
Fast constant-time
gcd computation and modular inversion

Daniel J. Bernstein1,2 and Bo-Yin Yang3

1 Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607–7045, USA

2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
djb@cr.yp.to

3 Institute of Information Science and Research Center of
Information Technology and Innovation, Academia Sinica,
128 Section 2 Academia Road, Taipei 115-29, Taiwan

by@crypto.tw

Abstract. This paper introduces streamlined constant-time variants of Euclid’s
algorithm, both for polynomial inputs and for integer inputs. As concrete applications,
this paper saves time in (1) modular inversion for Curve25519, which was previously
believed to be handled much more efficiently by Fermat’s method, and (2) key
generation for the ntruhrss701 and sntrup4591761 lattice-based cryptosystems.
Keywords: Euclid’s algorithm · greatest common divisor · gcd · modular reciprocal ·
modular inversion · constant-time computations · branchless algorithms · algorithm
design · NTRU · Curve25519

1 Introduction
There is a vast literature on variants and applications of Euclid’s gcd algorithm. A textbook
extension of the algorithm computes modular reciprocals. Stopping the algorithm halfway
produces a “half-gcd”, writing one input modulo another as a ratio of two half-size outputs,
an example of two-dimensional lattice-basis reduction. Well-known speedups include
Lehmer’s use of lower precision [44]; “binary” algorithms such as Stein’s gcd algorithm [63]
and Kaliski’s “almost inverse” algorithm [40]; and the subquadratic algorithms of Knuth [41]
and Schönhage [60], which combine Lehmer’s idea with subquadratic integer multiplication.
All of these algorithms have been adapted from the case of integer inputs to the (simpler)
case of polynomial inputs, starting with Stevin’s 16th-century algorithm [64, page 241 of
original, page 123 of cited PDF] to compute the gcd of two polynomials. The Berlekamp–
Massey algorithm (see [9] and [50]), one of the most important tools in decoding error-
correcting codes, was later recognized as being equivalent to a special case of a Euclid–Stevin
half-gcd computation, with the input and output coefficients in reverse order, and with
one input being a power of x; see [32], [38], and [51]. There are many more examples.

Author list in alphabetical order; see https://www.ams.org/profession/leaders/culture/
CultureStatement04.pdf. This work was supported by the U.S. National Science Foundation under
grant 1314919, by the Cisco University Research Program, by the Netherlands Organisation for Scientific
Research (NWO) under grant 639.073.005, and by DFG Cluster of Excellence 2092 “CASA: Cyber Security
in the Age of Large-Scale Adversaries”. This work also was supported by Taiwan Ministry of Science
and Technology (MoST) grant MOST105-2221-E-001-014-MY3 and Academia Sinica Investigator Award
AS-IA-104-M01. “Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National Science Foundation” (or
other funding agencies). Permanent ID of this document: c130922fff0455e43cc7c5ca180787781b409f63.
Date: 2019.03.05.

mailto:djb@cr.yp.to
mailto:by@crypto.tw
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

2 Fast constant-time gcd computation and modular inversion

However, in cryptography, these algorithms are dangerous. The central problem is that
these algorithms have conditional branches that depend on the inputs. Often these inputs
are secret, and the branches leak information to the attacker through cache timing, branch
timing, etc. For example, Aldaya–García–Tapia–Brumley [7] recently presented a single-
trace cache-timing attack successfully extracting RSA keys from OpenSSL’s implementation
of Stein’s binary gcd algorithm.

A common defense against these attacks1 is to compute modular reciprocals in a
completely different way, namely via Fermat’s little theorem: if f is a nonzero element
of a finite field Fq then 1/f = fq−2. For example, Bernstein’s Curve25519 paper [10]
computes a ratio modulo p = 2255 − 19 using “a straightforward sequence of 254 squarings
and 11 multiplications” and says that this is “about 7% of the Curve25519 computation”.
Somewhat more multiplications are required for “random” primes, as in the new CSIDH [28]
post-quantum system, but the bottom line is that a b-bit Fermat-style inversion is not
much more expensive than b squarings, while a b-bit elliptic-curve variable-base-point
scalar multiplication is an order of magnitude more expensive.

However, the bigger picture is that simply saying “use Fermat for inversion and stop
worrying about the speed of Euclid’s algorithm” is not satisfactory:

• There are many cryptographic computations where inversion is a much larger fraction
of the total time. For example, typical strategies for ECC signature generation (see,
e.g., [16, Section 4]) involve only about 1/4 as many elliptic-curve operations, making
the cost of inversion2 much more noticeable. As another example, polynomial
inversion is the primary bottleneck in key generation3 in the NTRU lattice-based
cryptosystem.

• There are many cryptographic computations that rely on Euclid’s algorithm for
operations that Fermat’s method cannot handle. For example, decryption in the
McEliece code-based cryptosystem (see, e.g., [13]) relies critically on a half-gcd
computation. This cryptosystem has large public keys but has attracted interest4

for its very strong security track record. Many newer proposals with smaller public
keys also rely on half-gcd computations.5

These issues have prompted some work on variants of Euclid’s algorithm protected against
timing attacks. For example, [13] uses a constant-time version of the Berlekamp–Massey
algorithm inside the McEliece cryptosystem; see also [36, Algorithm 10] and [30]. As
another example, Bos [21] developed a constant-time version of Kaliski’s algorithm, and
reported in [21, Table 1] that this took 486000 ARM Cortex-A8 cycles for inversion modulo
a 254-bit prime. For comparison, Bernstein and Schwabe [17] had reported 527102 ARM
Cortex-A8 cycles for an entire Curve25519 scalar multiplication, including Fermat inversion
an order of magnitude faster than the Euclid inversion in [21].

Euclid’s algorithm becomes more competitive for “random” moduli, since these moduli
make the modular reductions in Fermat’s method more expensive.6 It is also easy to see

1There is also a tremendous amount of work aimed at defending against power attacks, electromagnetic
attacks, and, more broadly, attackers with physical sensors close to the computation being carried out. For
example, one typically tries to protect modular inversion by multiplying by r before and after each inversion,
where r is a random invertible quantity. This paper focuses on protecting deterministic algorithms against
timing attacks.

2This refers to inversion in Fp when the elliptic curve is defined over Fp, to convert an elliptic-curve
point from projective coordinates to affine coordinates. Applications that use ECDSA, rather than
Schnorr-style signature systems such as Ed25519, also need inversions modulo the group order.

3The standard argument that key-generation performance is important is that, for forward secrecy, TLS
generates a public key and uses the key just once. For several counterarguments see [14, Appendix T.2].

4For example, two of the round-2 submissions to the NIST post-quantum competition, Classic
McEliece [12] and NTS-KEM [6], are based directly on the McEliece cryptosystem.

5See, e.g., the HQC [4] and LAC [45] round-2 submissions to the NIST competition.
6Standard estimates are that squaring modulo a random prime is 2 or 3 times slower than squaring

Daniel J. Bernstein and Bo-Yin Yang 3

that Euclid’s algorithm beats Fermat’s method for all large enough primes: for n-bit primes,
Euclid’s algorithm uses Θ(n) simple linear-time operations such as big-integer subtractions,
while Fermat’s method uses Θ(n) big-integer multiplications. The Euclid-vs.-Fermat cutoff
depends on the cost ratio between big-integer multiplications and big-integer subtractions,
so one expects the cutoff to be larger on CPUs with large hardware multipliers, but many
input sizes of interest in cryptography are clearly beyond the cutoff. Both [39, Algorithm
10] and [14, Appendix T.2] use constant-time variants of the Euclid–Stevin algorithm for
polynomial inversions in NTRU key generation; each polynomial here has nearly 10000
bits in about 700 coefficients.

1.1. Contributions of this paper. This paper introduces simple fast constant-time
“division steps”. When division steps are iterated a constant number of times, they reveal
the gcd of the inputs, the modular reciprocal when the inputs are coprime, etc. Division
steps work the same way for integer inputs and for polynomial inputs, and are suitable
for all applications of Euclid’s algorithm that we have investigated. As an illustration, we
display in Figure 1.2 an integer gcd algorithm using division steps.

This paper uses two case studies to show that these division steps are much faster than
previous constant-time variants of Euclid’s algorithm. One case study (Section 12) is an
integer-modular-inversion problem selected to be extremely favorable to Fermat’s method:

• The platforms are the popular Intel Haswell, Skylake, and Kaby Lake CPU cores.
Each of these CPU cores has a large hardware area devoted to fast multiplications.

• The modulus is the Curve25519 prime 2255 − 19. Sparse primes allow very fast
reductions, and the performance of multiplication modulo this particular prime has
been studied in detail on many platforms.

The latest speed records for inversion modulo 2255 − 19 on the platforms mentioned above
are from the recent Nath–Sarkar paper “Efficient inversion in (pseudo-)Mersenne prime
order fields” [54], which takes 11854 cycles, 9301 cycles, and 8971 cycles on Haswell, Skylake,
and Kaby Lake respectively. We achieve slightly better inversion speeds on each of these
platforms: 10050 cycles, 8778 cycles, and 8543 cycles. We emphasize the Fermat-friendly
nature of this case study. It is safe to predict that our algorithm will produce much larger
speedups compared to Fermat’s method on CPUs with smaller multipliers, on FPGAs, and
on ASICs.7 For example, on an ARM Cortex-A7 (only a 32-bit multiplier), our inversion
modulo 2255 − 19 takes 35277 cycles, while the best prior result (Fujii and Aranha [34],
using Fermat) was 62648 cycles.

The other case study (Section 7) is key generation in the ntruhrss701 cryptosystem
from the Hülsing–Rijneveld–Schanck–Schwabe paper “High-speed key encapsulation from
NTRU” [39] at CHES 2017. We again take an Intel core for comparability, specifically
Haswell, since [39] selected Haswell. That paper used 150000 Haswell cycles to invert a
polynomial modulo (x701 − 1)/(x − 1) with coefficients modulo 3. We reduce the cost
of this inversion to just 90000 Haswell cycles. We also speed up key generation in the
sntrup4591761 [14] cryptosystem.

1.3. Comparison to previous constant-time algorithms. Earlier constant-time
variants of Euclid’s algorithm and the Euclid–Stevin algorithm are like our algorithm in
that they consist of a prespecified number of constant-time steps. Each step of the previous
algorithms might seem rather simple at first glance. However, as illustrated by our new

modulo a special prime. Combining these estimates with the ARM Cortex-A8 speeds from [17] suggests
that Fermat inversion for a random 256-bit prime should take roughly 100000 Cortex-A8 cycles, still much
faster than the Euclid inversion from [21]. It is claimed in [21, Table 2] that Fermat inversion takes 584000
Cortex-A8 cycles; presumably this Fermat software was not properly optimized.

7We also expect spinoffs in quantum computation. See, e.g., the recent constant-time version of Kaliski’s
algorithm by Roetteler–Naehrig–Svore–Lauter [57, Section 3.4], in the context of Shor’s algorithm to
compute elliptic-curve discrete logarithms.

4 Fast constant-time gcd computation and modular inversion

def␣shortgcd2(f,g):
␣␣delta,f,g␣=␣1,ZZ(f),ZZ(g)
␣␣assert␣f&1
␣␣m␣=␣4+3*max(f.nbits(),g.nbits())
␣␣for␣loop␣in␣range(m):
␣␣␣␣if␣delta>0␣and␣g&1:␣delta,f,g␣=␣-delta,g,-f
␣␣␣␣delta,g␣=␣1+delta,(g+(g&1)*f)//2
␣␣return␣abs(f)

Figure 1.2: Example of a gcd algorithm for integers using this paper’s division steps.
The f input is assumed to be odd. Each iteration of the main loop replaces (δ, f, g) with
divstep(δ, f, g). Correctness follows from Theorem 11.2. The algorithm is expressed in the
Sage [58] computer-algebra system. The algorithm is not constant-time as shown but can
be made constant-time with low overhead; see Section 5.2.

speed records, the details matter. Our division steps are particularly simple, allowing very
efficient computations.

Each step of the constant-time algorithms of Bos [21] and Roetteler–Naehrig–Svore–
Lauter [57, Section 3.4], like each step in the algorithms of Stein and Kaliski, consists of a
limited number of additions and subtractions, followed by a division by 2. The decisions
of which operations to perform are based on (1) the bottom bits of the integers and (2)
which integer is larger—a comparison that sometimes needs to inspect many bits of the
integers. A constant-time comparison inspects all bits.

The time for this comparison might not seem problematic in context: subtraction also
inspects all bits and produces the result of the comparison as a side effect. But this requires
a very wide data flow in the algorithm. One cannot decide what needs to be be done in
a step without inspecting all bits produced by the previous step. For our algorithm, the
bottom t bits of the inputs (or the bottom t coefficients in the polynomial case) decide the
linear combinations used in the next t division steps, so the data flow is much narrower.

For the polynomial case, size comparison is simply a matter of comparing polynomial
degrees, but there are still many other details that affect performance, as illustrated by
our 1.7× speedup for the ntruhrss701 polynomial-inversion problem mentioned above.
See Section 7 for a detailed comparison of our algorithm in this case to the algorithm
in [39]. Important issues include the number of control variables manipulated in the inner
loop, the complexity of the arithmetic operations being carried out, and the way that the
output is scaled.

The closest previous algorithms that we have found in the literature are algorithms for
“systolic” hardware developed in the 1980s by Bojanczyk, Brent, and Kung. See [24] for
integer gcd, [19] for integer inversion, and [23] for the polynomial case. These algorithms
have predictable output scaling; a single control variable δ (optionally represented in unary)
beyond the loop counter; and the same basic feature that several bottom bits decide linear
combinations used for several steps. Our algorithms are nevertheless simpler and faster,
for a combination of reasons. First, our division steps have fewer case distinctions than
the steps in [24] (and [19]). Second, our data flow can be decomposed into a “conditional
swap” followed by an “elimination” (see Section 3), whereas the data flow in [23] requires
a more complicated routing of inputs. Third, surprisingly, we use fewer iterations than
[24]. Fourth, for us t bits determine linear combinations for exactly t steps, whereas this is
not exactly true in [24]. Fifth, we gain considerable speed in, e.g., Curve25519 inversion
by jumping through division steps.

1.4. Comparison to previous subquadratic algorithms. An easy consequence of
our data flow is a constant-time algorithm where the number of operations is subquadratic

Daniel J. Bernstein and Bo-Yin Yang 5

in the input size—asymptotically n(logn)2+o(1). This algorithm has important advantages
over earlier subquadratic gcd algorithms, as we now explain.

The starting point for subquadratic gcd algorithms is the following idea from Lehmer [44]:
The quotients at the beginning of gcd computation depend only on the most significant
bits of the inputs. After computing the corresponding 2× 2 transition matrix, one can
retroactively multiply this matrix by the remaining bits of the inputs, and then continue
with the new, hopefully smaller, inputs.

A closer look shows that it is not easy to formulate a precise statement about the
amount of progress that one is guaranteed to make by inspecting j most significant bits
of the inputs. We return to this difficulty below. Assume for the moment that j bits of
the inputs determine roughly j bits of initial information about the quotients in Euclid’s
algorithm.

Lehmer’s paper predated subquadratic multiplication, but is well known to be helpful
even with quadratic multiplication. For example, consider the following procedure starting
with 40-bit integers a and b: add a to b, then add the new b to a, and so on back and forth
for a total of 30 additions. The results fit into words on a typical 64-bit CPU, and this
procedure might seem to be efficiently using the CPU’s arithmetic instructions. However,
it is generally faster to directly compute 832040a+ 514229b and 1346269a+ 832040b, using
the CPU’s fast multiplication circuits.

Faster algorithms for multiplication make Lehmer’s approach more effective. Knuth
[41], using Lehmer’s idea recursively on top of FFT-based integer multiplication, achieved
cost n(logn)5+o(1) for integer gcd. Schönhage [60] improved 5 to 2. Subsequent papers
such as [53], [22], and [66] adapted the ideas to the polynomial case.

The subquadratic algorithms appearing in [41], [60], [22, Algorithm EMGCD], [66,
Algorithm SCH], [62, Algorithm Half-GB-gcd], [52, Algorithms HGCD-Q and HGCD-B
and SGCD and HGCD-D], [25, Algorithm 3.1], etc. all have the following structure. There
is an initial recursive call that computes a 2× 2 transition matrix; there is a computation
of reduced inputs, using a fast multiplication subroutine; there is a call to a fast division
subroutine, producing a possibly large quotient and remainder; and then there is more
recursion.

We emphasize the role of the division subroutine in each of these algorithms. If the
recursive computation is expressed as a tree then each node in the tree calls the left subtree
recursively, multiplies by a transition matrix, calls a division subroutine, and calls the
right subtree recursively. The results of the left subtree are described by some number of
quotients in Euclid’s algorithm, so variations in the sizes of quotients produce irregularities
in the amount of information computed by the recursions. These irregularities can be
quite severe: multiplying by the transition matrix does not make any progress when the
inputs have sufficiently different sizes. The call to a division subroutine is a bandage over
these irregularities, guaranteeing significant progress in all cases.

Our subquadratic algorithm has a simpler structure. We guarantee that a recursive
call to a size-j subtree always jumps through exactly j division steps. Each node in the
computation tree involves multiplications and recursive calls, but the large variable-time
division subroutine has disappeared, and the underlying irregularities have also disappeared.
One can think of each Euclid-style division as being decomposed into a series of our simpler
constant-time division steps, but our recursion does not care where each Euclid-style
division begins and ends. See Section 12 for a case study of the speeds that we achieve.

A prerequisite for this regular structure is that the linear combinations in j of our
division steps are determined by the bottom j bits of the integer inputs8 without regard
to top bits. This prerequisite was almost achieved by the Brent–Kung “systolic” gcd
algorithm [24] mentioned above, but Brent and Kung did not observe that the data flow

8For polynomials one can work from the bottom or from the top, since there are no carries. We
choose to work from bottom coefficients in the polynomial case, to emphasize the similarities between the
polynomial case and the integer case.

6 Fast constant-time gcd computation and modular inversion

allows a subquadratic algorithm. The Stehlé–Zimmermann subquadratic “binary recursive
gcd” algorithm [62] also emphasizes that it works with bottom bits, but it has the same
irregularities as earlier subquadratic algorithms, and it again needs a large variable-time
division subroutine.

Often the literature considers the “normal” case of polynomial gcd computation. This
is, by definition, the case that each Euclid–Stevin quotient has degree 1. The conventional
recursion then returns a predictable amount of information, allowing a more regular
algorithm, such as [53, Algorithm PGCD].9 Our algorithm achieves the same regularity
for the general case.

Another previous algorithm that achieves the same regularity for a different special case
of polynomial gcd computation is Thomé’s subquadratic variant [68, Program 4.1] of the
Berlekamp–Massey algorithm. Our algorithm can be viewed as extending this regularity
to arbitrary polynomial gcd computations, and, beyond this, to integer gcd computations.

2 Organization of the paper
We start with the polynomial case. Section 3 defines division steps. Section 5, relying
on theorems in Section 4, states our main algorithm to compute c coefficients of the nth
iterate of divstep. This takes n(c+ n) simple operations. We also explain how “jumps”
reduce the cost for large n to (c+ n)(log cn)2+o(1) operations. All of these algorithms take
constant time, i.e., time independent of the input coefficients for any particular (n, c).

There is a long tradition in number theory of defining Euclid’s algorithm, continued
fractions, etc. for inputs in a “complete” field, such as the field of real numbers or the field
of power series. We define division steps for power series, and state our main algorithm
for power series. Division steps produce polynomial outputs from polynomial inputs, so
the reader can restrict attention to polynomials if desired, but there are advantages of
following the tradition, as we now explain.

Requiring algorithms to work for general power series means that the algorithms can
only inspect a limited number of leading coefficients of each input, without regard to the
degree of inputs that happen to be polynomials. This restriction simplifies algorithm
design, and helped us design our main algorithm.

Going beyond polynomials also makes it easy to describe further algorithmic options,
such as iterating divstep on inputs (1, g/f) instead of (f, g). Restricting to polynomial
inputs would require g/f to be replaced with a nearby polynomial; the limited precision of
the inputs would affect the table of divstep iterates, rather than merely being an option in
the algorithms.

Section 6, relying on theorems in Appendix A, applies our main algorithm to gcd
computation and modular inversion. Here the inputs are polynomials. A constant fraction
of the power-series coefficients used in our main algorithm are guaranteed to be 0 in this
case, and one can save some time by skipping computations involving those coefficients.
However, it is still helpful to factor the algorithm-design process into (1) designing the fast
power-series algorithm and then (2) eliminating unused values for special cases.

Section 7 is a case study of the software speed of modular inversion of polynomials as
part of key generation in the NTRU cryptosystem.

The remaining sections of the paper consider the integer case. Section 8 defines division
steps for integers. Section 10, relying on theorems in Section 9, states our main algorithm to
compute c bits of the nth iterate of divstep. Section 11, relying on theorems in Appendix G,
applies our main algorithm to gcd computation and modular inversion. Section 12 is a case

9The analysis in [53, Section VI] considers only normal inputs (and power-of-2 sizes). The algorithm
works only for normal inputs. The performance of division in the non-normal case was discussed in [53,
Section VIII] but incorrectly described as solely an issue for the base case of the recursion.

Daniel J. Bernstein and Bo-Yin Yang 7

study of the software speed of inversion of integers modulo primes used in elliptic-curve
cryptography.

2.1. General notation. We write M2(R) for the ring of 2 × 2 matrices over a ring R.
For example, M2(R) is the ring of 2× 2 matrices over the field R of real numbers.

2.2. Notation for the polynomial case. Fix a field k. The formal-power-series ring
k[[x]] is the set of infinite sequences (f0, f1, . . .) with each fi ∈ k. The ring operations are

• 0: (0, 0, 0, . . .).

• 1: (1, 0, 0, . . .).

• +: (f0, f1, . . .), (g0, g1, . . .) 7→ (f0 + g0, f1 + g1, . . .).

• −: (f0, f1, . . .), (g0, g1, . . .) 7→ (f0 − g0, f1 − g1, . . .).

• ·: (f0, f1, f2, . . .), (g0, g1, g2, . . .) 7→ (f0g0, f0g1 + f1g0, f0g2 + f1g1 + f2g0, . . .).

The element (0, 1, 0, . . .) is written “x”, and the entry fi in f = (f0, f1, . . .) is called the
“coefficient of xi in f”. As in the Sage [58] computer-algebra system, we write f [i] for the
coefficient of xi in f . The “constant coefficient” f [0] has a more standard notation f(0),
and we use the f(0) notation when we are not also inspecting other coefficients.

The unit group of k[[x]] is written k[[x]]∗. This is the same as the set of f ∈ k[[x]] such
that f(0) 6= 0.

The polynomial ring k[x] is the subring of sequences (f0, f1, . . .) that have only finitely
many nonzero coefficients. We write deg f for the degree of f ∈ k[x]; this means the
maximum i such that f [i] 6= 0, or −∞ if f = 0. We also define f [−∞] = 0, so f [deg f] is
always defined. Beware that the literature sometimes instead defines deg 0 = −1, and in
particular Sage defines deg 0 = −1.

We define f mod xn as f [0] + f [1]x+ · · ·+ f [n− 1]xn−1 for any f ∈ k[[x]]. We define
f mod g for any f, g ∈ k[x] with g 6= 0 as the unique polynomial r such that deg r < deg g
and f − r = gq for some q ∈ k[x].

The ring k[[x]] is a domain. The formal-Laurent-series field k((x)) is, by definition, the
field of fractions of k[[x]]. Each element of k((x)) can be written (not uniquely) as f/xi
for some f ∈ k[[x]] and some i ∈ {0, 1, 2, . . .}. The subring k[1/x] is the smallest subring
of k((x)) containing both k and 1/x.

2.3. Notation for the integer case. The set of infinite sequences (f0, f1, . . .) with each
fi ∈ {0, 1} forms a ring under the following operations:

• 0: (0, 0, 0, . . .).

• 1: (1, 0, 0, . . .).

• +: (f0, f1, . . .), (g0, g1, . . .) 7→ the unique (h0, h1, . . .) such that, for every n ≥ 0:
h0 + 2h1 + 4h2 + · · ·+ 2n−1hn−1 ≡ (f0 + 2f1 + 4f2 + · · ·+ 2n−1fn−1) + (g0 + 2g1 +
4g2 + · · ·+ 2n−1gn−1) (mod 2n).

• −: same with (f0 + 2f1 + 4f2 + · · ·+ 2n−1fn−1)− (g0 + 2g1 + 4g2 + · · ·+ 2n−1gn−1).

• ·: same with (f0 + 2f1 + 4f2 + · · ·+ 2n−1fn−1) · (g0 + 2g1 + 4g2 + · · ·+ 2n−1gn−1).

We follow the tradition among number theorists of using the notation Z2 for this ring, and
not for the finite field F2 = Z/2. This ring Z2 has characteristic 0, so Z can be viewed as
a subset of Z2.

One can think of (f0, f1, . . .) ∈ Z2 as an infinite series f0 + 2f1 + · · · . The difference
between Z2 and the power-series ring F2[[x]] is that Z2 has carries: for example, adding
(1, 0, . . .) to (1, 0, . . .) in Z2 produces (0, 1, . . .).

8 Fast constant-time gcd computation and modular inversion

We define f mod 2n as f0 + 2f1 + · · ·+ 2n−1fn−1 for any f = (f0, f1, . . .) ∈ Z2.
The unit group of Z2 is written Z∗2. This is the same as the set of odd f ∈ Z2, i.e., the

set of f ∈ Z2 such that f mod 2 6= 0.
If f ∈ Z2 and f 6= 0 then ord2 f means the largest integer e ≥ 0 such that f ∈ 2eZ2;

equivalently, the unique integer e ≥ 0 such that f ∈ 2eZ∗2.
The ring Z2 is a domain. The field Q2 is, by definition, the field of fractions of Z2.

Each element of Q2 can be written (not uniquely) as f/2i for some f ∈ Z2 and some
i ∈ {0, 1, 2, . . .}. The subring Z[1/2] is the smallest subring of Q2 containing both Z and
1/2.

3 Definition of x-adic division steps
Define divstep : Z× k[[x]]∗ × k[[x]]→ Z× k[[x]]∗ × k[[x]] as follows:

divstep(δ, f, g) =
{

(1− δ, g, (g(0)f − f(0)g)/x) if δ > 0 and g(0) 6= 0,
(1 + δ, f, (f(0)g − g(0)f)/x) otherwise.

Note that f(0)g − g(0)f is divisible by x in k[[x]]. The name “division step” is justified in
Theorem C.1, which shows that dividing a degree-d0 polynomial by a degree-d1 polynomial
with 0 ≤ d1 < d0 can be viewed as computing divstep2d0−2d1 .

3.1. Transition matrices. Write (δ1, f1, g1) = divstep(δ, f, g). Then(
f1
g1

)
= T (δ, f, g)

(
f
g

)
and

(
1
δ1

)
= S(δ, f, g)

(
1
δ

)
where T : Z× k[[x]]∗ × k[[x]]→M2(k[1/x]) is defined by

T (δ, f, g) =

(
0 1
g(0)
x

−f(0)
x

)
if δ > 0 and g(0) 6= 0,

(
1 0
−g(0)
x

f(0)
x

)
otherwise,

and S : Z× k[[x]]∗ × k[[x]]→M2(Z) is defined by

S(δ, f, g) =

(
1 0
1 −1

)
if δ > 0 and g(0) 6= 0,

(
1 0
1 1

)
otherwise.

Note that both T (δ, f, g) and S(δ, f, g) are defined entirely by (δ, f(0), g(0)); they do not
depend on the remaining coefficients of f and g.

3.2. Decomposition. This divstep function is a composition of two simpler functions
(and the transition matrices can similarly be decomposed):

• a conditional swap replacing (δ, f, g) with (−δ, g, f) if δ > 0 and g(0) 6= 0; followed
by

• an elimination replacing (δ, f, g) with (1 + δ, f, (f(0)g − g(0)f)/x).

Daniel J. Bernstein and Bo-Yin Yang 9

A: δ f [0] g[0] f [1] g[1] f [2] g[2] f [3] g[3] · · ·

−δ swap

B: δ′ f ′[0] g′[0] f ′[1] g′[1] f ′[2] g′[2] f ′[3] g′[3] · · ·

C: 1 + δ′ f ′′[0] g′′[0] f ′′[1] g′′[1] f ′′[2] g′′[2] f ′′[3] · · ·

Figure 3.3: Data flow in an x-adic division step decomposed as a conditional swap (A to
B) followed by an elimination (B to C). The swap bit is set if δ > 0 and g[0] 6= 0. The g
outputs are f ′[0]g′[1]− g′[0]f ′[1], f ′[0]g′[2]− g′[0]f ′[2], f ′[0]g′[3]− g′[0]f ′[3], etc.

See Figure 3.3.

This decomposition is our motivation for defining divstep in the first case—the swapped
case—to compute (g(0)f − f(0)g)/x. Using (f(0)g − g(0)f)/x in both cases might seem
simpler but would require the conditional swap to forward a conditional negation to the
elimination.

One can also compose these functions in the opposite order. This is compatible with
some of what we say later about iterating the composition. However, the corresponding
transition matrices would depend on another coefficient of g. This would complicate our
algorithm statements.

Another possibility, as in [23], is to keep f and g in place, using the sign of δ to decide
whether to add a multiple of f into g or to add a multiple of g into f . One way to do
this in constant time is to perform two multiplications and two additions. Another way is
to perform conditional swaps before and after one addition and one multiplication. Our
approach is more efficient.

3.4. Scaling. One can define a variant of divstep that computes f − (f(0)/g(0))g in the
first case (the swapped case) and g − (g(0)/f(0))f in the second case.

This variant has two advantages. First, it multiplies only one series, rather than two,
by a scalar in k. Second, multiplying both f and g by any u ∈ k[[x]]∗ has the same effect
on the output, so this variant induces a function on fewer variables (δ, g/f): the ratio
ρ = g/f is replaced by (1/ρ − 1/ρ(0))/x when δ > 0 and ρ(0) 6= 0, and by (ρ − ρ(0))/x
otherwise, while δ is replaced by 1− δ or 1+ δ respectively. This is the composition of, first,
a conditional inversion that replaces (δ, ρ) with (−δ, 1/ρ) if δ > 0 and ρ(0) 6= 0; second, an
elimination that replaces ρ with (ρ− ρ(0))/x, while adding 1 to δ.

On the other hand, working projectively with f, g is generally more efficient than working
with ρ. Working with f(0)g− g(0)f rather than g− (g(0)/f(0))f has the virtue of being a
“fraction-free” computation: it involves only ring operations in k, not divisions. This makes
the effect of scaling only slightly more difficult to track. Specifically, say divstep(δ, f, g) =

10 Fast constant-time gcd computation and modular inversion

Table 4.1: Iterates (δn, fn, gn) = divstepn(δ, f, g) for k = F7, δ = 1, f = 2 + 7x+ 1x2 +
8x3 + 2x4 + 8x5 + 1x6 + 8x7, and g = 3 + 1x+ 4x2 + 1x3 + 5x4 + 9x5 + 2x6. Each power
series is displayed as a row of coefficients of x0, x1, etc.

n δn fn gn
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . . . x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . . .

0 1 2 0 1 1 2 1 1 1 0 0 . . . 3 1 4 1 5 2 2 0 0 0 . . .
1 0 3 1 4 1 5 2 2 0 0 0 . . . 5 2 1 3 6 6 3 0 0 0 . . .
2 1 3 1 4 1 5 2 2 0 0 0 . . . 1 4 4 0 1 6 0 0 0 0 . . .
3 0 1 4 4 0 1 6 0 0 0 0 . . . 3 6 1 2 5 2 0 0 0 0 . . .
4 1 1 4 4 0 1 6 0 0 0 0 . . . 1 3 2 2 5 0 0 0 0 0 . . .
5 0 1 3 2 2 5 0 0 0 0 0 . . . 1 2 5 3 6 0 0 0 0 0 . . .
6 1 1 3 2 2 5 0 0 0 0 0 . . . 6 3 1 1 0 0 0 0 0 0 . . .
7 0 6 3 1 1 0 0 0 0 0 0 . . . 1 4 4 2 0 0 0 0 0 0 . . .
8 1 6 3 1 1 0 0 0 0 0 0 . . . 0 2 4 0 0 0 0 0 0 0 . . .
9 2 6 3 1 1 0 0 0 0 0 0 . . . 5 3 0 0 0 0 0 0 0 0 . . .

10 −1 5 3 0 0 0 0 0 0 0 0 . . . 4 5 5 0 0 0 0 0 0 0 . . .
11 0 5 3 0 0 0 0 0 0 0 0 . . . 6 4 0 0 0 0 0 0 0 0 . . .
12 1 5 3 0 0 0 0 0 0 0 0 . . . 2 0 0 0 0 0 0 0 0 0 . . .
13 0 2 0 0 0 0 0 0 0 0 0 . . . 6 0 0 0 0 0 0 0 0 0 . . .
14 1 2 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 . . .
15 2 2 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 . . .
16 3 2 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 . . .
17 4 2 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 . . .
18 5 2 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 . . .
19 6 2 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
...

...
...

. . .

(δ′, f ′, g′). If u ∈ k[[x]] with u(0) = 1 then divstep(δ, uf, ug) = (δ′, uf ′, ug′). If u ∈ k∗ then

divstep(δ, uf, g) = (δ′, f ′, ug′) in the first (swapped) case;
divstep(δ, uf, g) = (δ′, uf ′, ug′) in the second case;
divstep(δ, f, ug) = (δ′, uf ′, ug′) in the first case;
divstep(δ, f, ug) = (δ′, f ′, ug′) in the second case;

and divstep(δ, uf, ug) = (δ′, uf ′, u2g′).
One can also scale g(0)f − f(0)g by other nonzero constants. For example, for typical

fields k one can quickly find “half-size” a, b such that a/b = g(0)/f(0). Computing af − bg
may be more efficient than computing g(0)f − f(0)g.

We use the g(0)/f(0) variant in our case study in Section 7 for the field k = F3.
Dividing by f(0) in this field is the same as multiplying by f(0).

4 Iterates of x-adic division steps
Starting from (δ, f, g) ∈ Z × k[[x]]∗ × k[[x]], define (δn, fn, gn) = divstepn(δ, f, g) ∈
Z × k[[x]]∗ × k[[x]] for each n ≥ 0. Also define Tn = T (δn, fn, gn) ∈ M2(k[1/x]) and
Sn = S(δn, fn, gn) ∈M2(Z) for each n ≥ 0. Our main algorithm relies on various simple
mathematical properties of these objects; this section states those properties. Table 4.1
shows all δn, fn, gn for one example of (δ, f, g).

Theorem 4.2.
(
fn
gn

)
= Tn−1 · · · Tm

(
fm
gm

)
and

(
1
δn

)
= Sn−1 · · · Sm

(
1
δm

)
if n ≥ m ≥ 0.

Daniel J. Bernstein and Bo-Yin Yang 11

Proof. This follows from
(
fm+1
gm+1

)
= Tm

(
fm
gm

)
and

(
1

δm+1

)
= Sm

(
1
δm

)
.

Theorem 4.3. Tn−1 · · · Tm ∈
(
k + · · ·+ 1

xn−m−1 k k + · · ·+ 1
xn−m−1 k

1
xk + · · ·+ 1

xn−m k
1
xk + · · ·+ 1

xn−m k

)
if n > m ≥ 0.

A product of n−m of these T matrices can thus be stored using 4(n−m) coefficients
from k. Beware that the theorem statement relies on n > m: for n = m the product is the
identity matrix.

Proof. If n − m = 1 then the product is Tm, which is in
(

k k
1
xk

1
xk

)
by definition. For

n−m > 1, assume inductively that

Tn−1 · · · Tm+1 ∈
(
k + · · ·+ 1

xn−m−2 k k + · · ·+ 1
xn−m−2 k

1
xk + · · ·+ 1

xn−m−1 k
1
xk + · · ·+ 1

xn−m−1 k

)
.

Multiply on the right by Tm ∈
(

k k
1
xk

1
xk

)
. The top entries of the product are in (k + · · ·+

1
xn−m−2 k) + (1

xk+ · · ·+ 1
xn−m−1 k) = k+ · · ·+ 1

xn−m−1 k as claimed, and the bottom entries
are in (1

xk + · · ·+ 1
xn−m−1 k) + (1

x2 k + · · ·+ 1
xn−m k) = 1

xk + · · ·+ 1
xn−m k as claimed.

Theorem 4.4. Sn−1 · · · Sm ∈
(

1 0
{2− (n−m), . . . , n−m− 2, n−m} {1,−1}

)
if n >

m ≥ 0.

In other words, the bottom-left entry is between −(n−m) exclusive and n−m inclusive,
and has the same parity as n−m. There are exactly 2(n−m) possibilities for the product.
Beware that the theorem statement again relies on n > m.

Proof. If n−m = 1 then {2− (n−m), . . . , n−m− 2, n−m} = {1} and the product is
Sm, which is

(1 0
1 ±1

)
by definition.

For n−m > 1, assume inductively that

Sn−1 · · · Sm+1 ∈
(

1 0
{2− (n−m− 1), . . . , n−m− 3, n−m− 1} {1,−1}

)
,

and multiply on the right by Sm =
(1 0

1 ±1
)
. The top two entries of the product are again 1

and 0. The bottom-left entry is in {2− (n−m− 1), . . . , n−m− 3, n−m− 1}+{1,−1} =
{2− (n−m), . . . , n−m− 2, n−m}. The bottom-right entry is again 1 or −1.

The next theorem compares δm, fm, gm, Tm,Sm to δ′m, f ′m, g′m, T ′m,S ′m defined in the
same way starting from (δ′, f ′, g′) ∈ Z× k[[x]]∗ × k[[x]].

Theorem 4.5. Let m, t be nonnegative integers. Assume that δ′m = δm; f ′m ≡ fm
(mod xt); and g′m ≡ gm (mod xt). Then, for each integer n with m < n ≤ m+ t: T ′n−1 =
Tn−1; S ′n−1 = Sn−1; δ′n = δn; f ′n ≡ fn (mod xt−(n−m−1)); and g′n ≡ gn (mod xt−(n−m)).

In other words, δm and the first t coefficients of fm and gm determine all of the
following:

• the matrices Tm, Tm+1, . . . , Tm+t−1;

• the matrices Sm,Sm+1, . . . ,Sm+t−1;

• δm+1, . . . , δm+t;

• the first t coefficients of fm+1, the first t − 1 coefficients of fm+2, the first t − 2
coefficients of fm+3, and so on through the first coefficient of fm+t;

12 Fast constant-time gcd computation and modular inversion

• the first t− 1 coefficients of gm+1, the first t− 2 coefficients of gm+2, the first t− 3
coefficients of gm+3, and so on through the first coefficient of gm+t−1.

Our main algorithm computes (δn, fn mod xt−(n−m−1), gn mod xt−(n−m)) for any selected
n ∈ {m+ 1, . . . ,m+ t}, along with the product of the matrices Tm, . . . , Tn−1. See Sec-
tion 5.

Proof. See Figure 3.3 for the intuition. Formally, fix m, t and induct on n. Observe that
(δ′n−1, f

′
n−1(0), g′n−1(0)) equals (δn−1, fn−1(0), gn−1(0)):

• If n = m + 1: By assumption f ′m ≡ fm (mod xt), and n ≤ m + t so t ≥ 1, so in
particular f ′m(0) = fm(0). Similarly g′m(0) = gm(0). By assumption δ′m = δm.

• If n > m + 1: f ′n−1 ≡ fn−1 (mod xt−(n−m−2)) by the inductive hypothesis, and
n ≤ m + t so t − (n − m − 2) ≥ 2, so in particular f ′n−1(0) = fn−1(0); similarly
g′n−1 ≡ gn−1 (mod xt−(n−m−1)) by the inductive hypothesis, and t− (n−m−1) ≥ 1,
so in particular g′n−1(0) = gn−1(0); and δ′n−1 = δn−1 by the inductive hypothesis.

Now use the fact that T and S inspect only the first coefficient of each series to see
that

T ′n−1 = T (δ′n−1, f
′
n−1, g

′
n−1) = T (δn−1, fn−1, gn−1) = Tn−1,

S ′n−1 = S(δ′n−1, f
′
n−1, g

′
n−1) = S(δn−1, fn−1, gn−1) = Sn−1

as claimed.
Multiply

(
1

δ′n−1

)
=
(

1
δn−1

)
by S ′n−1 = Sn−1 to see that δ′n = δn as claimed.

By the inductive hypothesis, (T ′m, . . . , T ′n−2) = (Tm, . . . , Tn−2), and T ′n−1 = Tn−1, so

T ′n−1 · · · T ′m = Tn−1 · · · Tm. Abbreviate Tn−1 · · · Tm as P . Then
(
f ′n
g′n

)
= P

(
f ′m
g′m

)
and(

fn
gn

)
= P

(
fm
gm

)
by Theorem 4.2, so

(
f ′n − fn
g′n − gn

)
= P

(
f ′m − fm
g′m − gm

)
.

By Theorem 4.3, P ∈
(
k + · · ·+ 1

xn−m−1 k k + · · ·+ 1
xn−m−1 k

1
xk + · · ·+ 1

xn−m k
1
xk + · · ·+ 1

xn−m k

)
. By assumption,

f ′m − fm and g′m − gm are multiples of xt. Multiply to see that f ′n − fn is a multiple of
xt/xn−m−1 = xt−(n−m−1) as claimed, and g′n − gn is a multiple of xt/xn−m = xt−(n−m)

as claimed.

5 Fast computation of iterates of x-adic division steps
Our goal in this section is to compute (δn, fn, gn) = divstepn(δ, f, g). We are given
the power series f, g to precision t, t respectively, and we compute fn, gn to precision
t − n + 1, t − n respectively if n ≥ 1; see Theorem 4.5. We also compute the n-step
transition matrix Tn−1 · · · T0.

We begin with an algorithm that simply computes one divstep iterate after another,
multiplying by scalars in k and dividing by x exactly as in the divstep definition. We specify
this algorithm in Figure 5.1 as a function divstepsx in the Sage [58] computer-algebra
system. The quantities u, v, q, r ∈ k[1/x] inside the algorithm keep track of the coefficients
of the current f, g in terms of the original f, g.

The rest of this section considers (1) constant-time computation, (2) “jumping” through
division steps, and (3) further techniques to save time inside the computations.

5.2. Constant-time computation. The underlying Sage functions do not take constant
time, but they can be replaced with functions that do take constant time. The case
distinction can be replaced with constant-time bit operations, for example obtaining the
new (δ, f, g) as follows:

Daniel J. Bernstein and Bo-Yin Yang 13

def␣divstepsx(n,t,delta,f,g):
␣␣assert␣t␣>=␣n␣and␣n␣>=␣0
␣␣f,g␣=␣f.truncate(t),g.truncate(t)
␣␣kx␣=␣f.parent()
␣␣x␣=␣kx.gen()
␣␣u,v,q,r␣=␣kx(1),kx(0),kx(0),kx(1)

␣␣while␣n␣>␣0:
␣␣␣␣f␣=␣f.truncate(t)
␣␣␣␣if␣delta␣>␣0␣and␣g[0]␣!=␣0:␣delta,f,g,u,v,q,r␣=␣-delta,g,f,q,r,u,v
␣␣␣␣f0,g0␣=␣f[0],g[0]
␣␣␣␣delta,g,q,r␣=␣1+delta,(f0*g-g0*f)/x,(f0*q-g0*u)/x,(f0*r-g0*v)/x
␣␣␣␣n,t␣=␣n-1,t-1
␣␣␣␣g␣=␣kx(g).truncate(t)

␣␣M2kx␣=␣MatrixSpace(kx.fraction_field(),2)
␣␣return␣delta,f,g,M2kx((u,v,q,r))

Figure 5.1: Algorithm divstepsx to compute (δn, fn, gn) = divstepn(δ, f, g). Inputs:
n, t ∈ Z with 0 ≤ n ≤ t; δ ∈ Z; f, g ∈ k[[x]] to precision at least t. Outputs: δn; fn to
precision t if n = 0, or t− (n− 1) if n ≥ 1; gn to precision t− n; Tn−1 · · · T0.

• Let s be the “sign bit” of −δ, meaning 0 if −δ ≥ 0 or 1 if −δ < 0.

• Let z be the “nonzero bit” of g(0), meaning 0 if g(0) = 0 or 1 if g(0) 6= 0.

• Compute and output 1 + (1− 2sz)δ. For example, shift δ to obtain 2δ, “AND” with
−sz to obtain 2szδ, and subtract from 1 + δ.

• Compute and output f ⊕ sz(f ⊕ g), obtaining f if sz = 0 or g if sz = 1.

• Compute and output (1− 2sz)(f(0)g− g(0)f)/x. Alternatively, compute and output
simply (f(0)g−g(0)f)/x. See the discussion of decomposition and scaling in Section 3.

Standard techniques minimize the exact cost of these computations for various repre-
sentations of the inputs. The details depend on the platform. See our case study in
Section 7.

5.3. Jumping through division steps. Here is a more general divide-and-conquer
algorithm to compute (δn, fn, gn) and the n-step transition matrix Tn−1 · · · T0:

• If n ≤ 1, use the definition of divstep and stop.

• Choose j ∈ {1, 2, . . . , n− 1}.

• Jump j steps from δ, f, g to δj , fj , gj . Specifically, compute the j-step transition

matrix Tj−1 · · · T0, and then multiply by
(
f
g

)
to obtain

(
fj
gj

)
. To compute the

j-step transition matrix, call the same algorithm recursively. The critical point here
is that this recursive call uses the inputs to precision only j: this determines the
j-step transition matrix by Theorem 4.5.

• Similarly jump another n− j steps from δj , fj , gj to δn, fn, gn.

14 Fast constant-time gcd computation and modular inversion

from␣divstepsx␣import␣divstepsx

def␣jumpdivstepsx(n,t,delta,f,g):
␣␣assert␣t␣>=␣n␣and␣n␣>=␣0
␣␣kx␣=␣f.truncate(t).parent()

␣␣if␣n␣<=␣1:␣return␣divstepsx(n,t,delta,f,g)

␣␣j␣=␣n//2

␣␣delta,f1,g1,P1␣=␣jumpdivstepsx(j,j,delta,f,g)
␣␣f,g␣=␣P1*vector((f,g))
␣␣f,g␣=␣kx(f).truncate(t-j),kx(g).truncate(t-j)

␣␣delta,f2,g2,P2␣=␣jumpdivstepsx(n-j,n-j,delta,f,g)
␣␣f,g␣=␣P2*vector((f,g))
␣␣f,g␣=␣kx(f).truncate(t-n+1),kx(g).truncate(t-n)

␣␣return␣delta,f,g,P2*P1

Figure 5.4: Algorithm jumpdivstepsx to compute (δn, fn, gn) = divstepn(δ, f, g). Same
inputs and outputs as in Figure 5.1.

This splits an (n, t) problem into two smaller problems, namely a (j, j) problem and an
(n− j, n− j) problem, at the cost of O(1) polynomial multiplications involving O(t+ n)
coefficients.

If j is always chosen as 1 then this algorithm ends up performing the same computations
as Figure 5.1: compute δ1, f1, g1 to precision t− 1, compute δ2, f2, g2 to precision t− 2,
etc. But there are many more possibilities for j.

Our jumpdivstepsx algorithm in Figure 5.4 takes j = bn/2c, balancing the (j, j)
problem with the (n − j, n − j) problem. In particular, with subquadratic polynomial
multiplication, the algorithm is subquadratic. With FFT-based polynomial multiplica-
tion, the algorithm uses (t+ n)(log(t+ n))1+o(1) + n(logn)2+o(1) operations, and hence
n(logn)2+o(1) operations if t is bounded by n(logn)1+o(1). For comparison, Figure 5.1
takes Θ(n(t+ n)) operations.

We emphasize that, unlike standard fast-gcd algorithms such as [66], this algorithm
does not call a polynomial-division subroutine between its two recursive calls.

5.5. More speedups. Our jumpdivstepsx algorithm is asymptotically Θ(logn) times
slower than fast polynomial multiplication. The best previous gcd algorithms also have a
Θ(logn) slowdown, both in the worst case and in the average case.10 This might suggest
that there is very little room for improvement.

However, Θ says nothing about constant factors. There are several standard ideas for
constant-factor speedups in gcd computation, beyond lower-level speedups in multiplication.
We now apply the ideas to jumpdivstepsx.

The final polynomial multiplications in jumpdivstepsx produce six large outputs:
f , g, and four entries of a matrix product P . Callers do not always use all of these
outputs: for example, the recursive calls to jumpdivstepsx do not use the resulting f

10There are faster cases. Strassen [66] gave an algorithm that replaces the log factor with the entropy of
the list of degrees in the corresponding continued fraction; there are occasional inputs where this entropy
is o(log n). For example, computing gcd{. . . , 0} takes linear time. However, these speedups are not useful
for constant-time computations.

Daniel J. Bernstein and Bo-Yin Yang 15

and g. In principle there is no difficulty applying dead-value elimination and higher-level
optimizations to each of the 63 possible combinations of desired outputs.

The recursive calls in jumpdivstepsx produce two products P1, P2 of transition
matrices, which are then (if desired) multiplied to obtain P = P2P1. In Figure 5.4,
jumpdivstepsx multiplies f and g first by P1, and then by P2, to obtain fn and gn. An
alternative is to multiply by P .

The inputs f and g are truncated to t coefficients, and the resulting fn and gn are
truncated to t− n+ 1 and t− n coefficients respectively. Often the caller (for example,

jumpdivstepsx itself) wants more coefficients of P
(
f
g

)
. Rather than performing an

entirely new multiplication by P , one can add the truncation errors back into the results:
multiply P by the f and g truncation errors, multiply P2 by the fj and gj truncation
errors, and skip the final truncations of fn and gn.

There are standard speedups for multiplication in the context of truncated products,
sums of products (e.g., in matrix multiplication), partially known products (e.g., the

coefficients of x−1, x−2, x−3, . . . in P1

(
f
g

)
are known to be 0), repeated inputs (e.g., each

entry of P1 is multiplied by two entries of P2 and by one of f, g), and outputs being reused
as inputs. See, e.g., the discussions of “FFT addition”, “FFT caching”, and “FFT doubling”
in [11].

Any choice of j between 1 and n− 1 produces correct results. Values of j close to the
edges do not take advantage of fast polynomial multiplication, but this does not imply that
j = bn/2c is optimal. The number of combinations of choices of j and other options above
is small enough that, for each small (t, n) in turn, one can simply measure all options and
select the best. The results depend on the context—which outputs are needed—and on
the exact performance of polynomial multiplication.

6 Fast polynomial gcd computation and modular inversion
This section presents three algorithms: gcdx computes gcd{R0, R1}, where R0 is a poly-
nomial of degree d > 0 and R1 is a polynomial of degree <d; gcddegree computes merely
deg gcd{R0, R1}; recipx computes the reciprocal of R1 modulo R0 if gcd{R0, R1} = 1.
Figure 6.1 specifies all three algorithms, and Theorem 6.2 justifies all three algorithms.
The theorem is proven in Appendix A.

Each algorithm calls divstepsx from Section 5 to compute (δ2d−1, f2d−1, g2d−1) =
divstep2d−1(1, f, g). Here f = xdR0(1/x) is the reversal of R0, and g = xd−1R1(1/x). Of
course, one can replace divstepsx here with jumpdivstepsx, which has the same outputs.
The algorithms vary in the input-precision parameter t passed to divstepsx, and vary in
how they use the outputs:

• gcddegree uses input precision t = 2d− 1 to compute δ2d−1, and then uses one part
of Theorem 6.2, which states that deg gcd{R0, R1} = δ2d−1/2.

• gcdx uses precision t = 3d− 1 to compute δ2d−1 and d+ 1 coefficients of f2d−1. The
algorithm then uses another part of Theorem 6.2, which states that f2d−1/f2d−1(0)
is the reversal of gcd{R0, R1}.

• recipx uses t = 2d−1 to compute δ2d−1; 1 coefficient of f2d−1; and the product P of
transition matrices. It then uses the last part of Theorem 6.2, which (in the coprime
case) states that the top-right corner of P is f2d−1(0)/x2d−2 times the degree-(d− 1)
reversal of the desired reciprocal.

One can generalize to compute gcd{R0, R1} for any polynomials R0, R1 of degree ≤d
in time that depends only on d: scan the inputs to find the top degree, and always perform

16 Fast constant-time gcd computation and modular inversion

from␣divstepsx␣import␣divstepsx

def␣gcddegree(R0,R1):
␣␣d␣=␣R0.degree()
␣␣assert␣d␣>␣0␣and␣d␣>␣R1.degree()
␣␣f,g␣=␣R0.reverse(d),R1.reverse(d-1)
␣␣delta,f,g,P␣=␣divstepsx(2*d-1,2*d-1,1,f,g)
␣␣return␣delta//2

def␣gcdx(R0,R1):
␣␣d␣=␣R0.degree()
␣␣assert␣d␣>␣0␣and␣d␣>␣R1.degree()
␣␣f,g␣=␣R0.reverse(d),R1.reverse(d-1)
␣␣delta,f,g,P␣=␣divstepsx(2*d-1,3*d-1,1,f,g)
␣␣return␣f.reverse(delta//2)/f[0]

def␣recipx(R0,R1):
␣␣d␣=␣R0.degree()
␣␣assert␣d␣>␣0␣and␣d␣>␣R1.degree()
␣␣f,g␣=␣R0.reverse(d),R1.reverse(d-1)
␣␣delta,f,g,P␣=␣divstepsx(2*d-1,2*d-1,1,f,g)
␣␣if␣delta␣!=␣0:␣return
␣␣kx␣=␣f.parent()
␣␣x␣=␣kx.gen()
␣␣return␣kx(x^(2*d-2)*P[0][1]/f[0]).reverse(d-1)

Figure 6.1: Algorithm gcdx to compute gcd{R0, R1}; algorithm gcddegree to compute
deg gcd{R0, R1}; algorithm recipx to compute the reciprocal of R1 modulo R0 when
gcd{R0, R1} = 1. All three algorithms assume that R0, R1 ∈ k[x], that degR0 > 0, and
that degR0 > degR1.

2d iterations of divstep. The extra iteration handles the case that both R0 and R1 have
degree d. For simplicity we focus on the case degR0 = d > degR1 with d > 0.

One can similarly characterize gcd and modular reciprocal in terms of subsequent
iterates of divstep, with δ increased by the number of extra steps. Implementors might,
for example, prefer to use an iteration count that is divisible by a large power of 2.

Theorem 6.2. Let k be a field. Let d be a positive integer. Let R0, R1 be elements of
the polynomial ring k[x] with degR0 = d > degR1. Define G = gcd{R0, R1}, and let V
be the unique polynomial of degree < d − degG such that V R1 ≡ G (mod R0). Define
f = xdR0(1/x); g = xd−1R1(1/x); (δn, fn, gn) = divstepn(1, f, g); Tn = T (δn, fn, gn); and(
un vn
qn rn

)
= Tn−1 · · · T0. Then

degG = δ2d−1/2;
G = xdegGf2d−1(1/x)/f2d−1(0);
V = x−d+1+degGv2d−1(1/x)/f2d−1(0).

6.3. A numerical example. Take k = F7, d = 7, R0 = 2x7 + 7x6 + 1x5 + 8x4 +
2x3 + 8x2 + 1x + 8, and R1 = 3x6 + 1x5 + 4x4 + 1x3 + 5x2 + 9x + 2. Then f =
2 + 7x+ 1x2 + 8x3 + 2x4 + 8x5 + 1x6 + 8x7 and g = 3 + 1x+ 4x2 + 1x3 + 5x4 + 9x5 + 2x6.
The gcdx algorithm computes (δ13, f13, g13) = divstep13(1, f, g) = (0, 2, 6); see Table 4.1

Daniel J. Bernstein and Bo-Yin Yang 17

for all iterates of divstep on these inputs. Dividing f13 by its constant coefficient produces
1, the reversal of gcd{R0, R1}. The gcddegree algorithm simply computes δ13 = 0, which
is enough information to see that gcd{R0, R1} = 1.
6.4. Constant-factor speedups. Compared to the general power-series setting in
divstepsx, the inputs to gcddegree, gcdx, and recipx are more limited. For example,
the f input is all 0 after the first d+ 1 coefficients, so computations involving subsequent
coefficients can be skipped. Similarly, the top-right entry of the matrix P in recipx is
guaranteed to have coefficient 0 for 1, 1/x, 1/x2, and so on through 1/xd−2, so one can
save time in the polynomial computations that produce this entry. See Theorems A.1
and A.2 for bounds on the sizes of all intermediate results.
6.5. Bottom-up gcd and inversion. Our division steps eliminate bottom coefficients of
the inputs. Appendices B, C, and D relate this to a traditional Euclid–Stevin computation,
which gradually eliminates top coefficients of the inputs. The reversal of inputs and
outputs in gcddegree, gcdx, and recipx exchanges the role of top coefficients and bottom
coefficients. The following theorem states an alternative: skip the reversal, and instead
directly eliminate the bottom coefficients of the original inputs.
Theorem 6.6. Let k be a field. Let d be a positive integer. Let f, g be elements of the
polynomial ring k[x] with f(0) 6= 0, deg f ≤ d, and deg g < d. Define γ = gcd{f, g}.

Define (δn, fn, gn) = divstepn(1, f, g); Tn = T (δn, fn, gn); and
(
un vn
qn rn

)
= Tn−1 · · · T0.

Then
deg γ = deg f2d−1;

γ = f2d−1/`;
x2d−2γ ≡ x2d−2v2d−1g/` (mod f)

where ` is the leading coefficient of f2d−1.
Proof. Note that γ(0) 6= 0, since f is a multiple of γ.

Define R0 = xdf(1/x). Then R0 ∈ k[x]; degR0 = d since f(0) 6= 0; and f = xdR0(1/x).
Define R1 = xd−1g(1/x). Then R1 ∈ k[x]; degR1 < d; and g = xd−1R1(1/x).
Define G = gcd{R0, R1}. We will show below that γ = cxdegGG(1/x) for some c ∈ k∗.

Then γ = cf2d−1/f2d−1(0) by Theorem 6.2; i.e., γ is a constant multiple of f2d−1. Hence
deg γ = deg f2d−1 as claimed. Furthermore γ has leading coefficient 1, so 1 = c`/f2d−1(0);
i.e., γ = f2d−1/` as claimed.

By Theorem 4.2, f2d−1 = u2d−1f + v2d−1g. Also x2d−2u2d−1, x
2d−2v2d−1 ∈ k[x] by

Theorem 4.3, so

x2d−2γ = (x2d−2u2d−1/`)f + (x2d−2v2d−1/`)g ≡ (x2d−2v2d−1/`)g (mod f)

as claimed.
All that remains is to show that γ = cxdegGG(1/x) for some c ∈ k∗. If R1 = 0 then

G = gcd{R0, 0} = R0/R0[d] so xdegGG(1/x) = xdR0(1/x)/R0[d] = f/f [0]; also g = 0 so
γ = f/f [deg f] = (f [0]/f [deg f])xdegGG(1/x). Assume from now on that R1 6= 0.

We have R1 = QG for some Q ∈ k[x]. Note that degR1 = degQ + degG. Also
R1(1/x) = Q(1/x)G(1/x), so xdegR1R1(1/x) = xdegQQ(1/x)xdegGG(1/x) since degR1 =
degQ+ degG. Hence xdegGG(1/x) divides the polynomial xdegR1R1(1/x), which in turn
divides xd−1R1(1/x) = g. Similarly xdegGG(1/x) divides f . Hence xdegGG(1/x) divides
gcd{f, g} = γ.

Furthermore, G = AR0 +BR1 for some A,B ∈ k[x]. Take any integer m above all of
degG,degA,degB; then

xm+d−degGxdegGG(1/x) = xm+dG(1/x)
= xmA(1/x)xdR0(1/x) + xm+1B(1/x)xd−1R1(1/x)
= xm−degAxdegAA(1/x)f + xm+1−degBxdegBB(1/x)g,

18 Fast constant-time gcd computation and modular inversion

so xm+d−degGxdegGG(1/x) is a multiple of γ, so the polynomial γ/xdegGG(1/x) divides
xm+d−degG, so γ/xdegGG(1/x) = cxi for some c ∈ k∗ and some i ≥ 0. We must have i = 0
since γ(0) 6= 0.

6.7. How to divide by x2d−2 modulo f . Unlike top-down inversion (and top-down
gcd and bottom-up gcd), bottom-up inversion naturally scales its result by a power of x.
We now explain various ways to remove this scaling.

For simplicity we focus here on the case gcd{f, g} = 1. The divstep computation in
Theorem 6.6 naturally produces the polynomial x2d−2v2d−1/`, which has degree at most
d − 1 by Theorem 6.2. Our objective is to divide this polynomial by x2d−2 modulo f ,
obtaining the reciprocal of g modulo f by Theorem 6.6. One way to do this is to multiply
by a reciprocal of x2d−2 modulo f . This reciprocal depends only on d and f ; i.e., it can be
precomputed before g is available.

Here are several standard strategies to compute 1/x2d−2 modulo f , or more generally
1/xe modulo f for any nonnegative integer e:

• Compute the polynomial (1 − f/f(0))/x, which is 1/x modulo f ; and then raise
this to the eth power modulo f . This takes a logarithmic number of multiplications
modulo f .

• Start from 1/f(0), the reciprocal of f modulo x. Compute the reciprocals of f
modulo x2, x4, x8, etc. by Newton (Hensel) iteration. After finding the reciprocal r
of f modulo xe, divide 1− rf by xe to obtain the reciprocal of xe modulo f . This
takes a constant number of full-size multiplications, a constant number of half-size
multiplications, etc. The total number of multiplications is again logarithmic, but
if e is linear, as in the case e = 2d− 2, then the total size of the multiplications is
linear without an extra logarithmic factor.

• Combine the powering strategy with the Hensel strategy. For example, use the
reciprocal of f modulo xd−1 to compute the reciprocal of xd−1 modulo f , and then
square modulo f to obtain the reciprocal of x2d−2 modulo f , rather than using the
reciprocal of f modulo x2d−2.

• Write down a simple formula for the reciprocal of xe modulo f , if f has a special
structure that makes this easy. For example, if f = xd − 1 as in original NTRU
and d ≥ 3, then the reciprocal of x2d−2 is simply x2. As another example, if
f = xd + xd−1 + · · ·+ 1 and d ≥ 5, then the reciprocal of x2d−2 is x4.

In most cases the division by x2d−2 modulo f involves extra arithmetic that is avoided by
the top-down reversal approach. On the other hand, the case f = xd − 1 does not involve
any extra arithmetic. There are also applications of inversion that can easily handle a
scaled result.

7 Software case study for polynomial modular inversion
As a concrete case study, we consider the problem of inversion in the ring (Z/3)[x]/(x700 +
x699 + · · ·+ x+ 1) on an Intel Haswell CPU core. The situation before our work was that
this inversion consumed half of the key-generation time in the ntruhrss701 cryptosystem,
about 150000 cycles out of 300000 cycles. This cryptosystem was introduced by Hülsing,
Rijneveld, Schanck, and Schwabe [39] at CHES 2017.11

11NTRU-HRSS is another round-2 submission in NIST’s ongoing post-quantum competition. Google
has also selected NTRU-HRSS for its “CECPQ2” post-quantum experiment. CECPQ2 includes a slightly
modified version of ntruhrss701, and the NTRU-HRSS authors have also announced their intention to
tweak NTRU-HRSS; these changes do not affect the performance of key generation.

Daniel J. Bernstein and Bo-Yin Yang 19

We saved 60000 cycles out of these 150000 cycles, reducing the total key-generation
time to 240000 cycles. Our approach also simplifies code, for example eliminating the
series of conditional power-of-2 rotations in [39].

7.1. Details of the new computation. Our computation works with one integer δ and
four polynomials v, r, f, g ∈ (Z/3)[x]. Initially δ = 1; v = 0; r = 1; f = x700 + x699 + · · ·+
x + 1; and g = g699x

699 + · · · + g0x
0 is obtained by reversing the 700 input coefficients.

We actually store −δ instead of δ; this turns out to be marginally more efficient for this
platform.

We then apply 2 · 700− 1 = 1399 iterations of a main loop. Each iteration works as
follows, with the order of operations determined experimentally to try to minimize latency
issues:

• Replace v with xv.

• Compute a swap mask as −1 if δ > 0 and g(0) 6= 0, otherwise 0.

• Compute c ∈ Z/3 as f(0)g(0).

• Replace δ with −δ if the swap mask is set.

• Add 1 to δ.

• Replace (f, g) with (g, f) if the swap mask is set.

• Replace g with (g − cf)/x.

• Replace (v, r) with (r, v) if the swap mask is set.

• Replace r with r − cv.

This multiplies the transition matrix T (δ, f, g) into the vector
(
v/xn−1

r/xn

)
where n is the

number of iterations, and at the same time replaces (δ, f, g) with divstep(δ, f, g). Actually,
we are slightly modifying divstep here (and making the corresponding modification to
T), replacing the original coefficients f(0) and g(0) with the scaled coefficients 1 and
g(0)/f(0) = f(0)g(0), as in Section 3.4. In other words, if f(0) = −1, then we negate both
f and g. We suppress further comments on this deviation from the definition of divstep.

The effect of n iterations is to replace the original (δ, f, g) with divstepn(δ, f, g). The

matrix product Tn−1 · · · T0 has the form
(
· · · v/xn−1

· · · r/xn

)
. The new f and g are congruent

to v/xn−1 and r/xn respectively times the original g modulo x700 + x699 + · · ·+ x+ 1.
After 1399 iterations, we have δ = 0 if and only if the input is invertible modulo

x700 + x699 + · · · + x + 1, by Theorem 6.2. Furthermore, if δ = 0, then the inverse is
x−699v1399(1/x)/f(0) where v1399 = v/x1398; i.e., the inverse is x699v(1/x)/f(0). We thus
multiply v by f(0), and take the coefficients of x0, . . . , x699 in reverse order, to obtain the
desired inverse.

We use signed representatives −1, 0, 1 for elements of Z/3. We use 2-bit two’s-
complement representations of −1, 0, 1: the bottom bit is 1, 0, 1 respectively, and the
top bit is 1, 0, 0. We wrote a simple superoptimizer to find optimal sequences of 3, 6, 6
bit operations respectively for multiplication, addition, and subtraction. We do not
claim novelty for the approach in this paragraph: Boothby and Bradshaw in [20, Section
4.1] suggested the same 2-bit representation for Z/3 (without explaining it as signed
two’s-complement), and found the same operation counts by a similar search.

We store each of the four polynomials v, r, f, g as six 256-bit vectors: for example,
the coefficients of x0, . . . , x255 in v are stored as a 256-bit vector of bottom bits and a
256-bit vector of top bits. Within each 256-bit vector, we use the first 64-bit word to

20 Fast constant-time gcd computation and modular inversion

store the coefficients of x0, x4, . . . , x252; the next 64-bit word to store the coefficients of
x1, x5, . . . , x253; etc. Multiplying by x thus moves the first 64-bit word to the second,
moves the second to the third, moves the third to the fourth, moves the fourth to the first,
and shifts the first by 1 bit; the bit that falls off the end of the first word is inserted into
the next vector.

The first 256 iterations involve only the first 256-bit vectors for v and r, so we simply
leave the second and third vectors as 0. The next 256 iterations involve only the first two
256-bit vectors for v and r. Similarly, we manipulate only the first 256-bit vectors for f and
g in the final 256 iterations, and we manipulate only the first and second 256-bit vectors for
f and g in the previous 256 iterations. Our main loop thus has five sections: 256 iterations
involving (1, 1, 3, 3) vectors for (v, r, f, g); 256 iterations involving (2, 2, 3, 3) vectors; 375
iterations involving (3, 3, 3, 3) vectors; 256 iterations involving (3, 3, 2, 2) vectors; and 256
iterations involving (3, 3, 1, 1) vectors. This makes the code longer but saves almost 20%
of the vector manipulations.

7.2. Comparison to the old computation. Many features of our computation are
also visible in the software from [39]. We emphasize the ways that our computation is
more streamlined.

There are essentially the same four polynomials v, r, f, g in [39] (labeled “c”, “b”, “g”,
“f”). Instead of a single integer δ (plus a loop counter), there are four integers “degf”,
“degg”, “k”, and “done” (plus a loop counter). One cannot simply eliminate “degf” and
“degg” in favor of their difference δ, since “done” is set when “degf” reaches 0, and “done”
influences “k”, which in turn influences the results of the computation: the final result is
multiplied by x701−k.

Multiplication by x701−k is a conceptually simple matter of rotating by k positions
within 701 positions, and then reducing modulo x700 + x699 + · · ·+ x+ 1, since x701 − 1 is
a multiple of x700 + x699 + · · ·+ x+ 1. However, since k is a variable, the obvious method
of rotating by k positions does not take constant time; [39] instead performs conditional
rotations by 1 position, 2 positions, 4 positions, etc., where the condition bits are the bits
of k.

The inputs and outputs are not reversed in [39]. This affects the power of x multiplied
into the final results. Our approach skips the powers of x entirely.

Each polynomial in [39] is represented as six 256-bit vectors, with the five-section pattern
skipping manipulations of some vectors as explained above. The order of coefficients in each
vector is simply x0, x1, . . .; multiplication by x in [39] uses more arithmetic instructions
than our approach does.

At a lower level, [39] uses unsigned representatives 0, 1, 2 of Z/3, and uses a manually
designed sequence of 19 bit operations for a multiply-add operation in Z/3. Langley [43]
suggested a sequence of 16 bit operations, or 14 if an “and-not” operation is available. As
in [20], we use just 9 bit operations.

The inversion software from [39] is 798 lines (32273 bytes) of Python generating
assembly, producing 26634 bytes of object code. Our inversion software is 541 lines (14675
bytes) of C with intrinsics, compiled with gcc 8.2.1 to generate assembly, producing 10545
bytes of object code.

7.3. More NTRU examples. More than 1/3 of the key-generation time in [39] is
consumed by a second inversion, which replaces the modulus 3 with 213. This is handled
in [39] with an initial inversion modulo 2 followed by 8 multiplications modulo 213 for a
Newton iteration.12 The initial inversion modulo 2 is handled in [39] by exponentiation,

12This use of Newton iteration follows the NTRU key-generation strategy suggested in [61], but we point
out a difference in the details. All 8 multiplications in [39] are carried out modulo 213, while [61] instead
follows the traditional precision doubling in Newton iteration: compute an inverse modulo 22, then 24,
then 28 (or 27), then 213. Perhaps limiting the precision of the first 6 multiplications would save time
in [39].

Daniel J. Bernstein and Bo-Yin Yang 21

taking just 10332 cycles; the point here is that squaring modulo 2 is particularly efficient.
Much more inversion time is spent in key generation in sntrup4591761, a slightly larger

cryptosystem from the NTRU Prime [14] family.13 NTRU Prime uses a prime modulus,
such as 4591 for sntrup4591761, to avoid concerns that a power-of-2 modulus could allow
attacks (see generally [14]), but this modulus also makes arithmetic slower. Before our
work, the key-generation software for sntrup4591761 took 6 million cycles, partly for
inversion in (Z/3)[x]/(x761 − x− 1) but mostly for inversion in (Z/4591)[x]/(x761 − x− 1).
We reimplemented both of these inversion steps, reducing the total key-generation time
to just 940852 cycles.14 Almost all of our inversion code modulo 3 is shared between
sntrup4591761 and ntruhrss701.

7.4. Does lattice-based cryptography need fast inversion? Lyubashevsky, Peikert,
and Regev [46] published an NTRU alternative that avoids inversions.15 However, this
cryptosystem has slower encryption than NTRU, has slower decryption than NTRU, and
appears to be covered by a 2010 patent [35] by Gaborit and Aguilar-Melchor. It is easy to
envision applications that will (1) select NTRU and (2) benefit from faster inversions in
NTRU key generation.16

Lyubashevsky and Seiler have very recently announced “NTTRU” [47], a variant of
NTRU with a ring chosen to allow very fast NTT-based (FFT-based) multiplication and
division. This variant triggers many of the security concerns described in [14], but if the
variant survives security analysis then it will eliminate concerns about key-generation
speed in NTRU.

8 Definition of 2-adic division steps

Define divstep : Z× Z∗2 × Z2 → Z× Z∗2 × Z2 as follows:

divstep(δ, f, g) =
{

(1− δ, g, (g − f)/2) if δ > 0 and g is odd,
(1 + δ, f, (g + (g mod 2)f)/2) otherwise.

Note that g − f is even in the first case (since both f and g are odd), and g + (g mod 2)f
is even in the second case (since f is odd).

8.1. Transition matrices. Write (δ1, f1, g1) = divstep(δ, f, g). Then(
f1
g1

)
= T (δ, f, g)

(
f
g

)
and

(
1
δ1

)
= S(δ, f, g)

(
1
δ

)
13NTRU Prime is another round-2 NIST submission. One other NTRU-based encryption system,

NTRUEncrypt [29], was submitted to the competition, but has been merged into NTRU-HRSS for round
2; see [59]. For completeness we mention that NTRUEncrypt key generation took 980760 cycles for
ntrukem443 and 2639756 cycles for ntrukem743. As far as we know, the NTRUEncrypt software was not
designed to run in constant time.

14This is a median cycle count from the SUPERCOP benchmarking framework. There is considerable
variation in the cycle counts, more than 3% between quartiles, presumably depending on the mapping
from virtual addresses to physical addresses. There is no dependence on the secret input being inverted.

15The LPR cryptosystem is the basis for several round-2 NIST submissions: Kyber, LAC, NewHope,
Round5, Saber, ThreeBears, and the “NTRU LPRime” option in NTRU Prime.

16Google, for example, selected NTRU-HRSS for CECPQ2 as noted above, with the following explanation:
“Schemes with a quotient-style key (like HRSS) will probably have faster encap/decap operations at the
cost of much slower key-generation. Since there will be many uses outside TLS where keys can be reused,
this is interesting as long as the key-generation speed is still reasonable for TLS.” See [42].

22 Fast constant-time gcd computation and modular inversion

where T : Z× Z∗2 × Z2 →M2(Z[1/2]) is defined by

T (δ, f, g) =

(
0 1
−1
2

1
2

)
if δ > 0 and g is odd,

(
1 0

g mod 2
2

1
2

)
otherwise,

and S : Z× Z∗2 × Z2 →M2(Z) is defined by

S(δ, f, g) =

(
1 0
1 −1

)
if δ > 0 and g is odd,

(
1 0
1 1

)
otherwise.

Note that both T (δ, f, g) and S(δ, f, g) are defined entirely by δ, the bottom bit of f
(which is always 1), and the bottom bit of g; they do not depend on the remaining bits of
f and g.
8.2. Decomposition. This 2-adic divstep, like the power-series divstep, is a composition
of two simpler functions. Specifically, it is a conditional swap that replaces (δ, f, g) with
(−δ, g,−f) if δ > 0 and g is odd, followed by an elimination that replaces (δ, f, g) with
(1 + δ, f, (g + (g mod 2)f)/2).
8.3. Sizes. Write (δ1, f1, g1) = divstep(δ, f, g). If f and g are integers that fit into n+ 1
bits two’s-complement, in the sense that −2n ≤ f < 2n and −2n ≤ g < 2n, then also
−2n ≤ f1 < 2n and −2n ≤ g1 < 2n. Similarly, if −2n < f < 2n and −2n < g < 2n then
−2n < f1 < 2n and −2n < g1 < 2n. Beware, however, that intermediate results such as
g − f need an extra bit.

As in the polynomial case, an important feature of divstep is that iterating divstep
on integer inputs eventually sends g to 0. Concretely, we will show that (D + o(1))n
iterations are sufficient, where D = 2/(10− log2 633) = 2.882100569 . . .; see Theorem 11.2
for exact bounds. The proof technique cannot do better than (d+ o(1))n iterations, where
d = 14/(15− log2(561 +

√
249185)) = 2.828339631 Numerical evidence is consistent

with the possibility that (d + o(1))n iterations are required in the worst case, which is
what matters in the context of constant-time algorithms.
8.4. A non-functioning variant. Many variations are possible in the definition of
divstep. However, some care is required, as the following variant illustrates.

Define posdivstep : Z× Z∗2 × Z2 → Z× Z∗2 × Z2 as follows:

posdivstep(δ, f, g) =
{

(1− δ, g, (g + f)/2) if δ > 0 and g is odd,
(1 + δ, f, (g + (g mod 2)f)/2) otherwise.

This is just like divstep except that it eliminates the negation of f in the swapped case.
It is not true that iterating posdivstep on integer inputs eventually sends g to 0. For

example, posdivstep2(1, 1, 1) = (1, 1, 1). For comparison, in the polynomial case we were
free to negate f (or g) at any moment.
8.5. A centered variant. As another variant of divstep, we define cdivstep : Z× Z∗2 ×
Z2 → Z× Z∗2 × Z2 as follows:

cdivstep(δ, f, g) =

(1− δ, g, (f − g)/2) if δ > 0 and g is odd,
(1 + δ, f, (g + (g mod 2)f)/2) if δ = 0,
(1 + δ, f, (g − (g mod 2)f)/2) otherwise.

Daniel J. Bernstein and Bo-Yin Yang 23

Iterating cdivstep produces the same intermediate results as a variable-time gcd algorithm
introduced by Stehlé and Zimmermann in [62]. The analogous gcd algorithm for divstep is
a new variant of the Stehlé–Zimmermann algorithm, and we analyze the performance of
this variant to prove bounds on the performance of divstep; see Appendices E, F, and G.
As an analogy, one of our proofs in the polynomial case relies on relating x-adic divstep to
the Euclid–Stevin algorithm.

The extra case distinctions make each cdivstep iteration more complicated than each
divstep iteration. Similarly, the Stehlé–Zimmermann algorithm is more complicated than
the new variant. To understand the motivation for cdivstep, compare divstep3(−2, f, g)
to cdivstep3(−2, f, g). One has divstep3(−2, f, g) = (1, f, g3) where

8g3 ∈ {g, g + f, g + 2f, g + 3f, g + 4f, g + 5f, g + 6f, g + 7f}.

One has cdivstep3(−2, f, g) = (1, f, g′3) where

8g′3 ∈ {g − 3f, g − 2f, g − f, g, g + f, g + 2f, g + 3f, g + 4f}.

It seems intuitively clear that the “centered” output g′3 is smaller than the “uncentered”
output g3; that, more generally, cdivstep has smaller outputs than divstep; and that
cdivstep thus uses fewer iterations than divstep.

However, our analyses do not support this intuition. All available evidence indicates
that, surprisingly, the worst case of cdivstep uses almost 10% more iterations than the
worst case of divstep. Concretely, our proof technique cannot do better than (c+ o(1))n
iterations for cdivstep, where c = 2/(log2(

√
17− 1)− 1) = 3.110510062 . . ., and numerical

evidence is consistent with the possibility that (c+ o(1))n iterations are required.

8.6. A plus-or-minus variant. As yet another example, the following variant of divstep
is essentially17 the Brent–Kung “Algorithm PM” from [24]:

pmdivstep(δ, f, g) =

(−δ, g, (f − g)/2) if δ ≥ 0 and (g − f) mod 4 = 0,
(−δ, g, (f + g)/2) if δ ≥ 0 and (g + f) mod 4 = 0,
(δ, f, (g − f)/2) if δ < 0 and (g − f) mod 4 = 0,
(δ, f, (g + f)/2) if δ < 0 and (g + f) mod 4 = 0,
(1 + δ, f, g/2) otherwise.

There are even more cases here than in cdivstep, although splitting out an initial conditional
swap reduces the number of cases to 3. Another complication here is that the linear
combinations used in pmdivstep depend on the bottom two bits of f and g rather than
just the bottom bit.

To understand the motivation for pmdivstep, note that after each addition or subtraction
there are always at least two halvings, as in the “sliding window” approach to exponentiation.
Again it seems intuitively clear that this reduces the number of iterations required. Consider,
however, the following example (which is from [24, Theorem 3] modulo minor details):
pmdivstep needs 3b− 1 iterations to reach g = 0 starting from (1, 1, 3 · 2b−2). Specifically,
the first b− 2 iterations produce

(2, 1, 3 · 2b−3), (3, 1, 3 · 2b−4), . . . , (b− 2, 1, 3 · 2), (b− 1, 1, 3),

and then the next 2b+ 1 iterations produce

(1− b, 3, 2), (2− b, 3, 1), (2− b, 3, 2), (3− b, 3, 1), (3− b, 3, 2), . . . ,
(−1, 3, 1), (−1, 3, 2), (0, 3, 1), (0, 1, 2), (1, 1, 1), (−1, 1, 0).

17The Brent–Kung algorithm has an extra loop to allow the case that both inputs f, g are even. Compare
[24, Figure 4] to the definition of pmdivstep.

24 Fast constant-time gcd computation and modular inversion

Brent and Kung prove that dcne systolic cells are enough for their algorithm, where
c = 3.110510062 . . . is the constant mentioned above, and they conjecture that (3 + o(1))n
cells are enough, so presumably (3 + o(1))n iterations of pmdivstep are enough. Our
analysis shows that fewer iterations are sufficient for divstep, even though divstep is
simpler than pmdivstep.

9 Iterates of 2-adic division steps
The following results are analogous to the x-adic results in Section 4. We state these
results separately to support verification.

Starting from (δ, f, g) ∈ Z×Z∗2×Z2, define (δn, fn, gn) = divstepn(δ, f, g) ∈ Z×Z∗2×Z2;
Tn = T (δn, fn, gn) ∈M2(Z[1/2]); and Sn = S(δn, fn, gn) ∈M2(Z).

Theorem 9.1.
(
fn
gn

)
= Tn−1 · · · Tm

(
fm
gm

)
and

(
1
δn

)
= Sn−1 · · · Sm

(
1
δm

)
if n ≥ m ≥ 0.

Proof. This follows from
(
fm+1
gm+1

)
= Tm

(
fm
gm

)
and

(
1

δm+1

)
= Sm

(
1
δm

)
.

Theorem 9.2. Tn−1 · · · Tm ∈
(1

2n−m−1Z 1
2n−m−1Z

1
2n−mZ 1

2n−mZ

)
if n > m ≥ 0.

Proof. As in Theorem 4.3.

Theorem 9.3. Sn−1 · · · Sm ∈
(

1 0
{2− (n−m), . . . , n−m− 2, n−m} {1,−1}

)
if n >

m ≥ 0.

Proof. As in Theorem 4.4.

Theorem 9.4. Let m, t be nonnegative integers. Assume that δ′m = δm; f ′m ≡ fm
(mod 2t); and g′m ≡ gm (mod 2t). Then, for each integer n with m < n ≤ m+ t: T ′n−1 =
Tn−1; S ′n−1 = Sn−1; δ′n = δn; f ′n ≡ fn (mod 2t−(n−m−1)); and g′n ≡ gn (mod 2t−(n−m)).

Proof. Fix m, t and induct on n. Observe that (δ′n−1, f
′
n−1 mod 2, g′n−1 mod 2) equals

(δn−1, fn−1 mod 2, gn−1 mod 2):

• If n = m + 1: By assumption f ′m ≡ fm (mod 2t), and n ≤ m + t so t ≥ 1, so in
particular f ′m mod 2 = fm mod 2. Similarly g′m mod 2 = gm mod 2. By assumption
δ′m = δm.

• If n > m + 1: f ′n−1 ≡ fn−1 (mod 2t−(n−m−2)) by the inductive hypothesis, and
n ≤ m+ t so t−(n−m−2) ≥ 2, so in particular f ′n−1 mod 2 = fn−1 mod 2; similarly
g′n−1 ≡ gn−1 (mod 2t−(n−m−1)) by the inductive hypothesis, and t− (n−m−1) ≥ 1,
so in particular g′n−1 mod 2 = gn−1 mod 2; and δ′n−1 = δn−1 by the inductive
hypothesis.

Now use the fact that T and S inspect only the bottom bit of each number to see that

T ′n−1 = T (δ′n−1, f
′
n−1, g

′
n−1) = T (δn−1, fn−1, gn−1) = Tn−1,

S ′n−1 = S(δ′n−1, f
′
n−1, g

′
n−1) = S(δn−1, fn−1, gn−1) = Sn−1

as claimed.
Multiply

(
1

δ′n−1

)
=
(

1
δn−1

)
by S ′n−1 = Sn−1 to see that δ′n = δn as claimed.

Daniel J. Bernstein and Bo-Yin Yang 25

def␣truncate(f,t):
␣␣if␣t␣==␣0:␣return␣0
␣␣twot␣=␣1<<(t-1)
␣␣return␣((f+twot)&(2*twot-1))-twot

def␣divsteps2(n,t,delta,f,g):
␣␣assert␣t␣>=␣n␣and␣n␣>=␣0
␣␣f,g␣=␣truncate(f,t),truncate(g,t)
␣␣u,v,q,r␣=␣1,0,0,1

␣␣while␣n␣>␣0:
␣␣␣␣f␣=␣truncate(f,t)
␣␣␣␣if␣delta␣>␣0␣and␣g&1:␣delta,f,g,u,v,q,r␣=␣-delta,g,-f,q,r,-u,-v
␣␣␣␣g0␣=␣g&1
␣␣␣␣delta,g,q,r␣=␣1+delta,(g+g0*f)/2,(q+g0*u)/2,(r+g0*v)/2
␣␣␣␣n,t␣=␣n-1,t-1
␣␣␣␣g␣=␣truncate(ZZ(g),t)

␣␣M2Q␣=␣MatrixSpace(QQ,2)
␣␣return␣delta,f,g,M2Q((u,v,q,r))

Figure 10.1: Algorithm divsteps2 to compute (δn, fn, gn) = divstepn(δ, f, g). Inputs:
n, t ∈ Z with 0 ≤ n ≤ t; δ ∈ Z; at least bottom t bits of f, g ∈ Z2. Outputs: δn; bottom t
bits of fn if n = 0, or t− (n− 1) bits if n ≥ 1; bottom t− n bits of gn; Tn−1 · · · T0.

By the inductive hypothesis, (T ′m, . . . , T ′n−2) = (Tm, . . . , Tn−2), and T ′n−1 = Tn−1, so

T ′n−1 · · · T ′m = Tn−1 · · · Tm. Abbreviate Tn−1 · · · Tm as P . Then
(
f ′n
g′n

)
= P

(
f ′m
g′m

)
and(

fn
gn

)
= P

(
fm
gm

)
by Theorem 9.1, so

(
f ′n − fn
g′n − gn

)
= P

(
f ′m − fm
g′m − gm

)
.

By Theorem 9.2, P ∈
(1

2n−m−1Z 1
2n−m−1Z

1
2n−mZ 1

2n−mZ

)
. By assumption, f ′m − fm and g′m − gm

are multiples of 2t. Multiply to see that f ′n − fn is a multiple of 2t/2n−m−1 = 2t−(n−m−1)

as claimed, and g′n − gn is a multiple of 2t/2n−m = 2t−(n−m) as claimed.

10 Fast computation of iterates of 2-adic division steps
We describe just as in Section 5 two algorithms to compute (δn, fn, gn) = divstepn(δ, f, g).
We are given the bottom t bits of f, g and compute fn, gn to t−n+1, t−n bits respectively
if n ≥ 1; see Theorem 9.4. We also compute the product of the relevant T matrices. We
specify these algorithms in Figures 10.1–10.2 as functions divsteps2 and jumpdivsteps2
in Sage.

The first function divsteps2 simply takes divsteps one after another, analogously
to divstepsx. The second function jumpdivsteps2 uses a straightforward divide-and-
conquer strategy, analogously to jumpdivstepsx. More generally, j in jumpdivsteps2
can be taken anywhere between 1 and n− 1; this generalization includes divsteps2 as a
special case.

As in Section 5, the Sage functions are not constant-time, but it is easy to build
constant-time versions of the same computations. The comments on performance in
Section 5 are applicable here, with integer arithmetic replacing polynomial arithmetic.
The same basic optimization techniques are also applicable here.

26 Fast constant-time gcd computation and modular inversion

from␣divsteps2␣import␣divsteps2,truncate

def␣jumpdivsteps2(n,t,delta,f,g):
␣␣assert␣t␣>=␣n␣and␣n␣>=␣0
␣␣if␣n␣<=␣1:␣return␣divsteps2(n,t,delta,f,g)

␣␣j␣=␣n//2

␣␣delta,f1,g1,P1␣=␣jumpdivsteps2(j,j,delta,f,g)
␣␣f,g␣=␣P1*vector((f,g))
␣␣f,g␣=␣truncate(ZZ(f),t-j),truncate(ZZ(g),t-j)

␣␣delta,f2,g2,P2␣=␣jumpdivsteps2(n-j,n-j,delta,f,g)
␣␣f,g␣=␣P2*vector((f,g))
␣␣f,g␣=␣truncate(ZZ(f),t-n+1),truncate(ZZ(g),t-n)

␣␣return␣delta,f,g,P2*P1

Figure 10.2: Algorithm jumpdivsteps2 to compute (δn, fn, gn) = divstepn(δ, f, g). Same
inputs and outputs as in Figure 10.1.

11 Fast integer gcd computation and modular inversion
This section presents two algorithms. If f is an odd integer and g is an integer then gcd2
computes gcd{f, g}. If also gcd{f, g} = 1 then recip2 computes the reciprocal of g modulo
f . Figure 11.1 specifies both algorithms, and Theorem 11.2 justifies both algorithms.

The algorithms take the smallest nonnegative integer d such that |f | < 2d and |g| < 2d.
More generally, one can take d as an extra input; the algorithms then take constant time if
d is constant. Theorem 11.2 relies on f2 + 4g2 ≤ 5 · 22d (which is certainly true if |f | < 2d
and |g| < 2d), but does not rely on d being minimal. One can further generalize to allow
even f , by first finding the number of shared powers of 2 in f and g and then reducing to
the odd case.

The algorithms then choose a positive integer m as a particular function of d, and
call divsteps2 (which can be transparently replaced with jumpdivsteps2) to compute
(δm, fm, gm) = divstepm(1, f, g). The choice of m guarantees gm = 0 and fm = ± gcd{f, g}
by Theorem 11.2.

The gcd2 algorithm uses input precisionm+d to obtain d+1 bits of fm, i.e., to obtain the
signed remainder of fm modulo 2d+1. This signed remainder is exactly fm = ± gcd{f, g},
since the assumptions |f | < 2d and |g| < 2d imply |gcd{f, g}| < 2d.

The recip2 algorithm uses input precision just m+ 1 to obtain the signed remainder of
fm modulo 4. This algorithm assumes gcd{f, g} = 1, so fm = ±1, so the signed remainder
is exactly fm. The algorithm also extracts the top-right corner vm of the transition matrix,
and multiplies by fm, obtaining a reciprocal of g modulo f by Theorem 11.2.

Both gcd2 and recip2 are bottom-up algorithms, and in particular recip2 naturally
obtains this reciprocal vmfm as a fraction with denominator 2m−1. It multiplies by 2m−1

to obtain an integer, and then multiplies by ((f + 1)/2)m−1 modulo f to divide by 2m−1

modulo f . The reciprocal of 2m−1 can be computed ahead of time. Another way to
compute this reciprocal is through Hensel lifting to compute f−1 (mod 2m−1); for details
and further techniques see Section 6.7.

We emphasize that recip2 assumes that its inputs are coprime; it does not notice if
this assumption is violated. One can check the assumption by computing fm to higher
precision (as in gcd2), or by multiplying the supposed reciprocal by g and seeing whether

Daniel J. Bernstein and Bo-Yin Yang 27

from␣divsteps2␣import␣divsteps2

def␣iterations(d):
␣␣return␣(49*d+80)//17␣if␣d<46␣else␣(49*d+57)//17

def␣gcd2(f,g):
␣␣assert␣f␣&␣1
␣␣d␣=␣max(f.nbits(),g.nbits())
␣␣m␣=␣iterations(d)
␣␣delta,fm,gm,P␣=␣divsteps2(m,m+d,1,f,g)
␣␣return␣abs(fm)

def␣recip2(f,g):
␣␣assert␣f␣&␣1
␣␣d␣=␣max(f.nbits(),g.nbits())
␣␣m␣=␣iterations(d)
␣␣precomp␣=␣Integers(f)((f+1)/2)^(m-1)
␣␣delta,fm,gm,P␣=␣divsteps2(m,m+1,1,f,g)
␣␣V␣=␣sign(fm)*ZZ(P[0][1]*2^(m-1))
␣␣return␣ZZ(V*precomp)

Figure 11.1: Algorithm gcd2 to compute gcd{f, g}; algorithm recip2 to compute the
reciprocal of g modulo f when gcd{f, g} = 1. Both algorithms assume that f is odd.

the result is 1 modulo f . For comparison, the recip algorithm from Section 6 does notice
if its polynomial inputs are coprime, using a quick test of δm.

Theorem 11.2. Let f be an odd integer. Let g be an integer. Define (δn, fn, gn) =

divstepn(1, f, g); Tn = T (δn, fn, gn); and
(
un vn
qn rn

)
= Tn−1 · · · T0. Let d be a real number.

Assume that f2 + 4g2 ≤ 5 · 22d. Let m be an integer. Assume that m ≥ b(49d+ 80)/17c if
d < 46, and that m ≥ b(49d+ 57)/17c if d ≥ 46. Then m ≥ 1; gm = 0; fm = ± gcd{f, g};
2m−1vm ∈ Z; and 2m−1vmg ≡ 2m−1fm (mod f).

In particular, if gcd{f, g} = 1, then fm = ±1, and dividing 2m−1vmfm by 2m−1 modulo
f produces the reciprocal of g modulo f .

Proof. First f2 ≥ 1 so 1 ≤ f2 + 4g2 ≤ 5 · 22d < 22d+7/3 since 53 < 27. Hence d > −7/6.
If d < 46 then m ≥ b(49d+ 80)/17c ≥ b(49(−7/6) + 80)/17c = 1. If d ≥ 46 then
m ≥ b(49d+ 57)/17c ≥ b(49 · 46 + 57)/17c = 135. Either way m ≥ 1 as claimed.

Define R0 = f , R1 = 2g, and G = gcd{R0, R1}. Then G = gcd{f, g} since f is odd.
Define b = log2

√
R2

0 +R2
1 = log2

√
f2 + 4g2 ≥ 0. Then 22b = f2 + 4g2 ≤ 5 · 22d so

b ≤ d+ log4 5. We now split into three cases, in each case defining n as in Theorem G.6:

• If b ≤ 21: Define n = b19b/7c. Then n ≤ b49b/17c ≤ b49(d+ log4 5)/17c ≤
b(49d+ 57)/17c ≤ m since 549 ≤ 457.

• If 21 < b ≤ 46: Define n = b(49b+ 23)/17c. If d ≥ 46 then n ≤ b(49d+ 23)/17c ≤
b(49d+ 57)/17c ≤ m. Otherwise d < 46 so n ≤ b(49(d+ log4 5) + 23)/17c ≤
b(49d+ 80)/17c ≤ m.

• If b > 46: Define n = b49b/17c. Then n ≤ b49b/17c ≤ b49(d+ log4 5)/17c ≤
b(49d+ 57)/17c ≤ m.

28 Fast constant-time gcd computation and modular inversion

In all cases n ≤ m.
Now divstepn(1, R0, R1/2) ∈ Z×Z×{0} by Theorem G.6, so divstepm(1, R0, R1/2) ∈

Z× Z× {0}, so

(δm, fm, gm) = divstepm(1, f, g) = divstepm(1, R0, R1/2) ∈ Z× {G,−G} × {0}

by Theorem G.3. Hence gm = 0 as claimed, and fm = ±G = ± gcd{f, g} as claimed.
Both um and vm are in (1/2m−1)Z by Theorem 9.2. In particular, 2m−1vm ∈ Z as

claimed. Finally, fm = umf + vmg by Theorem 9.1, so 2m−1fm = 2m−1umf + 2m−1vmg,
and 2m−1um ∈ Z, so 2m−1fm ≡ 2m−1vmg (mod f) as claimed.

12 Software case study for integer modular inversion
As emphasized in Section 1, we have selected an inversion problem to be extremely favorable
to Fermat’s method. We use Intel platforms with 64-bit multipliers. We focus on the
problem of inverting modulo the well-known Curve25519 prime p = 2255 − 19. There
has been a long line of Curve25519 implementation papers starting with [10] in 2006; we
compare to the latest speed records [54] (in assembly) for inversion modulo this prime.

Despite all these Fermat advantages, we achieve better speeds using our 2-adic division
steps. As mentioned in Section 1, we take 10050 cycles, 8778 cycles, and 8543 cycles on
Haswell, Skylake, and Kaby Lake, where [54] used 11854 cycles, 9301 cycles, and 8971
cycles. This section looks more closely at how the new computation works.

12.1. Details of the new computation. Theorem 11.2 guarantees that 738 divstep
iterations suffice, since b(49 · 255 + 57)/17c = 738. To simplify the computation, we
actually use 744 = 12 · 62 iterations.

The decisions in the first 62 iterations are determined entirely by the bottom 62 bits
of the inputs. We perform these iterations entirely in 64-bit words; apply the resulting
62-step transition matrix to the entire original inputs, to jump to the result of 62 divstep
iterations; and then repeat.

This is similar in two important ways to Lehmer’s gcd computation from [44]. One of
Lehmer’s ideas, mentioned before, is to carry out some steps in limited precision. Another
of Lehmer’s ideas is for this limit to be a small constant. Our advantage over Lehmer’s
computation is that we have a completely regular constant-time data flow.

There are many other possibilities for which precision to use at each step. All of these
possibilities can be described using the jumping framework described in Section 5.3, which
applies to both the x-adic case and the 2-adic case. Figure 12.2 gives three examples of
jump strategies. The first strategy computes each divstep in turn to full precision, as in
the case study in Section 7. The second strategy is what we use in this case study. The
third strategy illustrates an asymptotically faster choice of jump distances. The third
strategy might be more efficient than the second strategy in hardware, but the second
strategy seems optimal for 64-bit CPUs.

In more detail, we invert a 255-bit x modulo p as follows:

1. Set f = p, g = x, δ = 1, i = 1.

2. Set f0 = f (mod 264), g0 = g (mod 264).

3. Compute (δ′, f1, g1) = divstep62(δ, f0, g0) and obtain a scaled transition matrix Ti
s.t. Ti

262

(
f0
g0

)
=
(
f1
g1

)
. The 63-bit signed entries of Ti fit into 64-bit registers. We

call this step jump64divsteps2.

4. Compute (f, g)← Ti(f, g)/262. Set δ = δ′.

Daniel J. Bernstein and Bo-Yin Yang 29

Figure 12.2: Three jump strategies for 744 divstep iterations on 255-bit integers. Left
strategy: j = 1; i.e., computing each divstep in turn to full precision. Middle strategy:
j = 1 for ≤62 requested iterations, else j = 62; i.e., using 62 bottom bits to compute 62
iterations, jumping 62 iterations, using 62 new bottom bits to compute 62 more iterations,
etc. Right strategy: j = 1 for 2 requested iterations, j = 2 for 3 or 4 requested iterations,
j = 4 for 5 or 6 or 7 or 8 requested iterations, etc. Vertical axis, 0 on top through 744 on
bottom: number of iterations. Horizontal axis (within each strategy), 0 on left through
254 on right: bit positions used in computation.

5. Set i← i+ 1. Go back to step 3 if i ≤ 12.

6. Compute v mod p where v is the top-right corner of T12T11 · · · T1:

(a) Compute pair-products T2iT2i−1 with entries being 126-bit signed integers which
fits into two 64-bit limbs (radix 264).

(b) Compute quad-products T4iT4i−1T4i−2T4i−3 with entries being 252-bit signed
integers (four 64-bit limbs, radix 264).

(c) At this point the three quad-products are converted into unsigned integers
modulo p divided into 4 64-bit limbs.

(d) Compute final vector-matrix-vector multiplications modulo p.

7. Compute x−1 = sgn(f) · v · 2−744 (mod p) where 2−744 is precomputed.

12.3. Other CPUs. Our advantage is larger on platforms with smaller multipliers. For
example, we have written software to invert modulo 2255 − 19 on an ARM Cortex-A7,
obtaining a median cycle count of 35277 cycles. The best previous Cortex-A7 result we
have found in the literature is 62648 cycles reported by Fujii and Aranha [34], using
Fermat’s method. Internally, our software does repeated calls to jump32divsteps2, units

30 Fast constant-time gcd computation and modular inversion

of 30 iterations with the resulting transition matrix fitting inside 32-bit general-purpose
registers.

12.4. Other primes. Nath and Sarkar present inversion speeds for 20 different special
primes, 12 of which were considered in previous work. For concreteness we consider
inversion modulo the double-size prime 2511 − 187. Aranha–Barreto–Pereira–Ricardini [8]
selected this prime for their “M-511” curve.

Nath and Sarkar report that their Fermat inversion software for 2511 − 187 takes 72804
Haswell cycles, 47062 Skylake cycles, or 45014 Kaby Lake cycles. The slowdown from
2255 − 19, more than 5× in each case, is easy to explain: the exponent is twice as long,
producing almost twice as many multiplications; each multiplication handles twice as many
bits; and multiplication cost per bit is not constant.

Our 511-bit software is solidly faster, under 30000 cycles on all of these platforms. Most
of the cycles in our computation are in evaluating jump64divsteps2, and the number of
calls to jump64divsteps2 scales linearly with the number of bits in the input. There is
some overhead for multiplications, so a modulus of twice the size takes more than twice as
long, but our scalability to large moduli is much better than the Fermat scalability.

Our advantage is also larger in applications that use “random” primes rather than
special primes: we pay the extra cost for Montgomery multiplication only at the end of
our computation, whereas Fermat inversion pays the extra cost in each step.

References
[1] — (no editor), Actes du congrès international des mathématiciens, tome 3, Gauthier-

Villars Éditeur, Paris, 1971. See [41].

[2] — (no editor), CWIT 2011: 12th Canadian workshop on information theory:
Kelowna, British Columbia, May 17–20, 2011, Institute of Electrical and Electronics
Engineers, 2011. ISBN 978-1-4577-0743-8. See [51].

[3] Carlisle Adams, Jan Camenisch (editors), Selected areas in cryptography—SAC 2017,
24th international conference, Ottawa, ON, Canada, August 16–18, 2017, revised
selected papers, Lecture Notes in Computer Science, 10719, Springer, 2018. ISBN
978-3-319-72564-2. See [15].

[4] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles
Zémor, Hamming Quasi-Cyclic (HQC) (2017). URL: https://pqc-hqc.org/doc/
hqc-specification_2017-11-30.pdf. Citations in this document: §1.

[5] Alfred V. Aho (chairman), Proceedings of fifth annual ACM symposium on theory of
computing: Austin, Texas, April 30–May 2, 1973, ACM, New York, 1973. See [53].

[6] Martin Albrecht, Carlos Cid, Kenneth G. Paterson, CJ Tjhai, Martin Tomlinson,
NTS-KEM, “The main document submitted to NIST” (2017). URL: https://
nts-kem.io/. Citations in this document: §1.

[7] Alejandro Cabrera Aldaya, Cesar Pereida García, Luis Manuel Alvarez Tapia, Billy
Bob Brumley, Cache-timing attacks on RSA key generation (2018). URL: https:
//eprint.iacr.org/2018/367. Citations in this document: §1.

[8] Diego F. Aranha, Paulo S. L. M. Barreto, Geovandro C. C. F. Pereira, Jefferson
E. Ricardini, A note on high-security general-purpose elliptic curves (2013). URL:
https://eprint.iacr.org/2013/647. Citations in this document: §12.4.

https://pqc-hqc.org/doc/hqc-specification_2017-11-30.pdf
https://pqc-hqc.org/doc/hqc-specification_2017-11-30.pdf
https://nts-kem.io/
https://nts-kem.io/
https://eprint.iacr.org/2018/367
https://eprint.iacr.org/2018/367
https://eprint.iacr.org/2013/647

Daniel J. Bernstein and Bo-Yin Yang 31

[9] Elwyn R. Berlekamp, Algebraic coding theory, McGraw-Hill, 1968. Citations in this
document: §1.

[10] Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records, in PKC 2006 [70]
(2006), 207–228. URL: https://cr.yp.to/papers.html#curve25519. Citations in
this document: §1, §12.

[11] Daniel J. Bernstein, Fast multiplication and its applications, in [27] (2008), 325–
384. URL: https://cr.yp.to/papers.html#multapps. Citations in this document:
§5.5.

[12] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Misoczki,
Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nicolas
Sendrier, Jakub Szefer, Wen Wang, Classic McEliece: conservative code-based cryp-
tography, “Supporting Documentation” (2017). URL: https://classic.mceliece.
org/nist.html. Citations in this document: §1.

[13] Daniel J. Bernstein, Tung Chou, Peter Schwabe, McBits: fast constant-time code-
based cryptography, in CHES 2013 [18] (2013), 250–272. URL: https://binary.cr.
yp.to/mcbits.html. Citations in this document: §1, §1.

[14] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, Christine van
Vredendaal, NTRU Prime: reducing attack surface at low cost, full version of
[15] (2017). URL: https://ntruprime.cr.yp.to/papers.html. Citations in this
document: §1, §1, §1.1, §7.3, §7.3, §7.4.

[15] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, Christine van
Vredendaal, NTRU Prime: reducing attack surface at low cost, in SAC 2017 [3],
abbreviated version of [14] (2018), 235–260.

[16] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin Yang, High-
speed high-security signatures, Journal of Cryptographic Engineering 2 (2012),
77–89; see also older version at CHES 2011. URL: https://ed25519.cr.yp.to/
ed25519-20110926.pdf. Citations in this document: §1.

[17] Daniel J. Bernstein, Peter Schwabe, NEON crypto, in CHES 2012 [56] (2012), 320–339.
URL: https://cr.yp.to/papers.html#neoncrypto. Citations in this document:
§1, §1.

[18] Guido Bertoni, Jean-Sébastien Coron (editors), Cryptographic hardware and embedded
systems—CHES 2013—15th international workshop, Santa Barbara, CA, USA,
August 20–23, 2013, proceedings, Lecture Notes in Computer Science, 8086, Springer,
2013. ISBN 978-3-642-40348-4. See [13].

[19] Adam W. Bojanczyk, Richard P. Brent, A systolic algorithm for extended GCD
computation, Computers & Mathematics with Applications 14 (1987), 233–238.
ISSN 0898-1221. URL: https://maths-people.anu.edu.au/~brent/pd/rpb096i.
pdf. Citations in this document: §1.3, §1.3.

[20] Tomas J. Boothby and Robert W. Bradshaw, Bitslicing and the method of four
Russians over larger finite fields (2009). URL: http://arxiv.org/abs/0901.1413.
Citations in this document: §7.1, §7.2.

[21] Joppe W. Bos, Constant time modular inversion, Journal of Cryptographic Engi-
neering 4 (2014), 275–281. URL: http://joppebos.com/files/CTInversion.pdf.
Citations in this document: §1, §1, §1, §1, §1, §1.3.

https://cr.yp.to/papers.html#curve25519
https://cr.yp.to/papers.html#multapps
https://classic.mceliece.org/nist.html
https://classic.mceliece.org/nist.html
https://binary.cr.yp.to/mcbits.html
https://binary.cr.yp.to/mcbits.html
https://ntruprime.cr.yp.to/papers.html
https://ed25519.cr.yp.to/ed25519-20110926.pdf
https://ed25519.cr.yp.to/ed25519-20110926.pdf
https://cr.yp.to/papers.html#neoncrypto
https://maths-people.anu.edu.au/~brent/pd/rpb096i.pdf
https://maths-people.anu.edu.au/~brent/pd/rpb096i.pdf
http://arxiv.org/abs/0901.1413
http://joppebos.com/files/CTInversion.pdf

32 Fast constant-time gcd computation and modular inversion

[22] Richard P. Brent, Fred G. Gustavson, David Y. Y. Yun, Fast solution of Toeplitz
systems of equations and computation of Padé approximants, Journal of Algorithms
1 (1980), 259–295. ISSN 0196-6774. URL: https://maths-people.anu.edu.au/
~brent/pd/rpb059i.pdf. Citations in this document: §1.4, §1.4.

[23] Richard P. Brent, Hsiang-Tsung Kung, Systolic VLSI arrays for polynomial GCD
computation, IEEE Transactions on Computers C-33 (1984), 731–736. URL:
https://maths-people.anu.edu.au/~brent/pd/rpb073i.pdf. Citations in this
document: §1.3, §1.3, §3.2.

[24] Richard P. Brent, Hsiang-Tsung Kung, A systolic VLSI array for integer GCD
computation, ARITH-7 (1985), 118–125. URL: https://maths-people.anu.edu.
au/~brent/pd/rpb077i.pdf. Citations in this document: §1.3, §1.3, §1.3, §1.3, §1.4,
§8.6, §8.6, §8.6.

[25] Richard P. Brent, Paul Zimmermann, An O(M(n) logn) algorithm for the Jacobi
symbol, in ANTS 2010 [37] (2010), 83–95. URL: https://arxiv.org/pdf/1004.
2091.pdf. Citations in this document: §1.4.

[26] Duncan A. Buell (editor), Algorithmic number theory, 6th international symposium,
ANTS-VI, Burlington, VT, USA, June 13–18, 2004, proceedings, Lecture Notes in
Computer Science, 3076, Springer, 2004. ISBN 3-540-22156-5. See [62].

[27] Joe P. Buhler, Peter Stevenhagen (editors), Surveys in algorithmic number theory,
Mathematical Sciences Research Institute Publications, 44, Cambridge University
Press, New York, 2008. See [11].

[28] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, Joost Renes,
CSIDH: an efficient post-quantum commutative group action, in Asiacrypt 2018
[55] (2018), 395–427. URL: https://csidh.isogeny.org/csidh-20181118.pdf.
Citations in this document: §1.

[29] Cong Chen, Jeffrey Hoffstein, William Whyte, Zhenfei Zhang, NIST PQ Submission:
NTRUEncrypt: A lattice based encryption algorithm (2017). URL: https://csrc.
nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions. Cita-
tions in this document: §7.3.

[30] Tung Chou, McBits revisited, in CHES 2017 [33] (2017), 213–231. URL: https:
//tungchou.github.io/mcbits/. Citations in this document: §1.

[31] Benoît Daireaux, Véronique Maume-Deschamps, Brigitte Vallée, The Lyapunov
tortoise and the dyadic hare, in [49] (2005), 71–94. URL: http://emis.ams.org/
journals/DMTCS/pdfpapers/dmAD0108.pdf. Citations in this document: §E.5,
§F.2.

[32] Jean Louis Dornstetter, On the equivalence between Berlekamp’s and Euclid’s algo-
rithms, IEEE Transactions on Information Theory 33 (1987), 428–431. Citations in
this document: §1.

[33] Wieland Fischer, Naofumi Homma (editors), Cryptographic hardware and embedded
systems—CHES 2017—19th international conference, Taipei, Taiwan, September
25–28, 2017, proceedings, Lecture Notes in Computer Science, 10529, Springer, 2017.
ISBN 978-3-319-66786-7. See [30], [39].

[34] Hayato Fujii, Diego F. Aranha, Curve25519 for the Cortex-M4 and beyond, LATIN-
CRYPT 2017, to appear (2017). URL: https://www.lasca.ic.unicamp.br/media/
publications/paper39.pdf. Citations in this document: §1.1, §12.3.

https://maths-people.anu.edu.au/~brent/pd/rpb059i.pdf
https://maths-people.anu.edu.au/~brent/pd/rpb059i.pdf
https://maths-people.anu.edu.au/~brent/pd/rpb073i.pdf
https://maths-people.anu.edu.au/~brent/pd/rpb077i.pdf
https://maths-people.anu.edu.au/~brent/pd/rpb077i.pdf
https://arxiv.org/pdf/1004.2091.pdf
https://arxiv.org/pdf/1004.2091.pdf
https://csidh.isogeny.org/csidh-20181118.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://tungchou.github.io/mcbits/
https://tungchou.github.io/mcbits/
http://emis.ams.org/journals/DMTCS/pdfpapers/dmAD0108.pdf
http://emis.ams.org/journals/DMTCS/pdfpapers/dmAD0108.pdf
https://www.lasca.ic.unicamp.br/media/publications/paper39.pdf
https://www.lasca.ic.unicamp.br/media/publications/paper39.pdf

Daniel J. Bernstein and Bo-Yin Yang 33

[35] Philippe Gaborit, Carlos Aguilar Melchor, Cryptographic method for communicating
confidential information, patent EP2537284B1 (2010). URL: https://patents.
google.com/patent/EP2537284B1/en. Citations in this document: §7.4.

[36] Mariya Georgieva, Frédéric de Portzamparc, Toward secure implementation of
McEliece decryption, in COSADE 2015 [48] (2015), 141–156. URL: https://eprint.
iacr.org/2015/271. Citations in this document: §1.

[37] Guillaume Hanrot, François Morain, Emmanuel Thomé (editors), Algorithmic number
theory, 9th international symposium, ANTS-IX, Nancy, France, July 19–23, 2010,
proceedings, Lecture Notes in Computer Science, 6197, 2010. ISBN 978-3-642-14517-9.
See [25].

[38] Agnes E. Heydtmann, Jørn M. Jensen, On the equivalence of the Berlekamp-Massey
and the Euclidean algorithms for decoding, IEEE Transactions on Information Theory
46 (2000), 2614–2624. Citations in this document: §1.

[39] Andreas Hülsing, Joost Rijneveld, John M. Schanck, Peter Schwabe, High-speed
key encapsulation from NTRU, in CHES 2017 [33] (2017), 232–252. URL: https:
//eprint.iacr.org/2017/667. Citations in this document: §1, §1.1, §1.1, §1.3, §7,
§7, §7.2, §7.2, §7.2, §7.2, §7.2, §7.2, §7.2, §7.2, §7.3, §7.3, §7.3, §7.3, §7.3.

[40] Burton S. Kaliski, The Montgomery inverse and its applications, IEEE Transactions
on Computers 44 (1995), 1064–1065. Citations in this document: §1.

[41] Donald E. Knuth, The analysis of algorithms, in [1] (1971), 269–274. Citations in
this document: §1, §1.4, §1.4.

[42] Adam Langley, CECPQ2 (2018). URL: https://www.imperialviolet.org/2018/
12/12/cecpq2.html. Citations in this document: §7.4.

[43] Adam Langley, Add initial HRSS support (2018).
URL: https://boringssl.googlesource.com/boringssl/+/
7b935937b18215294e7dbf6404742855e3349092/crypto/hrss/hrss.c. Citations
in this document: §7.2.

[44] Derrick H. Lehmer, Euclid’s algorithm for large numbers, American Mathematical
Monthly 45 (1938), 227–233. ISSN 0002-9890. URL: http://links.jstor.org/
sici?sici=0002-9890(193804)45:4<227:EAFLN>2.0.CO;2-Y. Citations in this
document: §1, §1.4, §12.1.

[45] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan He, Zhenfei Zhang,
LAC: lattice-based cryptosystems (2017). URL: https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-1-Submissions. Citations in this document:
§1.

[46] Vadim Lyubashevsky, Chris Peikert, Oded Regev, On ideal lattices and learning
with errors over rings, Journal of the ACM 60 (2013), Article 43, 35 pages. URL:
https://eprint.iacr.org/2012/230. Citations in this document: §7.4.

[47] Vadim Lyubashevsky, Gregor Seiler, NTTRU: truly fast NTRU using NTT (2019).
URL: https://eprint.iacr.org/2019/040. Citations in this document: §7.4.

[48] Stefan Mangard, Axel Y. Poschmann (editors), Constructive side-channel analysis
and secure design—6th international workshop, COSADE 2015, Berlin, Germany,
April 13–14, 2015, revised selected papers, Lecture Notes in Computer Science, 9064,
Springer, 2015. ISBN 978-3-319-21475-7. See [36].

https://patents.google.com/patent/EP2537284B1/en
https://patents.google.com/patent/EP2537284B1/en
https://eprint.iacr.org/2015/271
https://eprint.iacr.org/2015/271
https://eprint.iacr.org/2017/667
https://eprint.iacr.org/2017/667
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://boringssl.googlesource.com/boringssl/+/7b935937b18215294e7dbf6404742855e3349092/crypto/hrss/hrss.c
https://boringssl.googlesource.com/boringssl/+/7b935937b18215294e7dbf6404742855e3349092/crypto/hrss/hrss.c
http://links.jstor.org/sici?sici=0002-9890(193804)45:4<227:EAFLN>2.0.CO;2-Y
http://links.jstor.org/sici?sici=0002-9890(193804)45:4<227:EAFLN>2.0.CO;2-Y
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2019/040

34 Fast constant-time gcd computation and modular inversion

[49] Conrado Martínez (editor), 2005 international conference on analysis of algorithms:
papers from the conference (AofA’05) held in Barcelona, June 6–10, 2005, The
Association. Discrete Mathematics & Theoretical Computer Science (DMTCS),
Nancy, 2005. URL: http://www.emis.ams.org/journals/DMTCS/proceedings/
dmAD01ind.html. See [31].

[50] James Massey, Shift-register synthesis and BCH decoding, IEEE Transactions on
Information Theory 15 (1969), 122–127. ISSN 0018-9448. Citations in this document:
§1.

[51] Todd D. Mateer, On the equivalence of the Berlekamp-Massey and the euclidean
algorithms for algebraic decoding, in CWIT 2011 [2] (2011), 139–142. Citations in
this document: §1.

[52] Niels Möller, On Schönhage’s algorithm and subquadratic integer GCD computation,
Mathematics of Computation 77 (2008), 589–607. URL: https://www.lysator.liu.
se/~nisse/archive/S0025-5718-07-02017-0.pdf. Citations in this document:
§1.4.

[53] Robert T. Moenck, Fast computation of GCDs, in STOC 1973 [5] (1973), 142–151.
Citations in this document: §1.4, §1.4, §1.4, §1.4.

[54] Kaushik Nath, Palash Sarkar, Efficient inversion in (pseudo-)Mersenne prime
order fields (2018). URL: https://eprint.iacr.org/2018/985. Citations in this
document: §1.1, §12, §12.

[55] Thomas Peyrin, Steven D. Galbraith, Advances in cryptology—ASIACRYPT 2018—
24th international conference on the theory and application of cryptology and infor-
mation security, Brisbane, QLD, Australia, December 2–6, 2018, proceedings, part I,
Lecture Notes in Computer Science, 11272, Springer, 2018. ISBN 978-3-030-03325-5.
See [28].

[56] Emmanuel Prouff, Patrick Schaumont (editors), Cryptographic hardware and embed-
ded systems—CHES 2012—14th international workshop, Leuven, Belgium, September
9–12, 2012, proceedings, Lecture Notes in Computer Science, 7428, Springer, 2012.
ISBN 978-3-642-33026-1. See [17].

[57] Martin Roetteler, Michael Naehrig, Krysta M. Svore, Kristin E. Lauter, Quantum
resource estimates for computing elliptic curve discrete logarithms, in ASIACRYPT
2017 [67] (2017), 241–270. URL: https://eprint.iacr.org/2017/598. Citations
in this document: §1.1, §1.3.

[58] The Sage Developers (editor), SageMath, the Sage Mathematics Software System
(Version 8.0), 2017. URL: https://www.sagemath.org. Citations in this document:
§1.2, §1.2, §2.2, §5.

[59] John Schanck, Announcement of NTRU-HRSS-KEM and NTRUEncrypt merger
(2018). URL: https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/
SrFO_vK3xbI/mSmjY0HZCgAJ. Citations in this document: §7.3.

[60] Arnold Schönhage, Schnelle Berechnung von Kettenbruchentwicklungen, Acta Infor-
matica 1 (1971), 139–144. ISSN 0001-5903. Citations in this document: §1, §1.4,
§1.4.

[61] Joseph H. Silverman, Almost inverses and fast NTRU key creation, NTRU Cryptosys-
tems (Technical Note#014) (1999). URL: https://assets.securityinnovation.
com/static/downloads/NTRU/resources/NTRUTech014.pdf. Citations in this doc-
ument: §7.3, §7.3.

http://www.emis.ams.org/journals/DMTCS/proceedings/dmAD01ind.html
http://www.emis.ams.org/journals/DMTCS/proceedings/dmAD01ind.html
https://www.lysator.liu.se/~nisse/archive/S0025-5718-07-02017-0.pdf
https://www.lysator.liu.se/~nisse/archive/S0025-5718-07-02017-0.pdf
https://eprint.iacr.org/2018/985
https://eprint.iacr.org/2017/598
https://www.sagemath.org
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/SrFO_vK3xbI/mSmjY0HZCgAJ
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/SrFO_vK3xbI/mSmjY0HZCgAJ
https://assets.securityinnovation.com/static/downloads/NTRU/resources/NTRUTech014.pdf
https://assets.securityinnovation.com/static/downloads/NTRU/resources/NTRUTech014.pdf

Daniel J. Bernstein and Bo-Yin Yang 35

[62] Damien Stehlé, Paul Zimmermann, A binary recursive gcd algorithm, in ANTS 2004
[26] (2004), 411–425. URL: https://perso.ens-lyon.fr/damien.stehle/BINARY.
html. Citations in this document: §1.4, §1.4, §8.5, §E, §E.6, §E.6, §E.6, §F.2, §F.2,
§F.2, §H, §H.

[63] Josef Stein, Computational problems associated with Racah algebra, Journal of
Computational Physics 1 (1967), 397–405. Citations in this document: §1.

[64] Simon Stevin, L’arithmétique, Imprimerie de Christophle Plantin, 1585. URL:
http://www.dwc.knaw.nl/pub/bronnen/Simon_Stevin-[II_B]_The_Principal_
Works_of_Simon_Stevin,_Mathematics.pdf. Citations in this document: §1.

[65] Volker Strassen, The computational complexity of continued fractions, in SYM-SAC
1981 [69] (1981), 51–67; see also newer version [66].

[66] Volker Strassen, The computational complexity of continued fractions, SIAM Journal
on Computing 12 (1983), 1–27; see also older version [65]. ISSN 0097-5397. Citations
in this document: §1.4, §1.4, §5.3, §5.5.

[67] Tsuyoshi Takagi, Thomas Peyrin (editors), Advances in cryptology—ASIACRYPT
2017—23rd international conference on the theory and applications of cryptology and
information security, Hong Kong, China, December 3–7, 2017, proceedings, part II,
Lecture Notes in Computer Science, 10625, Springer, 2017. ISBN 978-3-319-70696-2.
See [57].

[68] Emmanuel Thomé, Subquadratic computation of vector generating polynomials and
improvement of the block Wiedemann algorithm, Journal of Symbolic Computation
33 (2002), 757–775. URL: https://hal.inria.fr/inria-00103417/document. Ci-
tations in this document: §1.4.

[69] Paul S. Wang (editor), SYM-SAC ’81: proceedings of the 1981 ACM Symposium on
Symbolic and Algebraic Computation, Snowbird, Utah, August 5–7, 1981, Association
for Computing Machinery, New York, 1981. ISBN 0-89791-047-8. See [65].

[70] Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), Public key
cryptography—9th international conference on theory and practice in public-key
cryptography, New York, NY, USA, April 24–26, 2006, proceedings, Lecture Notes
in Computer Science, 3958, Springer, 2006. ISBN 978-3-540-33851-2. See [10].

A Proof of main gcd theorem for polynomials
We give two separate proofs of the facts stated earlier relating gcd and modular reciprocal
to a particular iterate of divstep in the polynomial case:

• The second proof consists of a review of the Euclid–Stevin gcd algorithm (Ap-
pendix B); a description of exactly how the intermediate results in the Euclid–Stevin
algorithm relate to iterates of divstep (Appendix C); and, finally, a translation
of gcd/reciprocal results from the Euclid–Stevin context to the divstep context
(Appendix D).

• The first proof, given in this appendix, is shorter: it works directly with divstep,
without a detour through the Euclid–Stevin labeling of intermediate results.

https://perso.ens-lyon.fr/damien.stehle/BINARY.html
https://perso.ens-lyon.fr/damien.stehle/BINARY.html
http://www.dwc.knaw.nl/pub/bronnen/Simon_Stevin-[II_B]_The_Principal_Works_of_Simon_Stevin,_Mathematics.pdf
http://www.dwc.knaw.nl/pub/bronnen/Simon_Stevin-[II_B]_The_Principal_Works_of_Simon_Stevin,_Mathematics.pdf
https://hal.inria.fr/inria-00103417/document

36 Fast constant-time gcd computation and modular inversion

Theorem A.1. Let k be a field. Let d be a positive integer. Let R0, R1 be elements of the
polynomial ring k[x] with degR0 = d > degR1. Define f = xdR0(1/x); g = xd−1R1(1/x);
and (δn, fn, gn) = divstepn(1, f, g) for n ≥ 0. Then

2 deg fn ≤ 2d− 1− n+ δn for n ≥ 0,
2 deg gn ≤ 2d− 1− n− δn for n ≥ 0.

Proof. Induct on n. If n = 0 then (δn, fn, gn) = (1, f, g) so 2 deg fn = 2 deg f ≤ 2d =
2d− 1− n+ δn and 2 deg gn = 2 deg g ≤ 2(d− 1) = 2d− 1− n− δn.

Assume from now on that n ≥ 1. By the inductive hypothesis, 2 deg fn−1 ≤ 2d−n+δn−1,
and 2 deg gn−1 ≤ 2d− n− δn−1.

Case 1: δn−1 ≤ 0. Then

(δn, fn, gn) = (1 + δn−1, fn−1, (fn−1(0)gn−1 − gn−1(0)fn−1)/x).

Both fn−1 and gn−1 have degree at most (2d − n − δn−1)/2, so the polynomial xgn =
fn−1(0)gn−1 − gn−1(0)fn−1 also has degree at most (2d − n − δn−1)/2, so 2 deg gn ≤
2d− n− δn−1 − 2 = 2d− 1− n− δn. Also 2 deg fn = 2 deg fn−1 ≤ 2d− 1− n+ δn.

Case 2: δn−1 > 0 and gn−1(0) = 0. Then

(δn, fn, gn) = (1 + δn−1, fn−1, fn−1(0)gn−1/x),

so 2 deg gn = 2 deg gn−1 − 2 ≤ 2d− n− δn−1 − 2 = 2d− 1− n− δn. As before 2 deg fn =
2 deg fn−1 ≤ 2d− 1− n+ δn.

Case 3: δn−1 > 0 and gn−1(0) 6= 0. Then

(δn, fn, gn) = (1− δn−1, gn−1, (gn−1(0)fn−1 − fn−1(0)gn−1)/x).

This time the polynomial xgn = gn−1(0)fn−1 − fn−1(0)gn−1 also has degree at most
(2d − n + δn−1)/2, so 2 deg gn ≤ 2d − n + δn−1 − 2 = 2d − 1 − n − δn. Also 2 deg fn =
2 deg gn−1 ≤ 2d− n− δn−1 = 2d− 1− n+ δn.

Theorem A.2. In the situation of Theorem A.1, define Tn = T (δn, fn, gn) and(
un vn
qn rn

)
= Tn−1 · · · T0.

Then xn(unrn−vnqn) ∈ k∗ for n ≥ 0; xn−1un ∈ k[x] for n ≥ 1; xn−1vn, x
nqn, x

nrn ∈ k[x]
for n ≥ 0; and

2 deg(xn−1un) ≤ n− 3 + δn for n ≥ 1,
2 deg(xn−1vn) ≤ n− 1 + δn for n ≥ 0,

2 deg(xnqn) ≤ n− 1− δn for n ≥ 0,
2 deg(xnrn) ≤ n+ 1− δn for n ≥ 0.

Proof. Each matrix Tn has determinant in (1/x)k∗ by construction, so the product of n
such matrices has determinant in (1/xn)k∗. In particular, unrn − vnqn ∈ (1/xn)k∗.

Induct on n. For n = 0 we have δn = 1, un = 1, vn = 0, qn = 0, rn = 1 so
xn−1vn = 0 ∈ k[x]; xnqn = 0 ∈ k[x]; xnrn = 1 ∈ k[x]; 2 deg(xn−1vn) = −∞ ≤ n− 1 + δn;
2 deg(xnqn) = −∞ ≤ n− 1− δn; and 2 deg(xnrn) = 0 ≤ n+ 1− δn.

Assume from now on that n ≥ 1. By Theorem 4.3, un, vn ∈ (1/xn−1)k[x] and
qn, rn ∈ (1/xn)k[x], so all that remains is to prove the degree bounds.

Case 1: δn−1 ≤ 0. Then δn = 1 + δn−1; un = un−1; vn = vn−1; qn = (fn−1(0)qn−1 −
gn−1(0)un−1)/x; and rn = (fn−1(0)rn−1 − gn−1(0)vn−1)/x.

Daniel J. Bernstein and Bo-Yin Yang 37

Note that n > 1 since δ0 > 0. By the inductive hypothesis, 2 deg(xn−2un−1) ≤ n− 4 +
δn−1, so 2 deg(xn−1un) ≤ n− 2 + δn−1 = n− 3 + δn. Also 2 deg(xn−2vn−1) ≤ n− 2 + δn−1,
so 2 deg(xn−1vn) ≤ n+ δn−1 = n− 1 + δn.

For qn, note that both xn−1qn−1 and xn−1un−1 have degree at most (n−2−δn−1)/2, so
the same is true for their k-linear combination xnqn. Hence 2 deg(xnqn) ≤ n− 2− δn−1 =
n− 1− δn. Similarly 2 deg(xnrn) ≤ n− δn−1 = n+ 1− δn.

Case 2: δn−1 > 0 and gn−1(0) = 0. Then δn = 1 + δn−1; un = un−1; vn = vn−1;
qn = fn−1(0)qn−1/x; and rn = fn−1(0)rn−1/x.

If n = 1 then un = u0 = 1 so 2 deg(xn−1un) = 0 = n − 3 + δn. Otherwise
2 deg(xn−2un−1) ≤ n−4 + δn−1 by the inductive hypothesis so 2 deg(xn−1un) ≤ n−3 + δn
as above.

Also 2 deg(xn−1vn) ≤ n− 1 + δn as above; 2 deg(xnqn) = 2 deg(xn−1qn−1) ≤ n− 2−
δn−1 = n− 1− δn; and 2 deg(xnrn) = 2 deg(xn−1rn−1) ≤ n− δn−1 = n+ 1− δn.

Case 3: δn−1 > 0 and gn−1(0) 6= 0. Then δn = 1 − δn−1; un = qn−1; vn = rn−1;
qn = (gn−1(0)un−1 − fn−1(0)qn−1)/x; and rn = (gn−1(0)vn−1 − fn−1(0)rn−1)/x.

If n = 1 then un = q0 = 0 so 2 deg(xn−1un) = −∞ ≤ n − 3 + δn. Otherwise
2 deg(xn−1qn−1) ≤ n− 2− δn−1 by the inductive hypothesis so 2 deg(xn−1un) ≤ n− 2−
δn−1 = n− 3 + δn. Similarly 2 deg(xn−1rn−1) ≤ n− δn−1 by the inductive hypothesis so
2 deg(xn−1vn) ≤ n− δn−1 = n− 1 + δn.

Finally, for qn, note that both xn−1un−1 and xn−1qn−1 have degree at most (n −
2 + δn−1)/2, so the same is true for their k-linear combination xnqn, so 2 deg(xnqn) ≤
n− 2 + δn−1 = n− 1− δn. Similarly 2 deg(xnrn) ≤ n+ δn−1 = n+ 1− δn.

First proof of Theorem 6.2. Write ϕ = f2d−1. By Theorem A.1, 2 degϕ ≤ δ2d−1 and
2 deg g2d−1 ≤ −δ2d−1. Each fn is nonzero by construction, so degϕ ≥ 0, so δ2d−1 ≥ 0.

By Theorem A.2, x2d−2u2d−1 is a polynomial of degree at most d− 2 + δ2d−1/2. Define
C0 = x−d+δ2d−1/2u2d−1(1/x); then C0 is a polynomial of degree at most d− 2 + δ2d−1/2.
Similarly define C1 = x−d+1+δ2d−1/2v2d−1(1/x), and observe that C1 is a polynomial of
degree at most d− 1 + δ2d−1/2.

Multiply C0 by R0 = xdf(1/x), multiply C1 by R1 = xd−1g(1/x), and add, to obtain

C0R0 + C1R1 = xδ2d−1/2(u2d−1(1/x)f(1/x) + v2d−1(1/x)g(1/x))
= xδ2d−1/2ϕ(1/x)

by Theorem 4.2.
Define Γ as the monic polynomial xδ2d−1/2ϕ(1/x)/ϕ(0) of degree δ2d−1/2. We have

just shown that Γ ∈ R0k[x] + R1k[x]: specifically, Γ = (C0/ϕ(0))R0 + (C1/ϕ(0))R1. To
finish the proof we will show that R0 ∈ Γk[x]. This forces Γ = gcd{R0, R1} = G, which in
turn implies degG = δ2d−1/2 and V = C1/ϕ(0).

Observe that δ2d = 1 + δ2d−1 and f2d = ϕ; the “swapped” case is impossible here since
δ2d−1 > 0 implies g2d−1 = 0. By Theorem A.1 again, 2 deg g2d ≤ −1− δ2d = −2− δ2d−1,
so g2d = 0.

By Theorem 4.2, ϕ = f2d = u2df + v2dg and 0 = g2d = q2df + r2dg, so x2dr2dϕ = ∆f
where ∆ = x2d(u2dr2d− v2dq2d). By Theorem A.2, ∆ ∈ k∗, and p = x2dr2d is a polynomial
of degree at most (2d+ 1− δ2d)/2 = d− δ2d−1/2. The polynomials xd−δ2d−1/2p(1/x) and
xδ2d−1/2ϕ(1/x) = Γ have product ∆xdf(1/x) = ∆R0, so Γ divides R0 as claimed.

B Review of the Euclid–Stevin algorithm
This appendix reviews the Euclid–Stevin algorithm to compute polynomial gcd, including
the extended version of the algorithm that writes each remainder as a linear combination
of the two inputs.

38 Fast constant-time gcd computation and modular inversion

Theorem B.1 (the Euclid–Stevin algorithm). Let k be a field. Let R0, R1 be ele-
ments of the polynomial ring k[x]. Recursively define a finite sequence of polynomials
R2, R3, . . . , Rr ∈ k[x] as follows: if i ≥ 1 and Ri = 0 then r = i; if i ≥ 1 and Ri 6= 0 then
Ri+1 = Ri−1 mod Ri. Define di = degRi and `i = Ri[di]. Then

• d1 > d2 > · · · > dr = −∞;

• `i 6= 0 if 1 ≤ i ≤ r − 1;

• if `r−1 6= 0 then gcd{R0, R1} = Rr−1/`r−1; and

• if `r−1 = 0 then R0 = R1 = gcd{R0, R1} = 0 and r = 1.

Proof. If 1 ≤ i ≤ r − 1 then Ri 6= 0 so `i = Ri[degRi] 6= 0. Also Ri+1 = Ri−1 mod Ri so
degRi+1 < degRi, i.e., di+1 < di. Hence d1 > d2 > · · · > dr; and dr = degRr = deg 0 =
−∞.

If `r−1 = 0 then r must be 1, so R1 = 0 (since Rr = 0) and R0 = 0 (since `0 = 0), so
gcd{R0, R1} = 0. Assume from now on that `r−1 6= 0. The divisibility of Ri+1 − Ri−1
by Ri implies gcd{Ri−1, Ri} = gcd{Ri, Ri+1}, so gcd{R0, R1} = gcd{R1, R2} = · · · =
gcd{Rr−1, Rr} = gcd{Rr−1, 0} = Rr−1/`r−1.

Theorem B.2 (the extended Euclid–Stevin algorithm). In the situation of Theorem B.1,
define U0, V0, . . . , Ur, Ur ∈ k[x] as follows: U0 = 1; V0 = 0; U1 = 0; V1 = 1; Ui+1 = Ui−1−
bRi−1/RicUi for i ∈ {1, . . . , r − 1}; Vi+1 = Vi−1 − bRi−1/RicVi for i ∈ {1, . . . , r − 1}.
Then

• Ri = UiR0 + ViR1 for i ∈ {0, . . . , r};

• UiVi+1 − Ui+1Vi = (−1)i for i ∈ {0, . . . , r − 1};

• Vi+1Ri − ViRi+1 = (−1)iR0 for i ∈ {0, . . . , r − 1}; and

• if d0 > d1 then deg Vi+1 = d0 − di for i ∈ {0, . . . , r − 1}.

Proof. U0R0 + V0R1 = 1R0 + 0R1 = R0 and U1R0 + V1R1 = 0R0 + 1R1 = R1. For
i ∈ {1, . . . , r − 1}, assume inductively that Ri−1 = Ui−1R0+Vi−1R1 and Ri = UiR0+ViR1,
and writeQi = bRi−1/Ric. Then Ri+1 = Ri−1 mod Ri = Ri−1−QiRi = (Ui−1−QiUi)R0+
(Vi−1 −QiVi)R1 = Ui+1R0 + Vi+1R1.

If i = 0 then UiVi+1−Ui+1Vi = 1 · 1− 0 · 0 = 1 = (−1)i. For i ∈ {1, . . . , r − 1}, assume
inductively that Ui−1Vi − UiVi−1 = (−1)i−1; then UiVi+1 − Ui+1Vi = Ui(Vi−1 − QVi) −
(Ui−1 −QUi)Vi = −(Ui−1Vi − UiVi−1) = (−1)i.

Multiply Ri = UiR0 + ViR1 by Vi+1, multiply Ri+1 = Ui+1R0 + Vi+1R1 by Ui+1, and
subtract, to see that Vi+1Ri − ViRi+1 = (−1)iR0.

Finally, assume d0 > d1. If i = 0 then deg Vi+1 = deg 1 = 0 = d0 − di. For
i ∈ {1, . . . , r − 1}, assume inductively that deg Vi = d0 − di−1. Then deg ViRi+1 < d0
since degRi+1 = di+1 < di−1; so deg Vi+1Ri = deg(ViRi+1 +(−1)iR0) = d0, so deg Vi+1 =
d0 − di.

C Euclid–Stevin results as iterates of divstep
If the Euclid–Stevin algorithm is written as a sequence of polynomial divisions, and
each polynomial division is written as a sequence of coefficient-elimination steps, then
each coefficient-elimination step corresponds to one application of divstep. The exact
correspondence is stated in Theorem C.2. This generalizes the known Berlekamp–Massey
equivalence mentioned in Section 1.

Theorem C.1 is a warmup, showing how a single polynomial division relates to a
sequence of division steps.

Daniel J. Bernstein and Bo-Yin Yang 39

Theorem C.1 (polynomial division as a sequence of division steps). Let k be a field.
Let R0, R1 be elements of the polynomial ring k[x]. Write d0 = degR0 and d1 = degR1.
Assume that d0 > d1 ≥ 0. Then

divstep2d0−2d1(1, xd0R0(1/x), xd0−1R1(1/x))
= (1, `d0−d1−1

0 xd1R1(1/x), (`d0−d1−1
0 `1)d0−d1+1xd1−1R2(1/x))

where `0 = R0[d0], `1 = R1[d1], and R2 = R0 mod R1.

Proof. Part 1: The first d0 − d1 − 1 iterations. If δ ∈ {1, 2, . . . , d0 − d1 − 1} then
d0−δ > d1, so R1[d0−δ] = 0, so the polynomial `δ−1

0 xd0−δR1(1/x) has constant coefficient
0. The polynomial xd0R0(1/x) has constant coefficient `0. Hence

divstep(δ, xd0R0(1/x), `δ−1
0 xd0−δR1(1/x)) = (1 + δ, xd0R0(1/x), `δ0xd0−δ−1R1(1/x))

by definition of divstep. By induction

divstepd0−d1−1(1, xd0R0(1/x), xd0−1R1(1/x))
= (d0 − d1, x

d0R0(1/x), `d0−d1−1
0 xd1R1(1/x))

= (d0 − d1, x
d0R0(1/x), xd1R′1(1/x))

where R′1 = `d0−d1−1
0 R1. Note that R′1[d1] = `′1 where `′1 = `d0−d1−1

0 `1.

Part 2: The swap iteration, and the last d0 − d1 iterations. Define

Zd0−d1 = R0 mod xd0−d1R′1;
Zd0−d1+1 = R0 mod xd0−d1−1R′1;

...
Z2d0−2d1 = R0 mod R′1 = R0 mod R1 = R2.

Then
Zd0−d1 = R0 − (R0[d0]/`′1)xd0−d1R′1;

Zd0−d1+1 = Zd0−d1 − (Zd0−d1 [d0 − 1]/`′1)xd0−d1−1R′1;
...

Z2d0−2d1 = Z2d0−2d1−1 − (Z2d0−2d1−1[d1]/`′1)R′1.

Substitute 1/x for x to see that

xd0Zd0−d1(1/x) = xd0R0(1/x)− (R0[d0]/`′1)xd1R′1(1/x);
xd0−1Zd0−d1+1(1/x) = xd0−1Zd0−d1(1/x)− (Zd0−d1 [d0 − 1]/`′1)xd1R′1(1/x);

...
xd1Z2d0−2d1(1/x) = xd1Z2d0−2d1−1(1/x)− (Z2d0−2d1−1[d1]/`′1)xd1R′1(1/x).

We will use these equations to show that the d0 − d1, . . . , 2d0 − 2d1 iterates of divstep
compute `′1xd0−1Zd0−d1 , . . . , (`′1)d0−d1+1xd1−1Z2d0−2d1 respectively.

The constant coefficients of xd0R0(1/x) and xd1R′1(1/x) are R0[d0] and `′1 6= 0 respec-
tively, and `′1xd0R0(1/x)−R0[d0]xd1R′1(1/x) = `′1x

d0Zd0−d1(1/x), so

divstep(d0 − d1, x
d0R0(1/x), xd1R′1(1/x))

= (1− (d0 − d1), xd1R′1(1/x), `′1xd0−1Zd0−d1(1/x)).

40 Fast constant-time gcd computation and modular inversion

The constant coefficients of xd1R′1(1/x) and `′1xd0−1Zd0−d1(1/x) are `′1 and `′1Zd0−d1 [d0−1]
respectively, and

(`′1)2xd0−1Zd0−d1(1/x)− `′1Zd0−d1 [d0 − 1]xd1R′1(1/x) = (`′1)2xd0−1Zd0−d1+1(1/x),

so
divstep(1− (d0 − d1), xd1R′1(1/x), `′1xd0−1Zd0−d1(1/x))

= (2− (d0 − d1), xd1R′1(1/x), (`′1)2xd0−2Zd0−d1+1(1/x)).

Continue in this way to see that

divstepi(d0 − d1, x
d0R0(1/x), xd1R′1(1/x))

= (i− (d0 − d1), xd1R′1(1/x), (`′1)ixd0−iZd0−d1+i−1(1/x))

for 1 ≤ i ≤ d0 − d1 + 1. In particular,

divstep2d0−2d1(1, xd0R0(1/x), xd0−1R1(1/x))
= divstepd0−d1+1(d0 − d1, x

d0R0(1/x), xd1R′1(1/x))
= (1, xd1R′1(1/x), (`′1)d0−d1+1xd1−1R2(1/x))
= (1, `d0−d1−1

0 xd1R1(1/x), (`d0−d1−1
0 `1)d0−d1+1xd1−1R2(1/x))

as claimed.

Theorem C.2. In the situation of Theorem B.2, assume that d0 > d1. Define f =
xd0R0(1/x) and g = xd0−1R1(1/x). Then f, g ∈ k[x]. Define (δn, fn, gn) = divstepn(1, f, g)
and Tn = T (δn, fn, gn).

Part A. If i ∈ {0, 1, . . . , r − 2} and 2d0 − 2di ≤ n < 2d0 − di − di+1 then

δn = 1 + n− (2d0 − 2di) > 0,
fn = anx

diRi(1/x),
gn = bnx

2d0−di−n−1Ri+1(1/x),

Tn−1 · · · T0 =
(

an(1/x)d0−diUi(1/x) an(1/x)d0−di−1Vi(1/x)
bn(1/x)n−(d0−di)+1Ui+1(1/x) bn(1/x)n−(d0−di)Vi+1(1/x)

)
for some an, bn ∈ k∗.

Part B. If i ∈ {0, 1, . . . , r − 2} and 2d0 − di − di+1 ≤ n < 2d0 − 2di+1 then

δn = 1 + n− (2d0 − 2di+1) ≤ 0,
fn = anx

di+1Ri+1(1/x),
gn = bnx

2d0−di+1−n−1Zn(1/x),

Tn−1 · · · T0 =
(

an(1/x)d0−di+1Ui+1(1/x) an(1/x)d0−di+1−1Vi+1(1/x)
bn(1/x)n−(d0−di+1)+1Xn(1/x) bn(1/x)n−(d0−di+1)Yn(1/x)

)
for some an, bn ∈ k∗, where

Zn = Ri mod x2d0−2di+1−nRi+1,

Xn = Ui −
⌊
Ri/x

2d0−2di+1−nRi+1
⌋
x2d0−2di+1−nUi+1,

Yn = Vi −
⌊
Ri/x

2d0−2di+1−nRi+1
⌋
x2d0−2di+1−nVi+1.

Daniel J. Bernstein and Bo-Yin Yang 41

Part C. If n ≥ 2d0 − 2dr−1 then

δn = 1 + n− (2d0 − 2dr−1) > 0,
fn = anx

dr−1Rr−1(1/x),
gn = 0,

Tn−1 · · · T0 =
(

an(1/x)d0−dr−1Ur−1(1/x) an(1/x)d0−dr−1−1Vr−1(1/x)
bn(1/x)n−(d0−dr−1)+1Ur(1/x) bn(1/x)n−(d0−dr−1)Vr(1/x)

)
for some an, bn ∈ k∗.

The proof also gives recursive formulas for an, bn: namely, (a0, b0) = (1, 1) for
the base case, (an, bn) = (bn−1, gn−1(0)an−1) for the swapped case, and (an, bn) =
(an−1, fn−1(0)bn−1) for the unswapped case. One can, if desired, augment divstep to
track an and bn; these are the denominators eliminated in a “fraction-free” computation.

Proof. By hypothesis degR0 = d0 > d1 = degR1. Hence d0 is a nonnegative integer, and
f = R0[d0] +R0[d0 − 1]x+ · · ·+R0[0]xd0 ∈ k[x]. Similarly g = R1[d0 − 1] +R1[d0 − 2]x+
· · ·+R1[0]xd0−1 ∈ k[x]; this is also true for d0 = 0, with R1 = 0 and g = 0.

We induct on n, and split the analysis of n into six cases. There are three different
formulas (A, B, C) applicable to different ranges of n, and within each range we consider
the first n separately. For brevity we write Ri = Ri(1/x), U i = Ui(1/x), V i = Vi(1/x),
Xn = Xn(1/x), Y n = Yn(1/x), Zn = Zn(1/x).

Case A1: n = 2d0 − 2di for some i ∈ {0, 1, . . . , r − 2}.
If n = 0 then i = 0. By assumption δn = 1 as claimed; fn = f = xd0R0 so fn = anx

d0R0
as claimed where an = 1; gn = g = xd0−1R1 so gn = bnx

d0−1R1 as claimed where bn = 1.
Also Ui = 1, Ui+1 = 0, Vi = 0, Vi+1 = 1, and d0 − di = 0, so(

an(1/x)d0−diU i an(1/x)d0−di−1V i
bn(1/x)d0−di+1U i+1 bn(1/x)d0−diV i+1

)
=
(

1 0
0 1

)
= Tn−1 · · · T0

as claimed.
Otherwise n > 0 so i > 0. Now 2d0−di−1−di ≤ n− 1 < 2d0− 2di so, by the inductive

hypothesis, δn−1 = 1 + (n− 1)− (2d0 − 2di) = 0; fn−1 = an−1x
diRi for some an−1 ∈ k∗;

gn−1 = bn−1x
diZn−1 for some bn−1 ∈ k∗, where Zn−1 = Ri−1 mod xRi; and

Tn−2 · · · T0 =
(

an−1(1/x)d0−diU i an−1(1/x)d0−di−1V i
bn−1(1/x)d0−diXn−1 bn−1(1/x)d0−di−1Y n−1

)
where Xn = Ui−1 − bRi−1/xRicxUi and Yn = Vi−1 − bRi−1/xRicxVi.

Note that degZn−1 ≤ di. Observe that

Ri+1 = Ri−1 mod Ri = Zn−1 − (Zn−1[di]/`i)Ri,
Ui+1 = Xn−1 − (Zn−1[di]/`i)Ui,
Vi+1 = Yn−1 − (Zn−1[di]/`i)Vi.

The point is that subtracting (Zn−1[di]/`i)Ri from Zn−1 eliminates the coefficient of xdi

and produces a polynomial of degree at most di− 1, namely Zn−1 mod Ri = Ri−1 mod Ri.
Starting from Ri+1 = Zn−1 − (Zn−1[di]/`i)Ri, substitute 1/x for x and multiply by

an−1bn−1`ix
di to see that

an−1bn−1`ix
diRi+1 = an−1`ign−1 − bn−1Zn−1[di]fn−1

= fn−1(0)gn−1 − gn−1(0)fn−1.

42 Fast constant-time gcd computation and modular inversion

Now
(δn, fn, gn) = divstep(δn−1, fn−1, gn−1)

= (1 + δn−1, fn−1, (fn−1(0)gn−1 − gn−1(0)fn−1)/x).

Hence δn = 1 = 1 + n− (2d0 − 2di) > 0 as claimed; fn = anx
diRi where an = an−1 ∈ k∗

as claimed; and gn = bnx
di−1Ri+1 where bn = an−1bn−1`i ∈ k∗ as claimed.

Finally, U i+1 = Xn−1 − (Zn−1[di]/`i)U i and V i+1 = Y n−1 − (Zn−1[di]/`i)V i. Substi-
tute these into the matrix(

an(1/x)d0−diU i an(1/x)d0−di−1V i
bn(1/x)d0−di+1U i+1 bn(1/x)d0−diV i+1

)
,

along with an = an−1 and bn = an−1bn−1`i, to see that this matrix is

Tn−1 =
(

1 0
−bn−1Zn−1[di]/x an−1`i/x

)
times Tn−2 · · · T0 shown above.

Case A2: 2d0 − 2di < n < 2d0 − di − di+1 for some i ∈ {0, 1, . . . , r − 2}.
By the inductive hypothesis, δn−1 = n − (2d0 − 2di) > 0; fn−1 = an−1x

diRi where
an−1 ∈ k∗; gn−1 = bn−1x

2d0−di−nRi+1 where bn−1 ∈ k∗; and

Tn−2 · · · T0 =
(

an−1(1/x)d0−diU i an−1(1/x)d0−di−1V i
bn−1(1/x)n−(d0−di)U i+1 bn−1(1/x)n−(d0−di)−1V i+1

)
.

Note that gn−1(0) = bn−1Ri+1[2d0 − di − n] = 0 since 2d0 − di − n > di+1 = degRi+1.
Thus

(δn, fn, gn) = divstep(δn−1, fn−1, gn−1) = (1 + δn−1, fn−1, fn−1(0)gn−1/x).

Hence δn = 1 + n − (2d0 − 2di) > 0 as claimed; fn = anx
diRi where an = an−1 ∈ k∗

as claimed; and gn = bnx
2d0−di−n−1Ri+1 where bn = fn−1(0)bn−1 = an−1bn−1`i ∈ k∗ as

claimed.
Also Tn−1 =

(
1 0
0 an−1`i/x

)
. Multiply by Tn−2 · · · T0 above to see that

Tn−1 · · · T0 =
(

an(1/x)d0−diU i an(1/x)d0−di−1V i
bn(1/x)n−(d0−di)+1U i+1 bn`i(1/x)n−(d0−di)V i+1

)
as claimed.

Case B1: n = 2d0 − di − di+1 for some i ∈ {0, 1, . . . , r − 2}.
Note that 2d0 − 2di ≤ n− 1 < 2d0 − di − di+1. By the inductive hypothesis, δn−1 =

di−di+1 > 0; fn−1 = an−1x
diRi where an−1 ∈ k∗; gn−1 = bn−1x

di+1Ri+1 where bn−1 ∈ k∗;
and

Tn−2 · · · T0 =
(

an−1(1/x)d0−diU i an−1(1/x)d0−di−1V i
bn−1(1/x)d0−di+1U i+1 bn−1`i(1/x)d0−di+1−1V i+1

)
.

Observe that
Zn = Ri − (`i/`i+1)xdi−di+1Ri+1,

Xn = Ui − (`i/`i+1)xdi−di+1Ui+1,

Yn = Vi − (`i/`i+1)xdi−di+1Vi+1.

Substitute 1/x for x in the Zn equation and multiply by an−1bn−1`i+1x
di to see that

an−1bn−1`i+1x
diZn = bn−1`i+1fn−1 − an−1`ign−1

= gn−1(0)fn−1 − fn−1(0)gn−1.

Daniel J. Bernstein and Bo-Yin Yang 43

Also note that gn−1(0) = bn−1`i+1 6= 0 so

(δn, fn, gn) = divstep(δn−1, fn−1, gn−1)
= (1− δn−1, gn−1, (gn−1(0)fn−1 − fn−1(0)gn−1)/x).

Hence δn = 1 − (di − di+1) ≤ 0 as claimed; fn = anx
di+1Ri+1 where an = bn−1 ∈ k∗ as

claimed; and gn = bnx
di−1Zn where bn = an−1bn−1`i+1 ∈ k∗ as claimed.

Finally, substitute Xn = U i − (`i/`i+1)(1/x)di−di+1U i+1 and substitute Y n = V i −
(`i/`i+1)(1/x)di−di+1V i+1 into the matrix(

an(1/x)d0−di+1U i+1 an(1/x)d0−di+1−1V i+1
bn(1/x)d0−di+1Xn bn(1/x)d0−diY n

)
,

along with an = bn−1 and bn = an−1bn−1`i+1, to see that this matrix is Tn−1 =(
0 1

bn−1`i+1/x −an−1`i/x

)
times Tn−2 · · · T0 shown above.

Case B2: 2d0 − di − di+1 < n < 2d0 − 2di+1 for some i ∈ {0, 1, . . . , r − 2}.
Now 2d0−di−di+1 ≤ n−1 < 2d0−2di+1. By the inductive hypothesis, δn−1 = n−(2d0−

2di+1) ≤ 0; fn−1 = an−1x
di+1Ri+1 for some an−1 ∈ k∗; gn−1 = bn−1x

2d0−di+1−nZn−1 for
some bn−1 ∈ k∗, where Zn−1 = Ri mod x2d0−2di+1−n+1Ri+1; and

Tn−2 · · · T0 =
(

an−1(1/x)d0−di+1U i+1 an−1(1/x)d0−di+1−1V i+1
bn−1(1/x)n−(d0−di+1)Xn−1 bn−1(1/x)n−(d0−di+1)−1Y n−1

)
where Xn−1 = Ui −

⌊
Ri/x

2d0−2di+1−n+1Ri+1
⌋
x2d0−2di+1−n+1Ui+1 and Yn−1 = Vi −⌊

Ri/x
2d0−2di+1−n+1Ri+1

⌋
x2d0−2di+1−n+1Vi+1.

Observe that

Zn = Ri mod x2d0−2di+1−nRi+1

= Zn−1 − (Zn−1[2d0 − di+1 − n]/`i+1)x2d0−2di+1−nRi+1,

Xn = Xn−1 − (Zn−1[2d0 − di+1 − n]/`i+1)x2d0−2di+1−nUi+1,

Yn = Yn−1 − (Zn−1[2d0 − di+1 − n]/`i+1)x2d0−2di+1−nVi+1.

The point is that degZn−1 ≤ 2d0 − di+1 − n, and subtracting

(Zn−1[2d0 − di+1 − n]/`i+1)x2d0−2di+1−nRi+1

from Zn−1 eliminates the coefficient of x2d0−di+1−n.
Starting from

Zn = Zn−1 − (Zn−1[2d0 − di+1 − n]/`i+1)x2d0−2di+1−nRi+1

substitute 1/x for x and multiply by an−1bn−1`i+1x
2d0−di+1−n to see that

an−1bn−1`i+1x
2d0−di+1−nZn = an−1`i+1gn−1 − bn−1Zn−1[2d0 − di+1 − n]fn−1

= fn−1(0)gn−1 − gn−1(0)fn−1.

Now
(δn, fn, gn) = divstep(δn−1, fn−1, gn−1)

= (1 + δn−1, fn−1, (fn−1(0)gn−1 − gn−1(0)fn−1)/x).

Hence δn = 1 +n− (2d0− 2di+1) ≤ 0 as claimed; fn = anx
di+1Ri+1 where an = an−1 ∈ k∗

as claimed; and gn = bnx
2d0−di+1−n−1Zn where bn = an−1bn−1`i+1 ∈ k∗ as claimed.

44 Fast constant-time gcd computation and modular inversion

Finally, substitute

Xn = Xn−1 − (Zn−1[2d0 − di+1 − n]/`i+1)(1/x)2d0−2di+1−nU i+1

and
Y n = Y n−1 − (Zn−1[2d0 − di+1 − n]/`i+1)(1/x)2d0−2di+1−nV i+1

into the matrix (
an(1/x)d0−di+1U i+1 an(1/x)d0−di+1−1V i+1

bn(1/x)n−(d0−di+1)+1Xn bn(1/x)n−(d0−di+1)Y n

)
,

along with an = an−1 and bn = an−1bn−1`i+1, to see that this matrix is Tn−1 =(
1 0

−bn−1Zn−1[2d0 − di+1 − n]/x an−1`i+1/x

)
times Tn−2 · · · T0 shown above.

Case C1: n = 2d0 − 2dr−1. This is essentially the same as Case A1, except that i is
replaced with r − 1, and gn ends up as 0. For completeness we spell out the details.

If n = 0 then r = 1 and R1 = 0 so g = 0. By assumption δn = 1 as claimed;
fn = f = xd0R0 so fn = anx

d0R0 as claimed where an = 1; gn = g = 0 as claimed. Define
bn = 1. Now Ur−1 = 1, Ur = 0, Vr−1 = 0, Vr = 1, and d0 − dr−1 = 0, so(

an(1/x)d0−dr−1Ur−1 an(1/x)d0−dr−1−1V r−1
bn(1/x)d0−dr−1+1Ur bn(1/x)d0−dr−1V r

)
=
(

1 0
0 1

)
= Tn−1 · · · T0

as claimed.
Otherwise n > 0 so r ≥ 2. Now 2d0 − dr−2 − dr−1 ≤ n − 1 < 2d0 − 2dr−1 so,

by the inductive hypothesis (for i = r − 2), δn−1 = 1 + (n − 1) − (2d0 − 2dr−1) = 0;
fn−1 = an−1x

dr−1Rr−1 for some an−1 ∈ k∗; gn−1 = bn−1x
dr−1Zn−1 for some bn−1 ∈ k∗,

where Zn−1 = Rr−2 mod xRr−1; and

Tn−2 · · · T0 =
(
an−1(1/x)d0−dr−1Ur−1 an−1(1/x)d0−dr−1−1V r−1
bn−1(1/x)d0−dr−1Xn−1 bn−1(1/x)d0−dr−1−1Y n−1

)
where Xn = Ur−2 − bRr−2/xRr−1cxUr−1 and Yn = Vr−2 − bRr−2/xRr−1cxVr−1.

Observe that

0 = Rr = Rr−2 mod Rr−1 = Zn−1 − (Zn−1[dr−1]/`r−1)Rr−1,

Ur = Xn−1 − (Zn−1[dr−1]/`r−1)Ur−1,

Vr = Yn−1 − (Zn−1[dr−1]/`r−1)Vr−1.

Starting from Zn−1 − (Zn−1[dr−1]/`r−1)Rr−1 = 0, substitute 1/x for x and multiply
by an−1bn−1`r−1x

dr−1 to see that

an−1`r−1gn−1 − bn−1Zn−1[dr−1]fn−1 = 0,

i.e., fn−1(0)gn−1 − gn−1(0)fn−1 = 0. Now

(δn, fn, gn) = divstep(δn−1, fn−1, gn−1) = (1 + δn−1, fn−1, 0).

Hence δn = 1 = 1 + n − (2d0 − 2dr−1) > 0 as claimed; fn = anx
dr−1Rr−1 where

an = an−1 ∈ k∗ as claimed; and gn = 0 as claimed.
Define bn = an−1bn−1`r−1 ∈ k∗, and substitute Ur = Xn−1 − (Zn−1[dr−1]/`r−1)Ur−1

and V r = Y n−1 − (Zn−1[dr−1]/`r−1)V r−1 into the matrix(
an(1/x)d0−dr−1Ur−1(1/x) an(1/x)d0−dr−1−1Vr−1(1/x)
bn(1/x)d0−dr−1+1Ur(1/x) bn(1/x)d0−dr−1Vr(1/x)

)
,

Daniel J. Bernstein and Bo-Yin Yang 45

to see that this matrix is Tn−1 =
(

1 0
−bn−1Zn−1[dr−1]/x an−1`r−1/x

)
times Tn−2 · · · T0

shown above.

Case C2: n > 2d0 − 2dr−1.
By the inductive hypothesis, δn−1 = n − (2d0 − 2dr−1); fn−1 = an−1x

dr−1Rr−1 for
some an−1 ∈ k∗; gn−1 = 0; and

Tn−2 · · · T0 =
(
an−1(1/x)d0−dr−1Ur−1(1/x) an−1(1/x)d0−dr−1−1Vr−1(1/x)
bn−1(1/x)n−(d0−dr−1)Ur(1/x) bn−1(1/x)n−(d0−dr−1)−1Vr(1/x)

)
for some bn−1 ∈ k∗. Hence δn = 1 + δn = 1 + n − (2d0 − 2dr−1) > 0; fn = fn−1 =

anx
dr−1Rr−1 where an = an−1; and gn = 0. Also Tn−1 =

(
1 0
0 an−1`r−1/x

)
so

Tn−1 · · · T0 =
(

an(1/x)d0−dr−1Ur−1(1/x) an(1/x)d0−dr−1−1Vr−1(1/x)
bn(1/x)n−(d0−dr−1)+1Ur(1/x) bn(1/x)n−(d0−dr−1)Vr(1/x)

)
where bn = an−1bn−1`r−1 ∈ k∗.

D Alternative proof of main gcd theorem for polynomials
This appendix gives another proof of Theorem 6.2, using the relationship in Theorem C.2
between the Euclid–Stevin algorithm and iterates of divstep.

Second proof of Theorem 6.2. Define R2, R3, . . . , Rr and di and `i as in Theorem B.1; and
define Ui and Vi as in Theorem B.2. Then d0 = d > d1, and all of the hypotheses of
Theorems B.1, B.2, and C.2 are satisfied.

By Theorem B.1, G = gcd{R0, R1} = Rr−1/`r−1 (since R0 6= 0), so degG = dr−1.
Also, by Theorem B.2,

Ur−1R0 + Vr−1R1 = Rr−1 = `r−1G,

so (Vr−1/`r−1)R1 ≡ G (mod R0); and deg Vr−1 = d0 − dr−2 < d0 − dr−1 = d− degG, so
V = Vr−1/`r−1.

Case 1: dr−1 ≥ 1. Part C of Theorem C.2 applies to n = 2d− 1, since n = 2d0 − 1 ≥
2d0 − 2dr−1. In particular, δn = 1 + n − (2d0 − 2dr−1) = 2dr−1 = 2 degG; f2d−1 =
a2d−1x

dr−1Rr−1(1/x); and v2d−1 = a2d−1(1/x)d0−dr−1−1Vr−1(1/x).
Case 2: dr−1 = 0. Then r ≥ 2 and dr−2 ≥ 1. Part B of Theorem C.2 applies to

i = r − 2 and n = 2d− 1 = 2d0 − 1, since 2d0 − di − di+1 = 2d0 − dr−2 ≤ 2d0 − 1 = n <
2d0 = 2d0 − 2di+1. In particular, δn = 1 + n − (2d0 − 2di+1) = 2dr−1 = 2 degG; again
f2d−1 = a2d−1x

dr−1Rr−1(1/x); and again v2d−1 = a2d−1(1/x)d0−dr−1−1Vr−1(1/x).
In both cases, f2d−1(0) = a2d−1`r−1, so xdegGf2d−1(1/x)/f2d−1(0) = Rr−1/`r−1 = G,

and x−d+1+degGv2d−1(1/x)/f2d−1(0) = Vr−1/`r−1 = V .

E A gcd algorithm for integers
This appendix presents a variable-time algorithm to compute the gcd of two integers.
This appendix also explains how a modification to the algorithm produces the Stehlé–
Zimmermann algorithm [62].

Theorem E.1. Let e be a positive integer. Let f be an element of Z∗2. Let g be an
element of 2eZ∗2. Then there is a unique element q ∈

{
1, 3, 5, . . . , 2e+1 − 1

}
such that

qg/2e − f ∈ 2e+1Z2.

46 Fast constant-time gcd computation and modular inversion

We define f div2 g = q/2e ∈ Q, and we define f mod2 g = f − qg/2e ∈ 2e+1Z2. Then
f = (f div2 g)g + (f mod2 g). Note that e = ord2 g, so we are not creating any ambiguity
by omitting e from the f div2 g and f mod2 g notation.

Proof. First note that the quotient f/(g/2e) is odd. Define q = (f/(g/2e)) mod 2e+1; then
q ∈

{
1, 3, 5, . . . , 2e+1}, and qg/2e − f ∈ 2e+1Z2 by construction. To see uniqueness, note

that if q′ ∈
{

1, 3, 5, . . . , 2e+1 − 1
}
also satisfies q′g/2e − f ∈ 2e+1Z2 then (q − q′)g/2e ∈

2e+1Z2, so q − q′ ∈ 2e+1Z2 since g/2e ∈ Z∗2, so q mod 2e+1 = q′ mod 2e+1, so q = q′.

Theorem E.2. Let R0 be a nonzero element of Z2. Let R1 be an element of 2Z2.
Recursively define e0, e1, e2, e3, . . . ∈ Z and R2, R3, . . . ∈ 2Z2 as follows:

• If i ≥ 0 and Ri 6= 0 then ei = ord2 Ri.

• If i ≥ 1 and Ri 6= 0 then Ri+1 = −((Ri−1/2ei−1)mod2 Ri)/2ei ∈ 2Z2.

• If i ≥ 1 and Ri = 0 then ei, Ri+1, ei+1, Ri+2, ei+2, . . . are undefined.

Then (
Ri/2ei

Ri+1

)
=
(

0 1/2ei

−1/2ei ((Ri−1/2ei−1)div2 Ri)/2ei

)(
Ri−1/2ei−1

Ri

)
for each i ≥ 1 where Ri+1 is defined.

Proof. We have (Ri−1/2ei−1)mod2 Ri = Ri−1/2ei−1 − ((Ri−1/2ei−1)div2 Ri)Ri. Negate
and divide by 2ei to obtain the matrix equation.

Theorem E.3. Let R0 be an odd element of Z. Let R1 be an element of 2Z. Define
e0, e1, e2, e3, . . . and R2, R3, . . . as in Theorem E.2. Then Ri ∈ 2Z for each i ≥ 1 where
Ri is defined. Furthermore, if t ≥ 0 and Rt+1 = 0 then |Rt/2et | = gcd{R0, R1}.

Proof. Write g = gcd{R0, R1} ∈ Z. Then g is odd since R0 is odd.
We first show by induction on i that Ri ∈ gZ for each i ≥ 0. For i ∈ {0, 1} this follows

from the definition of g. For i ≥ 2, we have Ri−2 ∈ gZ and Ri−1 ∈ gZ by the inductive
hypothesis. Now (Ri−2/2ei−2)div2 Ri−1 has the form q/2ei−1 for q ∈ Z by definition of
div2, and 22ei−1+ei−2Ri = 2ei−2qRi−1 − 2ei−1Ri−2 by definition of Ri. The right side of
this equation is in gZ, so 2···Ri is in gZ. This implies, first, that Ri ∈ Q, but also Ri ∈ Z2,
so Ri ∈ Z. This also implies that Ri ∈ gZ, since g is odd.

By construction Ri ∈ 2Z2 for each i ≥ 1, and Ri ∈ Z for each i ≥ 0, so Ri ∈ 2Z for
each i ≥ 1.

Finally, assume that t ≥ 0 and Rt+1 = 0. Then all of R0, R1, . . . , Rt are nonzero. Write
g′ = |Rt/2et |. Then 2etg′ = |Rt| ∈ gZ, and g is odd, so g′ ∈ gZ.

The equation 2ei−1Ri−2 = 2ei−2qRi−1−22ei−1+ei−2Ri shows that if Ri−1, Ri ∈ g′Z then
Ri−2 ∈ g′Z, since g′ is odd. By construction Rt, Rt+1 ∈ g′Z, so Rt−1, Rt−2, . . . , R1, R0 ∈
g′Z. Hence g = gcd{R0, R1} ∈ g′Z. Both g and g′ are positive, so g′ = g.

E.4. The gcd algorithm. Here is the algorithm featured in this appendix.
Given an odd integer R0 and an even integer R1, compute the even integers R2, R3, . . .

defined above. In other words, for each i ≥ 1 where Ri 6= 0, compute ei = ord2 Ri;
find q ∈

{
1, 3, 5, . . . , 2ei+1 − 1

}
such that qRi/2ei − Ri−1/2ei−1 ∈ 2ei+1Z; and compute

Ri+1 = (qRi/2ei −Ri−1/2ei−1)/2ei ∈ 2Z. If Rt+1 = 0 for some t ≥ 0, output |Rt/2et | and
stop.

We will show in Theorem F.26 that this algorithm terminates. The output is gcd{R0, R1}
by Theorem E.3. This algorithm is closely related to iterating divstep, and we will use
this relationship to analyze iterates of divstep; see Appendix G.

More generally, if R0 is an odd integer and R1 is any integer, one can compute
gcd{R0, R1} by using the above algorithm to compute gcd{R0, 2R1}. Even more generally,

Daniel J. Bernstein and Bo-Yin Yang 47

one can compute the gcd of any two integers by first handling the case gcd{0, 0} = 0, then
handling powers of 2 in both inputs, then applying the odd-input algorithm.
E.5. A non-functioning variant. Imagine replacing the subtractions above with
additions: find q ∈

{
1, 3, 5, . . . , 2ei+1 − 1

}
such that qRi/2ei +Ri−1/2ei−1 ∈ 2ei+1Z, and

compute Ri+1 = (qRi/2ei + Ri−1/2ei−1)/2ei ∈ 2Z. If R0 and R1 are positive then all
Ri are positive so the algorithm does not terminate. This non-terminating algorithm is
related to posdivstep (see Section 8.4) in the same way that the algorithm above is related
to divstep.

Daireaux, Maume-Deschamps, and Vallée in [31, Section 6] mentioned this algorithm as
a “non-centered LSB algorithm”, said that one can easily add a “supplementary stopping
condition” to ensure termination, and dismissed the resulting algorithm as being “certainly
slower than the centered version”.
E.6. A centered variant: the Stehlé–Zimmermann algorithm. Imagine using
centered remainders {1− 2e, . . . ,−3,−1, 1, 3, . . . , 2e − 1} modulo 2e+1 rather than uncen-
tered remainders

{
1, 3, 5, . . . , 2e+1 − 1

}
. The above gcd algorithm then turns into the

Stehlé–Zimmermann gcd algorithm from [62].
Specifically, Stehlé and Zimmermann begin with integers a, b having ord2 a < ord2 b.

If b 6= 0 then “generalized binary division” in [62, Lemma 1] defines q as the unique odd
integer with |q| < 2ord2 b−ord2 a such that r = a+ qb/2ord2 b−ord2 a is divisible by 2ord2 b+1.
The gcd algorithm in [62, Algorithm Elementary-GB] repeatedly sets (a, b)← (b, r). When
b = 0, the algorithm outputs the odd part of a.

It is equivalent to set (a, b)← (b/2ord2 b, r/2ord2 b), since this simply divides all subse-
quent results by 2ord2 b. In other words, starting from an odd a0 and an even b0, recursively
define an odd ai+1 and an even bi+1 by the following formulas, stopping when bi = 0:
• ai+1 = bi/2e where e = ord2 bi;

• bi+1 = (ai + qbi/2e)/2e ∈ 2Z for a unique q ∈ {1− 2e, . . . ,−3,−1, 1, 3, . . . , 2e − 1}.
Now relabel a0, b0, b1, b2, b3, . . . as R0, R1, R2, R3, R4, . . . to obtain the following recursive
definition: Ri+1 = (qRi/2ei +Ri−1/2ei−1)/2ei ∈ 2Z, and thus(

Ri/2ei

Ri+1

)
=
(

0 1/2ei

1/2ei q/22ei

)(
Ri−1/2ei−1

Ri

)
,

for a unique q ∈ {1− 2ei , . . . ,−3,−1, 1, 3, . . . , 2ei − 1}.
To summarize, starting from the Stehlé–Zimmermann algorithm, one can obtain the

gcd algorithm featured in this appendix by making the following three changes. First,
divide out 2ei , instead of allowing powers of 2 to accumulate. Second, add Ri−1/2ei−1

instead of subtracting it; this does not affect the number of iterations for centered q. Third,
switch from centered q to uncentered q.

Intuitively, centered remainders are smaller than uncentered remainders, and it is
well known that centered remainders improve the worst-case performance of Euclid’s
algorithm, so one might expect that the Stehlé–Zimmermann algorithm performs better
than our uncentered variant. However, as noted earlier, our analysis produces the opposite
conclusion. See Appendix F.

F Performance of the gcd algorithm for integers
The possible matrices in Theorem E.2 are(

0 1/2
−1/2 1/4

)
,

(
0 1/2
−1/2 3/4

)
for ei = 1;(

0 1/4
−1/4 1/16

)
,

(
0 1/4
−1/4 3/16

)
,

(
0 1/4
−1/4 5/16

)
,

(
0 1/4
−1/4 7/16

)
for ei = 2;

48 Fast constant-time gcd computation and modular inversion

etc. In this appendix we show that a product of these matrices shrinks the input by a factor
exponential in the weight

∑
ei. This implies that

∑
ei in the algorithm of Appendix E is

O(b), where b is the number of input bits.

F.1. Lower bounds. It is easy to see that each of these matrices has two eigenvalues
of absolute value 1/2ei . This does not imply, however, that a weight-w product of these
matrices shrinks the input by a factor 1/2w. Concretely, the weight-7 product

1
47

(
328 −380
−158 233

)
=
(

0 1/4
−1/4 1/16

)(
0 1/2
−1/2 3/4

)2(0 1/2
−1/2 1/4

)(
0 1/2
−1/2 3/4

)2

of 6 matrices has spectral radius (maximum absolute value of eigenvalues)

(561 +
√

249185)/215 = 0.03235425826 . . . = 0.61253803919 . . .7 = 1/24.949900586....

The (w/7)th power of this matrix is expressed as a weight-w product and has spectral
radius 1/20.7071286552...w. Consequently, this proof strategy cannot obtain an O constant
better than 7/(15− log2(561 +

√
249185)) = 1.414169815 We prove a bound twice the

weight on the number of divstep iterations (see Appendix G), so this proof strategy cannot
obtain an O constant better than 14/(15 − log2(561 +

√
249185)) = 2.828339631 . . . for

the number of divstep iterations.
Rotating the list of 6 matrices shown above gives 6 weight-7 products with the same

spectral radius. In a small search we did not find any weight-w matrices with spectral
radius above 0.61253803919 . . .w. Our upper bounds (see below) are 0.6181640625w for all
large w.

For comparison, the non-terminating variant in Appendix E.5 allows the matrix(
0 1/2

1/2 3/4

)
, which has spectral radius 1 with eigenvector

(
1
2

)
. The Stehlé–Zimmermann

algorithm reviewed in Appendix E.6 allows the matrix
(

0 1/2
1/2 1/4

)
, which has spectral

radius (1 +
√

17)/8 = 0.6403882032 . . ., so this proof strategy cannot obtain an O constant
better than 2/(log2(

√
17− 1)− 1) = 3.110510062 . . . for the number of cdivstep iterations.

F.2. A warning about worst-case inputs. DefineM as the matrix 4−7
(

328 −380
−158 233

)
shown above. Then M−3 =

(
60321097 113368060
47137246 88663112

)
. Applying our gcd algorithm to

inputs (60321097, 47137246) applies a series of 18 matrices of total weight 21: in the

notation of Theorem E.2, the matrix
(

0 1/2
−1/2 3/4

)
twice, then the matrix

(
0 1/2
−1/2 1/4

)
,

then the matrix
(

0 1/2
−1/2 3/4

)
twice, then the weight-2 matrix

(
0 1/4
−1/4 1/16

)
, all of

these matrices again, and all of these matrices a third time.
One might think that these are worst-case inputs to our algorithm, analogous to

a standard matrix construction of Fibonacci numbers as worst-case inputs to Euclid’s
algorithm. We emphasize that these are not worst-case inputs: the inputs (22293,−128330)
are much smaller and nevertheless require 19 steps of total weight 23. We now explain
why the analogy fails.

The matrix M3 has an eigenvector (1,−0.53 . . .) with eigenvalue 1/221·0.707... =
1/214.8..., and an eigenvector (1, 0.78 . . .) with eigenvalue 1/221·1.29... = 1/227.1..., so it
has spectral radius around 1/214.8. Our proof strategy thus cannot guarantee a gain
of more than 14.8 bits from weight 21. What we actually show below is that weight
21 is guaranteed to gain more than 13.97 bits. (The quantity α21 in Figure F.14 is
133569/231 = 2−13.972....)

Daniel J. Bernstein and Bo-Yin Yang 49

The matrix M−3 has spectral radius 227.1.... It is not surprising that each column of
M−3 is close to 27 bits in size: the only way to avoid this would be for the other eigenvector
to be pointing in almost exactly the same direction as (1, 0) or (0, 1). For our inputs taken
from the first column of M−3, the algorithm gains nearly 27 bits from weight 21, almost
double the guaranteed gain. In short, these are good inputs, not bad inputs.

Now replace M with the matrix F =
(

0 1
1 −1

)
, which reduces worst-case inputs to

Euclid’s algorithm. The eigenvalues of F are (
√

5− 1)/2 = 1/20.69... and −(
√

5 + 1)/2 =
−20.69.... The entries of powers of F−1 are Fibonacci numbers, again with sizes well
predicted by the spectral radius of F−1, namely 20.69.... However, the spectral radius of
F is larger than 1. The reason that this large eigenvalue does not spoil the termination
of Euclid’s algorithm is that Euclid’s algorithm inspects sizes and chooses quotients to
decrease sizes at each step.

Stehlé and Zimmermann in [62, Section 6.2] measure the performance of their algorithm

for “worst case” inputs18 obtained from negative powers of the matrix
(

0 1/2
1/2 1/4

)
. The

statement that these inputs are “worst case” is not justified. On the contrary, if these inputs
have b bits then they take (0.73690 . . .+ o(1))b steps of the Stehlé–Zimmermann algorithm,
and thus (1.4738 . . . + o(1))b cdivsteps, which is considerably fewer steps than many
other inputs that we have tried19 for various values of b. The quantity 0.73690 . . . here is
log(2)/ log((

√
17 + 1)/2), coming from the smaller eigenvalue −2/(

√
17 + 1) = −0.39038 . . .

of the above matrix.

F.3. Norms. We use the standard definitions of the 2-norm of a real vector and the
2-norm of a real matrix. We summarize the basic theory of 2-norms here to keep this
paper self-contained.

Definition F.4. If v ∈ R2 then |v|2 is defined as
√
v2

1 + v2
2 where v = (v1, v2).

Definition F.5. If P ∈M2(R) then |P |2 is defined as max
{
|Pv|2 : v ∈ R2, |v|2 = 1

}
.

This maximum exists because
{
v ∈ R2 : |v|2 = 1

}
is a compact set (namely the unit

circle) and |Pv|2 is a continuous function of v. See also Theorem F.11 for an explicit
formula for |P |2.

Beware that the literature sometimes uses the notation |P |2 for the entrywise 2-norm√
P 2

11 + P 2
12 + P 2

21 + P 2
22. We do not use entrywise norms of matrices in this paper.

Theorem F.6. Let v be an element of Z2. If v 6= 0 then |v|2 ≥ 1.

Proof. Write v as (v1, v2) with v1, v2 ∈ Z. If v1 6= 0 then v2
1 ≥ 1 so v2

1 + v2
2 ≥ 1. If v2 6= 0

then v2
2 ≥ 1 so v2

1 + v2
2 ≥ 1. Either way |v|2 =

√
v2

1 + v2
2 ≥ 1.

Theorem F.7. Let v be an element of R2. Let r be an element of R. Then |rv|2 = |r||v|2.

Proof. Write v as (v1, v2) with v1, v2 ∈ R. Then rv = (rv1, rv2) so |rv|2 =
√
r2v2

1 + r2v2
2 =√

r2
√
v2

1 + v2
2 = |r||v|2.

18Specifically, Stehlé and Zimmermann claim that “the worst case of the binary variant” (i.e., of their
gcd algorithm) is for inputs “Gn and 2Gn−1, where G0 = 0, G1 = 1, Gn = −Gn−1 + 4Gn−2, which gives
all binary quotients equal to 1”. Daireaux, Maume-Deschamps, and Vallée in [31, Section 2.3] state that
Stehlé and Zimmermann “exhibited the precise worst-case number of iterations” and give an equivalent
characterization of this case.

19For example, “Gn” from [62] is −5467345 for n = 18 and 2135149 for n = 17. The inputs (−5467345, 2 ·
2135149) use 17 iterations of the “GB” divisions from [62], while the smaller inputs (−1287513, 2·622123) use
24 “GB” iterations. The inputs (1,−5467345, 2135149) use 34 cdivsteps; the inputs (1,−2718281, 3141592)
use 45 cdivsteps; the inputs (1,−1287513, 622123) use 58 cdivsteps.

50 Fast constant-time gcd computation and modular inversion

Theorem F.8. Let P be an element of M2(R). Let r be an element of R. Then
|rP |2 = |r||P |2.

Proof. By definition |rP |2 = max
{
|rPv|2 : v ∈ R2, |v|2 = 1

}
. By Theorem F.7 this is the

same as max{|r||Pv|2} = |r|max{|Pv|2} = |r||P |2.

Theorem F.9. Let P be an element of M2(R). Let v be an element of R2. Then
|Pv|2 ≤ |P |2|v|2.

Proof. If v = 0 then Pv = 0 and |Pv|2 = 0 = |P |2|v|2.
Otherwise |v|2 6= 0. Write w = v/|v|2. Then |w|2 = 1, so |Pw|2 ≤ |P |2, so |Pv|2 =

|Pw|2|v|2 ≤ |P |2|v|2.

Theorem F.10. Let P,Q be elements of M2(R). Then |PQ|2 ≤ |P |2|Q|2.

Proof. If v ∈ R2 and |v|2 = 1 then |PQv|2 ≤ |P |2|Qv|2 ≤ |P |2|Q|2|v|2.

Theorem F.11. Let P be an element of M2(R). Assume that P ∗P =
(
a b
c d

)
where P ∗

is the transpose of P . Then |P |2 =
√

a+d+
√

(a−d)2+4b2

2 .

Proof. P ∗P ∈ M2(R) is its own transpose, so, by the spectral theorem, it has two
orthonormal eigenvectors with real eigenvalues. In other words, R2 has a basis e1, e2 such
that

• |e1|2 = 1,

• |e2|2 = 1,

• the dot product e∗1e2 is 0 (here we view vectors as column matrices),

• P ∗Pe1 = λ1e1 for some λ1 ∈ R, and

• P ∗Pe2 = λ2e2 for some λ2 ∈ R.

Any v ∈ R2 with |v|2 = 1 can be written uniquely as c1e1 + c2e2 for some c1, c2 ∈ R with
c2

1 + c2
2 = 1: explicitly, c1 = v∗e1 and c2 = v∗e2. Then P ∗Pv = λ1c1e1 + λ2c2e2.

By definition |P |22 is the maximum of |Pv|22 over v ∈ R2 with |v|2 = 1. Note that
|Pv|22 = (Pv)∗(Pv) = v∗P ∗Pv = λ1c

2
1 + λ2c

2
2 with c1, c2 defined as above. For example,

0 ≤ |Pe1|22 = λ1 and 0 ≤ |Pe2|22 = λ2. Thus |Pv|22 achieves max{λ1, λ2}. It cannot be
larger than this: if c2

1 +c2
2 = 1 then λ1c

2
1 +λ2c

2
2 ≤ max{λ1, λ2}. Hence |P |22 = max{λ1, λ2}.

To finish the proof, we make the spectral theorem explicit for the matrix P ∗P =(
a b
c d

)
∈M2(R). Note that (P ∗P)∗ = P ∗P so b = c. The characteristic polynomial of

this matrix is (x− a)(x− d)− b2 = x2 − (a+ d)x+ ad− b2, with roots

a+ d±
√

(a+ d)2 − 4(ad− b2)
2 =

a+ d±
√

(a− d)2 + 4b2

2 .

The largest eigenvalue of P ∗P is thus (a+ d+
√

(a− d)2 + 4b2)/2, and |P |2 is the square
root of this.

Theorem F.12. Let P be an element of M2(R). Assume that P ∗P =
(
a b
c d

)
where P ∗

is the transpose of P . Let N be an element of R. Then N ≥ |P |2 if and only if N ≥ 0,
2N2 ≥ a+ d, and (2N2 − a− d)2 ≥ (a− d)2 + 4b2.

Daniel J. Bernstein and Bo-Yin Yang 51

earlybounds␣=␣{␣0:1,␣1:1,␣2:689491/2^20,␣3:779411/2^21,
␣␣4:880833/2^22,␣5:165219/2^20,␣6:97723/2^20,␣7:882313/2^24,
␣␣8:306733/2^23,␣9:92045/2^22,␣10:439213/2^25,␣11:281681/2^25,
␣␣12:689007/2^27,␣13:824303/2^28,␣14:257817/2^27,␣15:634229/2^29,
␣␣16:386245/2^29,␣17:942951/2^31,␣18:583433/2^31,␣19:713653/2^32,
␣␣20:432891/2^32,␣21:133569/2^31,␣22:328293/2^33,␣23:800421/2^35,
␣␣24:489233/2^35,␣25:604059/2^36,␣26:738889/2^37,␣27:112215/2^35,
␣␣28:276775/2^37,␣29:84973/2^36,␣30:829297/2^40,␣31:253443/2^39,
␣␣32:625405/2^41,␣33:95625/2^39,␣34:465055/2^42,␣35:286567/2^42,
␣␣36:175951/2^42,␣37:858637/2^45,␣38:65647/2^42,␣39:40469/2^42,
␣␣40:24751/2^42,␣41:240917/2^46,␣42:593411/2^48,␣43:364337/2^48,
␣␣44:889015/2^50,␣45:543791/2^50,␣46:41899/2^47,␣47:205005/2^50,
␣␣48:997791/2^53,␣49:307191/2^52,␣50:754423/2^54,␣51:57527/2^51,
␣␣52:281515/2^54,␣53:694073/2^56,␣54:212249/2^55,␣55:258273/2^56,
␣␣56:636093/2^58,␣57:781081/2^59,␣58:952959/2^60,␣59:291475/2^59,
␣␣60:718599/2^61,␣61:878997/2^62,␣62:534821/2^62,␣63:329285/2^62,
␣␣64:404341/2^63,␣65:986633/2^65,␣66:603553/2^65,
}

def␣alpha(w):
␣␣if␣w␣>=␣67:␣return␣(633/1024)^w
␣␣return␣earlybounds[w]

assert␣all(alpha(w)^49<2^(-(34*w-23))␣for␣w␣in␣range(31,100))
assert␣min((633/1024)^w/alpha(w)␣for␣w␣in␣range(68))==633^5/(2^30*165219)

Figure F.14: Definition of αw for w ∈ {0, 1, 2, . . .}; computer verification
that αw < 2−(34w−23)/49 for 31 ≤ w ≤ 99; and computer verification that
min{(633/1024)w/αw : 0 ≤ w ≤ 67} = 6335/(230165219). If w ≥ 67 then αw =
(633/1024)w.

Our upper-bound computations work with matrices with rational entries. We use
Theorem F.12 to compare the 2-norms of these matrices to various rational bounds N . All
of the computations here use exact arithmetic, avoiding the correctness questions that
would have shown up if we had used approximations to the square roots in Theorem F.11.
Sage includes exact representations of algebraic numbers such as |P |2, but switching to
Theorem F.12 made our upper-bound computations an order of magnitude faster.

Proof. Assume thatN ≥ 0; that 2N2 ≥ a+d; and that (2N2−a−d)2 ≥ (a−d)2+4b2. Then
2N2−a−d ≥

√
(a− d)2 + 4b2 since 2N2−a−d ≥ 0; so N2 ≥ (a+d+

√
(a− d)2 + 4b2)/2;

so N ≥
√

(a+ d+
√

(a− d)2 + 4b2)/2 since N ≥ 0; so N ≥ |P |2 by Theorem F.11.
Conversely, assume that N ≥ |P |2. Then N ≥ 0. Also N2 ≥ |P |22, so 2N2 ≥

2|P |22 = a + d +
√

(a− d)2 + 4b2 by Theorem F.11. In particular 2N2 ≥ a + d, and
(2N2 − a− d)2 ≥ (a− d)2 + 4b2.

F.13. Upper bounds. We now show that every weight-w product of the matrices in
Theorem E.2 has norm at most αw. Here α0, α1, α2, . . . is an exponentially decreasing
sequence of positive real numbers defined in Figure F.14.

Definition F.15. For e ∈ {1, 2, . . .} and q ∈
{

1, 3, 5, . . . , 2e+1 − 1
}
, define Me,q =(

0 1/2e
−1/2e q/22e

)
.

52 Fast constant-time gcd computation and modular inversion

Theorem F.16. |Me,q|2 < (1 +
√

2)/2e if e ∈ {1, 2, . . .} and q ∈
{

1, 3, 5, . . . , 2e+1 − 1
}
.

Proof. Define
(
a b
c d

)
= M∗e,qMe,q. Then a = 1/22e, b = c = −q/23e, and d = 1/22e +

q2/24e, so a+ d = 2/22e + q2/24e < 6/22e and (a− d)2 + 4b2 = 4q2/26e + q4/28e ≤ 32/24e.
By Theorem F.12, |Me,q|2 =

√
(a+ d+

√
(a− d)2 + 4b2)/2 ≤

√
(6/22e +

√
32/22e)/2 =

(1 +
√

2)/2e.

Definition F.17. Define βw = inf{αw+j/αj : j ≥ 0} for w ∈ {0, 1, 2, . . .}.

Theorem F.18. If w ∈ {0, 1, 2, . . .} then βw = min{αw+j/αj : 0 ≤ j ≤ 67}. If w ≥ 67
then βw = (633/1024)w6335/(230165219).

The first statement reduces the computation of βw to a finite computation. The
computation can be further optimized but is not a bottleneck for us. Similar comments
apply to γw,e in Theorem F.20.

Proof. By definition αw = (633/1024)w for all w ≥ 67. If j ≥ 67 then also w + j ≥ 67 so
αw+j/αj = (633/1024)w+j/(633/1024)j = (633/1024)w. In short, all terms αw+j/αj for
j ≥ 67 are identical, so the infimum of αw+j/αj for j ≥ 0 is the same as the minimum for
0 ≤ j ≤ 67.

If w ≥ 67 then αw+j/αj = (633/1024)w+j/αj . The quotient (633/1024)j/αj for
0 ≤ j ≤ 67 has minimum value 6335/(230165219).

Definition F.19. Define γw,e = inf
{
βw+j2j70/169 : j ≥ e

}
for w ∈ {0, 1, 2, . . .} and

e ∈ {1, 2, 3, . . .}.

This quantity γw,e is designed to be as large as possible subject to two conditions: first,
γw,e ≤ βw+e2e70/169, used in Theorem F.21; second, γw,e ≤ γw,e+1, used in Theorem F.22.

Theorem F.20. γw,e = min
{
βw+j2j70/169 : e ≤ j ≤ e+ 67

}
if w ∈ {0, 1, 2, . . .} and

e ∈ {1, 2, 3, . . .}. If w + e ≥ 67 then γw,e = 2e(633/1024)w+e(70/169)6335/(230165219).

Proof. If w + j ≥ 67 then βw+j = (633/1024)w+j6335/(230165219) so βw+j2j70/169 =
(633/1024)w(633/512)j(70/169)6335/(230165219), which increases monotonically with j.

In particular, if j ≥ e+ 67 then w + j ≥ 67 so βw+j2j70/169 ≥ βw+e+672e+6770/169.
Hence γw,e = inf

{
βw+j2j70/169 : j ≥ e

}
= min

{
βw+j2j70/169 : e ≤ j ≤ e+ 67

}
. Also, if

w + e ≥ 67 then w + j ≥ 67 for all j ≥ e so

γw,e =
(

633
1024

)w (633
512

)e 70
169

6335

230165219 = 2e
(

633
1024

)w+e 70
169

6335

230165219

as claimed.

Theorem F.21. Define S as the smallest subset of Z×M2(Q) such that

•
(
0,
(

1 0
0 1
))
∈ S and

• if (w,P) ∈ S, and w = 0 or |P |2 > βw, and e ∈ {1, 2, 3, . . .}, and |P |2 > γw,e, and
q ∈

{
1, 3, 5, . . . , 2e+1 − 1

}
, then (e+ w,M(e, q)P) ∈ S.

Assume that |P |2 ≤ αw for each (w,P) ∈ S. Then |M(ej , qj) · · ·M(e1, q1)|2 ≤ αe1+···+ej

for all j ∈ {0, 1, 2, . . .}, all e1, . . . , ej ∈ {1, 2, 3, . . .}, and all q1, . . . , qj ∈ Z such that
qi ∈

{
1, 3, 5, . . . , 2ei+1 − 1

}
for each i.

Daniel J. Bernstein and Bo-Yin Yang 53

The idea here is that, instead of searching through all products P of matrices M(e, q)
of total weight w to see whether |P |2 ≤ αw, we prune the search in a way that makes
the search finite across all w (see Theorem F.22), while still being sure to find a minimal
counterexample if one exists. The first layer of pruning skips all descendants QP of P if
w > 0 and |P |2 ≤ βw; the point is that any such counterexample QP implies a smaller
counterexample Q. The second layer of pruning skips weight-(w + e) children M(e, q)P of
P if |P |2 ≤ γw,e; the point is that any such child is eliminated by the first layer of pruning.

Proof. Induct on j.
If j = 0 then M(ej , qj) · · ·M(e1, q1) =

(
1 0
0 1
)
, with norm 1 = α0. Assume from now on

that j ≥ 1.
Case 1: |M(ei, qi) · · ·M(e1, q1)|2 ≤ βe1+···+ei

for some i ∈ {1, 2, . . . , j}.
Then j − i < j, so |M(ej , qj) · · ·M(ei+1, qi+1)|2 ≤ αei+1+···+ej by the inductive

hypothesis, so |M(ej , qj) · · ·M(e1, q1)|2 ≤ βe1+···+eiαei+1+···+ej by Theorem F.10, but
βe1+···+ei

αei+1+···+ej
≤ αe1+···+ej

by definition of β.
Case 2: |M(ei, qi) · · ·M(e1, q1)|2 > βe1+···+ei for every i ∈ {1, 2, . . . , j}.
Suppose that |M(ei−1, qi−1) · · ·M(e1, q1)|2 ≤ γe1+···+ei−1,ei

for some i ∈ {1, 2, . . . , j}.
By Theorem F.16, |M(ei, qi)|2 < (1 +

√
2)/2ei < (169/70)/2ei . By Theorem F.10,

|M(ei, qi) · · ·M(e1, q1)|2 ≤ |M(ei, qi)|2γe1+···+ei−1,ei ≤
169γe1+···+ei−1,ei

70 · 2ei+1 ≤ βe1+···+ei ,

contradiction. Thus |M(ei−1, qi−1) · · ·M(e1, q1)|2 > γe1+···+ei−1,ei
for all i ∈ {1, 2, . . . , j}.

Now (e1 + · · · + ei,M(ei, qi) · · ·M(e1, q1)) ∈ S for each i ∈ {0, 1, 2, . . . , j}. Indeed,
induct on i. The base case i = 0 is simply

(
0,
(

1 0
0 1
))
∈ S. If i ≥ 1 then (w,P) ∈ S by

the inductive hypothesis, where w = e1 + · · ·+ ei−1 and P = M(ei−1, qi−1) · · ·M(e1, q1).
Furthermore

• w = 0 (when i = 1) or |P |2 > βw (when i ≥ 2, by definition of this case);

• ei ∈ {1, 2, 3, . . .};

• |P |2 > γw,ei
(as shown above); and

• qi ∈
{

1, 3, 5, . . . , 2ei+1 − 1
}
.

Hence (e1 + · · ·+ ei,M(ei, qi) · · ·M(e1, q1)) = (ei + w,M(ei, qi)P) ∈ S by definition of S.
In particular, (w,P) ∈ S with w = e1 + · · · + ej and P = M(ej , qj) · · ·M(e1, q1), so

|P |2 ≤ αw by hypothesis.

Theorem F.22. In Theorem F.21, S is finite, and |P |2 ≤ αw for each (w,P) ∈ S.

Proof. This is a computer proof. We run the Sage script in Figure F.23. We observe that
it terminates successfully (in slightly over 2546 minutes using Sage 8.6 on one core of a
3.5GHz Intel Xeon E3-1275 v3 CPU) and prints 3787975117.

What the script does is search, depth-first, through the elements of S, verifying that
each (w,P) ∈ S satisfies |P |2 ≤ αw. The output is the number of elements searched, so S
has at most 3787975117 elements.

Specifically, if (w,P) ∈ S, then verify(w,P) checks that |P |2 ≤ αw, and recursively
calls verify on all descendants of (w,P). Actually, for efficiency, the script scales each
matrix to have integer entries: it works with 22eM(e, q) (labeled scaledM(e,q) in the
script) instead of M(e, q), and it works with 4wP (labeled P in the script) instead of P .

The script computes βw as shown in Theorem F.18, computes γw as shown in Theo-
rem F.20, and compares |P |2 to various bounds as shown in Theorem F.12.

If w > 0 and |P |2 ≤ βw then verify(w,P) returns. There are no descendants of (w,P)
in this case. Also |P |2 ≤ αw, since βw ≤ αw/α0 = αw.

54 Fast constant-time gcd computation and modular inversion

from␣alpha␣import␣alpha
from␣memoized␣import␣memoized

R␣=␣MatrixSpace(ZZ,2)
def␣scaledM(e,q):
␣␣return␣R((0,2^e,-2^e,q))

@memoized
def␣beta(w):
␣␣return␣min(alpha(w+j)/alpha(j)␣for␣j␣in␣range(68))

@memoized
def␣gamma(w,e):
␣␣return␣min(beta(w+j)*2^j*70/169␣for␣j␣in␣range(e,e+68))

def␣spectralradiusisatmost(PP,N):␣#␣assuming␣PP␣has␣form␣P.transpose()*P
␣␣(a,b),(c,d)␣=␣PP
␣␣X␣=␣2*N^2-a-d
␣␣return␣N␣>=␣0␣and␣X␣>=␣0␣and␣X^2␣>=␣(a-d)^2+4*b^2

def␣verify(w,P):
␣␣nodes␣=␣1
␣␣PP␣=␣P.transpose()*P
␣␣if␣w>0␣and␣spectralradiusisatmost(PP,4^w*beta(w)):␣return␣nodes
␣␣assert␣spectralradiusisatmost(PP,4^w*alpha(w))
␣␣for␣e␣in␣PositiveIntegers():
␣␣␣␣if␣spectralradiusisatmost(PP,4^w*gamma(w,e)):␣return␣nodes
␣␣␣␣for␣q␣in␣range(1,2^(e+1),2):
␣␣␣␣␣␣nodes␣+=␣verify(e+w,scaledM(e,q)*P)

print␣verify(0,R(1))

Figure F.23: Sage script verifying |P |2 ≤ αw for each (w,P) ∈ S. Output is number of
pairs (w,P) considered if verification succeeds, or an assertion failure if verification fails.

Otherwise verify(w,P) asserts that |P |2 ≤ αw: i.e., it checks that |P |2 ≤ αw, and
raises an exception if not. It then tries successively e = 1, e = 2, e = 3, etc., continuing
as long as |P |2 > γw,e. For each e where |P |2 > γw,e, verify(w,P) recursively handles
(e+ w,M(e, q)P) for each q ∈

{
1, 3, 5, . . . , 2e+1 − 1

}
.

Note that γw,e ≤ γw,e+1 ≤ · · · , so if |P |2 ≤ γw,e then also |P |2 ≤ γw,e+1 etc. This is
where it is important that γw,e is not simply defined as βw+e2e70/169.

To summarize, verify(w,P) recursively enumerates all descendants of (w,P). Hence
verify(0,R(1)) recursively enumerates all elements (w,P) of S, checking |P |2 ≤ αw for
each (w,P).

Theorem F.24. If j ∈ {0, 1, 2, . . .}, e1, . . . , ej ∈ {1, 2, 3, . . .}, q1, . . . , qj ∈ Z, and qi ∈{
1, 3, 5, . . . , 2ei+1 − 1

}
for each i, then |M(ej , qj) · · ·M(e1, q1)|2 ≤ αe1+···+ej

.

Proof. This is the conclusion of Theorem F.21, so it suffices to check the assumptions.
Define S as in Theorem F.21; then |P |2 ≤ αw for each (w,P) ∈ S by Theorem F.22.

Daniel J. Bernstein and Bo-Yin Yang 55

Theorem F.25. In the situation of Theorem E.3, assume that R0, R1, R2, . . . , Rj+1 are
defined. Then |(Rj/2ej , Rj+1)|2 ≤ αe1+···+ej

|(R0, R1)|2, and if e1 + · · · + ej ≥ 67 then
e1 + · · ·+ ej ≤ log1024/633 |(R0, R1)|2.

If R0 and R1 are each bounded by 2b in absolute value then |(R0, R1)|2 is bounded by
2b+0.5 so log1024/633 |(R0, R1)|2 ≤ (b+ 0.5)/ log2(1024/633) = (b+ 0.5)(1.4410 . . .).

Proof. By Theorem E.2, (
Ri/2ei

Ri+1

)
= M(ei, qi)

(
Ri−1/2ei−1

Ri

)
where qi = 2ei ((Ri−1/2ei−1)div2 Ri) ∈

{
1, 3, 5, . . . , 2ei+1 − 1

}
. Hence(

Rj/2ej

Rj+1

)
= M(ej , qj) · · ·M(e1, q1)

(
R0
R1

)
.

The product M(ej , qj) · · ·M(e1, q1) has 2-norm at most αw where w = e1 + · · ·+ ej , so
|(Rj/2ej , Rj+1)|2 ≤ αw|(R0, R1)|2 by Theorem F.9.

By Theorem F.6, |(Rj/2ej , Rj+1)|2 ≥ 1. If e1 + · · · + ej ≥ 67 then αe1+···+ej =
(633/1024)e1+···+ej so 1 ≤ (633/1024)e1+···+ej |(R0, R1)|2.

Theorem F.26. In the situation of Theorem E.3, there exists t ≥ 0 such that Rt+1 = 0.

Proof. Suppose not. Then R0, R1, . . . , Rj , Rj+1 are all defined for arbitrarily large j. Take
j ≥ 67 with j > log1024/633 |(R0, R1)|2. Then e1 + · · · + ej ≥ 67 so j ≤ e1 + · · · + ej ≤
log1024/633 |(R0, R1)|2 < j by Theorem F.25, contradiction.

G Proof of main gcd theorem for integers
This appendix shows how the gcd algorithm from Appendix E is related to iterating
divstep. This appendix then uses the analysis from Appendix F to put bounds on the
number of divstep iterations needed.

Theorem G.1 (2-adic division as a sequence of division steps). In the situation of
Theorem E.1, divstep2e(1, f, g/2) = (1, g/2e, (qg/2e − f)/2e+1).

In other words, divstep2e(1, f, g/2) = (1, g/2e,−(f mod2 g)/2e+1).

Proof. Define
ze = (g/2e − f)/2 ∈ Z2,

ze+1 = (ze + (ze mod 2)g/2e)/2 ∈ Z2,

ze+2 = (ze+1 + (ze+1 mod 2)g/2e)/2 ∈ Z2,

...
z2e = (z2e−1 + (z2e−1 mod 2)g/2e)/2 ∈ Z2.

Then
ze = (g/2e − f)/2,

ze+1 = ((1 + 2(ze mod 2))g/2e − f)/4,
ze+2 = ((1 + 2(ze mod 2) + 4(ze+1 mod 2))g/2e − f)/8,

...
z2e = ((1 + 2(ze mod 2) + · · ·+ 2e(z2e−1 mod 2))g/2e − f)/2e+1.

56 Fast constant-time gcd computation and modular inversion

In short, z2e = (qg/2e − f)/2e+1 where

q′ = 1 + 2(ze mod 2) + · · ·+ 2e(z2e−1 mod 2) ∈
{

1, 3, 5, . . . , 2e+1 − 1
}
.

Hence q′g/2e−f = 2e+1z2e ∈ 2e+1Z2, so q′ = q by the uniqueness statement in Theorem E.1.
Note that this construction gives an alternative proof of the existence of q in Theorem E.1.

All that remains is to prove divstep2e(1, f, g/2) = (1, g/2e, (qg/2e − f)/2e+1), i.e.,
divstep2e(1, f, g/2) = (1, g/2e, z2e).

If 1 ≤ i < e then g/2i ∈ 2Z2 so divstep(i, f, g/2i) = (i + 1, f, g/2i+1). By in-
duction, divstepe−1(1, f, g/2) = (e, f, g/2e). By assumption e > 0 and g/2e is odd so
divstep(e, f, g/2e) = (1 − e, g/2e, (g/2e − f)/2) = (1 − e, g/2e, ze). What remains is to
prove that divstepe(1− e, g/2e, ze) = (1, g/2e, z2e).

If 0 ≤ i ≤ e−1 then 1−e+i ≤ 0 so divstep(1−e+i, g/2e, ze+i) = (2−e+i, g/2e, (ze+i+
(ze+i mod 2)g/2e)/2) = (2− e+ i, g/2e, ze+i+1). By induction, divstepi(1− e, g/2e, ze) =
(1− e+ i, g/2e, ze+i) for 0 ≤ i ≤ e. In particular, divstepe(1− e, g/2e, ze) = (1, g/2e, z2e)
as claimed.

Theorem G.2 (2-adic gcd as a sequence of division steps). In the situation of Theo-
rem E.3, assume that R0, R1, . . . , Rj , Rj+1 are defined. Then divstep2w(1, R0, R1/2) =
(1, Rj/2ej , Rj+1/2) where w = e1 + · · ·+ ej.

Therefore, if Rt+1 = 0, then divstepn(1, R0, R1/2) = (1 + n− 2w,Rt/2et , 0) for all
n ≥ 2w, where w = e1 + · · ·+ et.

Proof. Induct on j. If j = 0 then w = 0 so divstep2w(1, R0, R1/2) = (1, R0, R1/2), and
R0 = R0/2e0 since R0 is odd by hypothesis.

If j ≥ 1 then by definition Rj+1 = −((Rj−1/2ej−1)mod2 Rj)/2ej . Furthermore

divstep2e1+···+2ej−1(1, R0, R1/2) = (1, Rj−1/2ej−1 , Rj/2)

by the inductive hypothesis, so

divstep2e1+···+2ej (1, R0, R1/2) = divstep2ej (1, Rj−1/2ej−1 , Rj/2) = (1, Rj/2ej , Rj+1/2)

by Theorem G.1.

Theorem G.3. Let R0 be an odd element of Z. Let R1 be an element of 2Z. Then there
exists n ∈ {0, 1, 2, . . .} such that divstepn(1, R0, R1/2) ∈ Z× Z× {0}. Furthermore, any
such n has divstepn(1, R0, R1/2) ∈ Z× {G,−G} × {0} where G = gcd{R0, R1}.

Proof. Define e0, e1, e2, e3, . . . and R2, R3, . . . as in Theorem E.2. By Theorem F.26, there
exists t ≥ 0 such that Rt+1 = 0. By Theorem E.3, Rt/2et ∈ {G,−G}. By Theorem G.2,
divstep2w(1, R0, R1/2) = (1, Rt/2et , 0) ∈ Z× {G,−G} × {0} where w = e1 + · · ·+ et.

Conversely, assume that n ∈ {0, 1, 2, . . .} and that divstepn(1, R0, R1/2) ∈ Z×Z×{0}.
Write divstepn(1, R0, R1/2) as (δ, f, 0). Then divstepn+k(1, R0, R1/2) = (k + δ, f, 0) for
all k ∈ {0, 1, 2, . . .}, so in particular divstep2w+n(1, R0, R1/2) = (2w + δ, f, 0). Also
divstep2w+k(1, R0, R1/2) = (k + 1, Rt/2et , 0) for all k ∈ {0, 1, 2, . . .}, so in particu-
lar divstep2w+n(1, R0, R1/2) = (n + 1, Rt/2et , 0). Hence f = Rt/2et ∈ {G,−G}, and
divstepn(1, R0, R1/2) ∈ Z× {G,−G} × {0} as claimed.

Theorem G.4. Let R0 be an odd element of Z. Let R1 be an element of 2Z. Define
b = log2

√
R2

0 +R2
1. Assume that b ≤ 21. Then divstepb19b/7c(1, R0, R1/2) ∈ Z×Z× {0}.

Proof. If divstep(δ, f, g) = (δ1, f1, g1) then divstep(δ,−f,−g) = (δ1,−f1,−g1). Hence
divstepn(1, R0, R1/2) ∈ Z×Z×{0} if and only if divstepn(1,−R0,−R1/2) ∈ Z×Z×{0}.
From now on assume without loss of generality that R0 > 0.

Daniel J. Bernstein and Bo-Yin Yang 57

s Ws R0 R1
0 1 1 0
1 5 1 −2
2 5 1 −2
3 5 1 −2
4 17 1 −4
5 17 1 −4
6 65 1 −8
7 65 1 −8
8 157 11 −6
9 181 9 −10
10 421 15 −14
11 541 21 −10
12 1165 29 −18
13 1517 29 −26
14 2789 17 −50
15 3653 47 −38
16 8293 47 −78
17 8293 47 −78
18 24245 121 −98
19 27361 55 −156
20 56645 191 −142
21 79349 215 −182
22 132989 283 −230
23 213053 133 −442
24 415001 451 −460
25 613405 501 −602
26 1345061 719 −910
27 1552237 1021 −714
28 2866525 789 −1498

s Ws R0 R1
29 4598269 1355 −1662
30 7839829 777 −2690
31 12565573 2433 −2578
32 22372085 2969 −3682
33 35806445 5443 −2486
34 71013905 4097 −7364
35 74173637 5119 −6926
36 205509533 9973 −10298
37 226964725 11559 −9662
38 487475029 11127 −19070
39 534274997 13241 −18946
40 1543129037 24749 −30506
41 1639475149 20307 −35030
42 3473731181 39805 −43466
43 4500780005 49519 −45262
44 9497198125 38051 −89718
45 12700184149 82743 −76510
46 29042662405 152287 −76494
47 36511782869 152713 −114850
48 82049276437 222249 −180706
49 90638999365 220417 −205074
50 234231548149 229593 −426050
51 257130797053 338587 −377478
52 466845672077 301069 −613354
53 622968125533 437163 −657158
54 1386285660565 600809 −1012578
55 1876581808109 604547 −1229270
56 4208169535453 1352357 −1542498

Figure G.5: For each s ∈ {0, 1, . . . , 56}: Minimum R2
0 + R2

1 where R0 is an odd integer,
R1 is an even integer, and (R0, R1) requires ≥s iterations of divstep. Also, an example of
(R0, R1) reaching this minimum.

The rest of the proof is a computer proof. We enumerate all pairs (R0, R1) where R0
is a positive odd integer, R1 is an even integer, and R2

0 + R2
1 ≤ 242. For each (R0, R1),

we iterate divstep to find the minimum n ≥ 0 where divstepn(1, R0, R1/2) ∈ Z× Z× {0}.
We then say that (R0, R1) “needs n steps”.

For each s ≥ 0, define Ws as the smallest R2
0 +R2

1 where (R0, R1) needs ≥s steps. The
computation shows that each (R0, R1) needs ≤56 steps, and also shows the values Ws

for each s ∈ {0, 1, . . . , 56}. We display these values in Figure G.5. We check, for each
s ∈ {0, 1, . . . , 56}, that 214s ≤W 19

s .
Finally, we claim that each (R0, R1) needs ≤b19b/7c steps where b = log2

√
R2

0 +R2
1.

If not then (R0, R1) needs ≥s steps where s = b19b/7c + 1. We have s ≤ 56, since
(R0, R1) needs ≤56 steps. We also have Ws ≤ R2

0 + R2
1, by definition of Ws. Hence

214s/19 ≤ R2
0 +R2

1, so 14s/19 ≤ 2b, so s ≤ 19b/7, contradiction.

Theorem G.6 (Bounds on the number of divsteps required). Let R0 be an odd element
of Z. Let R1 be an element of 2Z. Define b = log2

√
R2

0 +R2
1. Define n = b19b/7c

if b ≤ 21; n = b(49b+ 23)/17c if 21 < b ≤ 46; and n = b49b/17c if b > 46. Then
divstepn(1, R0, R1/2) ∈ Z× Z× {0}.

58 Fast constant-time gcd computation and modular inversion

All three cases have n ≤ b(49b+ 23)/17c since 19/7 < 49/17.

Proof. If b ≤ 21 then divstepn(1, R0, R1/2) ∈ Z× Z× {0} by Theorem G.4.
Assume from now on that b > 21. This implies n ≥ b49b/17c ≥ 60.
Define e0, e1, e2, e3, . . . and R2, R3, . . . as in Theorem E.2. By Theorem F.26, there

exists t ≥ 0 such that Rt+1 = 0. By Theorem E.3, Rt/2et ∈ {G,−G}. By Theorem G.2,
divstep2w(1, R0, R1/2) = (1, Rt/2et , 0) ∈ Z× {G,−G} × {0} where w = e1 + · · ·+ et.

To finish the proof we will show that 2w ≤ n. Hence divstepn(1, R0, R1/2) ∈ Z×Z×{0}
as claimed.

Suppose that 2w > n. Both 2w and n are integers, so 2w ≥ n+ 1 ≥ 61, so w ≥ 31.
By Theorem F.6 and Theorem F.25, 1 ≤ |(Rt/2et , Rt+1)|2 ≤ αw|(R0, R1)|2 = αw2b so

log2(1/αw) ≤ b.
Case 1: w ≥ 67. By definition 1/αw = (1024/633)w so w log2(1024/633) ≤ b. We have

34/49 < log2(1024/633) so 34w/49 < b so n + 1 ≤ 2w < 49b/17 < (49b + 23)/17. This
contradicts the definition of n as the largest integer below 49b/17 if b > 46, and as the
largest integer below (49b+ 23)/17 if b ≤ 46.

Case 2: w ≤ 66. Then αw < 2−(34w−23)/49 since w ≥ 31, so b ≥ lg(1/αw) >
(34w − 23)/49, so n + 1 ≤ 2w ≤ (49b + 23)/17. This again contradicts the definition
of n if b ≤ 46. If b > 46 then n ≥ b49 · 46/17c = 132 so 2w ≥ n + 1 > 132 ≥ 2w,
contradiction.

H Comparison to performance of cdivstep
This appendix briefly compares the analysis of divstep from Appendix G to an analogous
analysis of cdivstep.

First modify Theorem E.1 to take the unique element q ∈ {±1,±3, . . . ,±(2e − 1)}
such that f + qg/2e ∈ 2e+1Z2. The corresponding modification of Theorem G.1 says
that cdivstep2e(1, f, g/2) = (1, g/2e, (f + qg/2e)/2e+1). The proof proceeds identically
except zj = (zj−1 − (zj−1 mod 2)g/2e)/2 ∈ Z2 for e < j < 2e and z2e = (z2e−1 +
(z2e−1 mod 2)g/2e)/2 ∈ Z2. Also we have q = −1−2(ze mod 2)−· · ·−2e−1(z2e−2 mod 2)+
2e(z2e−1 mod 2) ∈ {±1,±3, . . . ,±(2e − 1)}. In the notation of [62], GB(f, g) = (q, r) where
r = f + qg/2e = 2e+1z2e.

The corresponding gcd algorithm is the centered algorithm from Appendix E.6, with
addition instead of subtraction. Recall that, except for inessential scalings by powers of 2,
this is the same as the Stehlé–Zimmermann gcd algorithm from [62].

The corresponding set of transition matrices is different from the divstep case. As men-
tioned in Appendix F, there are weight-w products with spectral radius 0.6403882032 . . .w,
so the proof strategy for cdivstep cannot obtain weight-w norm bounds below this spectral
radius. This is worse than our bounds for divstep.

Enumerating small pairs (R0, R1), as in Theorem G.4, also produces worse results for
cdivstep than for divstep. See Figure H.1.

Daniel J. Bernstein and Bo-Yin Yang 59

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•••
•
•

•

•
••••••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

−3

−2

−1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure H.1: For each s ∈ {1, 2, . . . , 56}: red dot at (b, s− 2.8283396b) where b is minimum
log2

√
R2

0 +R2
1 where R0 is an odd integer, R1 is an even integer, and (R0, R1) requires ≥s

iterations of divstep. For each s ∈ {1, 2, . . . , 58}: blue dot at (b, s− 2.8283396b) where b is
minimum log2

√
R2

0 +R2
1 where R0 is an odd integer, R1 is an even integer, and (R0, R1)

requires ≥s iterations of cdivstep.

	Introduction
	Organization of the paper
	Definition of x-adic division steps
	Iterates of x-adic division steps
	Fast computation of iterates of x-adic division steps
	Fast polynomial gcd computation and modular inversion
	Software case study for polynomial modular inversion
	Definition of 2-adic division steps
	Iterates of 2-adic division steps
	Fast computation of iterates of 2-adic division steps
	Fast integer gcd computation and modular inversion
	Software case study for integer modular inversion
	Proof of main gcd theorem for polynomials
	Review of the Euclid–Stevin algorithm
	Euclid–Stevin results as iterates of divstep
	Alternative proof of main gcd theorem for polynomials
	A gcd algorithm for integers
	Performance of the gcd algorithm for integers
	Proof of main gcd theorem for integers
	Comparison to performance of cdivstep

