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Abstract

Synchronous solutions for building Byzantine Fault Tolerance (BFT) replication can tolerate up to
minority faults. Assuming ∆ is an upper bound on the time for messages to arrive, these solutions must
incur at least ∆ latency. In this work, we present Sync HotStuff, a BFT protocol to achieve consensus
on a sequence of values with a latency of 2∆ in the common mode when less than half of the replicas
are Byzantine. Thus, in the common mode, Sync HotStuff is within a factor of 2 of the optimal latency.
Moreover, Sync HotStuff has responsiveness, i.e., it advances at network speed, when less than one quarter
of the replicas are not responding, a small sacrifice in availability compared with optimal asynchronous
solutions. Borrowing from practical partially synchronous BFT solutions, Sync HotStuff has an extremely
simple, two-phase leader-based structure, that easily fits in one frame of pseudo-code.

1 Introduction

The synchrony assumption in distributed computing states that there is a globally known upper bound ∆
such that any message sent by one replica reaches another replica within ∆ time. While Byzantine agreement
(BA) protocols assuming asynchrony or partial synchrony require that fewer than n/3 replicas are Byzantine,
a synchrony assumption allows tolerating < n/2 Byzantine replicas.

Early synchronous solutions work in a lock step execution model, and focus on the number of rounds
to reach a single consensus decision. Dolev and Strong introduced in [4] a solution optimized for no (or a
small number f of) faults, achieving a consensus decision in f + 2 lock step rounds. Katz and Koo improved
in [7] in the same model to asymptotic latency of expected O(1) rounds, albeit with a rather large constant
of ∼ 30 rounds. Abraham et al. recently improved in [1] to 10 rounds in expectation. It is known that if
the maximum network delay is ∆, then a lock step protocol requires 2∆ time per round [1, 3]. Thus, the
effective latency of these lock step protocols is at least 20∆. A recent solution by Hanke et al. [6] moves
away from the lock step model and improves latency to 8∆ in expectation [6, 2].

In this paper, we explore the latency of synchronous consensus protocols in the context of the state
machine replication (SMR) problem. The distinction between SMR and BA affects protocol design choices
as well as how latency should be defined in two crucial aspects.

First, Byzantine agreement considers consensus on a single value. The aforementioned BA protocols [7, 1]
reach consensus on this single value and terminate after an honest party is elected as the leader. Thus, the
preferred approach is to randomize the leader until an honest leader emerges. In contrast, SMR considers
consensus on a sequence of values. In such a setting, Paxos and PBFT observed that it is beneficial to have
a so-called “common mode” in which an honest replica remains the leader to commit many values. As a
result, the metric of interest for SMR is the latency to commit once such an honest leader emerges.

Second, the input values to SMR come from external clients rather than the replicas themselves. Thus,
the latency of a commit should be calculated from a client’s perspective, that is, the time difference between
when a client sends a request and when it receives a response. If a client’s request arrives between two
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consensus instances, it incurs an additional delay before being processed by a consensus instance. We call
this extra delay a queue-up delay. Revisiting the state-of-the-art solution, assuming uniform arrival of client
requests, Hanke et al. [6] incurs expected ∆ queue-up delay.

In this work, we present a synchronous SMR protocol named Sync HotStuff. In the common mode when
the leader is honest, Sync HotStuff commits client requests within 2∆ + O(δ) latency, where δ is the actual
network delay that may be much smaller than the conservative upper bound ∆. In particular, we reduce
expected queue-up delay to be δ.

Sync HotStuff and lower bounds for synchrony. The only known lower bound on the latency of syn-
chronous Byzantine agreement stems from adapting the proof in Dwork et al. [5]: a ∆ latency is necessary
for protocols tolerating more than one-third Byzantine faults. This should not be surprising because a pro-
tocol that commits faster than ∆, in a way, does not take advantage of synchrony and is thus subject to
the one-third partial synchrony bound. While Sync HotStuff has a latency of 2∆, we conjecture that 2∆
is optimal. Our intuition is that replicas can be out-of-sync by ∆, so one ∆ is needed for lagging replicas
to catch up and another ∆ is needed for messages to reach (the lower bound only captures the latter ∆).
Proving this stronger lower bound remains an intriguing open question.

Simplicity of Sync HotStuff. A less tangible benefit of our solution is simplicity. Our solution is presented
in Figure 1 in just two phases. A leader sends a proposal, everyone broadcasts votes for it and decides
within 2∆ time after this vote if they do not see a conflicting proposal. This succinct structure has several
tangible benefits. First, it can be easily pipelined into the HotStuff framework [10], where proposals and
certificates are embedded into chains of blocks. Second, we show how to incorporate in Sync HotStuff an
optimistic responsive mode proposed by Thunderella [9]. In this mode, Sync HotStuff has responsiveness
(i.e., its latency does not depend on ∆) when the leader is honest and less than n/4 of the replicas are not
responding, a small sacrifice in availability compared with optimal partially synchronous solutions.

1.1 Related Work

Several decades of solutions in the Byzantine Agreement space brought a myriad of techniques on which
Sync HotStuff rests, while producing a combination with unique characteristics that is not manifested in any
previous work. More specifically, Sync HotStuff borrows the leader-based approach of Abraham et al. [1], the
HotStuff pipelining framework [10], optimistic responsiveness from Thunderella [9], and the non-lock-step
approach from Dfinity [6]. We review these works below (except for HotStuff, whose framework is utilized
directly in the body of this paper).

Dfinity. The Dfinity Consensus protocol described in [6] is a replication protocol in the synchrony model
that tolerates f < n/2 Byzantine faults. It makes a key observation that a synchronous replication protocol
can start processing the next client request without waiting for the previous one to commit. While a standard
practice in partially synchronous protocols, this was not obvious for synchronous protocols. However, as
observed in a recent technical report [2], the presentation in [6] allowed unbounded message complexity due
to an unnecessary requirement that honest replicas vote for all leader proposals, including conflicting ones.
Latency-wise, it has an expected latency of 9∆ after taking random leaders and client queue-up delay into
account.

Thunderella. The idea of optimistic responsiveness (under one-quarter faults) was introduced in Thun-
derella [9]. When more than 3n/4 replicas are correct, Thunderella can commit a decision in one phase.
However, the decision cannot be conveyed to external clients, hence it does not support SMR in the tradi-
tional sense. Thunderella uses the synchronous mode to monitor the progress of the responsive mode and, if
it does not make progress quickly, falls back to the synchronous mode. The fallback mechanism is presented
in a black-box fashion but it is unclear how it works in a non-Nakamoto-style protocol.

In comparison, Sync HotStuff uses two-phase commit in the responsive path, and hence provides safety for
SMR. Moreover, we take the conventional approach of having replicas monitor the progress of the responsive
mode, and using the view change protocol to perform the fallback.
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XFT. A different type of protocol with optimistic responsiveness is XFT [8]. XFT guarantees responsive-
ness when a group of f + 1 honest replicas is determined. Thus, when the actual number of faults is t, it
may take

(
n

f+1

)
/
(
n−t
f+1

)
view changes for an honest group of f + 1 to emerge; after that time, the protocol is

responsive. Such a solution is practical when t is a small constant but for t = Θ(n), it requires an exponential
number of view changes to find an honest group. In comparison, Sync HotStuff is responsive under t < n/4
faults after at most t view changes.

2 Definitions and Model

State Machine Replication (SMR). A state machine replication protocol is used for building a fault-
tolerant service to process client requests. The service consists of n replicas, up to f of which may be
Byzantine faulty. The service commits client requests into a linearizable log and produces a consistent view
of the log akin to the presence of a single non-faulty server. More formally, a state machine replication
service provides the following two guarantees

- Safety: When a value is committed by any non-faulty replica at a log position, all non-faulty replicas
commit that value.

- Liveness: Each client request is eventually committed by non-faulty replicas.

The network consists of pairwise, authenticated communication channels between replicas. In addition,
we assume digital signatures and a public-key infrastructure (PKI), and use 〈x〉p to denote a message x
signed by replica p. For efficiency, it is customary to sign the hash digest of a message.

We assume a synchronous network, i.e., a message sent at time t by a replica arrives at another replica
by time t + ∆ where ∆ is a known maximum network delay. We use δ to denote the actual message delay
in the network.

Responsiveness. A protocol is said to be responsive [9] if the time to process a client request only depends
on the actual network δ but not the maximum network delay ∆. A protocol is said to be optimistically
responsive if it achieves responsiveness when some additional constraints are met. As we will see in subsequent
sections, our protocol provides safety and liveness when f < n/2. In addition, it is optimistically responsive
when round messages from > 3n/4 replicas arrive within time δ. This happens if f < n/4, or f < n/2 and
n/4 Byzantine replicas are (potentially temporarily) responding promptly.

3 Sync HotStuff: Synchronous SMR with 2∆-Latency

In this section, we present Sync HotStuff, a synchronous state machine replication protocol that requires
n = 2f + 1 replicas. Sync HotStuff takes the Paxos/PBFT’s approach of having a stable leader in a steady
state. The reign of a leader is called a view, numbered by integers. The leader of view v can simply be
replica (v mod n), i.e., leaders are decided in a round-robin order. The leader is expected to keep making
progress by committing blocks at increasing heights. If replicas detect Byzantine behavior by the leader or
lack of progress in a view, they blame the leader and engage in a view-change protocol to replace the leader.
Figures 1 and 2 describe the steady state and view-change protocols, respectively.

Blocks and block format. As commonly done in practice, client requests are batched into blocks ordered
by the SMR engine. A key ingredient of BFT solutions is a Quorum Certificate (or in short, a QC), a set
of signatures on a block by a quorum of replicas. Here, quorums consist of n/2 + 1 replicas. We denote by
C(B) a certificate on a block B. We call a block B certified iff C(B) exists.

The leader is responsible for sequencing blocks in the log. Whenever the leader proposes a block, it is
chained by including in a block certificate for the preceding block in the log. We refer to the position in the
chain as height. A block Bk proposed (by a leader L) at height k has the following format:

Bk = 〈b, C(Bk−1)〉L
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Let v be the current view number and replica L be the leader of the current view. The steady state protocol
runs the following steps in iterations.

1. Propose. The leader L broadcasts Bk := 〈b, C(Bk−1)〉L where b is a batch of new client requests
and Bk−1 is the highest certified block known to L.

2. Vote. Upon receiving the first valid height-k block Bk from L or through a vote by some other replica,
if it is extending a highest certified block, broadcast a vote by sending 〈vote, Bk〉. Set commit-timerk
to 2∆, blame-timer to 3∆, and start counting down.

3. (Non-blocking) Blame. If blame-timer reaches 0 and the next block is not received, broadcast
〈blame, v〉. If more than one block is proposed by a leader at any height (leader has equivocated),
broadcast 〈blame, v〉 and the two equivocated blocks. These equivocating blocks may be received
directly from the leader or through a vote from some other replicas.

4. (Non-blocking) Commit. For any k, when commit-timerk reaches 0, if Bk is the only height-k
block received, commit Bk and all its predecessors.

Figure 1: The steady state protocol.

Let L and L′ be the leader of view v and v + 1, respectively.

i New-view. Upon gathering n/2 + 1 〈blame, v〉 messages, broadcast them along with the highest
certified block, stop all commit-timer(s), and stop voting in view v.

ii Status. Wait for 2∆ time and enter view v + 1. Upon entering view v + 1, send a highest certified
block to L′, set blame-timer to 3∆ and transition back to steady state.

Figure 2: The view-change protocol.

where b denotes a batch of client requests, C(Bk−1) is a certificate for its predecessor block Bk−1. The first
block contains no certificate since it has no predecessor. If Bl is an ancestor of Bk (l < k), we say Bk extends
Bl.

3.1 Steady State Protocol

The steady state protocol runs in iterations. In each iteration, the leader proposes a blockBk := 〈b, C(Bk−1)〉L
containing a set of client requests b and a certificate for a previous block (Step 1). If a leader has just en-
tered the steady state after a view-change, it should extend the highest certified block it learned during the
view-change. If there are multiple such blocks, the leader can pick one arbitrarily. If the leader has been in
the steady state, it should extend the previous block it has proposed.

Every replica records locally the highest certified block(s) is has received. Each replica r, upon receiving
a valid block Bk from the leader, broadcasts a vote 〈vote, Bk〉r for it (Step 2). The replica deems the block
as valid only if it extends a highest certified block known to it.

Although we assume synchrony in the protocol, the replicas do not progress in lock steps. Thus, a replica
r may first hear a block through another replica’s vote. A vote for a block can thus be considered a re-
proposal of the block. In this case, if the block is valid, replica r also broadcasts a vote for Bk. Once replica
r votes, it starts two timers:

• A 2∆-commit-timerk: a timer used to ensure safety of block Bk. Block Bk is committed if replica r
does not observe any equivocating blocks at height-k within 2∆ time after it votes for Bk.

• A 3∆-blame-timer: a timer used to ensure progress in case a Byzantine leader stalls.

Note that the commit timers (Step 4) do not affect the critical path of progress. A replica starts the next
iteration “concurrently” without waiting for the previous height to be committed. In fact, a replica can
potentially have many previous heights whose commit timers are still running.
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Why does absence of an equivocating block within 2∆ time suffice to ensure safety? Consider
an honest replica r that votes for a block Bk at time t. First, note that replicas vote on blocks obtained
through votes from other replicas. Every vote message essentially re-proposes the block and r’s vote reaches
all honest replicas before t + ∆. If the leader has not equivocated, r should receive votes for Bk from all
honest replicas, which form a certificate for Bk, before t+ 2∆. Note that the above holds even if the leader
did not propose Bk to all replicas.

Second, recall that honest replicas vote for the first valid block received at each height. Thus, if any
honest replica votes for a conflicting block B′k, it must do so before t + ∆; otherwise, it should receive Bk

from r first and vote for Bk. This implies that r would have known about B′k before t+ 2∆, which was when
its commit-timer expired, and would not have committed. On the other hand, if r receives B′k after t+ 2∆,
it must have come from a Byzantine replica. r can be sure that all honest replicas have voted for Bk, and
hence B′k will not get certified. In summary, if a block Bk is committed by some honest replica, it will be
the only certified block for that height.

Remark. A commit by some honest replica at height k does not imply a commit by all honest replicas at
that height. This is because a Byzantine leader can send an equivocating block to a subset of honest replicas
before their commit timers expires, causing them to not commit.

How does Sync HotStuff ensure progress? The leader can prevent progress through two mechanisms –
stalling and equivocating. The two blame conditions, based on blame-timer and equivocation, defend against
these two attacks, respectively. The blame-timer is set to 3∆ in Step 2 to ensure that a leader has enough
time to make progress: the slowest replica may send its vote up to ∆ time later, it takes at most ∆ time for
the vote to reach the leader, and another ∆ time for leader’s next proposed block to reach all replicas. This
forces a Byzantine leader to propose a block every 3∆ time to avoid being overthrown. If a leader equivocates
by proposing conflicting blocks, the two equivocated blocks serve as a proof of Byzantine behavior and are
sent together with the blame message. All honest replicas will blame the leader within ∆ time and a view
change ensues.

Certificate chaining and HotStuff. Note that blocks across heights are chained by certificates and
committing a block commits all its predecessors. This is a key idea of the HotStuff framework [10]: having
each voting step simultaneously play different roles at multiple heights greatly simplifies the protocol. In
Sync HotStuff, the vote step of height k serves to also notify the certificate of height k − 1.

3.2 View Change Protocol

As mentioned earlier, if a replica observes lack of progress due to an expiring blame-timer or observes an
equivocation, it broadcasts a 〈blame, v〉 message where v is the view number. If a replica gathers n/2 + 1
〈blame, v〉 messages, it starts a view-change process by broadcasting the n/2+1 blame messages. In addition,
it broadcasts its highest certified block (Step i).

The replica then waits for 2∆ time to learn the highest certified block held among honest replicas, and
then reports one such block to L′ (Step ii). The 2∆ wait before sending status gives the following guarantee
(formalized in Lemma 1): an honest replica will learn all blocks committed by all honest replicas in previous
views before sending status in a new view.

After that, a replica sets a blame timer of 3∆, transitions back to steady state, and waits for the leader
to propose a block that extends the block it reports in status. Similar to the reasoning for the steady state,
3∆ suffices for the new leader to receive all honest statuses and propose such a new block.

3.3 Safety and Liveness

We say a block Bk is committed directly if an honest replica commits it by observing C(Bk) and no equiv-
ocating block B′k at height k within 2∆ after it votes. We say a block Bk is committed indirectly if it is a
result of directly committing a block extending Bk.
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Lemma 1. If an honest replica directly commits a block Bl in a view, then every honest replica receives
C(Bl) by the end of that view.

Proof. Consider any two honest replicas r and r′: r directly commits Bl in view v at time t and r′ quits
view v at time t′. According to the view change protocol, r′ sends n/2 + 1 blame messages at time t′ − 2∆.
At time no later than t′−∆, r will receive n/2 + 1 blame messages. (r at least receives them from r′ by that
time, but may also receive them earlier from other replicas.) If t > t′ −∆, then r cannot have committed
Bl in view v at time t due to the blame messages. Thus, t < t′ −∆. r broadcasts the highest certified block
it has at time t′ −∆ on receiving the blame certificate. If r has already voted for block extending Bl prior
to this point, then it has already broadcast C(Bl) in that vote. Otherwise, Bl will be the highest certified
block known to r, and r broadcasts C(Bl). r

′ will receive the above information no later than time t′.

Lemma 2. If an honest replica directly commits a block Bl, then there does not exist C(B′l) where B′l 6= Bl.

Proof. Suppose an honest replica r votes for Bl at time t and commits Bl at time t + 2∆. We first prove
that a conflicting certificate does not exist in views up to v (included). The vote from r for Bl reaches all
honest replicas by time t+ ∆. If another honest replica has not voted at this height by then, it will vote for
Bl. In order for C(B′l) to exist in this view or prior views, some honest replica must vote for B′l, and it must
do so before time t+ ∆. But in that case, r would have received this equivocating vote before t+ 2∆, which
contradicts the hypothesis of r committing Bl.

Next, we prove that a conflicting certificate does not exist in views greater than v. By Lemma 1, every
honest replica receives C(Bl) by the end of view v, and there was no conflicting certificate at height l up
until then. From then on, the highest certified block of every honest replica is at least Bl, and no honest
replica will vote for B′l 6= Bl. Thus, no C(B′l) where B′l 6= Bl can come into existence in future views.

Theorem 3 (Safety). Honest replicas always commit the same block Bk for each height k.

Proof. Suppose for contradiction that two distinct blocks Bk and B′k are committed at height k. Suppose
Bk is committed as a result of Bl being directly committed and B′k is committed as a result of B′l′ being
directly committed. Bl = Bk if l = k and Bl extends Bk if l > k; similarly, B′l′ = B′k if l′ = k and B′l′
extends B′k if l′ > k. Without loss of generality, assume l ≤ l′. By Lemma 2, there exists no other certified
block at height l. If l = l′, then B′l′ = Bl and B′k′ = Bk. If l < l′, then B′l′ extends Bl, which extends Bk.

Theorem 4 (Liveness). (i) A view change will not happen if the current leader is honest; (ii) A Byzantine
leader must commit a block every 3∆ time to avoid a view change; and (iii) If k is the highest height at
which some honest replica has committed a block in view v, then leaders in subsequent views must propose
blocks at heights higher than k.

Proof. Parts (i) and (ii) follow from the choices of blame-timer. Simply note that an honest leader has
sufficient time and does not equivocate, so it will not be blamed by any other honest replica. On the other
hand, if a Byzantine leader delays beyond 3∆, it will be blamed by all honest replicas. For part (iii), observe
that all honest receive C(Bk) due to Lemma 1. Hence, their highest certified block has height at least k. If
the leader does not propose a block with a height higher than k within 3∆, it will be blamed by all honest
replicas.

3.4 Efficiency Analysis

From an honest leader’s perspective, each block incurs a latency of 2∆ + δ after being proposed. (Step 1
proceeds at the actual network speed.) From a client’s perspective, it takes δ to send its request to the
replicas; on average, this request will arrive half way between two leader proposals, which are 2δ time apart,
so the average queue-delay is δ; it takes an additional δ time for replicas to reply to the client. So the average
client latency of Sync HotStuff is 2∆ + 4δ. The average latency of the best prior result is 8∆ + 9δ from a
leader’s perspective [2], and 9∆ + 11.5δ from a client’s perspective, following a similar analysis.

The protocol requires all-to-all communication. Each message contains a single signature (using threshold
signatures or multisignature for certificates). Thus, the communication complexity is O(n2) per block.
We remark that our protocol also achieves what may be called network throughput: the throughput is
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determined by the network bandwidth, communication complexity and block size — it does not depend on
∆. Theoretically, any protocol can achieve network speed throughput through batching, but naively doing
so further hurts latency.

4 Optimistic Responsiveness

In this section, we incorporate the Thunderella [9] optimistic responsive mode into Sync HotStuff. In Sec-
tion 3, a certificate/quorum required only f + 1 votes. Thus, a vote from a single honest replica can result
in a certificate if all f Byzantine replicas vote on the same block. Therefore, before committing a block, a
replica needs to wait long enough to hear all honest replicas’ votes and make sure none of them voted for a
conflicting block. The commit latency thus inherently depends on the maximum network delay ∆.

Partially synchronous protocols rule out the existence of a conflicting certificate with larger quorums.
For instance, PBFT requires > 2n/3 votes and tolerates f < n/3 Byzantine replicas. A simple quorum
intersection argument shows that two conflicting blocks cannot both receive > 2n/3 votes. Since our protocol
tolerates up to minority corruption, similar to Thunderella [9], to achieve responsiveness we will use a
quorum size of > 3n/4. Because honest replicas no longer rely on ruling out honest conflicting votes to
commit, this obviates the need for waiting, achieving the desired responsiveness, and also obviates the need
for broadcasting the vote.

The responsive mode makes progress only when > 3n/4 replicas respond to a leader proposal. Put
differently, if < n/4 replicas or more are faulty, they can prevent responsiveness (but they cannot cause
safety violation). In case there is no responsive progress, we fall back to the synchronous mode in Section 3.

4.1 Protocol

Since the responsive mode requires a larger quorum, we introduce the notion of a fast quorum certificate. A
block B is said to have a fast quorum certificate (or fast QC in short) if it has > 3n/4 votes. It is denoted
by Cqf (B). In the responsive mode, honest replicas only vote for blocks that extend blocks with a fast QC,
namely, in the form of Bk = 〈x, Cqf (Bk−1)〉L.

Steady state. The protocol for the responsive mode is described in Figure 3. It differs from the syn-
chronous mode in two ways. First, as mentioned, a vote on the block is only sent to the leader and not
broadcast to all replicas. Second, block Bk−2 is committed when Bk is received, i.e., blocks that are two
blocks deep are committed. Finally, the rule to blame the leader for lack of progress does not need to depend
on ∆ (Step 3). It can be based on any rule used by partially synchronous protocols. For instance, if the
actual delay δ << ∆, then the leader can be blamed more aggressively.

Switching between the modes. We now specify how to switch between the responsive mode and syn-
chronous mode. Whenever the responsive mode fails due to an equivocating leader or lack of participation
from > 3n/4 participants, we engage in a view-change (Figure 2). After the view-change, the replicas move
to the Sync HotStuff steady state protocol which requires participation from only > n/2 replicas. If the
steady state leader recognizes that > 3n/4 replicas are participating, it signals a switch to the responsive
mode. The Sync HotStuff steady state protocol is identical to the one in Figure 1 except for a couple of
differences highlighted in Figure 4.

Although the responsive mode itself is rather straightforward, much care is needed when switching be-
tween the two modes. Switching from the responsive mode to synchronous mode is performed via a view
change protocol. Similar to before, a replica requests a view change if it detects leader equivocation or lack
of progress. When a replica gathers > n/2 blame messages (Figure 3 step 3), it executes the view change
protocol in Figure 2. Intuitively, the view change protocol guarantees that, if a block Bk is committed by
any honest replica in a view (in either mode), then all honest replicas receive the relevant certificates by
the end of that view (after the 2∆ wait) and will only vote for blocks extending Bk in future views. This
preserves the safety of all blocks committed by honest replicas.

To switch from the synchronous mode to the responsive, the leader proposes a block that contains a
special command switch-to-responsive (Figure 4 step 1). After voting for the switch command, an honest
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Let v be the current view number and replica L be the leader of the current view.

1. Propose. The leader L broadcasts 〈Bk〉L := 〈v, Cqf (Bk−1)〉L where v is a batch of new transactions
and Bk−1 is the previous block L proposed.

2. Vote and commit. Upon receiving the first valid Bk from L, send a vote to L. Commit Bk−2.

3. Blame. If an equivocating block at height-k is received, or if there is no progress in the responsive
mode (the next height block is not received), broadcast 〈blame, v〉 and the equivocating blocks.

4. View-change. Upon receiving > n/2 〈blame, v〉 messages, invoke the view change protocol in Fig-
ure 2 and transition to the steady state of Sync HotStuff in the next view.

Figure 3: Protocol of the responsive mode.

Let v be the current view number and replica L be the leader of the current view. The responsive mode
runs the following steps in iterations.

1. Propose. The leader L broadcasts Bk := 〈b, C(Bk−1)〉L where b is a batch of new transactions and
Bk−1 is the highest certified block known to L. If the leader wants to switch to the responsive mode,
it sets b := switch-to-responsive.

2. Vote. Upon receiving the first valid height-k block Bk from L or through a vote by some other replica,
if it is extending a highest certified block, broadcast a vote by sending 〈vote, Bk〉. Set commit-timerk
to 2∆, blame-timer to 3∆, and start counting down. If block Bk contains a switch-to-responsive
command, do not vote for subsequent blocks in the synchronous mode.

3. (Asynchronous) Blame. If blame-timer reaches 0 and the next block is not received, broadcast
〈blame, v〉. If more than one height-k blocks have been received from the same leader (leader has
equivocated), broadcast 〈blame, v〉 and the two equivocated blocks.

4. (Asynchronous) Commit. When commit-timerk reaches 0, if Bk is the only height-k block received,
commit Bk and all its predecessors. If block Bk is committed and contains the switch-to-responsive
command, transition to the responsive mode (Figure 3)

Figure 4: Augmented steady state protocol.

replica temporarily stops voting for subsequent blocks. When this block is committed in the synchronous
mode, the replica transitions to the responsive mode and starts voting according to the rule in Figure 3.

4.2 Safety with Optimistic Responsiveness

We now amend the proofs for safety to account for the addition of the responsive mode. Lemma 1 and 2 only
apply to directly committed blocks in the synchronous mode. We provide two similar lemmas for directly
committed blocks in the responsive mode.

Lemma 5. If an honest replica directly commits a block Bl in the responsive mode of a view, then every
honest replica receives Cqf (Bj) by the end of that view for some j ≥ l + 1 and Bj extends Bl.

Proof. Simply recall that committing Bl in the responsive mode requires receiving a successor block Bl+2

which contains the said certificate Cqf (Bl+1). The rest of the Lemma 1 proof applies and we repeat for
completeness. Consider any two honest replicas h and h′: h directly commits Bl in the responsive mode of
view v at time t and h′ quits view v at time t′. According to the view change protocol, h′ sends > n/2 blame
messages at time t′ − 2∆. At time no later than t′ − ∆, h will receive > n/2 blame messages. (h at least
receives them from h′ by that time, but may also receive them earlier from other replicas.) At this point, h
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broadcasts the highest certified block C(Bj) to its knowledge, which either is or extends Bl+1. h′ will receive
the above information no later than t′.

Lemma 6. If an honest replica directly commits a block Bl in the responsive mode, then there does not exist
C(B′l+1) where B′l+1 does not extend Bl.

Proof. Suppose an honest replica h directly commits Bl in the responsive mode of view v. We first prove
that such a C(B′l+1) does not exist in views up to v (included). Suppose for contradiction that C(B′l+1)
exists. Then, B′l+1 must gather at least one honest vote. There are two cases.

Case 1. An honest replica votes for B′l+1 in the responsive mode. This requires the existence of Cqf (B′l)
where B′l+1 extends B′l. Since h committed Bl in the responsive mode, it must have received Cqf (Bl). Since
B′l+1 does not extend Bl, we must have B′l 6= Bl. Both blocks have strong certificates. But this requires at
least (3n/4 + 1) + (3n/4 + 1)− n = n/2 + 1 = f + 1 replicas to double-vote at height l, a contradiction.

Case 2. An honest replica votes for B′l+1 in the synchronous mode. To enter the responsive mode, h
must have committed in the synchronous mode a block Bl0 containing the switch-to-responsive command at
a height l0 < l. By Lemma 2, there does not exist a conflicting certified block C(B′l0) where B′l0 6= Bl0 .
Thus, B′l+1 must extend Bl0 . However, an honest replica will not keep voting in the synchronous mode after
receiving a switch-to-responsive command.

Next, we prove that such a conflicting certificate does not exist in views greater than v. This part is
similar to the proof of Lemma 2. By Lemma 5, every honest replica receives C(Bj) where j ≥ l + 1 and Bj

extends Bl by the end of view v, and there was no conflicting certificate at height l+ 1 up until then. From
then on, the most preferred block of every honest replica is at least Bl+1, and no honest replica will vote for
B′l+1 6= Bl+1. Thus, no C(B′l+1) where B′l+1 does not extend Bl can come into existence in future views.

Theorem 7 (Safety with Optimistic Responsiveness). Honest replicas always commit the same block Bk for
each height k.

Proof. Suppose for contradiction that two distinct blocks Bk and B′k are committed at height k. As before,
suppose Bk is committed as a result of Bl being directly committed and B′k is committed as a result of
B′l′ being directly committed. Without loss of generality, assume l ≤ l′. The original proof covers the case
where Bl is committed in the synchronous mode. In that case, there exists no other certified block at height
l by Lemma 2. Thus, B′l′ either is or extends Bl, which extends Bk. For the other case where Bl is directly
committed in the responsive mode, there does not exist C(B′l+1) where B′l+1 does not extend Bl by Lemma 6.
Thus, B′l′ either is or extends Bl, which extends Bk.

5 Bound on Responsiveness

Our protocol commits with a 2∆ latency in the steady state when f < n/2. For completeness, in this
section, we show a lower bound on the latency when f > n/3. The lower bound and the proof closely follow
Dwork et al. [5]. For clarity, we present the bound in the Byzantine broadcast formulation. Recall that in
Byzantine broadcast, a designated sender tries to broadcast a value to n parties. A solution needs to satisfy
three requirements:

(termination) all honest parties eventually commit,

(agreement) all honest parties commit on the same value, and

(validity) if the sender is honest, then all honest parties commit on the value it broadcasts.

Theorem 8. There exists no Byzantine broadcast protocol that simultaneously satisfy the following:

• termination, agreement and validity as defined above;

• tolerates f ≥ n/3 Byzantine faults;

• terminates in less than ∆ time if the designated sender is honest.
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Proof. Suppose such a protocol exists. Divide parties into three groups P , Q and R, each of size f . Parties
in P and Q are honest and parties in R are Byzantine. Consider the following three scenarios. In Scenario
A, parties in R remain silent and an honest designated sender sends 0. In this scenario, parties in P and Q
commit 0 in less than ∆ time. In Scenario B, parties in R remain silent and an honest designated sender
sends 1. In this scenario, parties in P and Q commit 1 in less than ∆ time. In Scenario C, the designated
sender is Byzantine and sends 0 to P and 1 to Q; parties in R behave like Q in Scenario A to P , and behave
like P in scenario B to Q. Messages between P and Q take ∆ to reach. This scenario is indistinguishable
from Scenario A to P and indistinguishable from Scenario B to Q. Thus, P commits 0 and Q commits 1 in
less than ∆ time, violating agreement.
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