
Timing attacks on Error Correcting Codes in
Post-Quantum Secure Schemes

Jan-Pieter D’Anvers1, Marcel Tiepelt2, Frederik Vercauteren1, and
Ingrid Verbauwhede1

1 imec-COSIC, KU Leuven, Kasteelpark Arenberg 10, Bus 2452, B-3001
Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.be
2 Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany

tiepelt@dev-nu11.de

Abstract. While error correcting codes (ECC) have the potential to
significantly reduce the failure probability of post-quantum schemes, they
add an extra ECC decoding step to the algorithm. As this additional
computation handles secret information, it is susceptible to side-channel
attacks. We show that if no precaution is taken, it is possible to use timing
information to distinguish between ciphertexts that result in an error
before decoding and ciphertexts that do not contain errors, due to the
variable execution time of the ECC decoding algorithm. We demonstrate
that this information can be used to break the IND-CCA security of post-
quantum secure schemes by presenting an attack on both the Ring-LWE
scheme LAC and the Mersenne prime scheme Ramstake. This attack
recovers the full secret key using a limited number of timed decryption
queries. The attack is implemented on the reference and the optimized
implementations of both submissions. It is able to retrieve LAC’s secret
for all security levels in under 2 hours using less than 221 decryption
queries and Ramstake’s secret in under 2 minutes using approximately
2400 decryption queries. The attack generalizes to other schemes with
ECC’s in which side-channel information about the presence of errors is
leaked during decoding.

1 Introduction

Learning With Errors (LWE) based algorithms are a promising alternative for
current public key encryption schemes, which are vulnerable to attacks exploiting
quantum computation. Several appealing public key encryption (PKE) schemes
and key encapsulation mechanisms (KEM) based on the LWE hard problem or
its variants have been proposed following the NIST Post-Quantum Cryptogra-
phy process announcement. The LWE based submissions range from a standard
approach in FrodoKEM [22] and Emblem [23], over Ring-LWE based schemes
such as New Hope [4], LAC [20], LIMA [24] or R.Emblem [23], to the Mod-LWE
based scheme Kyber [6]. Saber [9] and Round2 [5] adopt the similar Learning
with Rounding paradigm to reduce bandwidth.



Another class of algorithms is based on the Mersenne Low Hamming Com-
bination Assumption, as introduced by Aggarwal et al. [3]. Two proposals to
the NIST Post-Quantum Cryptography process fall in this category: Mersenne-
756839 [2] and Ramstake [25].

To convert an encryption scheme into a chosen ciphertext secure (IND-CCA)
KEM, one can use a Post-Quantum secure version [18] of the Fujisaki-Okamoto
transformation [15]. Most of the aforementioned algorithms adopt this transfor-
mation or a variant to obtain resistance against chosen ciphertext attacks.

One of the factors in the design of these schemes, is the failure probabil-
ity: a high failure probability might give rise to attacks that exploit the failures
to recover the secret [13, 10], a low failure probability leads to less competitive
parameter settings with higher bandwidth and computational complexity. This
observation prompted designers to adopt error correction in order to reduce the
failure rate and thus allow a better parameter setting and smaller bandwidth.
Mersenne prime based schemes inherently rely on error correcting codes (ECC’s)
due to the nature of the algorithm. Mersenne-756839 [2] proposes a repetition
code, while Ramstake defines a more involved error correcting code. Although
LWE based schemes do not naturaly involve the need for ECC’s, Lu et al. pro-
posed LAC [20], a ring-LWE based scheme that relies extensively on the error
correcting code BCH [17, 7]. A further analysis of ECC’s for LWE based schemes
has been done by Fritzmann et al. [14] and D’Anvers et al. [11]. The downside
of these error correcting codes is an increased complexity of the program code
and a higher sensitivity to side-channel attacks.

While LWE-based schemes enjoy a strong theoretical security, their imple-
mentations might be vulnerable to side-channel attacks, where information is
obtained through physical channels such as power measurements, electromag-
netic radiation or timing. A timing attack is a type of side-channel attack first
proposed by Kocher [19], where information on the timing of certain calculations
is used to obtain information about the secrets in a cryptographic algorithm.
Such side-channels have been proven efficient for attacking the secret generation
of the lattice based signature scheme BLISS [16, 12]. However, these attacks do
not carry over to the encryption case, where the secret generation is done in a
more side-channel secure way. Carré et al. [8] measured possible cache-timing
effects on various submissions to the NIST Post-Quantum standardization pro-
cess. Alperin-Sheriff [1] noticed timing variabilities in the error correcting codes
of LAC and Ramstake.

In this paper, we show that side-channel information on the execution of
error correcting codes can be used to circumvent the IND-CCA security of post-
quantum encryption schemes, by presenting an efficient chosen-ciphertext attack
in which decryption errors are detected and exploited before the error correction.
After some preliminaries in Section 2, we introduce the Ring-LWE based scheme
LAC in Section 3 and the Mersenne prime scheme Ramstake in Section 4. In
Section 5, we show that the variable time execution of the ECC’s leaks infor-
mation about the presence of errors. This vulnerability is used in Section 6 and

2



Section 7 to develop timing attacks1 on both the reference and the optimized
implementations of LAC and Ramstake.

2 Preliminaries

2.1 Notation

Let Zq denote the ring of integers mod q. For LAC we will represent integers in
(−q/2, q/2] and for Ramstake in [0, q]. When describing Ramstake, integers will
be represented as little-endian binary strings, so that a[i : j] denotes selecting
bits i to j from a, counted from the least significant bit (LSB). Let Rq be the
polynomial ring Zq[X]/(Xn+1). Elements of this ring will be denoted with bold
lowercase letters. Define (aaa)l for aaa ∈ Rq as zeroing the coefficients associated
with Xk for k ≥ l. Sampling x according to a distribution χ will be denoted
with x ← χ, which is extended coefficient-wise for polynomials as xxx ← χ(Rq).
The uniform distribution is represented as U .

2.2 Cryptographic definitions

A Public Key Encryption scheme (PKE) is a triple of functions (KeyGen, Enc, Dec):
KeyGen produces a secret key sk and a public key pk, Enc takes the public key
pk and a message m to produce a ciphertext c, and Dec computes the message
m′ from the ciphertext c and the secret key sk.

A Key Encapsulation Mechanism (KEM) is defined as three functions (KeyGen,
Encaps, Decaps): KeyGen returns a secret and a public key sk and pk respectively,
Encaps uses a public key pk to generate a key k and a ciphertext c, Decaps uses
c and sk to return the key k or a random output u.

The security notion of indistinguishability under chosen ciphertext attacks
(IND-CCA) of a KEM is defined as follows:

Advind-cca
KEM (A) =

∣∣∣∣∣∣P
b′ = b :

(pk, sk)← KeyGen(), b← U({0, 1}),
(c, k0)← Encaps(pk), k1 ← K

b′ ← ADecaps(pk, c, kb),

− 1

2

∣∣∣∣∣∣ .
3 Ring-LWE based schemes

The decisional Ring-LWE problem [21] is a mathematical hard problem where
the goal is to distinguish a uniformly random sample (aaa,uuu)← U(Rq ×Rq) from
learning with errors samples (aaa,aaasss+ eee), with aaa← U(Rq) and with the secrets sss
and eee drawn from the distributions χs and χe respectively. The related search
Ring-LWE problem consists of recovering sss from Ring-LWE samples.

1 The implementations are available at https://github.com/KULeuven-COSIC/

PQCRYPTO-decryption-failures

3



3.1 LAC.PKE

LAC is a package of cryptographic primitives whose security is based on the
Ring-LWE problem. It contains a PKE and a KEM, which will be described in
the following subsections. Given a pseudorandom generator gen() that expands
seedaaa into a polynomial aaa ∈ Rq, and an error correcting code consisting of an
encoding and decoding function ecc enc and ecc dec respectively, LAC.PKE is
defined as in Algorithms 1 to 3. Note that the randomness required to generate
sss′, eee′ and eee′′ is derived deterministically from the uniformly random seed r.

Algorithm 1: LAC.PKE.KeyGen()

1 seedaaa ← U({0, 1}256)
2 aaa = gen(seedaaa)
3 sss← χs(Rq), eee← χe(Rq)
4 bbb = aaasss+ eee
5 return (pk := (bbb, seedaaa), sk := sss)

Algorithm 2: LAC.PKE.Enc(pk = (bbb, seedaaa),m, r)

1 aaa = gen(seedaaa) ∈ Rq
2 sss′ ← χs(Rq), eee

′ ← χe(Rq), eee
′′ ← χe(Rq) // derived from r

3 bbb′ = aaasss′ + eee′

4 mecc = ecc enc(m)

5 vvv′ = (bbbsss′ + eee′′ + b q
2
cmecc)

l

6 return ct = (vvv′, bbb′)

Algorithm 3: LAC.PKE.Dec(sk = sssA, ct = (vvv′, bbb′))

1 vvv = (bbb′sss)l

2 for i = 0 to l − 1 do
3 if −q

4
≤ vvv′ − vvv < q

4
then

4 m′ecc,i = 0
5 else
6 m′ecc,i = 1

7 m′ = ecc dec(m′ecc)
8 return m′

After the execution of the protocol, the coefficients of mecc and m′ecc coin-
cide with a high probability. An error will be defined as a coefficient of m′ecc

4



that differs from the corresponding coefficient of mecc. The error correction ca-
pabilities of the ecc dec will be able to correct up to a certain number t of
errors. An excess of errors will lead to a failure in which the decrypted message
m′ does not correspond to m. This happens with a failure probability pf . The
parameter choices for the three versions of LAC are given in Table 1, with t the
error correction capability of the used ECC, pe the error probability of a single
coefficient of m′ecc, and with pf the failure probability of the scheme under a
honest submitter. The LAC NIST submission uses BCH for its error correction.
For more details we refer to the original submission [20].

q n l t pe pf

LAC-128 251 512 512 29 2−13 2−240

LAC-192 251 1024 512 13 2−25 2−254

LAC-256 251 1024 1024 55 2−7.5 2−115

Table 1: Parameter choices for the variants of LAC

3.2 LAC.KEM

The KEM variant of LAC uses a post-quantum version [18] of Fujisaki-Okamoto
[15] to transform the PKE in an IND-CCA secure KEM. Given two hash func-
tions G and H that model a random oracle, LAC.KEM re-uses the function KeyGen

from LAC.PKE and defines the functions Encaps and Decaps as described in Al-
gorithms 4 and 5.

Algorithm 4: LAC.KEM.Encaps(pk)

1 m← U({0, 1}256)
2 r = G(m)
3 c = LAC.PKE.Enc(pk,m, r)
4 K = H(m, c)
5 return (c,K)

4 Mersenne prime schemes

4.1 Mersenne primes

A Mersenne prime is a prime of the form p = 2n−1, with n an integer. Mersenne
prime numbers have the special property that performing a modulo operation
a mod p on an integer a, does not increase its Hamming weight. Moreover, the

5



Algorithm 5: LAC.KEM.Decaps(sk, pk, c)

1 m′ = LAC.PKE.Dec(sk, c)
2 r′ = G(m′)
3 c′ = LAC.PKE.Enc(pk,m′, r′)
4 if c = c′ then
5 return K = H(m, c)
6 else
7 return K = H(H(sk), c)

modulo operation is a simple procedure on the binary expansion of an integer:
bits at positions i ≥ n are cut off and are added as bits at position i mod n.
The special case a · 2k mod p results in a circular shift of the bits of a over k
bits, when a is written as an n bit string. We will use this property during our
attack.

4.2 Security assumption

The Mersenne Low Hamming Combination Assumption [3] states that, given a
Mersenne prime p = 2n − 1 and an integer ω, it is hard to distinguish between([

R1

R2

]
,

[
R1

R2

]
·A+

[
B1

B2

])
and

([
R1

R2

]
,

[
R3

R4

])
, (1)

where R1, R2, R3, R4 ← U({0, 1}n), and A,B are n-bit random integers with
Hamming weight ω, and where the calculations are performed in Zp.

4.3 Ramstake.KEM

Ramstake is an IND-CCA secure KEM whose security is based on the Mersenne
Low Hamming Combination Assumption. Let p = 2n − 1 be a Mersenne prime,
let geng() be a pseudorandom generator that expands seedg into a random n
bit integer, and let HWω(n) denote the uniformly random sampling of an n bit
integer with exactly ω bits set to 1. If a random seed r is given, HWω(n; r)
denotes sampling this integer deterministically from r. Let F(), G() and H() be
hash functions that model random oracles.

Ramstake defines a custom designed error correcting code described in Al-
gorithms 6 and 7. This code uses a Reed Solomon (RS) ECC that takes a 256
bit message and produces 255 byte codewords, where up to 111 corrupted bytes
in the codeword can be corrected. The encoding function is denoted as encRS()
and decoding function as decRS().

The RS encoding is combined with a variant on a repetition code, where
the decoding receives ν RS encoded versions of the message and the hash of
the message. Decryption proceeds by decoding the RS encoded versions one by
one and checking whether the decoded messages comply with the hash. Once a

6



Algorithm 6: Ramstake.E(m)

1 e = encRS(m)
2 m′ecc = 0
3 for i = 0 to ν − 1 do
4 m′ecc+ = e · 2i

5 h = F(m)
6 return mecc, h

Algorithm 7: Ramstake.D(mecc, h)

1 for i = 0 to ν − 1 do
2 m = decRS(mecc[i

l
ν

: (i+ 1) l
ν
− 1])

3 if h == F(m) then
4 return m

5 return ⊥

matching pair is found, the message is returned. If none of the codewords decodes
into the original message, a decryption failure has occured and ⊥ is returned.

If and only if the message is successfully recovered, a re-encryption step
is performed which tests whether the inputs of the decryption ct = (v′, b′, h)
are generated from the message m. This re-encryption is part of the Fujisaki-
Okamoto transformation [15] that provides IND-CCA security.

Algorithms 8 to 10 detail the three functions that make up Ramstake. Pa-
rameters that make up the two variants of Ramstake are given in Table 2. For
the full specification we refer to the original submission [25].

n ω ν pf Squantum

Ramstake-RS-216091 216091 64 4 2−64 264

Ramstake-RS-756839 756839 128 6 2−64 2128

Table 2: Parameter choices for the variants of Ramstake

5 Timing Variability

Decoding algorithms of advanced error correcting codes are not trivially pro-
grammed for constant time execution, as some words are more easily decoded
than others. This is especially the case with valid codewords, which typically de-
code faster than words that contain errors. We can also observe this behaviour in
LAC: Figure 1 represents the number of clock cycles needed for the error decod-
ing function of LAC-256 for both valid and faulty input words, where the timings

7



Algorithm 8: Ramstake.KEM.KeyGen()

1 seedg ← U({0, 1}256)
2 g = geng(seedg)

3 s, e← HWω(n)
4 b = gs+ e mod p
5 return (pk = (seedg, b), sk = (s))

Algorithm 9: Ramstake.KEM.Encaps(pk = (seedg, b))

1 g = geng(seedg)

2 m← U({0, 1}256)
3 r = G(m)
4 s′, e′ ← HWω(n; r)
5 b′ = s′g + e′ mod p
6 mecc, h = E(m)
7 v′ = (s′b mod p)[0 : l]⊕mecc

8 K = H(pk,m)
9 return (ct = (b′, v′, h),K)

Algorithm 10: Ramstake.KEM.Decaps(pk = (seedg, b), sk = (s),
ct = (b′, v′, h))

1 m′ecc = (sb′ mod p)l ⊕ v′
2 m = D(m′ecc, h)
3 if m 6=⊥ then
4 s′, e′ ← HWω(n;G(m))
5 b′t = s′g + e′ mod p
6 mecc, h = E(m)
7 v′t = (s′c mod p)[0 : l]⊕mecc

8 if (b′, v′) == (b′t, v
′
t) then

9 return H(pk,m)

10 return ⊥

8



are averaged over 100 samples. This test is done on a desktop computer with an
Intel(R) Core(TM) i5-6500 CPU running at 3.20GHz using the optimized imple-
mentation of LAC-256 [20]. However, these results carry over to other versions
of LAC and can also be observed on the reference implementation.

As the other functions of the decapsulation are implemented in a constant
time fashion, the timing difference can also be seen in the execution of the whole
decapsulation, as depicted in Figure 2. Using this timing information, we can
thus with high probability distinguish between ciphertexts that lead to errors in
the intermediate ciphertext before decoding m′ecc and ciphertexts without errors,
a difference that is exploited in our attack on LAC.

For Ramstake, the error correction is inherently non-constant time due to
two reasons: First, once the valid m is found, the following encoded messages
are skipped and work on the re-encryption is started immediately. Secondly, if no
valid message is found (i.e. a decryption failure), re-encryption is not performed.
As the re-encryption step requires more work than the decryption step, the time
difference between decodable and undecodable ciphertexts is easily measured.
This is the timing leakage that we will exploit during our attack on Ramstake.
During the attack, if no valid message is found, the execution of the decapsulation
takes on average 1.07 · 107 cycles, while a decapsulation with a valid message
takes on average 2.32 · 108 cycles. Furthermore, Ramstake uses a Reed-Solomon
error correcting code which can be an additional source of timing information.

During our attacks, we use inputs to the decapsulation function that are
as similar as possible to reduce the timing variations that are not linked to
the distinction between valid and compromised m′ecc. This leads to a better
distinguishing capability of the attacks.

6 Timing Attack on LAC

In the following attack, timing variations in the ECC of LAC.KEM are used to
break its IND-CCA security and recover coefficients of the secret sss. During the
attack, we submit chosen ciphertexts to the decapsulation function, and use
timing information as the input to our algorithm. As the submitted ciphertexts
are not valid, the output of the decapsulation contains no useful information and
is not used.

The decapsulation function takes two inputs bbb′ and vvv′ and calculates ∆vvv =
vvv′ − (bbb′sss)(l), where sss is the secret. ∆vvv is used to recover the message m′ecc using
the following decoder:

m′ecc,i =

{
0 if − q

4 ≤ ∆vvvi <
q
4

1 otherwise
. (2)

During decoding, the message m′ is retrieved from m′ecc. As detailed in Sec-
tion 5, this step leaks timing information that allows us to easily distinguish
between an m′ecc that contains an error and a correct m′ecc.

9



2000 3000 4000 5000 6000
clock cycles (mean over 100 samples)

0.0000

0.0005

0.0010

0.0015

0.0020
pr

ob
ab

ilit
y

no error
error

Fig. 1: Clock cycles for the execution of the ECC in LAC-256

1000000 1050000 1100000 1150000 1200000
clock cycles (mean over 100 samples)

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

pr
ob

ab
ilit

y

no error
error

Fig. 2: Clock cycles for the execution of the decapsulation function in LAC-256

10



Now we choose the polynomials bbb′ = 1 and vvv′ = b q4c+ b q2ccccv as inputs, with
cccv a valid codeword. Without loss of generality, we select the zero polynomial as
codeword, so that ∆vvv = b q4c − (sss)l. The only possible error location is ∆vvv0, as
the perturbation on other coefficients of ∆vvv is limited to {−1, 0,+1}. The value
of m′ecc,0 is calculated as follows:

m′ecc,0 =

{
0 if b q4c − sss0 <

q
4

1 otherwise
(3)

(4)

or:

m′ecc,0 =

{
0 if sss0 ∈ {0, 1}
1 if sss0 = −1

. (5)

The timing information of the decapsulation gives us enough information to
distinguish between the two cases with high probability, as the ECC takes more
time in the presence of an error. A longer time thus corresponds to a 1 in the
0th position of m′ecc and therefore sss0 = −1. We will denote the time for this
decapsulation query with t−1. Inputting bbb′ = −1 with the same vvv′, an error will
occur when sss0 = 1. The time for executing the decapsulation with these inputs
will be written as t1. The time difference ∆t = t1 − t−1 is now an indicator for
the value of sss0, as a high value indicates sss0 = 1, a high negative value sss0 = −1,
and a small value sss0 = 0.

Other coefficients of sss can be recovered by varying the input bbb′: for estimating
the kth position of sss, we use the ciphertexts bbb′ = ±Xn−k in conjunction with the
same vvv′ as before. Looping over all possible k values, we can recover the whole
secret sss.

6.1 Results

We executed this attack on a desktop computer with an Intel(R) Core(TM) i5-
6500 CPU running at 3.20GHz by measuring the time∆t and averaging over 1000
samples for each coefficient of sss of the optimized implementations of LAC [20].
We were able to obtain the secret key of LAC-128 in 2 · 1000 · 512 queries to the
decryption oracle, and of LAC-192 and LAC-256 in 2·1000·1024 queries. This at-
tack strategy was successfully repeated for the reference implementations, hereby
showing that a side-channel secure implementation is of paramount importance
for LWE based schemes that use error correcting codes.

6.2 Variants on the attack

We demonstrated the side-channel vulnerability of Ring-LWE schemes using a
timing attack. However, the extent of the vulnerability goes further than timing

11



attacks, as any side-channel that reveals information about the presence of errors
can be used. Even when a constant time implementation of the ECC is used,
techniques such as power analysis and electromagnetic attacks might reveal the
necessary information to enable our attack. Note that the attacker can input any
chosen ciphertext to the implementation, and can thus select the ciphertexts so
that the side-channel accuracy is optimized.

Given the very sparse structure of bbb′ and vvv′, which is easy to detect, one could
think of a countermeasure where these type of inputs are rejected. We show that
this does not stop the attack: We start by trying honest inputs bbb′ and vvv′, until we
find a pair that doesn’t have any errors in m′ecc. This event can be detected using
the timing information. Once we find such a pair, we make a small adjustment
α to one of the coefficients of vvv′ to generate bbb′, vvv′α = vvv′ + αXk and we input
these as new ciphertexts. Starting at 1, we increase a until we find the point
where we obtain a failure. This search that can be sped up using binary search.
At this point, we know that: ∆vvvk = (vvv′α−bbb′sss)k = qt+1 or (bbb′sss)k = vvv′α− (qt+1),
which gives us a linear equation in sss. Repeating this procedure we obtain enough
equations to solve for sss.

7 Timing Attack on Ramstake

7.1 Constructing an exploitable ciphertext

Our attack on Ramstake exploits the timing variations between the case where
the decoding D(m′ecc, h) was successful, leading to the execution of the re-
encryption step, and the case where a decryption failure occurs, avoiding re-
encryption. However, we note that any (side-channel) information that reveals
knowledge about the presence of errors before error correction can be used to
construct a similar attack.

In the following sections we gradually construct a chosen ciphertext that
reveals information about the bits of the secret s. First, consider the following
input:

ct := (b′ = 0, v′ = 0, h = F(0)) . (6)

Since (sb′ mod p)[0 : l]⊕v′ = m′ecc = 0, this results in a decodable codeword and
the re-encryption is performed. The re-encryption test fails and the decapsulation
function returns a failure, but as we are not interested in the output of the
decapsulation, this is not important.

Second, we add artificial errors to v′ such that the decoding step is one error
away from failing, i.e., by setting all but the first 255− 111 = 144 bytes to one.
This ciphertext still results in a decodable codeword, and thus re-encryption is
still triggered. However, an additional error in the first 144 bytes of the recovered
version of m′ecc would trigger a decryption failure, thus avoiding re-encryption.

Third, we set b′ = 20 = 1. Recall that the codeword is recovered as m′ecc =
(sb′ mod p)[0 : l] ⊕ v′ and that an error in the first 144 bytes of m′ecc would
trigger a measurable decryption failure. Therefore, this ciphertext would fail if

12



there is a nonzero byte in the first 144 positions of the secret s. We can thus,
using this ciphertext, test if there is a one in the first 8 · 144 bit positions of s.

Finally, by setting b′ to different powers of 2, say b′ = 2k, we can vary which
positions of s we are testing. Remembering the circular shift property from
subsection 4.1, the multiplication with b′ = 2k corresponds to a circular shift of
s with k positions. This allows us to perform a binary search for a position of a
one in s.

Once we find a one at position i of s, we want to cancel it out to avoid finding
it again. This is achieved by flipping bit 2(n+i−k mod n) of v′, which translates
in correcting the error corresponding to that one due to the xor operation.
The additional advantage of this step is that it enables the attacker to correct
wrong measurements: if a mistake occurs and a one is wrongly detected at a
zero position i′ of s, the flipped bit in v′ would induce an error corresponding to
the i′ of s. Therefore, if position i′ is mistakenly measured as a one position, it
will be detected a second time, after which an attacker can correct his original
mistake.

The full procedure to make a ciphertext that detects ones in range pos to
pos+ 144 · 8, taking into account the temporary estimation of the secret sest is
given in Algorithm 11. Using this algorithm in a repeated binary search leads to
a full recovery of the secret s.

Algorithm 11: gen ct(pos, sest)

1 b′ = 2pos

2 v′ = 0
3 for i = 144 to l/8 do
4 v′[8i : 8i+ 7] = 66

5 h = F(0)
6 v′ = v′ ⊕ (sest · 2pos mod p)
7 return b′, v′, h

7.2 Recovering the secret

Now that we can construct a test that returns the existence of a one in a range
of length l = 144 · 8 of the binary expansion of the secret s, we will perform a
search for these ones. In following section we will refer to the ones in the binary
expansion of the secret as set bits. First, we scan the secret for a range where
there is no set bit in pb − 1− l to pb − 1 and where there is at least one set bit
in pb to pb + l. This pattern always exists in the secret s.

Having found such a pattern, we start a binary search to find a set bit.
Knowing that there is a set bit in the interval pb to pe, we test the interval
d(pb + pe)/2− le to d(pb + pe)/2e. If this contains a set bit, there is at least one

13



set bit in pb to d(pb + pe)/2e, if not at least one set bit in d(pb + pe)/2 + 1e to
pe. By iteratively reducing the search range, we will find a one in the secret.

Repeating this whole procedure but taking into account the temporary knowl-
edge of the secret sest, we can retrieve all bits of the secret one by one, in a limited
number of decryption queries.

7.3 Results

The attack was performed on a desktop computer with an Intel(R) Core(TM) i5-
6500 CPU running at 3.20GHz, recovering the full secret in under 2 minutes with
approximately 2400 queries. Due to the significant timing variations between the
case where a decryption failure occurs and the case where no decryption failure
occurs, only one timing measurement was needed for each ciphertext query.
These results emphasize the threat of side-channel information when using error
correcting codes.

8 Conclusion

In this paper we successfully attacked the Ring-LWE scheme LAC and the
Mersenne prime scheme Ramstake, using timing variations in the decoding steps
of their error correction. First, we showed that timing variations expose infor-
mation about presence of errors before error correction. We then described a
method to break the IND-CCA security of these schemes based on this informa-
tion and launched a chosen ciphertext attack which recovers the coefficients of
the secret key with very high probability. Finally, the attack was demonstrated
experimentally, leading to a recovery of the full secret of LAC in under two
hours using less than 212 decryption queries, and the full secret of Ramstake
in a matter of minutes using approximately 2400 decryption queries. The at-
tacks can be easily generalized for other post-quantum schemes that leak timing
information on possible errors in the codeword before decoding. Furthermore,
other side-channels such as power or electromagnetic radiation, which are hard
to protect against, can be used to obtain the necessary information to break the
schemes. Therefore, schemes that employ error correcting codes are exposed to
increased side-channel vulnerability, as information leakage about the decoding
of the ECC might lead to efficient attacks that break their security.

9 Acknowledgements

This work was supported in part by the Research Council KU Leuven grants:
C16/15/058, C14/18/067 and STG/17/019 and by the European Commission
through the Horizon 2020 research and innovation programme Cathedral ERC
Advanced Grant 695305.

14



References

1. NIST Post-Quantum Cryptography Process, Round1. National Institute of Stan-
dards and Technology, 2017.

2. D. Aggarwal, A. Joux, A. Prakash, and M. Santha. Mersenne-756839. Technical
report, National Institute of Standards and Technology, 2017.

3. D. Aggarwal, A. Joux, A. Prakash, and M. Santha. A New Public-Key Cryptosys-
tem via Mersenne Numbers. In H. Shacham and A. Boldyreva, editors, Advances in
Cryptology – CRYPTO 2018, pages 459–482, Cham, 2018. Springer International
Publishing.

4. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange
– a New Hope. In USENIX Security 2016, 2016.

5. H. Baan, S. Bhattacharya, O. Garcia-Morchon, R. Rietman, L. Tolhuizen, J.-L.
Torre-Arce, and Z. Zhang. Round2: KEM and PKE based on GLWR. Cryptology
ePrint Archive, Report 2017/1183, 2017.

6. J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe,
and D. Stehlé. CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM.
Cryptology ePrint Archive, Report 2017/634, 2017.

7. R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting binary group
codes. Information and Control, 3(1):68–79, 1960.

8. S. Carre, A. Facon, S. Guilley, Lec’hvien, Matthieu, and A. Schaub. Cache-Timing
Vulnerabilities of NIST PQC Competitors.

9. J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren. Saber: Module-
LWR Based Key Exchange, CPA-Secure Encryption and CCA-Secure KEM. In
AFRICACRYPT 2018, pages 282–305, 2018.

10. J.-P. D’Anvers, F. Vercauteren, and I. Verbauwhede. On the impact of decryption
failures on the security of LWE/LWR based schemes. Cryptology ePrint Archive,
Report 2018/1089, 2018.

11. J.-P. D’Anvers, F. Vercauteren, and I. Verbauwhede. The impact of error de-
pendencies on Ring/Mod-LWE/LWR based schemes. Cryptology ePrint Archive,
Report 2018/1172, 2018.

12. T. Espitau, P.-A. Fouque, B. Gérard, and M. Tibouchi. Side-Channel Attacks on
BLISS Lattice-Based Signatures: Exploiting Branch Tracing Against strongSwan
and Electromagnetic Emanations in Microcontrollers. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS ’17,
pages 1857–1874, New York, NY, USA, 2017. ACM.

13. S. Fluhrer. Cryptanalysis of ring-LWE based key exchange with key share reuse.
Cryptology ePrint Archive, Report 2016/085, 2016.

14. T. Fritzmann, T. Pöppelmann, and J. Sepulveda. Analysis of Error-Correcting
Codes for Lattice-Based Key Exchange. Cryptology ePrint Archive, Report
2018/150, 2018.

15. E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric
Encryption Schemes. Journal of Cryptology, 26(1):80–101, 1 2013.

16. L. Groot Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. Flush, Gauss, and
Reload – A Cache Attack on the BLISS Lattice-Based Signature Scheme. In
B. Gierlichs and A. Y. Poschmann, editors, Cryptographic Hardware and Embedded
Systems – CHES 2016, pages 323–345, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

17. A. Hocquenghem. Codes correcteurs d’erreurs (in French). Chiffers, 2:147–156,
1959.

15



18. D. Hofheinz, K. Hövelmanns, and E. Kiltz. A Modular Analysis of the Fujisaki-
Okamoto Transformation. Cryptology ePrint Archive, Report 2017/604, 2017.

19. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Annual International Cryptology Conference, pages 104–113.
Springer, 1996.

20. X. Lu, Y. Liu, D. Jia, H. Xue, J. He, and Z. Zhang. LAC. Technical report,
National Institute of Standards and Technology, 2017.

21. V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices and Learning with
Errors over Rings. In Advances in Cryptology – EUROCRYPT 2010: 29th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, French Riviera, May 30 – June 3, 2010. Proceedings, pages 1–23. Springer
Berlin Heidelberg, 2010.

22. M. Naehrig, E. Alkim, J. Bos, L. Ducas, K. Easterbrook, B. LaMacchia,
P. Longa, I. Mironov, V. Nikolaenko, C. Peikert, A. Raghunathan, and D. Stebila.
FrodoKEM. Technical report, National Institute of Standards and Technology,
2017.

23. M. Seo, J. H. Park, D. H. Lee, S. Kim, and S.-J. Lee. Emblem and R.Emblem.
Technical report, National Institute of Standards and Technology, 2017.

24. N. P. Smart, M. R. Albrecht, Y. Lindell, E. Orsini, V. Osheter, K. Paterson, and
G. Peer. LIMA. Technical report, National Institute of Standards and Technology,
2017.

25. A. Szepieniec. Ramstake. Technical report, National Institute of Standards and
Technology, 2017.

16


