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Abstract—Synchronous solutions for Byzantine Fault Tolerance
(BFT) can tolerate up to minority faults. In this work, we present
Sync HotStuff, a surprisingly simple and intuitive synchronous
BFT solution that achieves consensus with a latency of 2∆ in
the steady state (where ∆ is a synchronous message delay upper
bound). In addition, Sync HotStuff ensures safety in a weaker
synchronous model in which the synchrony assumption does not
have to hold for all replicas all the time. Moreover, Sync HotStuff
has responsiveness, i.e., it advances at network speed when less
than one-quarter of the replicas are not responding, a small sac-
rifice in availability compared with optimal partially synchronous
solutions. Borrowing from practical partially synchronous BFT
solutions, Sync HotStuff has a two-phase leader-based structure,
and has been fully prototyped under the standard synchronous
message delay assumption. When tolerating a single fault,
Sync HotStuff achieves a throughput of over 280 Kops/sec under
typical network performance, which is comparable to the best
known partially synchronous solution and more than a factor of
two better than the state-of-the-art synchronous solution.

I. INTRODUCTION

Byzantine Fault Tolerance (BFT) protocols relying on a
synchrony assumption have the advantage of tolerating up to
one-half Byzantine faults [1], while asynchronous or partially
synchronous protocols tolerate only one-third [2]. On the flip
side, synchronous protocols are often considered impractical
for three main reasons. First, existing synchronous protocols
require a large number of rounds. Second, most synchronous
protocols require lock-step execution (i.e., replicas must start
and end each round at the same time), making them hard
to implement and further exacerbating the latency problem.
Third, an adversary may attack the network to violate the
synchrony assumption, causing the protocol to be unsafe.

In this work, we introduce Sync HotStuff, a synchronous
BFT state machine replication (SMR) protocol that addresses
the above concerns with a surprisingly simple and intuitive
solution (see Figure 1). In Sync HotStuff, in the standard
synchrony model, a leader broadcasts a proposal; the replicas
echo it; and each replica can commit after waiting for the
maximum round-trip delay unless it hears by that time an
equivocated proposal signed by the leader. (If the leader does
not propose, replicas time out and perform a leader change;
details on this step are given in the body of the paper.)

Simple yet powerful, Sync HotStuff achieves the following
desirable properties. First, as in most synchronous solutions,

Sync HotStuff tolerates up to one-half Byzantine replicas.
Second, inspired by Hanke et al. [3], Sync HotStuff does
not require lock step execution in the steady state. Third,
with minor modifications, Sync HotStuff can handle a weaker
and more realistic synchrony model suggested by Chan et
al. [4]. Finally, Sync HotStuff is prototyped and shown to offer
practical performance. It achieves a throughput comparable
to partially synchronous protocols and the commit latency is
roughly a single maximum round-trip delay. Given the above
properties, we believe Sync HotStuff can be the protocol of
choice for single-datacenter replicated services as well as
consortium blockchain applications.

We proceed to elaborate on the key techniques and key
results of Sync HotStuff, which removes performance barriers
on synchronous BFT under weaker assumptions.

Near-optimal latency. The first key contribution is the
aforementioned extremely simple steady state protocol (Fig-
ure 1). We observe that waiting for a single maximum round-
trip delay suffices for replicas to commit. Furthermore, our
protocol does not have to be executed in a lock-step fashion,
despite relying on synchrony. In other words, other than the
last waiting step, replicas move to the next step upon receiving
enough messages of the previous step, without waiting for
the conservative synchrony delay bound. This gives a latency
of 2∆ + O(δ) in steady state where ∆ denotes the known
bound assumed on maximal network transmission delay and δ
denotes the actual network delay, which can be much smaller
than ∆.

Assuming δ � ∆, the above latency is within a factor of
two of the optimal latency that can be obtained by synchronous
protocols: we give a minor adaptation to the proof of Dwork
et al. [2] to show that a ∆ latency is necessary for any
protocol tolerating more than one-third Byzantine faults. The
∆ latency lower bound should not be surprising because a
protocol that commits faster than ∆, in a way, does not take
advantage of synchrony and is thus subject to the one-third
partial synchrony barrier. In fact, we conjecture a stronger
latency lower bound of 2∆. Our intuition is that replicas can
be out-of-sync by ∆, so one ∆ is needed for lagging replicas to
catch up and another ∆ is needed for messages to be delivered
(the current lower bound proof only captures the latter ∆).



Moreover, though O(δ) latency is impossible to guarantee
under more than one-third faults, it can be achieved opti-
mistically. The Thunderella protocol [5] achieves O(δ) latency
when the leader is honest and more than three-quarter of the
replicas are responding. We show that our protocol can be
adapted to incorporate this idea.

Practical throughput. The key technique to improve through-
put is to move the synchronous waiting steps off the critical
path. In more detail, there are two steps in our protocol
that require waiting for a conservative O(∆) time. One is
to check for a leader equivocation before committing and it
is made non-blocking. Thus, replicas start working on the
next block without waiting for the previous blocks to be
committed. (The non-blocking commit also reduces latency,
since a block can now be proposed before the previous
block is committed.) The other is before sending a status
message to the leader, but it is in the view-change protocol,
which occurs infrequently. With these tricks, in the steady
state, the replicas are always sending protocol messages and
utilizing the entire network capacity, thus behaving exactly like
partially synchronous protocols. Our experiments validate that
Sync HotStuff achieves throughput comparable to partially
synchronous protocols. In fact, since a synchronous solution
tolerates more corruption (half vs. one-third), it requires fewer
replicas to be deployed to tolerate a given number of faults. In
our experiments, we observe that for tolerating a fixed number
of faults, Sync HotStuff can even slightly outperform partially
synchronous solutions in throughput.

Safety despite some sluggish honest replicas. Synchronous
protocols proven secure under the standard synchrony as-
sumption fail to provide safety if a single message between
honest replicas is delayed. Recently, Guo et al. [6] proposed a
“weak synchrony” model that allows the message delay bound
∆, at any point in time, to be violated for a set of honest
replicas. We call these replicas sluggish. We call the remaining
honest replicas prompt and messages of prompt replicas can
reach each other within ∆ time. To reflect reality and be
more conservative, the model allows sluggish replicas to be
arbitrarily mobile, i.e., an adversary decides which replicas are
sluggish at any time. Messages sent by or sent to a sluggish
replica may take an arbitrarily long time until the replica is
prompt again. Since “weak synchrony” has been used in the
literature to describe other models (e.g., [7], [8], [9]), we will
refer to this model as the mobile sluggish model in this paper.
We call the synchrony mode without mobile sluggish faults
standard synchrony.

With standard synchrony, if a replica sends a message to
another replica, it is guaranteed to arrive within ∆ time. Our
protocol and proofs crucially use this fact to achieve safety.
With a mobile sluggish fault model, on the other hand, the
delivery is not guaranteed if the sender or the receiver is
sluggish. In that sense, the guarantee for a single replica
sending or receiving a message is similar to that of partially
synchronous network model. The central observation enabling
us to tackle mobile sluggish faults is the following: assuming a

minority of the replicas are sluggish or Byzantine at any point
in time, if a replica receives a message from a majority of
replicas, at least one of the senders must be prompt and honest.
We use this observation atop Sync-HotStuff-under-standard-
synchrony to obtain a protocol in the mobile sluggish model.

The above technique allows Sync HotStuff to ensure safety
as long as the number of sluggish plus Byzantine faults
combined is less than one-half; in other words, at any time,
a majority of replicas must be honest and prompt (which has
been shown to be a necessary condition [6] in the mobile
sluggish model). More importantly, with the above technique,
Sync HotStuff manages to handle the mobile sluggish model
at almost no extra cost: the communication complexity remains
the same and the commit latency increases only by O(δ).

Organization. In the remainder of this section, we de-
fine state machine replication. In Section II, we describe
Sync HotStuff in the standard synchrony model without slug-
gish faults. Section III augments this protocol tolerate sluggish
faults. Section IV adds an optimistically responsive track to
Sync HotStuff with sluggish faults. Section V presents the re-
sults based on our implementation and evaluation. Section VI
compares with closely related works.

A. Definitions and Model

State Machine Replication (SMR). A state machine repli-
cation protocol is used for building a fault-tolerant service
to process client requests. The service consists of n replicas,
up to f of which may be faulty. The service commits client
requests into a linearizable log and produces a consistent view
of the log akin to a single non-faulty server. More formally, a
state machine replication service provides the following two
guarantees

- Safety: If a value is committed by any non-faulty replica
at a log position, all non-faulty replicas eventually com-
mit that value at the same position.

- Liveness: Each client request is eventually committed by
non-faulty replicas.

We assume that the network consists of pairwise, authenti-
cated communication channels between replicas. We assume
digital signatures and a public-key infrastructure (PKI), and
use 〈x〉p to denote a message x signed by replica p. (It is
sufficient to sign the hash digest of a message for efficiency.)
We also assume that there is no drift between the clocks used
by the replicas, i.e., the clocks run at the same rate. Our
protocol is secure under a sluggish mobile adversary. However,
for ease of exposition we first explain the protocol in the
standard synchrony model. We describe these models in the
respective sections.

II. Sync HotStuff UNDER STANDARD SYNCHRONY

We first present Sync HotStuff in the standard synchrony
model (without mobile sluggish faults). Here, the synchrony
assumption states that a message sent at time t by any
replica arrives at another replica by time t + ∆ where ∆ is
a known maximum network delay. We use δ to denote the



actual message delay in the network. We show a protocol that
tolerates minority Byzantine replicas, i.e., n = 2f + 1.

Sync HotStuff takes the Paxos/PBFT’s approach of having
a stable leader in a steady state. The reign of a leader is called
a view, numbered by integers. The leader of view v can simply
be replica (v mod n), i.e., leaders are decided in a round-
robin order. The leader is expected to keep making progress
by committing client requests at increasing heights. If replicas
detect Byzantine behavior by the leader or lack of progress
in a view, they blame the leader and engage in a view-change
protocol to replace the leader. Figures 1 and 2 describe the
steady state and view-change protocols, respectively.

Blocks and block format. As commonly done in SMR, client
requests are batched into blocks. The protocol forms a chain
of blocks. We refer to a block’s position in the chain as its
height. A block Bk at height k has the following format

Bk := (bk, hk−1)

where bk denotes a proposed value at height k and hk−1 :=
H(Bk−1) is a hash digest of the predecessor block. The first
block B1 = (b1,⊥) has no predecessor. Every subsequent
block Bk must specify a predecessor block Bk−1 by including
a hash of it. We say a block is valid if (i) its predecessor is
valid or ⊥, and (ii) its proposed value meets application-level
validity conditions and is consistent with its chain of ancestors
(e.g., does not double spend a transaction in one of its ancestor
blocks).

Additional terminology on blocks. If a block Bk is an
ancestor of another Bl (l ≥ k), we say Bl extends Bk. If
two blocks Bk and B′k have the same height but different
contents, we say they are conflicting blocks. If two conflicting
blocks are proposed by the same leader, we say the leader has
equivocated and the two blocks are equivocated blocks.

Certificates and certified blocks. A key ingredient of BFT
solutions is a quorum certificate (certificate for short), a
set of signatures on a block by a quorum of replicas. In
Sync HotStuff, a quorum consists of f + 1 replicas (out of
2f + 1). We use C(Bk) to denote a quorum of signatures on
hk = H(Bk) from the same view and call it a certificate
for Bk. Certified blocks are ranked by heights. During the
protocol execution, each replica keeps track of all signatures
for all blocks and keeps updating the highest certified block to
its knowledge. Looking ahead, the notion of highest certified
blocks will be used to guard the safety of a commit.

Block chaining. Blocks across heights are chained by hashes
(cf. block format) and certificates (cf. Figure 1). This idea
originated from the Bitcoin white paper [10] and it was
incorporated into BFT by Casper [11] and HotStuff [12]. It
greatly simplifies BFT protocols since now the voting step on
a block also serves as a voting step for all its ancestor blocks
that have not been committed. Hence, crucially, committing a
block commits all its ancestors.

A. Steady State Protocol

The steady state protocol runs in iterations. In each
iteration, the leader L proposes a block by sending
〈propose, Bk, v, C(Bk−1)〉L where Bk := (bk, hk−1) is a new
block and Bk−1 is the highest certified block known to L
(Step 1). If the leader has been in the steady state, it should
extend the previous block it has proposed. If a leader has just
entered the steady state after a view change, it should extend
the highest certified block it learned during the view-change. If
there are multiple such blocks (which implies that a previous
Byzantine leader has equivocated), the leader can pick one
arbitrarily.

Each replica r, upon receiving a valid block Bk from the
leader, broadcasts a vote 〈vote, Bk, v〉r for it if it extends
a highest certified block known to r (Step 2). Although the
protocol assumes synchrony, replicas do not progress in lock
steps. A replica r may first hear a block through another
replica’s vote. A vote for a block can thus be considered a
re-proposal of the block. In this case, if the block extends the
highest certified block known to r, replica r also broadcasts a
vote for Bk.

Once replica r votes for Bk, it starts a timer called
commit-timerk (Step 3). Bk is committed if r does not observe
any equivocated blocks at height k within the next 2∆ time.
We note again that blocks across heights form a chain, and
committing a block commits all its ancestors. Note that the
commit timers do not affect the critical path of progress. A
replica starts the next iteration “concurrently” without waiting
for the previous height to be committed. In fact, a replica can
potentially have many previous heights whose commit timers
are still running.

Why does absence of an equivocated block within 2∆
time suffice to ensure safety? Consider an honest replica
r that votes for a block Bk at time t, does not observe any
equivocated block, and hence commits Bk at time t+2∆. We
will show that Bk will be the only certified block at height k.
For that, we need to show that (i) Bk will be certified, and
(ii) no conflicting height-k block can be certified.
r’s vote reaches all honest replicas before t + ∆. Recall

that honest replicas vote for the first valid block received at
each height in a view, and that they vote on blocks obtained
through votes (i.e., votes serve as re-proposals). Thus, if any
honest replica votes for a conflicting block B′k, it must do
so before t + ∆; otherwise, it would receive Bk from r first
and vote for Bk. Therefore, if any honest replica votes for a
conflicting block B′k, r would have known about B′k before
t + 2∆. This contradicts with the fact that r commits Bk.
Hence, (ii) holds. On the other hand, if r does not receive a
vote for an equivocated block before t + 2∆, r can be sure
that all honest replicas have voted for Bk before t + ∆, and
that it will receive all these votes, which form a certificate for
Bk, before t+ 2∆. Hence, (i) holds. Note that (i) holds even
if the leader did not propose Bk to all replicas. In summary,
if a block Bk is committed by some honest replica, it will be
the only certified block for that height.



Let v be the current view number and replica L be the leader of the current view. The steady state protocol runs the following
steps in iterations.

1) Propose. The leader L broadcasts 〈propose, Bk, v, C(Bk−1)〉L where Bk = (bk, hk−1), bk is a batch of new client
requests, and Bk−1 is the highest certified block known to L.

2) Vote. Upon receiving the first valid proposal for a height-k block Bk from L or through a vote by some other replica,
if it is extending a highest certified block, forward the proposal to all other replicas and broadcast a vote in the form of
〈vote, Bk, v〉. Set commit-timerk to 2∆ and start counting down.

3) (Non-blocking) Commit. When commit-timerk reaches 0, if Bk is the only height-k block received, commit Bk and
all its ancestors.

Fig. 1: The steady state protocol.

Let L and L′ be the leader of view v and v + 1, respectively.
i Blame. If less than p blocks are received from L in (2p+ 1)∆ time in view v, broadcast 〈blame, v〉. If more than one

block is proposed by L at any height (L has equivocated), broadcast 〈blame, v〉 and the two equivocated blocks.

ii Quit old view. Upon gathering f + 1 〈blame, v〉 messages, broadcast them, and quits view v (abort all commit-timer(s)
and stop voting in view v).

iii Status. Wait for ∆ time and enter view v + 1. Upon entering view v + 1, send a highest certified block to L′ and
transition back to steady state.

Fig. 2: The view-change protocol.

Remark. A commit by some honest replica at height k does
not imply a commit by all honest replicas at that height. This
is because a Byzantine leader can send an equivocated block to
a subset of honest replicas before their commit timers expires,
causing them to not commit. But the view-change protocol
will ensure that all honest replicas eventually commit the same
block, as will be explained in the next subsection.

B. View-change Protocol

The view-change protocol ensures liveness. The leader can
prevent progress through two mechanisms – stalling and equiv-
ocating. The two blame conditions, based on no progress and
equivocation, defend against these two attacks, respectively.
A leader is expected to propose a block every 2∆ time: one
∆ for its proposal to reach other replicas and one ∆ for
other replicas’ votes to arrive. An extra ∆ time is given to
the leader in the beginning of the view to receive status. This
forces a Byzantine leader to propose a block every 2∆ time to
avoid being overthrown. If a leader equivocates by proposing
conflicting blocks, the two equivocated blocks serve as a proof
of Byzantine behavior and are sent together with the blame
message. All honest replicas will blame the leader within ∆
time. Note that equivocated blocks may be received directly
from L or through a vote from other replicas.

If a replica gathers f + 1 〈blame, v〉 messages, it starts a
view-change process by broadcasting the f+1 blame messages
(Step ii). At this point, it quits view v, which involves stopping
all commit timers and stop voting in view v.

The replica then waits for ∆ time to learn the highest cer-
tified block held among honest replicas, and then reports one
such block to L′ (Step iii). The ∆ wait before sending status

ensures that an honest replica learns all blocks committed by
all honest replicas in previous views before sending status in
a new view (formalized in Lemma 1). After that, a replica
transitions back to steady state, and waits for the leader to
propose a block that extends the block it reports in status.

C. Safety and Liveness

We say a block Bk is committed directly if an honest replica
commits it by observing no equivocated block at height k
within 2∆ after it votes. We say a block Bk is committed
indirectly if it is a result of directly committing a block
extending Bk.

Lemma 1. If an honest replica directly commits a block Bl in
a view, then (i) every honest replica votes for Bl in that view,
and (ii) every honest replica receives C(Bl) before entering
the next view.

Proof. Suppose an honest replica r directly commits Bl at
time t. r votes for Bl at time t − 2∆. This vote reaches all
honest replicas by time t−∆. At this point, an honest replica
r′ will vote for Bl unless one of the two conditions below
holds: (1) r′ has already voted for B′l 6= Bl before time t−∆,
or (2) r′ has already received (and sent) f+1 blame messages
before time t−∆. However, if either happens, r would have
received either a vote for an equivocated block or f+1 blame
messages before time t, which contradicts the hypothesis of r
committing Bl at time t. Thus, at time t−∆, all honest replicas
are still in the view and they all vote for Bl. Moreover, all of
them enter the next view at or after time t, and by then, they
all receive C(Bl).



Lemma 2. If an honest replica directly commits a block Bl,
then there does not exist C(B′l) where B′l 6= Bl.

Proof. Suppose an honest r replica directly commits a block
Bl in view v. We will argue why a conflicting certificate does
not exist prior to, in, or after view v. Firstly, if conflicting
certificate exists prior to view v, then at least one of the votes
comes from an honest replica. This vote would have reached
r before view v and would have prevented r from committing
Bl. Secondly, by Lemma 1, all honest replicas vote for Bl

in view v. Thus, a conflicting height-l certificate cannot be
formed in view v. Lastly, again by Lemma 1, every honest
replica receives C(Bl) before entering view v + 1, and there
was no conflicting height-l certificate up until then. From then
on, the highest certified block of every honest replica is at
least Bl, and no honest replica will vote for height-l blocks
any more. Thus, no C(B′l) where B′l 6= Bl can come into
existence in views greater than v.

Theorem 3 (Safety). Honest replicas always commit the same
block Bk for each height k.

Proof. Suppose for contradiction that two distinct blocks Bk

and B′k are committed at height k. Suppose Bk is committed
as a result of Bl being directly committed in view v and B′k is
committed as a result of B′l′ being directly committed in view
v′. This implies Bl extends Bk and B′l′ extends B′k. Without
loss of generality, assume l ≤ l′. By Lemma 2, there exists
no other certified block at height l. If l = l′, then B′l′ = Bl;
if l < l′, then B′l′ extends Bl. In either case, B′k = Bk.

Theorem 4 (Liveness). (i) A view change will not happen
if the current leader is honest; (ii) A Byzantine leader must
propose p blocks in (2p+ 1)∆ time to avoid a view change;
and (iii) If k is the highest height at which some honest replica
has committed a block in view v, then leaders in subsequent
views must propose blocks at heights higher than k.

Proof. For (i), note that an honest leader L is able to propose p
blocks in (2p+1)∆ time. Immediately after entering its view,
L needs ∆ time to gather status; after that, it can propose a
block every 2∆ time: one ∆ for its proposed block to reach all
replicas and another ∆ for other replicas’ votes to arrive. Thus,
an honest leader has sufficient time and does not equivocate,
so it will not be blamed by any other honest replica. On the
other hand, if a Byzantine leader delays beyond the above
allotted time it will be blamed by all honest replicas.

For part (iii), observe that all honest receive C(Bk) due
to Lemma 1. Hence, in status of subsequent views, they all
report a certified block at height at least k. If the leader does
not propose a block with a height higher than k within 3∆, it
will be blamed by all honest replicas.

D. Efficiency Analysis

Throughput. In steady state (Figure 1), the only step that uses
the synchrony bound ∆ is the commit step. But as we have
mentioned, the commit step is not on the critical path (non-
blocking). Thus, the choice of ∆, no matter how conservative,

does not affect the protocol’s throughput in steady state. Thus,
Sync HotStuff should have similar throughput as partially
synchronous protocols. Our experiments in Section V confirm
this.

Latency. From an honest leader’s perspective, each block in-
curs a latency of 2∆+δ after being proposed. (Step 1 proceeds
at the actual network delay δ.) But for SMR, it is more
customary to calculate latency from a client’s perspective, that
is, the time difference between when a client sends a request
and when it receives a response. If a client’s request arrives
between two leader proposals, it incurs an additional delay
before being getting proposed. From a client’s perspective, it
takes δ to send its request to the replicas; on average, this
request will arrive half way between two leader proposals,
which are 2δ time apart, so the average queue-up delay is δ;
it takes an additional δ time for replicas to reply to the client.
So the average client latency of Sync HotStuff is 2∆ + 4δ.
Our experiments in Section V confirm this.

For comparison, the best prior synchronous protocol in
terms of latency is Hanke et al. [3]. Its average latency is
8∆ + 9δ from a leader’s perspective [13], and 9∆ + 11.5δ
from a client’s perspective, following a similar analysis.

E. Bound on Responsiveness

Sync HotStuff commits with a 2∆ latency in the steady
state when f < n/2. For completeness, in this section, we
show a lower bound on the latency when f > n/3. The
lower bound and the proof closely follow Dwork et al. [2].
For clarity, we present the bound in the Byzantine broadcast
formulation. Recall that in Byzantine broadcast, a designated
sender tries to broadcast a value to n parties. A solution needs
to satisfy three requirements:

(termination) all honest parties eventually commit,
(agreement) all honest parties commit on the same value,
and
(validity) if the sender is honest, then all honest parties
commit on the value it broadcasts.

Theorem 5. There exists no Byzantine broadcast protocol that
simultaneously satisfy the following:
• termination, agreement and validity as defined above;
• tolerates f ≥ n/3 Byzantine faults;
• terminates in less than ∆ time if the designated sender

is honest.

Proof. Suppose such a protocol exists. Divide parties into
three groups P , Q and R, each of size f . Parties in P and
Q are honest and parties in R are Byzantine. Consider the
following three scenarios. In Scenario A, parties in R remain
silent and an honest designated sender sends 0. In this scenario,
parties in P and Q commit 0 in less than ∆ time. In Scenario
B, parties in R remain silent and an honest designated sender
sends 1. In this scenario, parties in P and Q commit 1 in less
than ∆ time. In Scenario C, the designated sender is Byzantine
and sends 0 to P and 1 to Q; parties in R behave like Q
in Scenario A to P , and behave like P in scenario B to Q.



Messages from P take ∆ to reach Q and messages from Q
take ∆ to reach P . Before time ∆, P receive no messages from
Q and Q receive no messages from P , and thus the scenario is
indistinguishable from Scenario A to P and indistinguishable
from Scenario B to Q. Thus, P commits 0 and Q commits 1
in less than ∆ time, violating agreement.

III. Sync HotStuff WITH MOBILE SLUGGISH FAULTS

The standard synchrony model used in the previous section
requires that every message sent by an honest replica arrives
at every other honest replica within ∆ time. In practice, such
an assumption may not hold all the time due to potential
unforeseen aberrations in the network at either the sender or
the receiver, causing some messages to be delayed. Under
such aberrations, a protocol proved secure under the stan-
dard synchrony assumption may lose safety. For our protocol
specifically, if a replica that voted for an equivocated block
runs into a network glitch, then another honest replica may not
receive it in time and may incorrectly commit another block.
A potential way to “fix” this is to account for the sender (or
receiver) of the delayed message as Byzantine and thus tolerate
fewer actual Byzantine faults. Unfortunately, over the course
of a long execution, every replica is bound to observe such an
aberration and this “fix” will result in a dishonest majority of
replicas, thus breaking safety eventually.

A. The Mobile Sluggish Model

Chan et al. [4] consider a weaker model that allows some
replicas to be sluggish, i.e., allows delays for messages
sent/received by sluggish replicas in the network. On the
other hand, messages sent by prompt replicas will respect the
synchrony bound. More specifically, if a replica r1 is prompt
at time t1, then any message sent by r1 at time ≤ t1 will arrive
at a replica r2 prompt at time t2 if t2 ≥ t1 +∆. Moreover, the
set of sluggish replicas can arbitrarily change at every instant
of time. Hence, we call this model the mobile sluggish fault
model. We denote the number of sluggish replicas by d, the
number of Byzantine replicas by b and the total number of
faults by f . Thus, f = d+ b.

We note that the mobile sluggish model expects that a
message sent by a sluggish replica would respect the syn-
chrony bound as soon as it becomes prompt. In practice, this
model captures temporary loss in network connectivity causing
message delays. The replica can resend messages as soon as
network connectivity is restored. A similar argument holds
for receiving messages. However, it is not a good model for
capturing a replica going offline for too long since this would
require the replica to either buffer a huge amount of messages
to be resent or to resend each message many times, both of
which are impractical.

B. Protocol

Under weak synchrony, Guo et al. [6] show that no protocol
can tolerate a total number of faults (sluggish plus Byzantine
replicas) greater than n/2. The intuition is that a majority
set consisting of Byzantine and sluggish replicas might reach

a commit decision without interacting with the rest of the
world and might cause conflicting commits. Thus, we assume
> n/2 replicas are honest and prompt at any time. Moreover,
the protocol guarantees liveness when all honest replicas are
prompt for a “sufficiently long” period of time, i.e., there can
be sluggish replicas but they are not mobile. The duration is
directly related to the time required to commit a block in the
protocol.

Protocol intuition. In the synchronous protocol described in
Section II, the 2∆ period immediately after a vote was used to
ensure the following. If no equivocation was observed, i.e., if
the 2∆ period was undisturbed, then a vote for a block Bk by a
replica r ensured that both, the replica r and all other replicas
receive C(Bk) within 2∆. This is because no other honest
replica would have voted for an equivocating block and thus
all honest replicas would vote for Bk. Thus, no other certificate
would have been formed or committed. On the other hand, the
presence of an equivocation implies the potential existence of
another certificate, preventing replica r from committing.

In the presence of sluggish replicas, unfortunately, none of
the above arguments hold. A sluggish replica, even in the
absence of an equivocation, may not receive a certificate in
the 2∆ period. Similarly, other replicas may not receive its
votes and consequently certificates. Finally, if an equivocation
exists, the replica may not receive it in time.

Intuitively, these argument fail in the mobile sluggish model
because we rely on a single replica’s vote to ensure safety but
this replica can now be sluggish. The natural fix is to rely on
≥ d+ 1 honest replicas’ votes. Then, at least one of the votes
would have been sent by a prompt replica and it would ensure
safety. Unfortunately, if a replica receives d+1 votes, it cannot
determine if the votes are received from d+1 prompt replicas
or a combination of Byzantine and sluggish replicas. Thus,
we rely on a certificate C(Bk) which is bound to contain one
vote from an honest and prompt replica which is capable of
sending it to other prompt replicas.

The above intuition suffices for a certificate to be formed
at replica r; it knows it can obtain a certificate because it has
already received the certificate. However, it doesn’t guarantee
a certificate at other honest replicas. This can cause safety
violations if at the end of the view, sufficient honest replicas
do not have a certificate and some other value is proposed and
committed in subsequent views. We solve this by using the
same intuition again — if a replica has received a C(C(Bk)),
then C(Bk) must have been voted by one of the prompt
replicas. This ensures a certificate at all prompt replicas.

Finally, observe that even if a replica observes an undis-
turbed 2∆ period after receiving C(C(Bk)), then the commit
is not guaranteed. This is because the replica could be sluggish
and may not have received an equivocating block. However,
if the replica hears from a majority honest replicas about an
undisturbed 2∆ period, then an equivocation could not have
missed all of them and thus the replica can commit the block.
We call the prior state a pre-commit and the latter state a
commit.



Let v be the current view number and replica L be the leader of the current view. The steady state protocol runs the following
steps in iterations.

1) Propose. The leader L broadcasts 〈propose, Bk, v, C(Bk−1)〉L where Bk = (bk, hk−1), bk is a batch of new client
requests, and Bk−1 is the highest certified block known to L.

2) Vote. Upon receiving the first valid proposal for a height-k block Bk from L or through a vote by some other replica,
if it is extending a highest certified block, forward the proposal to all other replicas and broadcast a vote in the form of
〈vote, Bk, v〉. Set pre-commit-timerk−2 to 2∆ and start counting down.

3) (Non-blocking) Pre-commit. When pre-commit-timerk reaches 0, if Bk is the only height-k block received, pre-commit
Bk and broadcast 〈commit, Bk, v〉.

4) (Non-blocking) Commit. On receiving 〈commit, Bk, v〉 from f + 1 distinct replicas with the same v, commit Bk and
all its ancestors.

Fig. 3: The steady state protocol.

Protocol. Interestingly, despite a weaker model than the stan-
dard synchrony assumption, based on the intuition presented
above, the protocol is only marginally different from the one
presented in Figures 1 and 2. For clarity we present the entire
steady state protocol and gray out the repetition in Figure 3.
The view change protocol remains unchanged.

Now, since we require a C(C(Bk)) before waiting for the 2∆
period, we start a pre-commit timer for Bk−2 on receiving Bk.
When the pre-commit timer expires, the replica broadcasts a
commit request 〈commit, Bk, v〉 to all replicas. Upon receiving
f + 1 commit requests, the replica commits since at least one
of the requests is from a prompt replica.

C. Safety and Liveness

As before, we say a block Bk is committed directly if it is
committed due to f + 1 pre-commits. We say a block Bk is
committed indirectly if it is a result of directly committing a
block extending Bk.

Lemma 6. If an honest replica directly commits a block Bl

in view v, then f + 1 honest replicas (i) vote for Bl in that
view, and (ii) receive C(Bl) before entering the next view.

Proof. If an honest replica directly commits Bl in view v, then
d + 1 honest replicas pre-commit Bl in view v. Denote the
set of these d + 1 replicas by R. Let the earliest pre-commit
among R be performed by replica r at time t. Thus, replica
r must have received Bl+2 at time t− 2∆. This implies that
f + 1 replicas have voted for Bl+1 before time t− 2∆. Since
f + 1 replicas are honest and prompt at time t− 2∆, at least
one of these replicas, say replica r, intersects the quorum of
replicas that voted for Bl+1. Denote the set of honest and
prompt replicas at time t − ∆ by R′. Since r is honest and
prompt at t − 2∆, its vote for Bl+1, which contains C(Bl),
reaches all replicas in R′ by time t−∆.

We will now prove that the set R′ is the required set that
satisfies the two conditions in the lemma. The only scenario
in which this is not true is if one of the replicas in R′, say
replica r′ has voted for a conflicting block or has quit view v
before time t−∆. However, because r′ is honest and prompt
at time t−∆, before time t, its broadcast of conflicting vote or

blame certificate will reach all honest replicas that are prompt
at time t. At least one replica in the pre-committing set R
would be prompt and would have received this message by
time t. It would have prevented the pre-commit of Bl at that
replica, a contradiction.

Remark. Note that the above lemma states that R′ receives
C(Bk) before quitting view v. Thus, the ∆ wait during view
change is not needed for the protocol with sluggish faults.

Lemma 7. If an honest replicas directly commits a block Bl

in a view, then there does not exist C(B′l) where Bl 6= B′l .

Proof. If an honest replica directly commits Bl in view v, then
a set R of d+ 1 honest replicas pre-commit Bl in view v. We
will argue why a conflicting certificate does not exist prior
to, in, or after view v. Firstly, if conflicting certificate exists
prior to view v, at least one replica in R would not received
a conflicting vote before view v, and would not have pre-
committed Bl. Secondly, by Lemma 6, f + 1 honest replicas
vote for Bl in view v. Thus, a conflicting height-l certificate
cannot be formed in view v. Lastly, again by Lemma 6, f +
1 honest replica receive C(Bl) before entering view v + 1,
and there was no conflicting height-l certificate up until then.
From then on, the highest certified block of these f+1 honest
replicas is at least Bl, and they will not vote for height-l blocks
any more. Thus, no C(B′l) where B′l 6= Bl can come into
existence in views greater than v.

Safety. The safety proof remains identical to that of Theorem 3
except that Lemma 7 is invoked in lieu of Lemma 2.

Liveness. In the mobile sluggish model, liveness is guaranteed
only during periods in which all honest replicas stay prompt.
In that case, the same arguments in Theorem 4 hold. We do
not repeat the proof.

D. Efficiency

In the mobile sluggish model, each pre-commit timer starts
two proposals later, adding 4δ latency. The commit messages
add another round of communication and δ latency. So the
total latency becomes 2∆ + 4δ + 5δ = 2∆ + 9δ.



IV. Sync HotStuff WITH OPTIMISTIC RESPONSIVENESS

In this section, we incorporate the Thunderella [5] opti-
mistic responsive mode into Sync HotStuff. In Section II, a
certificate/quorum required only f + 1 votes. Thus, a vote
from a single honest replica can result in a certificate if all f
Byzantine replicas vote on the same block. Therefore, before
committing a block, a replica needs to wait long enough to
hear all honest replicas’ votes and make sure none of them
voted for a conflicting block. The commit latency thus inher-
ently depends on the maximum network delay ∆. In contrast,
partially synchronous protocols rule out the existence of a
conflicting certificate with larger quorums. For instance, PBFT
requires > 2n/3 votes (in two phases) and tolerates f < n/3
Byzantine replicas. A simple quorum intersection argument
shows that two conflicting blocks cannot both receive > 2n/3
votes. Thus, partially synchronous protocols commit as soon
as these quorums of votes are obtained, so the latency does
not depend on ∆.

Pass and Shi [5] use the term responsive to capture the
above latency distinction. A protocol is said to be responsive
if the latency only depends on the actual network δ but not
the maximum network delay ∆. A protocol is said to be
optimistically responsive if it achieves responsiveness when
some additional constraints are met.

Since Sync HotStuff aims to tolerate up to minority cor-
ruption, similar to Thunderella [5], to achieve responsiveness
we will use a quorum size of > 3n/4. This will give
Sync HotStuff a responsive mode that is optimistically re-
sponsive when messages from > 3n/4 replicas reach within
time δ. This happens if the actual number of faults is less
than n/4. Put differently, if more than n/4 replicas are faulty,
they can prevent responsiveness but they cannot cause a safety
violation. In that case there is no responsive progress, we fall
back to the synchronous mode in Section III.

A. Protocol

Since the responsive mode requires a larger quorum, we
introduce the notion of a strong certificate. A block B is said
to have a strong certificate if it has > 3n/4 votes. It is denoted
by Cqf (B). In the responsive mode, honest replicas only vote
for blocks that extend predecessors with strong certificates,
namely, in the form of Bk = (bk, Cqf (hk−1)).

Figure 4 describes the augmented protocol with the respon-
sive mode, augmented from the protocol in Section III. Below,
we highlight the modifications and how to switch between the
modes. Each view starts in the synchronous mode. If the leader
recognizes that > 3n/4 replicas are voting, it signals a switch
to the responsive mode by including a strong certificate. Once
a replica votes for a block containing a strong certificate, it
switches to the responsive mode. Once in the responsive mode,
a replica will only vote for blocks containing strong certificates
for the rest of the view. But crucially, the responsive commit
rule (based on two strong certificates) does not immediately
kick in. The replicas need to commit one more block using
the synchronous commit rule after switching to the responsive
mode. This essentially “commits the switch” using the regular

synchronous commit rule, i.e., it ensures that most replicas
have switched to the responsive mode.

Whenever the responsive mode fails due to an equivocat-
ing leader or lack of progress, replicas engage in a view
change (Figure 5) to move to the next view and start in its
synchronous mode. Guarding the safety of responsive commits
turns out to be non-trivial. We provide an intuition of the
concern and our approach to solving it. This is discussed
formally in Lemmas 8 and 9.

In the protocol without responsiveness, a commit implied
that a certificate was broadcast by some prompt replica 2∆
time earlier. This ensured that a certificate was obtained at
a majority of honest replicas at or before they quit the view.
Since we do not wait for 2∆ time in the responsive mode, this
does not hold any more. First, some of the sluggish replicas
(sluggish even before the responsive honest commit) can quit
the old view and enter the new view without informing a
majority of honest replicas. In the new view, they may vote
for an unsafe block. By itself, this does not create a safety
violation since d + b < f . However, in combination with
the sluggish mobility that is introduced right after a prompt
responsive honest commit, another set of d replicas may not
learn a certificate before switching to the next view leading
to a safety violation. Our solution separates the process of
quitting the old view and entering the new view with a 2∆
delay (Steps ii and iii). The delay is introduced at a replica
after learning that a majority of replicas have quit the view
giving it sufficient time for the certificates to be sent across to a
majority of prompt replicas before they enter and subsequently
vote in the next view (Step iii). These changes will be utilized
in the proof of Lemma 8.

B. Safety with Optimistic Responsiveness

We now amend the proofs for safety to account for the
addition of the responsive mode. Lemma 6 and 7 apply
to directly committed blocks in the synchronous mode. We
provide two similar lemmas for directly committed blocks in
the responsive mode.

Lemma 8. If an honest replica directly commits a block Bl

in a view, then f + 1 honest replicas receive C(Bl) before
entering the next view.

The proof is very similar to that of Lemma 6. The only
difference is that the 2∆ before pre-commit now happens
during view change.

Proof. If an honest replica directly commits Bl in view v, then
d + 1 honest replicas pre-commit Bl in view v. Denote the
set of these d + 1 replicas by R. Let the earliest pre-commit
among R be performed by replica r at time t. At least d+ 1
honest replicas voted for Bl+1 before time t. At least one of
them is honest prompt at time t. Its vote Bl+1 reaches the
set of honest replicas that are prompt time t+ ∆. Denote this
set by R′. R′ has size at least f + 1 and satisfies the lemma.
The only scenario in which this is not true is if one of the
replicas in R′, say replica r′ has entered view v + 1 before



Let v be the current view number and replica L be the leader of the current view. The steady state protocol runs the following
steps in iterations.

1) Propose. The leader L broadcasts 〈propose, Bk, v, C(Bk−1)〉L where Bk = (bk, hk−1), bk is a batch of new client
requests, and Bk−1 is the highest certified block known to L.

2) Vote. Upon receiving the first valid proposal for a height-k block Bk from L or through a vote by some other replica,
if it is extending a highest certified block, forward the proposal to all other replicas and broadcast a vote in the form of
〈vote, Bk, v〉. If Bk contains a strong certificate for its predecessor, switches to the responsive mode and only vote for
blocks with strong certificates for the rest of this view.

3) (Non-blocking) Pre-commit. If at least one block has been committed in the responsive mode of this view, pre-commit
Bk−2 and broadcast 〈commit, Bk−2, v〉 right away. Else, set pre-commit-timerk−2 to 2∆ and start counting down.
When pre-commit-timerk−2 reaches 0, if Bk−2 is the only height-k block received, pre-commit Bk−2 and broadcast
〈commit, Bk−2, v〉.

4) (Non-blocking) Commit. On receiving 〈commit, Bk, v〉 from f + 1 distinct replicas with the same v, commit Bk and
all its ancestors.

Fig. 4: The steady state protocol augmented with the responsive mode.

Let L and L′ be the leader of view v and v + 1, respectively.
i Blame. If less than p blocks are received from L in (2p+ 1)∆ time in view v, broadcast 〈blame, v〉. If more than one

block is proposed by L at any height (L has equivocated), broadcast 〈blame, v〉 and the two equivocated blocks.

ii Quit old view. Upon gathering f + 1 〈blame, v〉 messages, broadcast them along with 〈blame2, v〉, and quits view v
(abort all pre-commit-timer(s) and stop voting in view v).

iii Status. Upon gathering f + 1 〈blame2, v〉 messages, Wait for 2∆ time and enter view v+ 1. Upon entering view v+ 1,
send a highest certified block to L′ and transition back to steady state.

Fig. 5: The view-change protocol to support the responsive mode.

time t + ∆. In that case, due to the 2∆ wait during view
change, r′ has received f + 1 blame2 messages before time
t −∆. Thus, f + 1 replicas have sent blame2 and quit view
v before time t − ∆. One of them is honest and prompt at
time t − ∆. Thus, at least one replica in the pre-committing
set R would be prompt and would have received this blame2
message by time t. It would have prevented the pre-commit
of Bl at that replica, a contradiction.

Lemma 9. If an honest replica directly commits a block Bl

in the responsive mode, then there does not exist C(B′l) where
B′l 6= Bl.

Proof. If an honest replica directly commits Bl in the respon-
sive mode of view v, it implies two things: (1) that replica
has performed a synchronous commit on an ancestor of Bl,
say Bk, that contains a strong certificate to its predecessor,
(2) a set R of d + 1 honest replicas pre-commit Bl in the
responsive mode of view v, We will argue why a conflicting
certificate does not exist prior to, in, or after view v. Firstly,
due to Lemma 7, a synchronous commit of Bk rules out
any conflicting certificate for B′k 6= Bk in prior views. So
there will not be any conflicting certificate for B′l 6= Bl

in prior views. Secondly, the commit if Bk implies that at
most d honest replicas are left behind in the synchronous
mode, not enough to produce a conflicting certificate. Mean-

while, a strong certificate for B′l 6= Bl requires at least
(3n/4 + 1) + (3n/4 + 1) − n = n/2 + 1 = f + 1 replicas
to double-vote at height l, which cannot happen. Lastly, by
Lemma 8, f + 1 honest replica receive C(Bl) before entering
view v+1, and there was no conflicting height-l certificate up
until then. From then on, the highest certified block of these
f + 1 honest replicas is at least Bl, and they will not vote for
height-l blocks any more. Thus, no C(B′l) where B′l 6= Bl can
come into existence in views greater than v.

Safety. The safety proof remains identical to that of Theorem 3
except that Lemma 7 and Lemma 9 both need to be invoked.

V. EVALUATION

In this section, we first evaluate the throughput and latency
of Sync HotStuff under different parameters and conditions
(batch size, payload, and client command load). We then eval-
uate the impact of ∆ on throughput and latency and show it is
insignificant as expected. Lastly, we compare Sync HotStuff
with HotStuff [12] and Dfinity [3].

A. Implementation Details and Methodology

We implement the Sync HotStuff protocol under the stan-
dard synchrony model. Our implementation is an adaptation of
the open-source implementation of HotStuff [12]. We modify
the HotStuff code to primarily replace the core protocol logic
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Fig. 6: Structure of a block in the implementation.

while reusing some of its utility modules, such as its event
queue and network library.

In our implementation, replicas reach consensus on a se-
quence of blocks. Each block contains a batch of commands
sent by clients. A command consists of a unique identifier
and an associated payload. We refer to the maximum number
of commands in a block as the batch size. A conceptual
representation of a block is shown in Figure 6.

All throughput and latency results were measured from
clients which are separate processes running on machines
different from those for replicas. Each client generates a
number of outstanding commands and broadcasts them to
every replica. Replicas only use the unique identifier (e.g.
hash) of a command to represent it in proposals and votes.
To execute the commands for the replicated state machine,
a replica either has the command content received from the
client’s initial broadcast, or fetches it from the leader if
the client crashes before it finishes the broadcast. We use
four machines, each running four client processes, to inject
commands in to the system. Each client process can maintain
a configurable number of outstanding commands at any time.
We ensure that the performance of replicas will not be limited
by lack of client commands.

Experimental setup. All our experiments were conducted
over Amazon EC2 where each replica was executed on a
c5.4xlarge virtual machine. Each VM had 16 vCPUs
supported by Intel Xeon Platinum 8000 processors. All cores
sustained a Turbo CPU clock speed up to 3.4GHz. The
maximum TCP bandwidth measured by iperf is around
4.9 Gbps, i.e., 0.6 Gigabytes per second. We did not throttle
the bandwidth in any run. The network latency between
two machines is measured to be less than 1 ms. We used
secp256k1 for digital signatures in votes and a certificate
consists of a compact array of secp256k1 signatures.

Baselines. We compare with two baselines: (i) HotStuff,
a partially synchronous protocol, and (ii) Dfinity , a syn-
chronous protocol. We use HotStuff as a baseline because (i)
Sync HotStuff shares the same code base as HotStuff enabling
a fair comparison, and (ii) HotStuff achieves comparable
(sometimes even better) performance to the state-of-the-art

partially synchronous BFT implementation [12]. We pick
Dfinity as our other baseline because it is the state-of-the-art
synchronous BFT protocol. We did not find an implementation
of Dfinity’s cousensus protocol in its Github repository, so we
implemented our own version of Dfinity using our codebase
(which should also help ensure a fair comparison). While im-
plementing and evaluating Dfinity, we made several simplifi-
cations that are favorable to Dfinity. For instance, it was shown
that a malicious leader can exploit a flaw in the original Dfinity
design to force unbounded communication complexity [13].
We did not implement the suggested fix to this flaw (and of
course we did not exploit this flaw). We assume all leaders
in Dfinity are honest, which will improve Dfinity’s theoretical
latency from 9∆ to 7∆. We simulate their Verifiable Random
Functions (VRF), essentially assuming VRF generation is free
in Dfinity. Implementing these extra fixes and mechanisms will
only further hurt Dfinity’s performance.

B. Basic Performance

We first evaluate the basic performance of Sync HotStuff
to tolerate f = 1 fault for a synchrony bound of ∆ = 50 ms.
We measure the observed throughput (in number of commands
committed/sec, or ops/sec) and end-to-end latency for clients
(in ms). We conduct two experiments. The first one fixes the
payload and varies batch size (Figure 7a) while the other fixes
a batch size and varies the payload size (Figure 7b).

In Figure 7a, each command has a zero-byte payload to
demonstrate the overhead induced solely by consensus and
state machine replication. We consider three different batch
sizes, 100, 400 and 800, represented by the three lines in the
throughput-latency graph. In the graph, each point represents
the measured throughput and latency for one run with a given
“load” by the clients. More specifically, a client process main-
tains a fixed number of outstanding commands at any moment.
When an outstanding command is committed, a new command
is immediately issued to keep up with the specified number.
We vary the size of the outstanding command pool to simulate
different loads. The points at the lower left represent the state
when the system is not saturated by client commands. As
the load increases, the throughput initially increases without
incurring a loss in latency. Finally, after the load saturates
the bandwidth, the throughput remains unchanged (or slightly
degrades) when clients inject more commands, while the
latency goes up. The latency increases because the commands
stay in the command pool longer before they are proposed
in a block for consensus. For a batch size of 400, we observe
that the throughput is saturated at around 280 Kops/sec. There
is no further throughput gain when batch size increases from
400 to 800. So in all of our following experiments, we fix our
batch size to 400.

We also test how payload size of a command affects
performance. Figure 7b shows the performance with three
client request/reply payload sizes (in bytes) 0/0, 128/128 and
1024/1024, denoted by “p0”, “p128”, and “p1024”. In
addition to the actual payload, each command also contains
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Fig. 7: Throughput vs. latency of Sync HotStuff at varying batch sizes and payloads at ∆ = 50 ms and f = 1.

10 50 100 500

Maximum Network Delay ∆ (ms)

10

60

110

160

210

260

310

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
se

c)

Sync-HS-1
Sync-HS-8
Sync-HS-32
Sync-HS-64

(a) ∆ vs. throughput.

10 50 100 500

Maximum Network Delay ∆ (ms)

0

250

500

750

1000

L
a
te

n
cy

(m
s)

Sync-HS-1
Sync-HS-8
Sync-HS-32
Sync-HS-64
y = 2

(b) ∆ vs. latency.

Fig. 8: Performance of Sync HotStuff at varying ∆ and f at batch size = 400 and 0/0 payload.
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Fig. 9: Throughput vs. latency of Sync HotStuff at varying
batch sizes at ∆ = 50 ms and f = 1 for Dfinity [13].

an 8 byte counter to differentiate the commands. For example,
the actual command size for 0/0 is 8 bytes.

C. The Impact of ∆ on Performance

In the steady state of Sync HotStuff, replicas advance to
the next step as soon as previous messages arrive, without
waiting for any conservative ∆ bound. Thus, although each
block still incurs 2∆ latency to be committed, the system is
able to move on after a single round-trip time, process new
blocks in pipeline, and saturate available network bandwidth.

Figures 8a and 8b study the effect of varying ∆ on throughput
and latency. Each line represents a choice of f , denoted by
“1”, “8”, “32”, “64”. As expected, we observe that the
saturated throughput remains unaffected by different choices
of ∆, whereas the latency deviates little from the theoretical
2∆ line. We do note that the latency remains unaffected only
when the ∆ bound is conservative, because that is when the
time for certifying a block (the O(δ) terms in our theoretical
analysis) is overshadowed by the 2∆ wait. When tolerating a
larger number of faults or when deployed on slower network
conditions (e.g., consortium blockchains), ∆ should be set
appropriately to ensure safety.

D. Scalability and Comparison with Prior Work

We perform an experiment to understand how
Sync HotStuff scales as the number of replicas increases. We
also compare this with HotStuff and Dfinity. In our baseline,
clients issue zero-byte payload commands and saturate the
system, without overloading the replicas. We then vary the
choice of f . Each experiment is repeated five times with the
same setup to average out fluctuations. A data point shows the
average value, capped by error bars indicating the standard
deviation. Since synchronous protocols tolerate one-half faults
as against one-third in case of partial synchrony, for the same
f , the actual number of replicas is 2f + 1 for Sync HotStuff
and Dfinity, whereas it is 3f + 1 for HotStuff. We would
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Fig. 10: Performance as function of faults at ∆ = 50 ms, optimal batch size, and payload size = 0.
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Fig. 11: Performance as function of faults at ∆ = 50 ms, optimal batch size, and payload size = 1024.

also like to point out that such comparison is not entirely fair
since HotStuff does not assume synchrony. Nevertheless, it is
still helpful to understand the performance of Sync HotStuff
by comparing it to a state-of-the-art partially synchronous
protocol like HotStuff.

Comparison with HotStuff. Figures 10 and 11 show the
throughput and latency for two different payload configu-
rations, 0/0 and 1024/1024. We use a batch size of 400
for Sync HotStuff and HotStuff. Generally, the throughput
of Sync HotStuff tends to be slightly worse than HotStuff
HotStuff. But at more faults, the throughput of Sync HotStuff
gets closer to HotStuff HotStuff and in the 1024/1024 case,
eventually surpasses HotStuff HotStuff. This is because in both
cases the system is bottlenecked by a leader communicating
with all other replicas and since Sync HotStuff requires fewer
replicas to tolerate f faults, its performance scales better than
HotStuff.

Comparison with Dfinity. For Dfinity, we first perform an
experiment to determine a good batch sizes that maximize its
throughput. The results are shown in Figure 9. We observe
that Dfinity requires a batch size of 14000 to reach its
peak throughput of ∼130 Kops/sec. The reason why Dfinity
requires a much larger batch size is because proposals are
made much less frequently at every 2∆ time. In contrast, in
Sync HotStuff, a new proposal is made every 2δ � 2∆ time,
i.e., as soon as the previous proposal has been “processed”
(i.e., certified). This allows Sync HotStuff to fully utilize
available network bandwidth with much smaller batch sizes.

Figures 10b and 11b show the latency for two different
payload configurations, 0/0 and 1024/1024. As can be seen
in the figures, the latency of Dfinity varies between 330ms
and 400ms. This is much higher than that for Sync HotStuff
and is consistent with the expected theoretical average latency
as described in Section V-A. We also observe that at f = 64,
the large batch size we choose for Dfinity violates our ∆ =
50ms synchrony bound, leading to safety violations. Hence,
our evaluation does not include that data point.

VI. RELATED WORK

Several decades of research on the Byzantine agreement
problem [14] brought a myriad of solutions. Dolev and
Strong gave a deterministic Byzantine broadcast protocol for
f < n − 1 [15]. Their protocol achieves f + 1 round
complexity and O(n2f) communication complexity. The f+1
round complexity matches the lower bound for deterministic
protocols [16], [15]. To further improve round complexity,
randomized protocols have been introduced [17], [18], [19],
[20], [21], [22]. We review the most recent and closely related
works below.

Some key design goals of Sync HotStuff are inspired by
recent related works. In particular, elimination of lock-step
synchrony is first explored by Hanke et al. [3] and the mobile
sluggish model is introduced by Guo et al. [6]. Compared to
these works, Sync HotStuff uses techniques that are signifi-
cantly simpler and more efficient to achieve the same goals.

Dfinity. The Dfinity Consensus protocol described in [3] is
a replication protocol in the synchrony model that tolerates



f < n/2 Byzantine faults. It makes a key observation that a
synchronous replication protocol can start processing the next
client request without waiting for the previous one to commit.
While a standard practice in partially synchronous protocols,
this was not obvious for synchronous protocols.

However, it was recently discovered [13] that the presen-
tation in [3] allowed unbounded communication complexity
due to an exploitable requirement that honest replicas vote
for all leader proposals, including conflicting ones. Another
inefficient design in Hanke et al. is that each leader makes
only one proposal before getting replaced by a new random
leader. This hurts latency because (i) up to half of the proposal
opportunities are wasted on Byzantine leaders, (ii) their leader
election step is on the critical path and is blocking (in this
sense, Hanke et al. did not fully remove lock-step execution.)
This results in a large latency of 9∆ +O(δ).

In comparison, Sync HotStuff removes lock-step execution
using a simple and natural protocol (replicas do not vote
for conflicting proposals). Sync HotStuff embraces the stable
leader approach, common in the partial synchrony SMR (e.g.,
PBFT [23], Paxos [24]), that uses a steady state leader to
drive many decisions. These techniques allow Sync HotStuff
to achieve 2∆+O(δ) latency and expected quadratic commu-
nication complexity.

Guo et al. and PiLi. Guo et al. [6] introduced the mobile
sluggish model (called weak synchronous model in that work).
This model better reflects reality compared to the standard
synchrony model and we adopt it. PiLi [4] presents a BFT
SMR protocol in the mobile sluggish model. Its solution is
theoretical and highly involved. It assumes lock-step execution
in “epochs”. Each epoch lasts for 5∆ time and the protocol
commits five blocks after 13 consecutive epochs if certain
conditions are met. Thus, PiLi requires a latency of at least
40∆-65∆ (65∆ for the earliest and 40∆ for the latest of the
five blocks). In contrast, we observe that simple techniques
suffice to handle mobile sluggish faults at almost no extra
overhead.

Thunderella. The notion of optimistic responsiveness (under
one-quarter faults) was introduced in Thunderella [5]. Thun-
derella observes that it is safe to commit a decision in O(δ)
time if > 3n/4 votes are received. In this paper, we adopt the
key idea of Thunderella to achieve optimistic responsiveness.
But we also make two changes. First, when more than 3n/4
replicas are correct, Thunderella commits a decision after
a single round of voting. However, the decision cannot be
conveyed to external clients, hence it does not support SMR.
Sync HotStuff uses two-phase commit in the responsive path,
and hence provides safety for SMR. Second, Thunderella
uses the synchronous mode to monitor the progress of the
responsive mode and, if it does not make progress quickly,
falls back to the synchronous mode. The fallback mechanism
is presented in a black-box fashion but it is unclear how it
works in a non-Nakamoto-style protocol. In Sync HotStuff,
we take the conventional approach of having replicas monitor

the progress of the responsive mode, and using the view-
change protocol to perform the fallback.

XFT. A different type of protocol with optimistic respon-
siveness is XFT [25]. XFT guarantees responsiveness when
a group of f + 1 honest replicas is determined. Thus, when
the actual number of faults is t, it may take

(
n

f+1

)
/
(
n−t
f+1

)
view changes for an honest group of f + 1 to emerge; after
that, the protocol is responsive. Such a solution is practical
when t is a small constant but for t = Θ(n), it requires an
exponential number of view changes to find an honest group.
In comparison, Sync HotStuff and Thunderella are responsive
under t < n/4 faults after at most t view changes.

VII. CONCLUSION

In this work, we introduce Sync HotStuff, a simple and
practical synchronous BFT SMR protocol. Sync HotStuff
does not require lock step execution, tolerates mobile sluggish
faults, and offers practical performance. As we mentioned, the
mobile sluggish fault model captures short network glitches
but is not ideal for replicas going offline for too long. It
remains interesting future work to come up an even weaker and
more realistic synchronous model as well as practical solutions
in that model that still tolerate up to minority faults.
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