how to convert the classical attack above to a quantum attack that makes
O(2n/6) quantum queries, and prove Theorem 4. The following lemma is crucial,
which shows that we can distinguish RF◦RF from RF by making O((2n/2)1/3) =
O(2n/6) quantum queries.

Lemma 7. Let us denote the composition of two independent random functions
from {0, 1}n/2 to {0, 1}n/2 by RF ◦ RF. Then, there exists a quantum algorithm

B that makes O(2n/6) quantum queries and satisfies AdvqPRF
RF◦RF(B) = Ω(1). That

is, there exists an algorithm that distinguishes RF ◦ RF from a random function
with a constant probability, by making O(2n/6) quantum queries.

Proof. We use the following fact that is shown by Ambainis [2].

Fact 1 (Theorem 3 in [2]). Let X and Y be finite sets, and F : X → Y be
a function. Then there is a quantum algorithm that judges if there exist distinct
elements x1, x2 ∈ X such that F (x1) = F (x2) with bounded error by making
O(|X|2/3) quantum queries to F .

Let [N] ⊂ {0, 1}n/2 denote the subset {0, 1, . . . , N − 1} for each integer
1 ≤ N ≤ 2n/2. By using the above fact, we can deduce that for 1 ≤ N ≤ 2n/2

there exists a quantum algorithm DN such that, given oracle access to a function
F : {0, 1}n/2 → {0, 1}n/2, it outputs 1 if there exist distinct elements x1, x2 ∈ [N]
such that F (x1) = F (x2), and outputs 0 otherwise, with an error that is smaller
than 1/30, by making O(|N |2/3) quantum queries. (We can make such DN by
iteratively running Ambainis’ algorithm O(1) times for F |[N] : [N]→ {0, 1}n/2,
which is the restriction of F to [N].)

Here we give an analysis of the qPRF advantage of DN on RF ◦ RF, for each
N . For a function F : {0, 1}n/2 → {0, 1}n/2 and a subset Z ∈ {0, 1}n/2, let collFZ
denote the event that F has a collision in Z, i.e., there are distinct x1, x2 ∈ Z
such that F (x1) = F (x2). Then, we have that

Pr
F

[
¬collF[N]

]
=

(
1− 1

2n/2

)
·
(

1− 2

2n/2

)
· · ·
(

1− N − 1

2n/2

)

57

=

N−1∏
j=1

(
1− j

2n/2

)
(130)

holds, where F is chosen from Func({0, 1}n/2, {0, 1}n/2) uniformly at random. In
addition, when F1 and F2 are chosen from Func({0, 1}n/2, {0, 1}n/2) uniformly
at random, we have that

Pr
F1,F2

[
¬collF2◦F1

[N]

]
= Pr

F2

[
¬collF2

F1([N])

∣∣∣¬collF1

[N]

]
· Pr
F1

[
¬collF1

[N]

]
=
(

Pr
F

[
¬collF[N]

])2
. (131)

Now we have that

AdvqPRF
RF◦RF(DN) = Advdist

RF,RF◦RF(DN)

=

∣∣∣∣Pr
F

[
DFN ()→ 1

]
− Pr
F1,F2

[
DF2◦F1

N ()→ 1
]∣∣∣∣

≥
∣∣∣∣Pr
F

[
collF[N]

]
− Pr
F1,F2

[
collF2◦F1

[N]

]∣∣∣∣− 2

30
, (132)

where we used the property that the error ofDN is smaller than 1/30. In addition,
from (131) it follows that∣∣∣∣Pr

F

[
collF[N]

]
− Pr
F1,F2

[
collF2◦F1

[N]

]∣∣∣∣
= Pr
F1,F2

[
collF2◦F1

[N]

]
− Pr

F

[
collF[N]

]
=

(
1−

(
Pr
F

[
¬collF[N]

])2)
−
(

1− Pr
F

[
¬collF[N]

])
= Pr

F

[
¬collF[N]

] (
1− Pr

F

[
¬collF[N]

])
(133)

holds. Therefore we have that

AdvqPRF
RF◦RF(DN) ≥ Pr

F

[
¬collF[N]

] (
1− Pr

F

[
¬collF[N]

])
− 2

30
(134)

holds. Now we show the following claim.

Claim. There exists a parameter N0 which is in O(2n/4) and

3

5
≥
N0−1∏
j=1

(
1− j

2n/2

)
≥ 1

5
(135)

holds for sufficiently large n.

58

Proof. First, let us denote pN :=
∏N−1
j=1

(
1− j

2n/2

)
. For each 1 ≤ N ≤ 2n/2, we

have that

N−1∏
j=1

(
1− j

2n/2

)
≥
(

1− N

2n/2

)N

=

(1− N

2n/2

)− 2n/2

N

− N2

2n/2

(136)

holds, in addition that

N−1∏
j=1

(
1− j

2n/2

)
≤
N−1∏
j=1

(
e
− j

2n/2

)
= e
−N(N−1)

2·2n/2 (137)

holds. Thus

e
−N(N−1)

2·2n/2 ≥ pN ≥

(1− N

2n/2

)− 2n/2

N

− N2

2n/2

(138)

holds.
Next, let us put N0 := 2n/4 ·

√
2 log 2. Then

e
−N0(N0−1)

2·2n/2 = e
−N0·N0

2·2n/2 +

(
e
−N0(N0−1)

2·2n/2 − e−
N0·N0

2·2n/2

)

=
1

2
+

(1

2

)N0−1
N0

− 1

2

 (139)

holds, and thus e
−N0(N0−1)

2·2n/2 ≤ 3/5 holds for sufficiently large n. In addition, since
the function f(x) = (1 − x)−1/x increases as x increases for 0 < x < 1 and
limx→+0 f(x) = e holds, we have that(

1− N0

2n/2

)− 2n/2

N0

≤ e+
1

10
(140)

holds for sufficiently large n. Thus(1− N0

2n/2

)− 2n/2

N0

−
N2

0

2n/2

≥
(
e+

1

10

)− N2
0

2n/2

=

(
e+

1

10

)−2 log 2

≥ 1

5
(141)

holds for sufficiently large n.
Therefore, if we put N0 := 2n/4 ·

√
2 log 2,

3

5
≥ pN0

≥ 1

5
(142)

holds for sufficiently large n. Hence the claim follows. ut

59

From the above claim and (130), there exists a parameter N0 which is in
O(2n/4), and

3

5
≥ Pr

F

[
¬collF[N0]

]
≥ 1

5
(143)

holds for sufficiently large n. Hence, from (132) we have that

AdvqPRF
RF◦RF(DN0

) ≥ 1

5

(
1− 3

5

)
− 2

30
=

1

75
≥ Ω(1). (144)

Therefore, if we put B := DN0
, this B satisfies the claim of the lemma, since (144)

holds and DN0 makes at most O((N0)2/3) = O((2n/4)2/3) = O(2n/6) quantum
queries. ut

Next we show the following proposition.

Proposition 6. There exists a quantum algorithm A that makes O(2n/6) quan-

tum queries and satisfies AdvqPRF
LR4

(A) = Ω(1) .

Proof. Suppose that we are given an oracle access to O, which is either the
4-round Luby-Rackoff construction LR4 or a random function from {0, 1}n to
{0, 1}n. Recall that the function GO : {0, 1}n/2 → {0, 1}n/2 is defined by

GO(x) :=
(
O(0n/2, x)

)
R
⊕ x, (145)

where
(
O(0n/2, x)

)
R

is the right half n/2 bits of O(0n/2, x). We can implement

a quantum circuit that computes GO by making O(1) queries. 12

Now we define a quantum algorithm A as the following procedures.

1. Let B be the same algorithm in Lemma 7.
2. Run B relative to GO.
3. If B returns 1, output 1. If B returns 0, output 0.

Here we give an analysis of A. When O is the 4-round Luby-Rackoff construc-
tion LR4, we have that GO(x) = f3(f2(x⊕ f1(0n/2)))⊕ f1(0n/2) holds. Since we
are considering the case that all round functions of LR4 are truly random func-
tions, the function distribution of GO will be the same as that of RF◦RF. On the
other hand, when O is a random function from {0, 1}n to {0, 1}n, the function
distribution of GO will be the same as that of the truly random function from
{0, 1}n/2 to {0, 1}n/2. Thus, from Lemma 7 we have that

AdvqPRF
LR4

(A) = AdvqPRF
RF◦RF(B) = Ω(1) (146)

holds. In addition, since B makes at most O(2n/6) quantum queries and G makes
only O(1) queries to O, A makes at most O(2n/6) quantum queries. Therefore
the claim of the proposition holds. ut
12 Here we have to implement truncation of O’s outputs by using a technique observed

in [14].

60

Finally we prove Theorem 4.

Proof (of Theorem 4). Let A be the same algorithm as in Proposition 6. Then,
from Proposition 6 it follows that

AdvqPRP
LR4

(A) ≥ AdvqPRF
LR4

(A)−Advdist
RP,RF(A)

≥ Ω(1)−O(1/2n/2) = Ω(1), (147)

where we used the fact that, for any quantum adversary A′ that makes at
most q queries, the distinguishing advantage Advdist

RP,RF(A′) is upper bounded
by O(q3/2n) for a random function and a random permutation from {0, 1}n to
{0, 1}n [34]. Thus the claim of the theorem holds. ut

61

	Tight Quantum Security Bound of the 4-Round Luby-Rackoff Construction

