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Abstract

In this paper, we describe an attack on RSA cryptosystem which is
based on Euclid’s algorithm. Given a public key (n, e) with corresponding
private key d such that e has the same order of magnitude as n and one
of the integers k = (ed − 1)/φ(n) and e − k has at most one-quarter as
many bits as e, it computes the factorization of n in deterministic time
O((logn)2) bit operations.
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1 Introduction

Let p and q be two odd primes of the same size and n = pq. Consider integers e,
d with 1 < e, d < φ(n) such that ed ≡ 1 (mod φ(n)). Then (n, e) and d are the
public and the private key, respectively, for a typical RSA public-key cryptosys-
tem. The encryption and decryption algorithms are given by C = Me mod n
and M = Cd mod n, respectively. In order to accelerate the operations involv-
ing the private key d in some devices, like for example a smart card, one might
use a short secret exponent. On the other hand, in 1990, Wiener [11] proposed
a polynomial time algorithm for breaking a typical RSA cryptosystem provided
that d < n1/4/3. In this case, d is the denominator of some convergent of the
continued fraction expansion of e/n. The computation of the continued fraction
expansion of e/n needs time O((log n)2) bit operations and the total number
of convergents is of order O(log n). Since Wiener’s approach for testing conver-
gents requires time O((log n)2), the overall time complexity of Wiener’s attack
is O((log n)3) bit operations. In [7, Section 5], Wiener’s attack is presented as
a bivariate linear equation problem and one can find d via a shortest vector
computation in a two-dimensional lattice in time O((log n)2).

Extensions of Wiener’s attack that allows the RSA cryptosystem to be bro-
ken when d is a few bits longer than n1/4 are described in [3, 4, 9, 10]. Further-
more, attacks based on Coppersmith’s lattice-based technique for finding small
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roots of modular polynomials equations using LLL-algorithm are proposed in
[1, 2] in case where e is very closed to n. These lattice attacks are applicable
provided that d < n0,292. Note however that these attacks are not rigorous and
so this bound is not strictly proved.

In 2004, Hinek [6] proved that, in case where
√

6(φ(n)−d) < n1/4, Wiener’s
attack works. Furthermore, he showed that if the attacks in [1, 2] work for all
d < nδ, then the attacks also work for d > φ(n)− nδ.

In this note, we consider the case where the public exponent e has the same
order of magnitude as n and one of the integers k = (ed−1)/φ(n) and e−k has
at most one-quarter as many bits as e. Using the equation ed− kφ(n) = 1 and
the extended Euclidean algorithm, we describe an efficient simple deterministic
algorithm for the computation of the factorization of n in time O((log n)2) bit
operations. Although our attack appears to be equivalent to that of Wiener, it is
simpler as it uses only the extended Euclidean algorithm and is easily presented
in an undergraduate cryptography lesson.

The paper is organized as follows. In Section 2 we present our results and
we describe our attack. Section 3 is devoted to the proof of our results. Finally,
an example is given in Section 4.

2 An Attack Based on Euclidean Algorithm

Let p and q be two odd primes of the same size ` and n = pq. Consider
positive integers e, d with 1 < e, d < φ(n) such that ed ≡ 1 (mod φ(n)). Then
(n, e) is the public key and d the private key for a RSA cryptosystem. Set
a = n + 1 mod e and ∆ = gcd(e, a). The extended Euclidean algorithm for e
and a gives integers qi > 0 (i = 1, . . . ,m) and ri (i = 0, . . . ,m + 1) such that
r0 = e, r1 = a, rm = ∆, rm+1 = 0 and

ri−1 = riqi + ri+1, 0 < ri+1 < ri.

Further, there are integers si, ti with |ti| < e/ri−1 and |si| < a/ri−1 satisfying

sie+ ati = ri, (i = 2, . . . ,m+ 1).

(See [8]). Set µi = gcd(ti, ri) and t′i = ti/µi (i = 0, . . . ,m + 1). Our attack is
based on the following result:

Theorem 1 Let e > n/c, where c is an integer ≥ 1, and k = (ed − 1)/φ(n).
Suppose that k or e− k is ≤ e1/4/6

√
c. Then, we have ∆ < e3/4, and k = |t′j |,

p + q = (a + |t′j |−1) mod e or k = e − |t′j |, p + q = (a + (e − |t′j |)−1) mod e,

respectively, where j is such that rj is the larger remainder < e3/4.

Theorem 1 yields the design of the following deterministic algorithm for the
computation of the factorization of n:

EUCLID-ATTACK
Input: A RSA public key (n, e) with e > n/c.
Output: The primes p and q.

1. Compute a = (n+ 1) mod e.

2



2. Using the extended Euclidean algorithm for e and a, compute the bigger
remainder rj among them which are < e3/4 and the associated integers
sj , tj such that sje+ atj = rj .

3. Compute µj = gcd(tj , rj) and next t′j = tj/µj .

4. Compute β1 = (a + |t′j |−1) mod e and next the solutions u1 and v1 of

equation X2 − β1X + n = 0. If u1 and v1 are positive integers, then
output (u1, v1). Otherwise, go to the next step.

5. Compute β2 = (a+ (e− |t′j |)−1) mod e and next the solutions u2 and v2
of equation X2 − β2X + n = 0. If u2 and v2 are positive integers, then
output (u2, v2). Otherwise, output FAIL.

Theorem 2 Let e > n/c, where c is a positive integer, and k = (ed− 1)/φ(n).
Suppose that k or e − k is ≤ e1/4/6

√
c. Then the above algorithm computes

correctly the primes p and q in time O((log n)2) bit operations.

In order to avoid the attacks to small decryption exponent, a class of RSA
encryption exponents e with corresponding k = e− 1 is analyzed in [5]. In this
case the decryption exponent d is ≥ 2φ(n)/3. Since k = e−1, Theorem 2 yields
that the computation of the factorization of n, and so the computation of d, can
be easily achieved.

Suppose now that n/(c− 1) > e > n/c with c ≥ 2. We have:

d

k
=
ed

ek
=
kφ(n) + 1

ek
<
n− 1

e
+

1

ek
< c.

If k ≤ e1/4/6
√
c, then we obtain:

d < kc ≤
√
c e1/4

6
<

√
c

6(c− 1)1/4
n1/4.

Thus, for c = 10, we get d < n1/4/3. On the other hand, we have:

k =
ed− 1

φ(n)
<

ed

φ(n)
<

2ed

n
<

2

c− 1
d.

If d < n1/4/12, then we deduce:

k =
ed− 1

φ(n)
<

ed

φ(n)
<

2ed

n
<

e

n3/46
<

e1/4

(c− 1)3/4
,

and so, for c ≥ 4, we get k ≤ e1/4/6
√
c. Thus, we see that the efficacy of our

approach is comparable with Wiener’s method. Furthermore, as we have men-
tioned in the Introduction, Wiener’s method needs O((log n)3) bits operations
while our approach O((log n)2).

The solutions of the linear Diophantine equation dx− yφ(n) = 1 are x(T ) =
e+ Tφ(n) and y(T ) = k + Td, where T ∈ Z. Consider now the inequalities:

64(k + Td)4 < (e+ Tφ(n)) and 64(e− k + T (φ(n)− d))4 < (e+ Tφ(n)).

We remark that for T large enough, for instance T > φ(n)1/3, the above in-
equalities are not satisfied. Thus, in case that we replace the pubic key e by
x(T ) = e + Tφ(n) with T > φ(n)1/3 our attack does not work. Note that
Wiener’s attack is not guaranteed to work if e > n1.5 and the attack of [1] is
effective as long as e < n1.875.
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3 Proof of Theorems 1 and 2

Proof of Theorem 1. First, we give the proof of Theorem 1. The equalities
ed− kφ(n) = 1 and φ(n) = n− (p+ q) + 1 yield:

ed− 1 = k(n− (p+ q) + 1),

whence, we obtain:

k(n+ 1− (p+ q)) + 1 ≡ 0 (mod e).

Setting y0 = k and x0 = p+ q, we get:

1 + ay0 − x0y0 ≡ 0 (mod e).

Suppose that p < q. Then p <
√
n. Since p and q have the same size `, we

have:
2`−1 + 1 ≤ p < q ≤ 2`−1 + · · ·+ 1.

Thus, we get:
q − p ≤ 2`−2 + · · ·+ 2 < 2`−1 + 1 ≤ p,

whence we obtain q < 2p. Therefore, we have:

x0 = p+ q < 3
√
n < 3

√
ce.

Suppose that y0 ≤ e1/4/6
√
c. If ∆ ≥ e3/4, then we have x0y0 ≡ 1 (mod ∆)

and
|x0y0 − 1| < e3/4 ≤ ∆.

It follows that x0y0 = 1, whence we get x0 = y0 = 1 which is a contradiction.
Hence ∆ < e3/4. Let rj be the bigger among the remainders which are < e3/4.
Then, we have rj−1 > e3/4 and |tj | < e/rj−1 < e1/4. Further, we have:

tj(1 + ay0 − x0y0) + sjey0 ≡ 0 (mod e),

whence we get:

0 ≡ tj + (tja+ sje)y0 − tjx0y0 ≡ tj + rjy0 − tjx0y0 (mod e).

Set f(x, y) = tj + rjy − tjxy. Then, we have e | f(x0, y0) and

|f(x0, y0)| < e1/4 +
e

6
√
c

+
e

2
< e.

It follows that f(x0, y0) = 0, and so, we obtain:

t′j + r′jy0 − t′jx0y0 = 0.

It follows that t′j | r′jy0. Since gcd(t′j , r
′
j) = 1, we obtain t′j | y0. Furthermore,

the above equality implies that y0 | t′j . Therefore, we have y0 = |t′j |. Thus, the

congruence 1 + ay0 − x0y0 ≡ 0 (mod e) yields x0 = (a+ |t′j |−1) mod e.

Set z0 = −y0 mod e. Suppose that z0 ≤ e1/4/6
√
c. If ∆ ≥ e3/4, then we

deduce 1 + x0z0 ≡ 0 (mod ∆) and

|x0z0 + 1| < 1 +
e3/4

2
< ∆.
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It follows that x0z0 + 1 = 0 which is a contradiction. Thus, we get ∆ < e3/4.
Now, working as previously, we have:

1− az0 + x0z0 ≡ 0 (mod e)

and we deduce that z0 = |t′j |. Therefore e − y0 = |t′j |. It follows that x0 =

(a+ (e− |t′j |)−1) mod e.
Proof of Theorem 2. The proof of correctness of the algorithm EUCLID-

ATTACK is a simple consequence of Theorem 1. We shall compute its time
complexity following [8]. The execution of the extended Euclidean algorithm in
Step 2 needs O((log e)2) bit operations. The computation of δ and t′j in Step

3 requires O((log e)2) bit operations. Similarly, the computation of b1 and b2
needs O((log e)2) bit operations. Finally, the solution of the quadratic equations
in Steps 4 and 5 requires also O((log e)2) bit operations. Therefore the time
complexity of the algorithm EUCLID-ATTACK is O((log e)2) bit operations.

4 A Toy Example

In this section we give an example of application of our algorithm. Let

p = 9223372036854777017 and q = 9224497936761618437

be two 64-bits primes. Their product is the number

n = 85080976323951696719635578579671062429.

We compute:

φ(n) = (p− 1)(q − 1) = 85080976323951696701187708606054666976.

We select:

d = φ(n)−222−214−26−23−1 = 85080976323951696701187708606050456215

and compute:

e = d−1 mod φ(n) = 61100559406251463256709716070302151015.

Thus (n, e) and d is the public and private key for a RSA scheme. We shall use
the algorithm EUCLID-ATTACK in order to compute the factorization of n.

First, we compute

a = (n+ 1) mod e = 23980416917700233462925862509368911415.

We apply the Euclidean algorithm for r0 = e and r1 = a, and we compute the
remainders r2, r3, . . .. The bigger remainder which is smaller than e3/4 is

r13 = 55785270375887536485564215.

The corresponding pair (s13, t13) is the pair (−1186820, 3023941). Further, we
have gcd(r13, t13) = 1. Following the steps of the algorithm, we compute:

b1 = a+ t−113 mod e = 47960833835400466907403855045121427376.
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We solve the equation x2 − b1x+ n = 0 and we see that their solutions are not
integers. Next, we compute

b2 = a+ (e− t13)−1 mod e = 18447869973616395454.

The solutions of the equation x2 − b2x + n = 0 are the primes p and q. Note
that 2e > n and so, c = 2. Furthermore, we have n− k < e1/4/6

√
2.
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